A theorem on splitting of algebraic vector bundles and its applications

Dedicated to Professor Yoshikazu Nakai on his 60th birthday
Hideyasu Sumitiro
(Received January 20, 1982)

0. Introduction

Let E be an algebraic vector bundle on a smooth projective algebraic scheme X defined over an algebraically closed field (arbitrary characteristic). Then it is known that after a suitable succession of blowing ups of $X, f: X^{\prime} \rightarrow X, f^{*}(E)$ has a splitting of line bundles on X^{\prime}, i.e., there is a filtration of subbundles of $f^{*}(E)$ $F_{0} \supset \cdots \supset F_{r}=0(r=r a n k E)$ such that every quotient $F_{i} / F_{i+1}(0 \leqq i \leqq r-1)$ is a line bundle on X^{\prime} (cf. [4]). In this paper, we shall prove another simple theorem on splitting of line bundles of algebraic vector bundles (cf. Theorem 2.1): Let E be an algebraic vector bundle on a smooth quasi-projective algebraic scheme defined over an algebraically closed field (arbitrary characteristic). Then there exists a finite and faithfully flat morphism $f: X^{\prime} \rightarrow X$ such that $f^{*}(E)$ has a splitting of line bundles on X^{\prime}. Hence we can prove the following (cf. Theorem 3.2) as a corollary: Let Z be an algebraic cycle of codim $=p$ on a smooth projective algebraic scheme X. Then there is a finite faithfully flat morphism $f: X^{\prime} \rightarrow X$ such that $(p-1)!f^{*}(Z)=\Sigma \pm D_{1} \cdots D_{p}$ (rat. equiv.), where D_{k} are divisors on X^{\prime}. Hence in particular, $(p-1)!f^{*}(Z)$ is smoothable. Theorem 3.2 seems to be a useful fact to study algebraic cycles because it says that if a problem on algebraic cycles is not changed after multiplication of integers and pull back of finite faithfully flat morphisms, then we have only to consider the cycles Z of the forms $\Sigma \pm D_{1} \cdots D_{p}$, where D_{k} are divisors on X. After introducing the notion of very ample vector bundles and studying their properties, we shall prove the above theorems.

The author would like to express his sincere thanks to Professor Yoshikazu Nakai for his steadfast encouragements.

1. Very ample vector bundles

In [2], R. Hartshorne has introduced the notion of ampleness of algebraic vector bundles. Since then, we have obtained several useful algebro-geometric results using ample vector bundles. In this section, we shall define very ample vector bundles on algebraic schemes and study their properties.

Let k be an algebraically closed field with arbitrary characteristic, X an algebraic k-scheme and let E be an algebraic vector bundle on X, i.e., a locally free O_{X}-coherent sheaf with constant rank. We shall denote the associated projective bundle by $\pi: P(E) \rightarrow X$ and its tautological line bundle, i.e., an invertible sheaf on $P(E)$ by L_{E}.

Definition 1.1. With the above notation, if L_{E} is a very ample line bundle on $P(E)$, then we define E to be very ample. Hence, a very ample vector buldle is ample in the sense of Hartshorne.

At first, we shall prove some formal properties of very ample vector bundles.
Proposition 1.2. Let E and E^{\prime} be very ample vector bundles on a k algebraic scheme X. Then we have the followings.
(1) Every quotient vector bundle of E is very ample.
(2) $E \oplus E^{\prime}$ and $E \otimes E^{\prime}$ are very ample.
(3) $E^{\otimes n}, S^{n}(E)(n=1,2, \ldots)$ and $\wedge E^{m}(1 \leqq m \leqq$ rank $E)$ are very ample. Furthermore, let $T(E)$ be a positive tensor bundle of E (cf.[2]). If char $k=0$, then $T(E)$ is very ample.
(4) Let L be an ample line bundle and let F be a vector bundle on X. Then, there is a positive integer n_{0} such that $L^{\otimes n} \otimes F$ is very ample for all $n \geqq n_{0}$.
(5) Let Y be a closed subscheme of X. Then, the restricted vector bundle $E \mid Y$ of E to Y is very ample.

Proof. (1). Let F be a quotient vector bundle of E. Then the projective bundle $P(F)$ is a closed subscheme of $P(E)$ and the tautological line bundle L_{F} of F is the restriction of L_{E} to $P(F)$. Thus, F is very ample. (2). Let $\varphi: P(E) \rightarrow$ P^{a-1} (resp. $\varphi^{\prime}: P\left(E^{\prime}\right) \rightarrow P^{b-1}$) be an embedding of $P(E)$ by L_{E} (resp. an embedding of $P\left(E^{\prime}\right)$ by $\left.L_{E^{\prime}}\right)$. Suppose that $\left\{s^{i} \mid s^{i} \in H^{0}\left(P(E), L_{E}\right)=H^{0}(X, E), i=1, \ldots, a\right\}$ and $\left\{\bar{s}^{j} \mid \bar{s}^{j} \in H^{0}\left(P\left(E^{\prime}\right), L_{E^{\prime}}\right)=H^{0}\left(X . E^{\prime}\right), j=1, \ldots, b\right\}$ give those embeddings. Let $\left\{U_{\alpha}\right\}$ be an affine open covering of X such that $E\left|U_{\alpha} \cong \oplus^{r} O_{U_{\alpha}}, E^{\prime}\right| U_{\alpha} \cong \oplus^{r^{\prime}} O_{U_{\alpha}}$ and let $s^{i} \mid U_{\alpha}=\left(s_{1}^{i}, \ldots, s_{r}^{i}\right) \quad\left(s_{k}^{i} \in \Gamma\left(U_{\alpha}, O_{U_{\alpha}}\right)\right) \quad$ and $\quad \bar{s}^{j} \mid U_{\alpha}=\left(\bar{s}_{1}^{k}, \ldots, \bar{s}_{r^{\prime}}^{j}\right) \quad\left(\bar{s}_{k}^{j} \in \Gamma\left(U_{\alpha}, O_{U_{\alpha}}\right)\right)$. Then, $\varphi \mid U_{\alpha}: P\left(E \mid U_{\alpha}\right) \cong U_{\alpha} \times P^{r-1} \ni\left(x,\left(\xi_{1}: \cdots: \xi_{r}\right)\right) \rightarrow\left(\sum s_{k}^{1}(x) \xi_{k}: \cdots: \sum s_{k}^{a}(x) \xi_{k}\right) \in$ P^{a-1}, where $\varphi \mid U_{\alpha}$ is the restricted morphism of φ to an open subscheme $P\left(E \mid U_{\alpha}\right)$. Similarly we have $\varphi^{\prime} \mid U^{\alpha}: P\left(E^{\prime} \mid U_{\alpha}\right) \cong U_{\alpha} \times P^{r^{\prime}-1} \ni\left(x,\left(\eta_{1}: \cdots: \eta_{r^{\prime}}\right)\right) \rightarrow$ $\left(\sum \bar{s}_{k}^{1}(x) \eta_{k}: \cdots: \sum \bar{s}_{k}^{b}(x) \eta_{k}\right) \in P^{b-1}$. Now we shall prove that the morphism $\varphi^{\prime \prime}: P\left(\mathrm{E} \oplus \mathrm{E}^{\prime}\right) \rightarrow P^{a+b-1}$ is an embedding, where $\varphi^{\prime \prime}$ is given by $\varphi^{\prime \prime} \mid U_{\alpha}: P(E \oplus$ $\left.E^{\prime} \mid U_{\alpha}\right) \cong U_{\alpha} \times P^{r+r^{\prime}-1} \ni\left(x,\left(\xi_{1}: \cdots: \xi_{r}: \eta_{1}: \cdots: \eta_{r^{\prime}}\right)\right) \rightarrow\left(\sum s_{k}^{1}(x) \xi_{k}: \cdots: \sum s_{k}^{a}(x) \xi_{k}:\right.$ $\left.\sum \bar{s}_{k}^{1}(x) \eta_{k}: \cdots: \sum \bar{s}_{k}^{b}(x) \eta_{k}\right) \in P^{a+b-1}$ locally. In fact, since E and E^{\prime} are very ample, $\varphi^{\prime \prime}$ is injective and the induced local ring homomorphism $\varphi^{\prime *}$: $O_{\varphi^{\prime \prime}(x)} \rightarrow O_{x}$ is surjective for all $x \in X$. Hence, we have only to prove that X is homeomorphic to a locally closed subscheme of P^{a+b-1} by $\varphi^{\prime \prime}$. Let ψ :
$P\left(E \oplus E^{\prime}\right) \rightarrow P(E)\left(\right.$ resp. $\left.\psi^{\prime}: P\left(E \oplus E^{\prime}\right) \rightarrow P\left(E^{\prime}\right)\right)$ be the rational map obtained by the O_{X}-homomorphism: $E \ni e \rightarrow(e, 0) \in E \oplus E^{\prime}$ (resp. $E^{\prime} \ni e^{\prime} \rightarrow\left(0, e^{\prime}\right) \in E \oplus E^{\prime}$) and let $U=P\left(E \oplus E^{\prime}\right)-P\left(E^{\prime}\right)$ (resp. $\left.U^{\prime}=P\left(E \times E^{\prime}\right)-P(E)\right)$. Then $U\left(\right.$ resp. $\left.U^{\prime}\right)$ is the domain of definition of ψ (resp. ψ^{\prime}) and $\psi_{U}: U \rightarrow P(E)\left(\right.$ resp. $\left.\psi_{U^{\prime}}^{\prime}: U^{\prime} \rightarrow P\left(E^{\prime}\right)\right)$ is an affine vector bundle over $P(E)$, i.e., $U=\operatorname{Spec}\left(S^{*}\left(L_{E}^{*} \otimes \pi^{*}\left(E^{\prime}\right)\right)\right.$), where $\pi: P(E) \rightarrow X$ is the structure morphism and $S^{\prime}\left(L_{E}^{*} \times \pi^{*}\left(E^{\prime}\right)\right)$ is the symmetric $O_{X^{-}}$ Algebra of $L_{E}^{*} \otimes \pi^{*}\left(E^{\prime}\right)\left(L_{E}^{*}\right.$ being the dual line bundle of L_{E}) (resp. $U^{\prime}=$ $\operatorname{Spec}\left(S^{*}\left(L_{E^{\prime}}^{*} \otimes \pi^{\prime *}(E)\right)\right)$). Moreover, let $\left\{X_{1}, \ldots, X_{a}, Y_{1}, \ldots, Y_{b}\right\}$ be a homogeneous coordinate of $P^{a+b-1}, W=\cup_{i=1}^{a} P_{X_{i}}^{a+b-1}\left(\right.$ resp. $W^{\prime}=\cup_{j=1}^{b} P_{Y_{j}}^{a+b-1}$), where $P_{X_{i}}^{a+b-1}=$ $\left\{\zeta=\left(\zeta_{1}: \cdots: \zeta_{a+b}\right) \zeta_{i} \neq 0,1 \leqq i \leqq a\right\}$ (resp. $P_{Y_{j}}^{a+b-1}=\left\{\zeta=\left(\zeta_{1}: \cdots: \zeta_{a+b}\right) \zeta_{a+j} \neq 0,1 \leqq j \leqq\right.$ $b\}$) and let $\bar{\psi}: W \in\left(x_{1}: \cdots: x_{a}: y_{1}: \cdots: y_{b}\right) \rightarrow\left(x_{1}: \cdots: x_{a}\right) \in P^{a-1}$ (resp. $\bar{\psi}^{\prime}: W^{\prime} \ni\left(x_{1}: \cdots:\right.$ $\left.\left.x_{a}: y_{1}: \cdots: y_{b}\right) \rightarrow\left(y_{1}: \cdots: y_{b}\right) \in P^{b-1}\right)$ be the canonical projection. Then, P^{a+b-1} is covered by W and W^{\prime} and $\bar{\psi}: W \rightarrow P^{a-1}$ (resp. $\bar{\psi}^{\prime}: W^{\prime} \rightarrow P^{b-1}$) is an affine bundle over $\quad P^{a-1}$, i.e., $W=\operatorname{Spec}\left(S^{*}\left(O_{P^{a-1}}(-1)^{\oplus b}\right)\right)$ (resp. $\left.W^{\prime}=\operatorname{Spec}\left(S^{\prime}\left(O_{P^{b-1}}(-1)^{\oplus a}\right)\right)\right)$. Since $L_{E}=\varphi^{*}\left(O_{P^{a-1}}(1)\right)\left(\right.$ resp. $\left.L_{E^{\prime}}=\varphi^{\prime *}\left(O_{P^{b-1}}(1)\right)\right), U\left(\right.$ resp. $\left.U^{\prime}\right)$ is a closed subscheme of $\bar{\psi}^{-1}(\varphi(P(E)))$ (resp. $\bar{\psi}^{\prime-1}\left(\varphi^{\prime}\left(P\left(E^{\prime}\right)\right)\right)$). Therefore, $P\left(E \oplus E^{\prime}\right)$ is homemorphic to a locally closed subscheme of P^{a+b-1} because $P(E)$ (resp. $P\left(E^{\prime}\right)$) is homeomorphic to a locally closed subscheme of P^{a-1} through φ (resp. P^{b-1} through φ^{\prime}). Hence, $E \oplus E^{\prime}$ is very ample. We shall next prove that $E \otimes E^{\prime}$ is very ample. Since E^{\prime} is generated by global sections, $E \otimes E^{\prime}$ is a quotient vector bundle of a direct sum of $E^{\prime s}$. Thus, $E \otimes E^{\prime}$ is very ample by (1) and (2). (3), (4) and (5) are also easily proved by (1) and (2).
q.e.d.

Corollary 1.3. Let E be an ample vector bundle on X. Then there exists a positive integer n_{0} such that $S^{n}(E)$ is very ample for all $n \geqq n_{0}$.

Proof. Let L be a very ample line bundle on X. Since E is ample, there is a positive integer n_{0} such that $L^{*} \otimes S^{n}(E)$ is generated by global sections for all $n \geqq n_{0}$ (L^{*} being the dual line bundle of L). Hence $S^{n}(E)$ is very ample because $S^{n}(E)$ is a quotient vector bundle of $L^{\oplus N}$ for some positive integer N. q.e.d.

We shall next show some geometrical properties of very ample vector bundles.
Let E be a vector bundle (rank $E=r+1$) on a k-algebraic scheme X which is generated by global sections, say $\alpha: O_{X}^{\oplus(n+1)} \rightarrow E$ a surjective homomorphism. Then α defines a morphism $\varphi: P(E) \rightarrow P^{n}$ and a morphism $\psi: X \rightarrow G(n, r)=\mathrm{a}$ parameter space of r-dimensional linear subsupaces of P^{n} as follows.

$$
\psi: X \ni x \longrightarrow \operatorname{Im} \alpha(x)=\left(\alpha(x): k(x)^{\oplus(n+1)} \longrightarrow E \otimes k(x)\right) \in G(n, r)
$$

where $k(x)$ is the residue field of x. For every $x \in X$, the r-dimensional linear subspace corresponding to $\psi(x)$ coicides with $\varphi\left(\pi^{-1}(x)\right)$.

Proposition 1.4. If E is very ample, then the morphism $\psi: X \rightarrow G(n, r)$
is an embedding for a sutiable choice of global sections of E.
Proof. Let $\left\{s^{i} \mid s^{i} \in H^{0}(X, E), i=0,1, \ldots, n\right\}$ be a set of global sections of E which gives an embedding $\varphi: P(E) \rightarrow P^{n}$ and let $\left\{U_{\alpha}\right\}$ be an affine open covering of X such that $E\left|U_{\alpha} \cong \oplus^{r+1} O_{U_{\alpha}}, s^{i}\right| U_{\alpha}=\left(s_{O_{\alpha}}^{i}, \ldots, s_{r \alpha}^{i}\right)\left(s_{j \alpha}^{i} \in \Gamma\left(U_{\alpha}, O_{U_{\alpha}}\right)\right)$. Since φ is the following morphism on each open subscheme $\pi^{-1}\left(U_{\alpha}\right) \cong U_{\alpha} \times P^{r}$

$$
\varphi \mid U_{\alpha}: U_{\alpha} \times P^{r} \ni\left(x, \check{\xi}_{j}\right) \longrightarrow\left(\sum_{j} s_{j \alpha}^{0}(x) \xi_{j}: \cdots: \sum_{j} s_{j \alpha}^{n}(x) \xi_{j}\right) \in P^{n},
$$

the r-dimensional linear subsapce $\varphi\left(\pi^{-1}(x)\right)$ in P^{n} for $x \in X$ is equal to the point $\psi(x) \in G(n, r)$. Therefore, ψ is injective because φ is an embedding. Hence, the problem is local and so we shall assume $X=U_{\alpha}$ for some α. For every (i_{0}, \ldots, $\left.i_{r}\right)\left(0 \leqq i_{0}<\cdots<i_{r} \leqq n\right\}$, let us put

$$
s\left(i_{0}, \ldots, i_{r}\right)=\left|\begin{array}{ccc}
s_{0}^{i_{0}} \ldots \ldots & s_{0_{r}}^{i_{r}} \\
\vdots \\
s_{r}^{i_{0}} \ldots \ldots \ldots & \vdots & s_{r}^{i_{r}}
\end{array}\right| .
$$

Then, some $s\left(i_{0}, \ldots, i_{r}\right)$ is an invertible element of $\Gamma\left(X, O_{X}\right)$. Suppose that $s(0, \ldots, r)$ is invertible for simplicity. Taking a suitable base of $E \cong \oplus^{r+1} O_{X}$, we may assume that $s_{j}^{i}=\delta_{i j}$ for $0 \leqq i, j \leqq r$. Then $\psi(x)$ has following coordinate matrix in the open subset $U_{01} \ldots r$ of $G(n, r)$:

Here, we shall denote by $U_{i_{0} \cdots i_{r}}$ the open subscheme of $G(n, r)$ defined for every pair $\left(i_{0}, \ldots, i_{r}\right)\left(0 \leqq i_{0}<\cdots<i_{r} \leqq n\right)$ as follows. Let Ω be a universal domain over k and let $\left\{e_{0}, \ldots, e_{n}\right\}$ be a basis of $(n+1)$-dimensional vector space $\Omega^{\oplus(n+1)}$. Then

$$
U_{i_{0} \cdots i_{r}}=\left\{L \in \operatorname{Hom}\left(\Omega^{\oplus(n+1)}, \Omega^{\oplus(n+1)}\right) \mid L\left(e_{i_{j}}\right) \neq 0,0 \leqq j \leqq r\right\} .
$$

On the other hand, the following composite morphism of X to P^{n} for each $i(0 \leqq$ $i \leqq r$) is an embedding:

$$
\begin{aligned}
& X \longrightarrow \pi^{-1}(X) \cong X \times P^{r} \longrightarrow \underset{U}{U} \underset{U}{U} P^{n} \\
& x \longrightarrow(x,(0: \cdots: 1: \cdots: 0)) \longrightarrow\left(0: \cdots: 1: \cdots: 0: s_{i}^{r+1}(x): \cdots: s_{i}^{n}(X)\right) .
\end{aligned}
$$

Hence the morphism ψ is an embedding.
q.e.d.

Corollary 1.5. Let E be an algebraic vector bundle on a quasi-projective k-aglebraic scheme X. Then, E is extendable to an algebraic vector bundle \bar{E} on a projective algebraic k-scheme \bar{X} containing X as an open subset.

Proof. Let L be a very ample line bundle on X such that $E^{\prime}=E \otimes L$ is very ample. By Proposition 1.4, there is an embedding $\psi: X \rightarrow G(n, r)$ and $E^{\prime}=\psi^{*}(Q)$, where Q is the universal quotient vector bundle of $G(n, r)$. Now, let \bar{X} be the scheme-theoretic closure of X in $G(n, r)$ and let $\bar{E}^{\prime}=Q \mid \bar{X}$. Then E^{\prime} is extendable to \bar{E}^{\prime}, i.e., $\bar{E}^{\prime} \mid X=E^{\prime}$. On the other hand, there is a projective algebraic scheme X^{\prime} with a line bundle L^{\prime} such that L is extendable to L^{\prime} because L is very ample. Since X^{\prime} and \bar{X} are projective, there is a blowing up $f: \bar{X}^{\prime} \rightarrow X^{\prime}$ such that the canonical birational map $X^{\prime} \rightarrow \bar{X}$ is resolved, i.e., there is a morphism $g: \bar{X}^{\prime} \rightarrow \bar{X}$ and the diagram

is commutative.
q.e.d.

We shall show some results on chern classes of very ample vector bundles. Let X be a projective smooth algebraic scheme over k, E a vector bundle on X with rank $=r$ and let s be a global section of E. Let us denote the zero locus of s by $Z(s)$ and the tautological divisor associated to s by D. If $Z(s)$ is a subscheme of pure codimension r, then $Z(s)$ represents $c_{r}(E)$ (the r-th chern class of E). Let $\mathfrak{U}=\left\{U_{\alpha}\right\}$ be an affine open covering of X such that

$$
E\left|U_{\alpha} \cong \oplus^{r} O_{U_{\alpha}}, \quad s\right| U_{\alpha}=\left(s_{1}^{\alpha}, \ldots, s_{r}^{\alpha}\right) \quad\left(s_{i}^{\alpha} \in \Gamma\left(U_{\alpha}, O_{X}\right)\right)
$$

Then $Z(s)$ is defined on U_{α} by the equations

$$
s_{1}^{\alpha}=\cdots=s_{r}^{\alpha}=0
$$

and D is defined on $\pi^{-1}\left(U_{\alpha}\right) \simeq U_{\alpha} \times P^{r-1}$ by the equation

$$
s_{1}^{\alpha} X_{1}+\cdots+s_{r}^{\alpha} X_{r}=0
$$

Thus it is easy to see the following.
Lemma 1.6. D is a smooth divisor if and only if $Z(s)$ is either empty or a smooth subscheme of pure codim $=r$.

Corollary 1.7. Let X be a non-singular projective algebraic variety defined over an algebracially closed field k of char $k=0$ and let E be a vector bundle on X with rank $=r(\geqq 2)$. Assume that E is generated by global sections $\left\{s_{1}, \ldots, s_{t}\right\}$, i.e., there is a surjective homomorphism $\alpha: O_{X}^{\oplus t} \rightarrow E$. Then there is a sufficiently general global section $s=\sum_{i=1}^{t} c_{i} s_{i}\left(c_{i} \in k\right)$ such that $Z(s)$ is either empty or a smooth subscheme of pure codim $=r$.

Proof. Let $\varphi: P(E) \rightarrow P^{t-1}$ be the morphism defined by global sections $\left\{s_{1}, \ldots, s_{t}\right\}$. If $\operatorname{dim} \varphi(P(E)) \geqq 2$, then there is a sufficiently general global section $s=\sum_{i=1}^{t} c_{i} s_{i}\left(c_{i} \in k\right)$ such that the tautological divisor D associated to s is irreducible and smooth by Bertini's theorem. By Lemma 1.6, $Z(s)$ is either empty or a smooth subscheme of pure codim $=r$. If $\operatorname{dim} \varphi(P(E))=1$, then $\varphi\left(P(E)\right.$) is a line in P^{t-1} and $r=2$. Hence, there is a sufficiently general section $s=\Sigma c_{i} s_{i}$ with $Z(s)=\phi$. In this case, it is easy to see $E \simeq O_{X} \oplus O_{X}$.

More generally, let $s_{1}, \ldots, s_{i}(1 \leqq i \leqq r)$ be global sections of E with $s_{i} \mid U_{\alpha}=$ $\left(s_{i 1}^{\alpha}, \ldots, s_{i r}^{\alpha}\right)\left(s_{i j}^{\alpha} \in \Gamma\left(U_{\alpha}, O_{X}\right)\right)$. For every α, let us put
$I_{\alpha}=$ the ideal generated by all i-minors of the matrix

Then the family of ideals $\left\{I_{\alpha}\right\}$ determines an ideal I of O_{X} such that $I \mid U_{\alpha}=I_{\alpha}$ for all α.

Definition 1.8. With the above notation, we shall denote by $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ the closed subscheme of X defined by the ideal I.

Let D_{1}, \ldots, D_{i} be the tautological divisors associated to sections s_{1}, \ldots, s_{i} respecitvely. The intersection $D_{1} \cap \cdots \cap D_{i}$ is defined on each open subset $\pi^{-1}\left(U_{\alpha}\right)$ $\cong U_{\alpha} \times P^{r-1}$ by

$$
\begin{gathered}
s_{11}^{\alpha} X_{1}+\cdots+s_{1 r}^{\alpha} X_{r}=0 \\
\vdots \\
s_{i 1}^{\alpha} X_{1}+\cdots+s_{i r}^{\alpha} X_{r}=0 .
\end{gathered}
$$

Hence $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ is characterized set-theoretically as follows: $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)=$ $\left\{x \in X \mid \operatorname{dim} \pi^{-1}(x) \cap D_{1} \cap \cdots \cap D_{i} \geqq r-i\right\}$. Now let us put $Z_{k}=Z\left(s_{1} \wedge \cdots \hat{s}_{k} \cdots \wedge s_{i}\right)$ for every $k(1 \leqq k \leqq i)\left(Z_{k}\right.$ being a closed subscheme of $\left.Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)\right)$ and $U=$ $X \rightarrow \cap_{k=1}^{i} Z_{k}$. Then we have the following as a generalization of Lemma 1.6.

Lemma 1.9. 1) $D_{1} \cap \cdots \cap D_{i} \cap \pi^{-1}(U)$ is a smooth subscheme of pure codim $=i$ if and only if either $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right) \cap U$ is empty or a smooth subscheme of pure $\operatorname{codim}=r-i+1$ and $\operatorname{Sing}\left(Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)\right)=\cap_{k=1}^{i} Z_{k}$, where $\operatorname{Sing}\left(Z\left(s_{1} \wedge \cdots\right.\right.$ $\left.\wedge s_{i}\right)$) denotes the singular locus of $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$.
2) If $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ is of pure codim $=r-i+1$, then there is a rational map $f: Z\left(s_{1} \wedge \cdots \wedge s_{i}\right) \rightarrow P^{i-1}(i \geqq 2)$ such that the regular domain of f coincides with $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)-\cap_{k=1}^{i} Z_{k}$ and every $Z_{k}=f^{-1}\left(H_{k}\right)$, where H_{k} is a hyperplane of P^{i-1}.

Proof. When $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right) \cap U=\phi$, our claim is obvious. Hence we assume $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right) \cap U \neq \phi$. Since the problem is local, we may assume $X=U_{\alpha} \cap U$ and we omit the index α. Moreover, we may assume that $\operatorname{det}\left(s_{j k}\right)(1 \leqq j, k \leqq i-1)$ is invertible on X. Then, taking a suitable basis of $E \simeq \oplus^{r} O_{X}$, we may assume that $D_{1} \cap \cdots \cap D_{i}$ is defined by

$$
\begin{array}{r}
X_{1}+\cdots \cdots+s_{1 i} X_{i}+\cdots \cdots+s_{1 r} X_{r}=0 \\
\ddots x_{i-1}+s_{i-1 i} X_{i}+\cdots+s_{i-1 r} X_{r}=0 \\
s_{i 1} X_{1}+\cdots \cdots+s_{i i} X_{i}+\cdots \cdots+s_{i r} X_{r}=0
\end{array}
$$

Here, let us put

$$
f_{j}=\left|\begin{array}{lcc}
1 & 0 & s_{1 j} \\
\cdots \cdots \cdots & \vdots \\
0 & 1 & s_{i-1 j} \\
s_{i 1} \cdots \cdots s_{i i-1} & s_{i j}
\end{array}\right|=s_{i j}-\sum_{k=1}^{i-1} s_{i k} s_{k i} \quad(i \leqq j \leqq r) .
$$

Then the ideal I is generated by the set $\left\{f_{i}, \ldots, f_{r}\right\}$. Hence $\operatorname{codim}_{X} Z\left(s_{1} \wedge \cdots \wedge s_{i}\right) \leqq$ $r-i+1$. Now let x be a point of $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right),\left\{z_{1}, \ldots, z_{n}\right\}$ a regular system of parameters of X at $x(n=\operatorname{dim} X)$ and let us assume $\operatorname{rank}\left(\partial f_{j} / \partial z_{k}\right)_{x}=r-i+1-t$ ($i \leqq j \leqq r, 1 \leqq k \leqq n$). Consider the following Jacobian matrix:

$$
\left[\begin{array}{ccccc}
\sum\left(\partial s_{1 j} / \partial z_{1}\right) X_{j}, \ldots \ldots, \sum\left(\partial s_{1 j} / \partial z_{n}\right) X_{j}, & 1 & 0 \cdots 0, & s_{1 i}, \ldots, & s_{1 r} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\sum\left(\partial s_{i-1 j} / \partial z_{1}\right) X_{j}, \ldots, \sum\left(\partial s_{i-1 j} / \partial z_{n}\right) X_{j}, & 0 & 0 \cdots, & s_{i-1 i}, \ldots, & s_{i-1 r} \\
\sum\left(\partial s_{i k} / \partial z_{1}\right) X_{k}, \ldots \ldots, \sum\left(\partial s_{i k} / \partial z_{n}\right) X_{k}, & s_{i 1} \cdots \cdots \cdots \ldots \ldots,
\end{array}\right] .
$$

Since $x \in Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$, there are constants $c_{1}, \ldots, c_{i-1}(\in k(x))$ such that $s_{i k}=$ $\sum c_{l} s_{l k}(1 \leqq k \leqq r)$. Thus the following matrix is equivalent to the above matrix:

$$
\left[\begin{array}{ccccc}
\sum\left(\partial s_{1 j} / \partial z_{1}\right) X_{j}, \ldots \ldots, \sum\left(\partial s_{1 j} / \partial z_{n}\right) X_{j}, & 1 & 0 \cdots 0, & s_{1 i}, \ldots, & s_{1 r} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\sum\left(\partial s_{i-1 k} / \partial z_{1}\right) X_{j}, \ldots, \sum\left(\partial s_{i-1 j} / \partial z_{n}\right) X_{j}, & \vdots & 0 \cdots i, & s_{i-1 i}, \ldots, & s_{i-1 r} \\
g_{1}, \ldots \ldots \ldots \ldots \ldots . g_{n}, & 0 \ldots \ldots \ldots \ldots \ldots, & 0
\end{array}\right]
$$

where $g_{m}=\sum_{k=1}^{i-1}\left(\partial s_{i k} / \partial z_{m}\right) X_{k}+\sum_{j=i}^{r}\left(\partial s_{i j} / \partial z_{m}-\sum c_{l} \partial s_{l j} / \partial z_{m}\right) X_{j}(1 \leqq m \leqq n)$. Hence the following linear equations have only a trivial solution if and only if $t=0$ because the rank of its coefficient matrix is equal to $r-t$ from our assumption:

$$
\begin{aligned}
& X_{1}+\cdots \cdots+s_{1 i} X_{i}+\cdots \cdots+s_{1 r} X_{r}=0, \\
& \quad \ddots \quad X_{i-1}+s_{i-1 i} X_{i}+\cdots+s_{i-1 r} X_{r}=0, \\
& g_{1}=\cdots=g_{n}=0 .
\end{aligned}
$$

Therefore $D_{1} \cap \cdots \cap D_{i}$ is a smooth subscheme of pure codim =i if and only if $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ is a smooth subscheme of pure codim $=r-i+1$. Since Sing $\left(Z\left(s_{1} \wedge\right.\right.$ $\left.\cdots \wedge s_{i}\right)$) contains $\cap_{k=1}^{i} Z_{k}$ in general, $\operatorname{Sing}\left(Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)\right)=\cap_{k=1}^{i} Z_{k}$.
2). Let x be a general point of $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$. Then there is a unique $k(x)$ rational point $c(x)=\left(c_{1}(x): \cdots: c_{i}(x)\right)$ of P^{i-1} such that $c_{1}(x) s_{1}(x)+\cdots+c_{i}(x) s_{i}(x)=$ 0 . Hence we have a rational map $f: Z\left(s_{1} \wedge \cdots \wedge s_{i}\right) \ni x \rightarrow c(x) \in P^{i-1}$ such that the regular domain of f coincides with $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)-\cap_{k=1}^{i} Z_{k}$ and every $Z_{k}=$ $f^{-1}\left(H_{k}\right)$, where H_{k} is a hyperplane defined by $X_{k}=0$.
q.e.d.

Now let s_{1} be a global section of E such that the associated tautological divisor D_{1} is smooth and $Z\left(s_{1}\right) \neq \phi, f_{1}: X_{1} \rightarrow X$ the blowing up of X with center $Z\left(s_{1}\right)$ and let F_{1} be the exceptional divisor. Then we have the following exact sequence:

$$
\begin{equation*}
0 \longrightarrow O_{X_{1}}\left(F_{1}\right) \xrightarrow{\alpha} f_{1}^{*}(E) \xrightarrow{\beta} E_{1} \longrightarrow 0, \tag{*}
\end{equation*}
$$

where E_{1} is a vector bundle on X_{1} with rank $=r-1$. The exact sequence (*) is expressed locally as follows:
$X=U=\operatorname{Spec}(A)$ such that $E \mid U \simeq \oplus^{r} O_{X}$.
$s_{1} \mid U=\left(x_{1}, \ldots, x_{r}\right) .\left\{x_{1}, \ldots, x_{r}\right\}$ is a part of regular system of parameters of X at the points of $Z\left(s_{1}\right)$.

$$
X_{1}=\cup_{i=1}^{r} U_{i} \text {, where } U_{i}=\operatorname{Spec}\left(A\left[x_{1} / x_{i}, \ldots, x_{r} / x_{i}\right]\right)(1 \leqq i \leqq r) .
$$

On each affine open subset U_{i},

$$
\begin{aligned}
& \alpha_{i}: \quad 1 \quad \longrightarrow\left(x_{1} / x_{i}, \ldots, x_{r} / x_{i}\right), \\
& \beta_{i}:\left(\xi_{1}, \ldots, \xi_{r}\right) \longrightarrow\left(\xi_{1}-\left(x_{1} / x_{i}\right) \xi_{i}, \ldots, \xi_{r}-\left(x_{r} / x_{i}\right) \xi_{i}\right)
\end{aligned}
$$

From the exact sequence (*), we have the following relation between chern classes of E and $E_{1}: c_{i}(E)=f_{1^{*}}\left(c_{i}\left(E_{1}\right)\right)(1 \leqq i \leqq r-1)$. In fact, $c_{i}\left(f_{1}^{*}(E)\right)=c_{i}\left(E_{1}\right)+$ $F_{1} \cdot c_{i-1}\left(E_{1}\right)(1 \leqq i \leqq r-1)$ from the exact sequence (*). Hence $c_{i}(E)=f_{1 *}\left(c_{i}\left(E_{1}\right)\right)$ because $f_{1} *\left(F_{1} \cdot c_{i-1}\left(E_{1}\right)\right)=0$. Let us consider the following commutative deagram :

Then an effective divisor $P\left(E_{1}\right)$ of $P\left(f_{1}^{*}(E)\right)$ is defined on each open subset $\pi^{-1}\left(U_{i}\right)$ by the equation: $\left(x_{1} / x_{i}\right) X_{1}+\cdots+\left(x_{r} / x_{i}\right) X_{r}=0$. Therefore $h_{1}: P\left(E_{1}\right) \rightarrow D_{1}$ is the blowing up of D_{1} with center $\pi^{-1}\left(Z\left(s_{1}\right)\right)$, where $h_{1}=f_{1}^{\prime} \circ i$ and the tautological line bundle $L_{E_{1}}$ of E_{1} is isomorphic to $h_{1}^{*}\left(L_{E}\right)$.

Lemma 1.10. With the above notation, let s_{2} be a global section of E such that $Z\left(s_{2}\right)$ is a non-empty subscheme of pure codim $=r$ and let us put $s_{2}^{\prime}=$ $\beta\left(f_{1}^{*}\left(s_{2}\right)\right)$. Then the following conditions are equivalent.
(1) $Z\left(s_{2}^{\prime}\right)$ is a non-empty smooth subscheme of pure codim $=r-1$ and $Z\left(s_{2}^{\prime}\right) \cap F_{1}$ is either empty or a smooth subscheme of pure codim $=r$.
(2) $Z\left(s_{1} \wedge s_{2}\right)$ is a subscheme of pure $\operatorname{codim}=r-1$ with $\operatorname{Sing}\left(Z\left(s_{1} \wedge s_{2}\right)\right)=$ $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)$ and $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)$ is either empty or a smooth subscheme of pure codim $=2 r$. In other words, D_{2} intersects D_{1} and $\pi^{-1}\left(Z\left(s_{1}\right)\right)$ transversally.

Proof. (1) \rightarrow (2). Since the problem is local, we may assume $X=U$ as in the above argument. Let us put $s_{2} \mid U=\left(y_{1}, \ldots, y_{r}\right)$. Then $Z\left(s_{2}^{\prime}\right)$ is defined on each affine open subset U_{i} by the equations:

$$
\begin{equation*}
y_{j}-\left(x_{j} / x_{i}\right) y_{i}=0 \quad(1 \leqq j \leqq r, j \neq i) \tag{**}
\end{equation*}
$$

Hence $Z\left(s_{2}^{\prime}\right)-F_{1}$ is isomorphic to $Z\left(s_{1} \wedge s_{2}\right)-Z\left(s_{1}\right)$ and $Z\left(s_{2}^{\prime}\right)$ is the proper transform of $Z\left(s_{1} \wedge s_{2}\right)$ by f_{1}. Thus $Z\left(s_{1} \wedge s_{2}\right)$ is a subscheme of pure codim $=r-1$ because every irreducible component of $Z\left(s_{2}^{\prime}\right)$ is not contained in F_{1}. The smoothness of $Z\left(s_{2}^{\prime}\right)$ implies that $Z\left(s_{1} \wedge s_{2}\right)-Z\left(s_{1}\right)$ is smooth. Now let x be a point of $Z\left(s_{1}\right)-Z\left(s_{2}\right)$, say $y_{1}(x) \neq 0$. Then $Z\left(s_{1} \wedge s_{2}\right)$ is defined in a neighbourhood of x by the equations: $x_{i}-\left(y_{i} / y_{1}\right) x_{1}=0 \quad(2 \leqq i \leqq r)$. Thus $Z\left(s_{1} \wedge s_{2}\right)$ is smooth at x because $\left\{x_{1}, \ldots, x_{r}\right\}$ is a part of regular system of parameters of X at x. Therefore $Z\left(s_{1} \wedge s_{2}\right)-\left(Z\left(s_{1}\right) \cap Z\left(s_{2}\right)\right)$ is smooth and so $\operatorname{Sing}\left(Z\left(s_{1} \wedge s_{2}\right)\right)=Z\left(s_{1}\right) \cap Z\left(s_{2}\right)$. Assuming $Z\left(s_{1}\right) \cap Z\left(s_{2}\right) \neq \phi$, we shall prove that $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)$ is a smooth subscheme of pure codim $=2 r$. Let x be a point of $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)$ and let $\left\{x_{1}, \ldots, x_{r}, z_{1}, \ldots, z_{s}\right\}$ $(r+s=\operatorname{dim} X)$ be a regular system of parameters of X at x. From our assumption, $Z\left(s_{2}^{\prime}\right)$ intersects transversally F_{1} at the points lying over x. For simplicity, let us check this condition on U_{1}. Then ($x_{1}, x_{2} / x_{1}, \ldots, x_{r} / x_{1}, z_{1}, \ldots, z_{s}$) is a regular system of parameters of U_{1} at the point lying over x and F_{1} is defined by $x_{1}=0$. Moreover $Z\left(s_{2}^{\prime}\right)$ is defined by the equations: $y_{i}-\left(x_{i} / x_{1}\right) y_{1}=0(2 \leqq i \leqq \mathrm{r})$. Hence we have $\left.\operatorname{rank}\left(\partial y_{j} / \partial z_{i}-\left(x_{j} / x_{1}\right) \partial y_{1} / \partial z_{i}\right)\right)=r-1 \quad(1 \leqq i \leqq s, 2 \leqq j \leqq r)$ by direct calculation and so $\operatorname{rank}\left(\partial y_{j} / \partial z_{i}\right)_{x}=r(1 \leqq i \leqq s, 1 \leqq j \leqq r)$. This implies that $Z\left(s_{1}\right)$ intersects $Z\left(s_{2}\right)$ transversally.
(2) \rightarrow (1). Since $Z\left(s_{1} \wedge s_{2}\right)$ is a subscheme of pure codim $=r-1$ with Sing $\left(Z\left(s_{1} \wedge s_{2}\right)\right)=Z\left(s_{1}\right) \cap Z\left(s_{2}\right), D_{1} \cap D_{2}-\pi^{-1}\left(Z\left(s_{1}\right) \cap Z\left(s_{2}\right)\right)$ is a smooth subscheme of pure codim $=2$ by Lemma 1.9. Let us assume that $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)$ is a nonempty smooth subscheme of pure codim $=2 r$. Then ($x_{1}, \ldots, x_{r}, y_{1}, \ldots, y_{r}$) may be considered as a part of regular system of parameters of X at every point of $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)$. Hence it is easily seen that D_{1} meets D_{2} transversally at the points lying over a point of $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)$. Thus D_{1} meets D_{2} transversally. Moreover, D_{2} intersects $\pi^{-1}\left(Z\left(s_{1}\right)\right)$ transversally (including the case $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)=\phi$) by Lemma 1.6. Now let D_{2}^{\prime} be the tautological divisor associated to s_{2}^{\prime}. Then,
$D_{2}^{\prime}=h_{1}^{*}\left(D_{1} \cap D_{2}\right)$. Since $h_{1}: P\left(E_{1}\right) \rightarrow D_{1}$ is the blowing up of D_{1} with center $\pi^{-1}\left(Z\left(s_{1}\right)\right), D_{2}^{\prime}$ is smooth and meets $\pi_{1}^{-1}\left(F_{1}\right)$ transversally. Hence $Z\left(s_{2}^{\prime}\right)$ is a non-empty smooth subscheme of pure codim $=r-1$ and it intersects F_{1} transversally (including the case $Z\left(s_{2}^{\prime}\right) \cap F_{1}=\phi$).
q.e.d.

Lemma 1.11. With the above notation, let s_{2}, \ldots, s_{i} be global sections of E satisfying the following conditions: (i) $Z\left(s_{2}^{\prime} \wedge \cdots \wedge s_{i}^{\prime}\right)$ is a subscheme of pure $\operatorname{codim}=r-i+1$ with no irreducible components contained in F_{1}, where $s_{k}^{\prime}=$ $\beta\left(f_{1}^{*}\left(s_{k}\right)\right) \quad(2 \leqq k \leqq i)$. (ii) $\operatorname{Sing}\left(Z\left(s_{2}^{\prime} \wedge \cdots \wedge s_{i}^{\prime}\right)\right)=\cap_{k=2}^{i} Z_{k}^{\prime}$, where $\quad Z_{k}^{\prime}=Z\left(s_{2}^{\prime} \wedge\right.$ $\cdots \widehat{\left.s_{k}^{\prime} \cdots \wedge s_{i}^{\prime}\right) \text { and } \operatorname{codim}\left(\operatorname{Sing}\left(Z\left(s_{2}^{\prime} \wedge \cdots \wedge s_{i}^{\prime}\right)\right)\right) \geqq 2(r-i+2) \text {. (iii) } \quad \operatorname{codim}\left(Z\left(s_{1}\right) \cap\right.}$ $\left.Z\left(s_{2} \wedge \cdots \wedge s_{i}\right)\right) \geqq 2 r-i+2$. Then we have the followings.
(1) $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ is a subscheme of pure $\operatorname{codim}=r-i+1$.
(2) $\operatorname{Sing}\left(Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)\right)=\cap_{k=1}^{i} Z_{k}$, where $Z_{k}=Z\left(s_{1} \wedge \cdots \hat{s}_{k} \cdots \wedge s_{i}\right)(1 \leqq k \leqq i)$ and $\operatorname{codim} \cap_{k=1}^{i} Z_{k} \geqq 2(r-i+2)$.

Proof. (1) is obvious. (2). In order to prove the first part, we have only to show that $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)-\cap_{k=1}^{i} Z_{k}$ is smooth at every point x of $Z\left(s_{1}\right)-$ $Z\left(s_{2} \wedge \cdots \wedge s_{i}\right)$ from our assumption (ii). Since the problem is local, we may assume $X=U \ni x$. Let us put $s_{j} \mid U=\left(y_{j_{1}}, \ldots, y_{j r}\right)(2 \leqq j \leqq r)$. For simplicity, we assume $\operatorname{det}\left(y_{j l}(x)\right) \neq 0(2 \leqq j \leqq i, 1 \leqq l \leqq i-1)$. Then $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ is defined in a neighbourhood of x by the equations:

$$
0=f_{j}=\left|\begin{array}{ccc}
x_{1} \cdots x_{i-1} & x_{j} \\
1 & 0 & y_{2 j} \\
\ddots & \vdots & \vdots \\
0 & 1 & y_{i j}
\end{array}\right|=(-1)^{i+1}\left(x_{j}-\sum_{l=1}^{i=1} x_{l} y_{l+1 j}\right) \quad(i \leqq j \leqq r) .
$$

Hence $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)-\cap_{k=1}^{i} Z_{k}$ is smooth at x because $\left\{x_{1}, \ldots, x_{r}\right\}$ is a part of regular system of parameters of X at x. Since $\cap_{k=2}^{i} Z_{k}^{\prime}-F_{1}$ is isomorphic to $\cap_{k=1}^{i} Z_{k}-Z\left(s_{1}\right)$, every irreducible component of $\cap_{k=1}^{i} Z_{k}$ not contained in $Z\left(s_{1}\right)$ has codim $\geqq 2(r-i+2)$ from (ii). Moreover since $2 r+i+2=2(r-i+2)+$ $(i-2) \geqq 2(r-i+2)$, every irreducible component of $\cap_{k=1}^{i} Z_{k}$ contained in $Z\left(s_{1}\right)$ has codim $\geqq 2(r-i+2)$ from (iii). Therefore $\operatorname{codim} \cap_{k=1}^{i} Z_{k} \geqq 2(r-i+2)$.
q.e.d.

Let X be a non-singular projective algebraic variety ($\operatorname{dim} X=n \geqq 2$) defined over an algebraically closed field k of char $k=0$ and let E be an ample vector bundle on X generated by global sections with rank $=r(2 \leqq r \leqq \operatorname{dim} X)$. If $t=$ $\operatorname{dim} H^{0}(X, E)$, then there is a morphism $\varphi: P(E) \rightarrow P^{t-1}$ defined by the complete linear system $\left|L_{E}\right|$ which is finite because L_{E} is ample and hence $\operatorname{dim} \varphi(P(E))=$ $n+r-1$.

1) By Corollary 1.7, there is a global section s_{1} of E such that $Z\left(s_{1}\right)$ is either
empty or a smooth subscheme of pure codim $=r$. Since E is ample, every chern class $c_{i}(E)(1 \leqq i \leqq r)$ is not zero and hence $Z\left(s_{1}\right)=c_{r}(E)$ is not empty. Let D_{1} be the irreducible smooth divisor associated to s_{1} and let $\operatorname{tr}\left(L_{E} \mid D_{1}\right)$ be the trace of $\left|L_{E}\right|$ to D_{1}. Then the linear system $\operatorname{tr}\left(L_{E} \mid D_{1}\right)$ is free from base points and $\operatorname{dim} \varphi^{\prime}\left(D_{1}\right)=n+r-2 \geqq 2$, where $\varphi^{\prime}: D_{1} \rightarrow P^{t-2}$ is the morphism defined by $\operatorname{tr}\left(L_{E} / D_{1}\right)$. Hence there is a sufficiently general global section s_{2} of E such that D_{2} is an irreducible smooth divisor and it intersects D_{1} and $\pi^{-1}\left(Z\left(s_{1}\right)\right)$ transversally (including the case $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)=\phi$) by Bertini's theorem and Corollary 1.7. Then $Z\left(s_{1} \wedge s_{2}\right)$ is a subscheme of pure $\operatorname{codim}=r-1$ with $\operatorname{Sing}\left(Z\left(s_{1} \wedge s_{2}\right)\right)=$ $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)$ and $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)$ is either empty or a smooth subscheme of pure $\operatorname{codim}=2 r$. Let $f_{1}: X \rightarrow X_{0}=X$ be the blowing up of X_{0} with center $Z\left(s_{1}\right)$, F_{1} the exceptional divisor and let $h_{1}=f_{1}^{\prime} \circ i: P\left(E_{1}\right) \rightarrow D_{1}$, where
$(*)_{1}$

$$
0 \longrightarrow O_{X_{1}}\left(F_{1}\right) \xrightarrow{\alpha_{1}} f_{1}^{*}(E) \xrightarrow{\beta_{1}} E_{1} \longrightarrow 0
$$

and

Then $Z\left(s_{2}^{(1)}\right)$ is a smooth subscheme of pure codim $=r-1$ and it intersects F_{1} transversally, where $s_{2}^{(1)}=\beta_{1}\left(f_{1}^{*}\left(s_{2}\right)\right)$ by Lemma 1.10. In other words, if $D_{2}^{(1)}$ denotes the associated divisor to $s_{2}^{(1)}$, then $D_{2}^{(1)}=h_{1}^{*}\left(D_{1} \cap D_{2}\right)$ is an irreducible smooth divisor and intersects $\pi_{1}^{-1}\left(F_{1}\right)$ transversally. Since $Z\left(s_{2}^{(1)}\right)$ that is the proper transform of $Z\left(s_{1} \wedge s_{2}\right)$ by f_{1} represents $c_{r-1}\left(E_{1}\right), Z\left(s_{1} \wedge s_{2}\right)$ represents $c_{r-1}(E)$.
2) $L_{E_{1}} \simeq h_{1}^{*}\left(L_{E}\right)$ and every chern class $c_{i}\left(E_{1}\right)(1 \leqq i \leqq r-1)$ is not zero. From $(*)_{1}$, we see that E_{1} is generated by global sections which come from those of E. If we define L_{1} to be the linear system of L_{E} generated by those sections, then $L_{1}=h_{1}^{*}\left(\operatorname{tr}\left(L_{E} \mid D_{1}\right)\right)$ and $\varphi_{1}=\varphi^{\prime} \circ h_{1}: P\left(E_{1}\right) \rightarrow P^{t-2}$ is the corresponding morphism. We shall assume $r \geqq 3$, i.e., rank $E_{1}=r-1 \geqq 2$. Since $\operatorname{dim} \varphi_{1}\left(D_{2}^{(1)}\right)=n+r-3 \geqq$ $n \geqq 2$, there is a sufficiently general global section s_{3} of E such that $D_{3}^{(1)}$ is an irreducible smooth divisor and it intersects $D_{2}^{(1)}, \pi_{1}^{-1}\left(Z\left(s_{2}^{(1)}\right)\right)$ and $\pi_{1}^{-1}\left(F_{1}\right)$ transversally by Bertini's theorem and Corollary 1.7, where $D_{3}^{(1)}$ is the associated divisor to $s_{3}^{(1)}=\beta\left(f_{1}^{*}\left(s_{3}\right)\right)$. Moreover, we can take $D_{3}^{(1)}$ and D_{3} such that $D_{3}^{(1)}$ (resp. D_{3}) intersects $\pi_{1}^{-1}\left(F_{1}\right) \cap D_{2}^{(1)}\left(\right.$ resp. $\left.\pi^{-1}\left(Z\left(s_{1}\right)\right) \cap D_{2}\right)$ transversally. In fact, $\operatorname{dim} \varphi_{1}\left(\pi_{1}^{-1}\left(F_{1}\right) \cap D_{2}^{(1)}\right)=\operatorname{dim} \varphi\left(\pi^{-1}\left(Z\left(s_{1}\right)\right) \cap D_{2}\right)=(n-r)+r-2$. If $n>r$, then they are obvious by Bertini's theorem. If $n=r$, then $\varphi_{1}\left(\pi_{1}^{-1}\left(F_{1}\right) \cap D_{2}^{(1)}\right)=$ $\left.\varphi\left(\pi^{-1}\left(Z s_{1}\right)\right) \cap D_{2}\right)$ consists of finitely many linear subspaces P^{r-2} in P^{t-2} and hence we can take $D_{3}^{(1)}$ and D_{3} satisfying the above condition. This implies that
$Z\left(s_{2}^{(1)} \wedge s_{3}^{(1)}\right)$ has no irreducible components contained in F_{1} and $\operatorname{codim}\left(Z\left(s_{1}\right) \cap\right.$ $\left.Z\left(s_{2} \wedge s_{3}\right)\right) \geqq 2 r-1$. Now let $f_{2}: X_{2} \rightarrow X_{1}$ be the blowing up of X_{1} with center $Z\left(s_{2}^{(1)}\right)$ and let F_{2} be the exceptional divisor. Then we have the following exact sequence similarly:
$(*)_{2}$

$$
0 \longrightarrow O_{X_{2}}\left(F_{2}\right) \xrightarrow{\alpha_{2}} f_{2}^{*}\left(E_{1}\right) \xrightarrow{\beta_{2}} E_{2} \longrightarrow 0,
$$

where E_{2} is a vector bundle on X_{2} with rank $=r-2$. If we put $s_{3}^{(2)}=\beta_{2}\left(f_{2}^{*}\left(s_{3}^{(1)}\right)\right)$, then $Z\left(s_{3}^{(2)}\right)$ is a smooth subscheme of pure codim $=r-2$ and meets F_{2} transversally. On the other hand, $Z\left(s_{1} \wedge s_{2} \wedge s_{3}\right)$ is a subscheme of pure codim $=r-2$ with Sing $\left(Z\left(s_{1} \wedge s_{2} \wedge s_{3}\right)\right)=Z\left(s_{2} \wedge s_{3}\right) \cap Z\left(s_{1} \wedge s_{3}\right) \cap Z\left(s_{1} \wedge s_{2}\right)$ and $\operatorname{codim}\left(\operatorname{Sing}\left(Z\left(s_{1}\right.\right.\right.$ $\left.\left.\left.\wedge s_{2} \wedge s_{3}\right)\right)\right) \geqq 2(r-1)$ by Lemma 1.11. Moreover, we see that $Z\left(s_{1} \wedge s_{2} \wedge s_{3}\right)$ represents $c_{r-2}(E)$.
3) We can proceed with the above argument as follows. Let us suppose that we have $\left\{s_{j}\right\}(1 \leqq j \leqq i, 1 \leqq i \leqq r-1)$, a set of global sections of E satisfying the followings: $Z\left(s_{1}\right)$ is a smooth subscheme of pure codim $=r$ and D_{2} intersects D_{1}, and $\pi^{-1}\left(Z\left(s_{1}\right)\right)$ transversally. We assume that we can define the blowing up of $X_{j-1}, f_{j}: X_{j} \rightarrow X_{j-1}(1 \leqq j \leqq i)$ with smooth center $Z\left(s_{j}^{(j-1)}\right)$ of pure codimension $r-j+1$ and $s_{k}^{(j)}=\beta_{j}\left(f_{j}^{*}\left(s_{k}^{(j-1)}\right)\right)(j+1 \leqq k \leqq i)$ inductively, where (a) $X_{0}=X$ and $s_{j}^{(0)}=s_{j}$, (b) $\quad(*)_{j}: 0 \rightarrow O_{X_{j}}\left(F_{j}\right) \rightarrow f_{j}^{*}\left(E_{j-1}\right) \rightarrow E_{j} \rightarrow 0$ is an exact sequence of vector bundles on X_{j} (F_{j} being the exceptional divisor of f_{j} and E_{j} being a vector bundle with rank $=r-j$). Here let $\pi_{j}: P\left(E_{j}\right) \rightarrow X_{j}$ be the structure morphism and let $D_{k}^{(l)}$ be the divisor associated to the section $s_{k}^{(l)}(0 \leqq l \leqq i-1, l+1 \leqq k \leqq i)$. With the above notation, we assume moreover that the following conditions hold: For every $j(1 \leqq j \leqq i-1)$, (i) $D_{k}^{(j-1)}\left(j+1 \leqq{ }^{\forall} k \leqq i\right)$ intersects $D_{k}^{(j-1)}$ and $\pi_{j-1}^{-1}\left(Z\left(s_{j}^{(j-1)}\right)\right)$ transversally, (ii) $D_{j+1}^{(l)}\left(0 \leqq{ }^{\forall} l \leqq j-2\right)$ intersects $D_{l+1}^{(l)} \cap D_{l+2}^{(l)} \cap \cdots \cap$ $D_{j}^{(l)}$ and $\pi^{-1}\left(Z\left(s_{l+1}^{(l)}\right) \cap D_{l+2}^{(l)} \cap \cdots \cap D_{j}^{(l)}\right)$ transversally. Then we can take a sufficiently general global section s_{i+1} of E such that the conditions(i), (ii) hold also for the set $\left\{s_{j}\right\}(1 \leqq j \leqq i+1)$. In fact, the proof is quite similar to the one given in 2). Therefore, E has sufficiently general global sections $\left\{s_{1}, \ldots, s_{r}\right\}$ such that they satisfy the conditions (i), (ii). Hence for every $i(1 \leqq i \leqq r), Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ is a subscheme of pure codim $=r-i+1$ with $\operatorname{Sing}\left(Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)\right)=\cap_{k=1}^{i} Z_{k}$, where $Z_{k}=Z\left(s_{1} \wedge \cdots \hat{s}_{k} \cdots \wedge s_{i}\right)(1 \leqq k \leqq i)$ and $\operatorname{codim}\left(\operatorname{Sing}\left(Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)\right)\right) \geqq 2(r-i+$ 2). $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ represents $c_{r-i+1}(E)$. Moreover, if we denote by g_{i-1} the restricted morphism of $f_{1} \cdots \cdots f_{i-1}: X_{i-1} \rightarrow \cdots X_{1} \rightarrow X_{0}$ to $Z\left(s_{i}^{(i-1)}\right)$, then g_{i-1} : $Z\left(s_{i}^{(i-1)}\right) \rightarrow Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ is a desingularization.

Hence we get the following.
Theorem 1.12. We shall follow the above notations. Let X be a nonsingular projective algebraic variety $(\operatorname{dim} X \geqq 2)$ defined over an algebraically closed field of characteristic zero and let E be an ample vector bundle on X
generated by global sections with rank $=r(2 \leqq r \leqq \operatorname{dim} X)$. Then E has sufficiently general global sections $\left\{s_{1}, \ldots, s_{r}\right\}$ satisfying the following properties: For every $i(1 \leqq i \leqq r)$,
(1) $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ is a subscheme of pure codim $=r-i+1$ with $\operatorname{Sing}\left(Z\left(s_{1} \wedge\right.\right.$ $\left.\left.\cdots \wedge s_{i}\right)\right)=\cap_{k=1}^{i} Z_{k}$ and $\operatorname{codim}\left(\cap_{k=1}^{i} Z_{k}\right) \geqq 2(r-i+2)$.
(2) $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ represents $c_{r-i+1}(E)$.
(3) If we denote by g_{i-1} the restricted morphism of $f_{1} \circ \cdots \circ f_{i-1}: X_{i-1} \rightarrow \cdots \rightarrow$ $X_{0}=X$ to $Z\left(s_{i}^{(i-1)}\right)$, then $g_{i-1}: Z\left(s_{i}^{(i-1)}\right) \rightarrow Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ is a desingularization of $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)$ by successive blowing ups.
(4) There is a rational map $\xi_{i}: Z\left(s_{1} \wedge \cdots \wedge s_{i}\right) \rightarrow P^{i-1}$ whose regular domain coincides with $Z\left(s_{1} \wedge \cdots \wedge s_{i}\right)-\cap \cap_{k=1}^{i} Z_{k}$ and every $Z_{k}=\xi^{-1}\left(H_{k}\right)$, where H_{k} is a hyperplane of P^{i-1}.

In the proof of Theorem 1.12, Bertini's theorem has played a very important role. Though it fails in positive characteristic, Theorem 1.12 holds partially true in arbitrary characteristic if E is a very ample vector bundle. In fact, let E be a very ample vector bundle on X. Then there is a global s_{1} of E such that the associated divisor D_{1} to s_{1} is smooth and $Z\left(s_{1}\right) \neq \phi$ because L_{E} is very ample. Moreover, there exists a sufficiently general global section s_{2} of E such that D_{2} intersects D_{1} and $\pi^{-1}\left(Z\left(s_{1}\right)\right)$ transversally, where D_{2} is the associated divisor to s_{2}. If $r \geqq 3$, then we can take furthermore a sufficiently general global section s_{3} of E satisfying the following conditions because L_{E} is very ample: (1) D_{3} intersects $D_{1}, \pi^{-1}\left(Z\left(s_{1}\right)\right), D_{1} \cap D_{2}, \pi^{-1}\left(Z\left(s_{1}\right)\right) \cap D_{2}$ and $\pi^{-1}\left(Z\left(s_{1}\right) \cap Z\left(s_{2}\right)\right)$ transversally, (2) D_{3} intersects $\pi^{-1}\left(Z\left(s_{1} \wedge s_{2}\right)-Z\left(s_{1}\right)\right) \cap D_{1}$ transversally (by Lemma 1.9, $\pi^{-1}\left(Z\left(s_{1} \wedge s_{2}\right)-Z\left(s_{1}\right)\right) \cap D_{1}$ is smooth). Now let $f_{1}: X_{1} \rightarrow X$ be the blowing up of X with center $Z\left(s_{1}\right), F_{1}$ the exceptional divisor and let $s_{j}^{\prime}=\beta_{1}\left(f_{i}^{*}\left(s_{j}\right)\right), D_{j}^{\prime}=$ the associated divisor to s_{j}^{\prime} be as before ($j=2,3$). Then we the following.

Lemma 1.13. Under the above assumption,
(1) D_{3}^{\prime} intersects D_{2}^{\prime} and $\pi_{1}^{-1}\left(Z\left(s_{2}^{\prime}\right)\right)$ transversally.
(2) $D_{2}^{\prime} \cap D_{3}^{\prime}$ intersects $\pi_{1}^{-1}\left(F_{1}\right)$ transversally. Hence $\left\{D_{2}^{\prime}, D_{3}^{\prime}\right\}$ satisfies the equivalent condition in Lemma 1.10.

Proof. From our assumption, it is easily seen that we have only to prove that D_{3}^{\prime} intersects $\pi_{1}^{-1}\left(Z\left(s_{2}^{\prime}\right)\right)$ transversally. As for the transversality, it is enough to show that D_{3}^{\prime} meets $\pi_{1}^{-1}\left(Z\left(s_{2}^{\prime}\right)\right)$ transversally at the points lying over $F_{1}=f_{1}^{-1}\left(Z\left(s_{1}\right)\right)$ because $f_{1}^{\prime}: \pi_{1}^{-1}\left(Z\left(s_{2}^{\prime}\right)-F_{1}\right) \cap D_{3}^{\prime} \cong \pi^{-1}\left(Z\left(s_{1} \wedge s_{2}\right)-Z\left(s_{1}\right)\right) \cap D_{1} \cap D_{3}$ is an isomorphism. Since the problem is local, we may assume that $X=U$ is an affine scheme with $E \mid U \simeq \oplus^{r} O_{U} . \quad$ Let us put $s_{1}\left|U=\left(x_{1}, \ldots, x_{r}\right), s_{2}\right| U=\left(y_{1}, \ldots, y_{r}\right)$ and $s_{3} \mid U=$ $\left(z_{1}, \ldots, z_{r}\right)$. Without loss of generality, it is enough to check the transversality over the affine open subset U_{1}. On the open subset $\pi_{1}^{-1}\left(U_{1}\right) \simeq U_{1} \times P^{r-2}, D_{3}^{\prime}$ is defined by the equation:

$$
\left(z_{2}-\left(x_{2} / x_{1}\right) z_{1}\right) X_{2}+\cdots+\left(z_{r}-\left(x_{r} / x_{1}\right) z_{1}\right) X_{r}=0
$$

and $\pi_{1}^{-1}\left(Z\left(s_{2}^{\prime}\right)\right)$ is defined by the equations:

$$
\begin{equation*}
y_{i}-\left(x_{i} / x_{1}\right) y_{1}=0 \quad(2 \leqq i \leqq r) \tag{*}
\end{equation*}
$$

where $\left\{X_{2}, \ldots, X_{r}\right\}$ is a homogeneous coordinate of P^{r-2}. Let us fix a regular frame $\left\{x_{1}, x_{2} / x_{1}, \ldots, x_{r} / x_{1}, u_{1}, \ldots, u_{s}, X_{2}, \ldots, X_{r}\right\}$ of $\pi_{1}^{-1}\left(U_{1}\right)$ at the point (x^{\prime}, $\left.\left(\xi_{2}, \ldots, \xi_{r}\right)\right)$ of $D_{3}^{\prime} \cap \pi_{1}^{-1} Z\left(s_{2}^{\prime}\right)$ where $\left\{x_{1}, \ldots, x_{r}, u_{1}, \ldots, u_{r}\right\}(r+s=\operatorname{dim} X)$ is a regular system of parameters of X at $x=f_{1}\left(x^{\prime}\right)$.

Case i) $\quad x \notin Z\left(s_{2}\right)$, i.e., $y_{1} \neq 0$. If we put $x_{i}^{\prime}=x_{i}-\left(y_{i} / y_{1}\right) x_{1}(2 \leqq i \leqq r)$, then $Z\left(s_{1}\right)$ is defined in a neighourhood of x by $x_{1}=x_{2}^{\prime}=\cdots=x_{i}^{\prime}=0$. Moreover $y_{i} / y_{1}-x_{i} / x_{1}=-x_{r}^{\prime} / x_{1}$ and $z_{i}-\left(x_{i} / x_{1}\right) z_{1}=z_{i}-\left(y_{i} / y_{1}\right) z_{1}-\left(x_{i}^{\prime} / x_{1}\right) z_{1} \quad(2 \leqq i \leqq r)$. Hence we may assume that $\pi_{1}^{-1}\left(Z\left(s_{2}^{\prime}\right)\right)$ is defined by the equations: $x_{i} / x_{1}=0$ ($2 \leqq i \leqq r$) and so we have the following Jacobian matrix at $\left(x^{\prime},\left(\xi_{2}, \ldots, \xi_{r}\right)\right.$);

This implies that if $x \notin Z\left(s_{2} \wedge s_{3}\right)$, then we can prove the transversality. Thus we assume $x \in Z\left(s_{2} \wedge s_{3}\right)-Z\left(s_{2}\right)$. Since $D_{2} \cap D_{3}$ meets $\pi^{-1}\left(Z\left(s_{1}\right)\right)$ transversally from our assumption, $Z\left(s_{2} \wedge s_{3}\right)$ meets $Z\left(s_{1}\right)$ transversally at x by Lemma 1.9. Hence we can take $u_{1}=z_{2}-\left(y_{2} / y_{1}\right) z_{1}, \ldots, u_{r-1}=z_{r}-\left(y_{r} / y_{1}\right) z_{1}$. Then the Jacobian matrix becomes the following one:

$$
\left[\begin{array}{ccccccccc}
* & * & \cdots * & X_{2} & \cdots & X_{r} & * \cdots * & \cdots & \cdots \\
0 & 1 & 0 & 0 & \cdots & 0 & * & \cdots & \\
0 & 1 & & \cdots & 0 \\
\vdots & \ddots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 1 & 0 & \cdots & 0 & * & \cdots & 0
\end{array}\right)
$$

and hence we are done.
Case ii) $x \in Z\left(s_{2}\right)$, i.e., $y_{1}=0$. Since $Z\left(s_{1}\right) \cap Z\left(s_{2}\right)$ is a smooth subscheme of pure codim $=2 r$, we can take $u_{1}=y_{1}, \cdots, u_{r}=y_{r}$. Thus we have the following Jacobian matrix in this case:

$$
\left[\begin{array}{ccccccc}
*-z_{1} X_{2} \cdots-z_{1} X_{r} & * & * \cdots & \cdots * & z_{2}-\left(x_{2} / x_{1}\right) z_{1} \cdots z_{r}-\left(x_{r} / x_{1}\right) z_{1} \\
0 & 0 \cdots \cdots \cdots \cdots 0 & -x_{2} / x_{1} & 1 & 0 & * \cdots * & 0 \cdots \cdots \cdots \cdots \cdots \cdots 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \vdots \cdots \cdots \cdots 0 & -x_{r} / x_{1} & 0 & 1 & * \cdots \cdots
\end{array}\right)
$$

If either $z_{1} \neq 0$, i.e., $x \notin Z\left(s_{3}\right)$, or $x^{\prime} \notin Z\left(s_{3}^{\prime}\right)$, then we are done. Assume that $x \in$ $Z\left(s_{3}\right)$ and $x^{\prime} \in Z\left(s_{3}^{\prime}\right)$. Since $Z\left(s_{1}\right) \cap Z\left(s_{2}\right) \cap Z\left(s_{3}\right)$ is a smooth subscheme of pure
$\operatorname{codim}=3 r$, we can take $u_{r+1}=z_{1}, \ldots, u_{2 r}=z_{r}$. Hence we can prove the transversality.

Therefore we get the following.
Theorem 1.14. Let X be a non-singular projective algebraic variety ($\operatorname{dim} X \geqq 2$) defined over an algebracically closed field of arbitrary characteristic and let E be a very ample vector bundle with rank $=r(2 \leqq r \leqq \operatorname{dim} X)$. Then there are sufficiently general global sections $s_{1}, s_{2}, s_{i}(1 \leqq i \leqq \operatorname{Min}\{3, r\})$ which satisfy the properties (1), (2), (3) and (4) in Theorem 1.12.

2. A theorem on splitting of vector bundles

The aim of this section is to prove the following theorem.
Theorem 2.1. Let X be a smooth quasi-projective k-algebraic scheme (k being an algebraically closed field of arbitary characteristic) and let E be an algebraic vector bundle on X. Then there is a quasi-projective smooth k-algebraic scheme X^{\prime} over X satisfying the following conditions:
(1) $f: X^{\prime} \rightarrow X$ is finite and faithfully flat.
(2) $f^{*}(E)$ has a splitting of line bundles, i.e., there is a sequence of subvector bundles of $f^{*}(E)=F_{0} \supset F_{1} \supset \cdots \supset F_{r}=\{0\}$ such that every quotient bundle $F_{i} /$ $F_{i+1}(0 \leqq i \leqq r-1)$ is a line bundle on $X^{\prime}(r=\operatorname{rank} E)$.

We shall fix some notation and prepare elementary lemmas. Let X be a quasi-projective k-algebraic scheme, E (resp. L_{E}) a very ample vector bundle on X (resp. the tautological line bundle of E) and let $\pi: P(E) \rightarrow X$ be the structure morphism. Then for every positive integer $n, L_{E}^{\otimes n}$ gives an embedding of $P(E)$ into a projective space P^{N} because E is very ample. We shall denote an embedding by $\varphi_{n}: P(E) \rightarrow P^{N}$ (or, φ simply). Moreover, we shall denote by [Y] the linear subspace of P^{N} spanned by Y for a closed integral subscheme Y of P^{N}. $\left(P^{N}\right)^{*}$ means the dual projective space of P^{N}.

Lemma 2.2. With the above notation, let x be a k-rational point of X, Y a closed irreducible subscheme in the fiber $\pi^{-1}(x) \cong P^{r-1}(r=r a n k E)$ and let I be the defining ideal of $Y_{\text {red }}$ in P^{r-1}. Then

$$
\operatorname{dim}\left[\varphi\left(Y_{\text {red }}\right)\right]={ }_{r} \mathrm{H}_{n}-h^{0}\left(P^{r-1}, I(n)\right)-1,
$$

where ${ }_{r} \mathrm{H}_{n}$ means multi-combination, $I(n)=I \otimes O_{p^{r-r}}(n)$ and $h^{0}\left(P^{r-1}, I(n)\right)=$ $\operatorname{dim} H^{0}\left(P^{r-1}, I(n)\right)$.

Proof. Let J be the defining ideal of $\varphi\left(Y_{\text {red }}\right)=Y_{\text {red }}$ in P^{N}. Then we have an exact sequence:

$$
0 \longrightarrow J(1) \longrightarrow O_{P^{N}}(1) \longrightarrow O_{Y_{r e d}}(1) \longrightarrow 0
$$

Since we have the following exact sequence:

$$
0 \longrightarrow H^{0}(J(1)) \longrightarrow H^{0}\left(O_{P^{N}}(1)\right) \longrightarrow H^{0}\left(O_{Y_{r e d}}(1)\right) \longrightarrow H^{1}(J(1)) \longrightarrow 0,
$$

$\operatorname{dim}\left\{\right.$ hyperplanes of P^{N} containing $\left.Y_{\text {red }}\right\}=h^{0}(J(1))-1$. On the other hand, there is an exact sequence:

$$
0 \longrightarrow I_{x}(1) \longrightarrow J(1) \longrightarrow J / I_{x}(1) \longrightarrow 0 .
$$

where $I_{x}=$ the defining ideal of $\varphi\left(\pi^{-1}(x)\right)$ in P^{N}. Hence we have the exact sequence:

$$
0 \longrightarrow H^{0}\left(I_{x}(1)\right) \longrightarrow H^{0}(J(1)) \longrightarrow H^{0}\left(J / I_{x}(1)\right) \longrightarrow H^{1}\left(I_{x}(1)\right) \longrightarrow \cdots
$$

Here the canonical map $H^{0}\left(O_{P^{N}}(1)\right) \rightarrow H^{0}\left(O_{P^{r-1}}(n)\right)$ is surjective and $H^{1}\left(I_{x}\right)=0$. Thus $h^{0}(J(1))=h^{0}\left(I_{x}(1)\right)+h^{0}\left(J / I_{x}(1)\right)=h^{0}\left(I_{x}(1)\right)+h^{0}(I(n))=N+1{ }_{r} \mathrm{H}_{n}+h^{0}(I(n))$. Therefore, $\operatorname{dim}\left[\left(Y_{\text {red }}\right)\right]={ }_{r} \mathrm{H}_{n}-h^{0}(I(n))-1$.
q.e.d.

The following is a key lemma to prove our Theorem 2.1. Though Hironaka ([3]) has shown it in a more general form, we shall give here another simple proof.

Lemma 2.3. Let $X(\operatorname{dim} X \geqq 1)$ be a quasi-projective smooth k-algebraic scheme, E a very ample vector bundle on X with $\operatorname{rank}=r(\geqq 2)$ and let Y be a closed integral subscheme of $P(E)$ which is of pure relative dimension $d(\geqq 1)$ over X. Then there is a positive integer n_{0} such that if we embed $P(E)$ into a projective space P^{N} by $L_{E}^{\otimes n}$ for $n \geqq n_{0}$, then there is a non-empty open subscheme U of $\left(P^{N}\right)^{*}$ satisfying the following: For a general member H of $U, H \cap Y$ is a closed integral subscheme which is of pure relative $(d-1)$-dimension over X. Moreover, if Y is smooth and flat over X, then $H \cap Y$ is smooth and flat over X.

Proof. For every positive integer n, we fix an embedding $\varphi: P(E) \rightarrow P^{N}$ by $L_{E}^{\otimes} n$. Let $\Gamma=\left\{(x, H) \in X \times\left(P^{N}\right)^{*} \mid H\right.$ contains an irreducible component of $\pi^{-1}(x) \cap Y$, set-theoretically $\}$. Then Γ is a closed subscheme of $X \times\left(P^{N}\right)^{*}$. In fact let $\Delta=\left\{(z, H) \in P(E) \times\left(P^{N}\right)^{*} \mid z \in H\right\}$ and let $\theta: \Delta \cap\left(Y \times\left(P^{N}\right)^{*}\right) \ni(z, H) \rightarrow$ $(\pi(z) \times H) \in X \times\left(P^{N}\right)^{*}$. Then $\Gamma=\left\{(x, H) \in X \times\left(P^{N}\right)^{*} \mid \operatorname{dim} \theta^{-1}(x, H)=d\right\}$. Since θ is projective and is of relative dimension $\leqq d, \Gamma$ is closed. Let $p: \Gamma \rightarrow X$ (resp. q : $\left.\Gamma \rightarrow\left(P^{N}\right)^{*}\right)$ be the first projection (resp. the second projection). By Lemma 2.2, for every k-rational point x of $X, \operatorname{dim} p^{-1}(x)=\operatorname{Max}\left\{N-{ }_{r} \mathrm{H}_{n}+h^{0}(I(n))\right\}$, where the I 's are the reduced defining ideals of irreducible components of $\pi^{-1}(x) \cap Y$ in P^{r-1}. On the other hand, the families of $O_{P^{r-1}}$-coherent sheaves $\{I\}$ and $\left\{O_{P^{r-1}} /\right.$ $I\}$ on the fibers of $\pi: P(E) \rightarrow X$ are limited families. In fact, let $\left\{Z_{i}\right\}$ be the set of
irreducible components of $\left(Y \cap \pi^{-1}(x)\right)_{\text {red }}$ for k-rational points x of X. Then, the degrees of Z_{i} 's with respect to a hyperplane of P^{r-1} are bounded above. Thus the family $\left\{O_{P r-1} / I\right\}$ is a limited family by Chow's theorem (cf. [5]). Therefore there is a positive integer m_{0} such that all the ideals I are m_{0}-regular with respect to $O_{P r-1}(1)$. Hence we have that for every $n \geqq m_{0}, H^{i}(I(n))=0$ for all $i>0$ and I. Thus $\operatorname{dim} \Gamma \leqq \operatorname{dim} X+N-{ }_{r} \mathrm{H}_{n}+\operatorname{Max}\{\chi(I(n))\}=\operatorname{dim} X+N-{ }_{r} \mathrm{H}_{n}+\chi\left(O_{P^{r-1}}(n)\right)-$ $\operatorname{Min}\left\{\chi\left(\left(O_{P^{r-1}} / I\right)(n)\right)\right\}$ for all $n \geqq m_{0}$ and I. Since $\chi\left(\left(O_{P^{r-1}} / I\right)(n)\right)=(a / d!) n^{d}+\cdots$ $(a>0, d \geqq 1)$, we can take a positive integer $n_{0} \geqq m_{0}$ such that $\operatorname{Min}\left\{\chi\left(\left(O_{p^{r-1}} / I\right)(n)\right)\right\}$ $>\operatorname{dim} X$ for all $n \geqq n_{0}$. Thus $\operatorname{dim} q(\Gamma) \leqq \operatorname{dim} \Gamma<N$ if we take $n \geqq n_{0}$. Therefore there is a non-empty open subset U of $\left(P^{N}\right)^{*}$ such that every member H of U does not contain any irreducible components of $Y \cap \pi^{-1}(x)$ for every k-rational point x of X, i.e., $H \cap Y$ is of pure relative $(d-1)$-dimension over X. If we take a sufficiently general member H of U, then $H \cap Y$ is integral. Moreover, if Y is smooth and flat over X, then $H \cap Y$ is smooth and flat over X. q.e.d.

We shall now prove Theorem 2.1. Since X is quasi-projective, there is an ample line bundle L on X such that $E \otimes L$ is very ample. Hence we may assume that E is very ample to prove our claim. Let $\pi: P(E) \rightarrow X$ be the structure morphism. Using Lemma 2.3 interatively, we see that there is a smooth closed subscheme X^{\prime} of $P(E)$ such that $\pi \mid X^{\prime}: X^{\prime} \rightarrow X$ is finite and faithfully flat. On the other hand, it is well-known there is an exact sequence of vector bundles on $P(E)$.

$$
0 \longrightarrow F \longrightarrow \pi^{*}(E) \longrightarrow L_{E} \longrightarrow 0,
$$

where F is a vector bundle on $P(E)$ with rank $=r-1$. Hence if we put $f=\pi$ 。 $i\left(i: X^{\prime} \rightarrow P(E)\right.$ being the closed immersion), then we have an exact sequence of vector bundles on X^{\prime}.

$$
0 \longrightarrow F\left|X^{\prime} \longrightarrow f^{*}(E) \longrightarrow L_{E}\right| X^{\prime} \longrightarrow 0
$$

Proceeding with the above argument to $F \mid X^{\prime}$ if necessary, we can obtain a quasiprojective smooth k-algebraic scheme X^{\prime} over X desired in Theorem 2.1. q.e.d.

Remark 2.4. When X is projective, we can take an algebraic k-scheme X^{\prime} satisfying $H^{i}\left(X, O_{X}\right) \simeq H^{i}\left(X^{\prime}, O_{X^{\prime}}\right)$ for $1 \leqq i \leqq \operatorname{dim} X-1$ in addition to the conditions in Theorem 2.1.

3. Application

We shall show some applications of Theorem 2.1 in this section. When X is an affine variety, every vector bundle on X is associated to a finitely generated projective module and hence the following is easily seen from Theorem 2.1.

Theorem 3.1. Let A be a regular affine k-algebra and let P be a finitely
generated projective A-module. Then there is a regular affine k-algebra B which is a finite and faithfully flat A-module such that $P \otimes_{A} B$ is a direct sum of projective B-modules of rank 1 .

When X is projective, the following implies that every algebraic cycle of X can be written as a sum of subvarieties which are complete intersections of divisors after a suitable multiplication of an integer and a pull-back of some finite faithfully flat morphism.

Theorem 3.2. Let X be a smooth integral projective algebraic k-scheme and let $Z=\sum n_{i} Z_{i}$ be an algebraic cycle of $\operatorname{codim}=p(\geqq 1)$ on X. Then there is a finite and faithfully flat morphism $f: X^{\prime} \rightarrow X$, where X^{\prime} is smooth and integral, such that

$$
(p-1)!f^{*}(Z)=\Sigma \pm D_{1} \cdots D_{p} \text { (rat.equiv.) }
$$

where D_{i} are divisors on X^{\prime}. Hence in particular, $(p-1)!f^{*}(Z)$ is smoothable.
Proof. We may assume that Z is a prime cycle to prove our claim. Let O_{Z} be the structure sheaf of Z. Then it is known that $c_{p}\left(O_{Z}\right)=(-1)^{p-1}(p-1)!Z$ (rat. equiv.) (cf. [1]). Let the following be the resolution of O_{Z} by vector bundles on X.

$$
0 \longrightarrow E_{n} \longrightarrow E_{n-1} \longrightarrow \cdots \longrightarrow E_{1} \longrightarrow O_{X} \longrightarrow O_{Z} \longrightarrow 0 \quad(n=\operatorname{dim} X) .
$$

Then there is a finite faithfully flat morphism $f: X^{\prime} \rightarrow X$ such that every $f^{*}\left(E_{i}\right)$ ($1 \leqq i \leqq n$) has a splitting of line bundles on X^{\prime} by Theorem 2.1. Then every chern class $c_{j}\left(f^{*}\left(E_{i}\right)\right)=\Sigma \pm D_{1} \cdots D_{j}(1 \leqq i, j \leqq n)$, where D_{k} are divisors on X^{\prime}. Hence $(-1)^{p-1}(p-1)!f^{*}(Z)=c_{p}\left(f^{*}\left(O_{Z}\right)\right)=\Sigma \pm D_{1} \cdots D_{p}$ for suitable divisors D_{k} on X^{\prime}.
q.e.d.

References

[1] A. Grothendieck, La théorie des classes de Chern, Bull. Soc. Math. France, 86 (1958), 137-154.
[2] R. Hartshorne, Ample vector bundles, I.H.E.S., 29 (1966), 319-350.
[3] H. Hironaka, Smoothing of algebraic cycles of small dimensions, Amer. J. Math., 90 (1968), 1-54.
[4] S. Kleiman, Geometry on grassmannians and applications to splitting bundles and smoothing cycles, I.H.E.S., 36 (1969), 281-297.
[5] S. Kleiman, Les Théorèmes de Finitude pour le Foncteur de Picard, Springer Lect. Notes in math., 225 (1971), 616-666.

