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Introduction

Let p be an odd prime or p = 0, and X be a simply connected finite CW-

complex whose integral cohomology group H*(X\ Z) has no p-torsion if p^O.

Then we can consider the following conditions for X:

(ext) H*(X\Zp) is an exterior algebra Λ(x,,..., xk) over Zp where ni = degxι

is odd ̂ 3 .

(H) X is a mod p //-space, i.e., the p-localization Xip) is an //-space.

(reg) X is p-regular, i.e., X is p-equivalent to a product space S'h x ••• x S"k

of spheres Sni with odd n f ^ 3 .

It is well known that Sn (n: odd) is a mod p //-space, and we see that (reg)

implies (H) (see Proposition 1.14). Further we see that (H) implies (ext) by

HopΓs theorem (see Corollary 1.9). On the other hand, Arkowitz and Curjel [2]

proved that these conditions for p = 0 are equivalent; and Kumpel [7] studied

some conditions that (H) implies (reg).

The purpose of this paper is to study the conditions that (ext) implies (H)

and (H) implies (reg). By using the obstruction theory, we prove the following

THEOREM 2.3. (i) The conditions (ext), (H) and (reg) for X are equivalent if

(nί9...,nk) satisfies

(•) Pπt-^S"*) = Ofor any 1^/^/c and any t = nh + '"-{-nis (1 ̂ / 1 < <

where pπt^ι(Sn) denotes the p-primary component of the homotopy group

π^ΛS") ifp^O and °πί_1(5n) = 0.
(ii) The conditions (H) and (reg) for X are equivalent if(nί,..., nk) satisfies

(*) with s = l .

In this theorem, the assumptions on (n 1 ?..., nk) are necessary. In fact, we

see the following

THEOREM 2.6. (i) //(n 1 ? . . . , nk) does not satisfy (*), then there exists X which

satisfies (ext) and is not p-regular.

(ii) If(nl9..., nk) does not satisfy (*) with s = l and p ^ 5 , then there exists
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a mod p Hspace X which is not p-regular.

(iii) //(«!,..., nk) does not satisfy (*) with s^2, then there exists X which

satisfies (ext) and is not a mod p H-space.

We prepare some results on mod p //-spaces and p-regular spaces in § 1, and

we prove these theorems in §2. In §3, we consider the complex and quaternion

Stiefel manifolds SU(n)/SU(n — k) and Sp(n)/Sp(n — fc), which are typical examples

of spaces satisfying (ext); and study some conditions that these manifolds are

p-regular (see Theorem 3.3).

The author wishes to thank Professor M. Sugawara for his many useful sug-

gestions.

§ 1. Preliminaries

In this paper, we assume that all spaces have base points *, all maps and

homotopies preserve base points, and all spaces have homotopy types of simply

connected (C^complexes.

Furthermore, we assume that p is a prime or p = 0, and we use the following

terminologies and notations:

DEFINITION 1.1. A map / : X-+Y is called a p-equivalence if the homo-

morphism

f*:H*(X;Zp) >H*(Y;Zp) or /*://*(Y; Zp) — H*(X; Zp)

of the (co)homology groups induced by / is isomorphic, where Zp is the cyclic

group of order p if p^O and Zo — Q (the ring of rational numbers).

DEFINITION 1.2. A space X is called a mod p //-space if there exists a map μ:

XxX-+X such that μ( , *), μ(*, ): X-+X are p-equivalences, and μ is called a

mod p multiplication of J*Γ.

DEFINITION 1.3. A finite complex K is said to be p-uniuersal if for any

map φ: K-+Y and any p-equivalence/: X-+Y where X and 7 are complexes of

finite type, there exist a map ^ : K-^X and a p-equivalence /?: K-+K such that

φh~fψ (~ means "is homotopic to"), or equivalently (see [9; Th. 2.1]), if for

any map φ': X'-+K and any p-equivalence/': X'-*Y' where X' and Y' are finite

complexes, there eixst a map ψ': Y'-±K and a p-equivalence h'': K-*K such that

h'φ'-φ'f:

A:

I !

x' r ) r.



Mod p H-spaces and /^-regularities 401

Then the following are known:

(1.4) (i) ([9; Cor. 4.3]) Any finite co-H-space, e.g., any sphere, is p-universal

for any prime p or p = 0.

(ii) ([11; Th. 1.2]) / / / : X->Y is a ^-equivalence between finite complexes

and X is p-universal, then Y is also p-universal.

(iii) ([11; Th. 1.7]) Any finite mod p H-space is q-universal for any prime

q or q = 0.

We also use the notion of the p-localization:

DEFINITION 1.5. (1) A space X is said to be p-local if the homotopy group

π*(X) has a structure of Z(p)-module, where Z(p) = {b/aeQ\(a, p)~\) if p^O

and Z ( 0 ) = ().

(2) For any space X, there exist a p-local space X(p) and a map eXp: X-+X(p)

uniquely up to homotopy satisfying the following condition: For any p-local

space K and any m a p / : X-*K, there exists a map φ: X(p)^K uniquely up to

homotopy such that φeXp~f, ([4; II, Th. 1A]). (X (p), eXp) or X{p) is called the

p-localization of X.

(3) By definition, for any m a p / : X-+Y, there exists a m a p / ( p ) : X(p)->Y(p)

uniquely up to homotopy such th&tf(p)eXtP~eYtPf'9 and we have a map

/(,>: [*, r\ — ιx(p), y ( r t], /<„[/] = [/ ( r t ],

between homotopy sets. l(p) is said to be quasi-epic if for any map φ: X(P)~*

7 (p), there exist a m a p / : X-+Y and a homotopy equivalence h: Y(p)-+Y(p) such

that/ ( p ) ~Λφ.

(1.6) ([4; II]) (i) exy. X-+X(p) is a p-equiυalence.

(ii) / : X-+Y is a p-equiυalence if and only iff(p) is a homotopy equivalence.

(iii) (X(p)\p) <* Xip)9 (X(P)\q) ^ X(o) \i pφq\
{x x γ\p) ~ x ( p ) x y(p), ( x v y) ( p ) - x(p) v y(p)f ( x Λ Y\P) » x ( p ) Λ y(p),

where ^ means "is naturally homotopy equivalent to".

(1.7) ([8; Th. 5.3]) Lef X be a finite complex.

(i) X is P'Universal if and only if l{p): [Y, X]->[Y(p), X ( p )] is quasi-epic

for any finite complex Y.

(ii) // X is p-universal, then lip): \_X, Y]->[X(p), y ( p )] is quasi-epic for

any complex Y of finite type.

By these properties and a theorem of Arkowitz and Curjel [2] we have the

following

PROPOSITION 1.8. For a finite complex X, the following (l)-(3) are

equivalent:
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(1) X is a mod/? H-space.

(2) There exist an H-space Yand a p-equiυalence f: X-+Y.

(3) The p-localization X ( p ) of X is an H-space.

PROOF. (1)=>(3): Let μ: X x X-*X be a mod p multiplication of X. Then

μ( , *), μ(*, ): J f - ^ induce homotopy equivalences X(p)->X(p) by definition and

(1.6) (ii), and we denote their homotopy inverses by φί9 φ2: X(p)^Xip) respecti-

vely. Then we see that Xip) is an //-space by a multiplication μ: Xip)xXip)

(3)=>(1): If Xip) is an //-space, then so is Xi0)cz(X(p))(0). Hence Hopf's

theorem shows that H*(Xi0); Q) is an exterior algebra with finitely many odd

dimensional generators. Therefore X is modO if-space by [2], and X is p-

universal by (1.4) (iii). Thus (1.7) (i) implies that for a multiplication μ:

(X xX\p)~X(p)xX(p)->X(p) of an H-space Xip), there are a map μ: XxX^X

and a homotopy equivalence ft: X(p)->Xip) such that μip)~hμ. It is clear that μ

is a mod p multiplication of X.

(2)<=>(3): (2) implies that Y(p) is an H-space and/ ( p ) : X(p)-> Y(p) is a homotopy

equivalence. Thus (2) implies (3). Conversely (3) implies (2) by taking Y=X(p)9

because eXp: X-+X(p) is a ^-equivalence by (1.6) (i). q.e.d.

COROLLARY 1.9. Let X be a finite mod p H-space, and assume that H*(X)

has no p-torsion if pφO. Then H*(X; Zp) is an exterior algebra:

H*(X; Zp) = ΛZp(xu...9 xk)9 XieHniX; Zp\ W | :

PROOF. H*(X; Zp)^H*(X(p); Zp) by (1.6) (i), and Xip) is an //-space by

the above proposition. Thus we have the result by Hopf's theorem. q.e.d.

COROLLARY 1.10. (i) Let X be a finite complex and A is a subcomplex of

X. If X is a mod p H-space and A is a retract of X, then A is a mod p H-space.

(ii) For finite complexes X and Y, X x Y is a mod p H-space if and only if

X and Y are mod p H-spaces.

PROOF, (i) By Proposition 1.8, Xip) is an //-space. Let r: X^A be a re-

traction and ί: AaX be the inclusion. Consider the homotopy fibre F of rip):

X(p)->A(p). Then by using the homotopy exact sequence of r{p) which is split by

ί(p), we see easily that the composition of

F x A{p) - ^ X(p) x X(p) > X(p) (j: FaX(p))

is a homotopy equivalence, where μ is a multiplication of an //-space X(Py Thus

Aip) is an //-space and A is a moάp //-space by Proposition 1.8.

(ii) The necessity follows from (i) and the sufficiency is clear by definition.

q.e.d.
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DEFINITION 1.11. A finite complex X is said to be p-regular if there exists

a p-equivalence of X to a product space S"1 x ••• x S"k of nΓsρheres Sni for odd

W; (1 ^ Ϊ ^ / C ) , and #! = («!,..., nk) (where 3 ^ n 1 ^ ^n Λ ) is called the ίype of X.

By (1.4) (i), (1.7) and (1.6) (ii), we see easily the following

LEMMA 1.12. For a finite complex X, the following (l)-(3) are equivalent:

(1) There exists a p-equivalence of X to S " 1 x ••• x S " k .

(2) There exists a p-equivalence of S " 1 x ••• x S " k t o X.

(3) The p-localization X(p) is homotopy equivalent to S"p) x ••• x 5 " ^ .

Finally we notice the following proposition which is an immediate con-

sequence of Proposition 1.8 and

(1.13) (Adams [1]) S2n+ι is a mod p H-spacefor any odd prime p or p = 0.

PROPOSITION 1.14. If p is an odd prime or p = 0, then every p-regular space

is a mod p H-space.

§2. The main theorems

In this section, we assume that p is an odd prime or p = 0, and

(2.1) a sequence n = (nί,...9 nk) consists of odd integers with 3 ^ n x ^ ^ n k

and consider the following conditions for a finite complex X:

(ext)n H*(X Z) has no p-torsion and H*(X Zp) is an exterior algebra:

tf*(X; Zp) = ΛZp(xu..., xk), XieHn*(X; Zp).

(H)n X is a mod p //-space satisfying (ext)n (see Corollary 1.9).

(reg)n X is a p-regular space of type (n l 5 . . . , nk) (see Definition 1.11).

Then (H)n implies (ext)n, and (reg)n implies (H)n by Proposition 1.14. When

p = 0, Arkowitz and Curjel [2] proved that (ext)n implies (H)n and (H)n implies

(reg)n.
Now our main theorems are stated as follows, where

(2.2) pπt(Sn) denotes the p-primary component of the homotopy group πt(Sn)

if

THEOREM 2.3. (i) The above conditions (ext)n, (H)n and (reg)n for a finite

complex X are equivalent if n = (nι,..., nk) in (2.1) satisfies

(2.4) Pπt-άS"*) = Ofor
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(ii) The above conditions (H)n and (reg)n/or X are equivalent if

(2.5) Pπt.1(Sni) = 0 for any ί^i^k and any t = nΊ(i<j^k).

THEOREM 2.6. Let p be an odd prime.

( i ) If (2.4) does not hold, then there is a finite complex X which satisfies

(ext)n and does not satisfy (reg)n.

(ii) If (2.5) does not hold and p^5, then there is a finite complex X which

satisfies (H)n and does not satisfy (reg)n.

(iii) If the condition (2.4) with s^.2 does not hold, then there is a finite com-

plex X which satisfies (ext)n and does not satisfy (H)n.

As a corollary of Theorem 2.3, we have the following

COROLLARY 2.7 (Kumpel [7]). If p is an odd prime and

nk — n l + 4 ^ 2p

for Λ = (nj,..., nk) in (2.1), then (H)n and (reg)n are equivalent.

PROOF. According to Serre [12; V, Prop. 4], pπn+i(Sn) = 0 if n is odd and

i<2p — 3. Thus nk — n1+4^2p implies (2.5), because n,- — 1 — n ί<2/?~3 by (2.1).

q.e.d.

To prove Theorem 2.3 (i), we prepare the following lemma which may be

known.

LEMMA 2.8. Let Y be a finite complex such that H*(Y; Z) has no p-torsion

if p is an odd prime. Let n be an odd integer ^ 3 , and assume that

H'(Y; Pumas'1)) = 0 for any integer t^n + 2.

Then for any element yeHn(Y; Zp), there is a map f: Y-+Sn with y=f*(v)
for some veHn(Sn;Zp).

PROOF. When p is an odd prime, the mod p reduction H*(Y)->H*(Y Zp) is

epic since H*(Y) has no p-torsion by assumption. Thus we take an element

yeHn(Y) whose moάp reduction is a given element y. When p = 0, we take

yeHn(Y) such that U(y) = qy in Hn(Y; Zo) for some q^O in Q, where i : Z c

Q=ZQ is the inclusion.

Let Yι be the /-skelton of Y and ^ : YιaY be the inclusion. Then the

projection r: Yn->YnIYn~1= v y 5 ; (S^S") induces the epimorphism

r*: @jH»(S>}) = H»(Y"IY"-1) > H»(Yn),

and c*(y) = r*(Σjΰj) for some ύjeHn(St]). For a generator ueHn(Sn), take
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maps φji S'}->Sn with φj(ύ) = uj9 and set

fn = (VjΦj>: Yn > VjS»j >S".

Then we have c*(y)=f*(ύ). Consider the cofibre sequence

V kS
n

k -£-> Yn -±-+ Yn+ι (Sj = Sn, ξ is the attaching map)

and the exact sequence

s?) <-^- #"( Y") <-ii- //*( YW + 1) <— o.

Then f*(u) = t*(y) = c*(t*+1(y)) and hence (fnζ)*(u) = 0 which shows that

y*πξ~* vkSl-+S". Thus there is a map

/ Λ + 1 :y»+i—>S» with fH+it=fn.

Since ί* is monic,/*+1(fi) = ί*+1(j?) in //M(yM+1). Therefore

where ueHn(Sn; Zp) is the modp reduction of ύ when p # 0 and u = (

when p = 0.

Now consider the map e: Sn->5^p) of the ^-localization. Then the ob-

structions for extending efn+1: y
w+1->S^p) to Y are in

where π ^ ^ S ^ s π . - i ί S " ) ® ^ ^ ^ . ^ " ) ( ί^n + 2) (cf. [4; II, Th. IB]).

Thus this group is 0 if t — n + 2, since /? is an odd prime or 0. This group is also 0

if t>n + 2 by the assumption, because the projection r': Y^YIYn+1 induces the

isomorphism

1;*π ί_1(S'')) > H<(Y; *πt-t(S")) (t>n

Thus

(••) efn+ί: Y
n+ι > Sn

ip) has an extension / : Y > S n

( p ) .

For this map/: Y-^SΊP), there are a map / : Y-+S" and a homotopy equi-

valence ft: 5^)~>S^) such that/ ( p )^ft/ ( p ) by (1.7) (i), because Sn is /^-universal

by (1.4) (i). Therefore ef~f{p)eYiP~hJ{p)eYiP~hf. This and (**) show that the

diagram

#«(s»; z p ) -^U j ϊ-(y ; z p ) - ^ - > jϊ»(y-+i z p )

}/* |/ϊ+i
Zp) J*> H»(S»ip) Zp) ̂ U H»(S» Zp)
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is commutative, where ft*, e* and c*+ι are isomorphic. Set v = e*h*~1e*~ί(u)e

ff»(S»; Zp). Then y=f*(υ) as desired, because c*+if*(v)=f*+ι(u) = c*+ι(y) by

the above diagram and (*). q. e. d.

PROOF OF THEOREM 2.3. (i) It is sufficient to prove that (ext)π implies (reg)n.

Assume that X satisfies (ext)π and (2.4) holds for n = (nl9..., nh). Then

and Ht(X;Pπt-1(Sn*)) = Ht(X;Z)®Pπt_ί(Sni) = 0 for any l^ ί^fc and any
t^Πt + 2. Therefore Lemma 2.8 shows that there are maps/ f : X->Sni and ele-

ments vt e Hni(Sni Zp) such that xt =ff(Vi) for 1 g i g k. Consider the map

Then/is clearly a p-equivalence and (reg)n holds.

(ii) We prove (ii) by the same way as the proof of Kumpel [7]. Assume

that X satisfies (H)n and (2.5) holds. Let Jn be the subalgebra of H*(X; Zp) =

Λ(xί9..., xk) (XiGHni(X; Zp)) generated by {xt\ n^n}. Then we can prove that

X satisfies (reg)n by constructing maps

(•) fn:Sn = nni*nSn<—*X such that / * \Jn: Jn s H*(SΠ; Zp)

by induction on n; in fact,/Wk: Sni x ••• x S"k-+X is a p-equivalence and X satisfies

(reg)n by Lemma 1.12.

Take/o = *: So( = *)->X, and assume that/„ in (*) is constructed. If n + 1 £

{«!,..., nfc}, then we may take /„+!=/„. Assume n + l e { « l v . . , n k } . Then

n ί _ 1 < n + l = n / = = nJ _ 1 < n J for some f < j . Regarding /„: Sn-*X as the

inclusion, consider the commutative diagram

P

h

where φ is the natural inclusion and ft's are the mod/? Hurewitz maps. Then

H*(X9 Sn; Zp) = 0 for * ^ n by (*), and h: πn+1(X, Sn)®ZΌ->Hn+i(X, Sn; Zp) is

an isomorphism. On the other hand, SΠ = ΓLsgπ ^" s = Πn s<n^" s since n is even,

and πn(Sn)®Zp^®ns<nπn(Sns)®Zp = 0 by the assumption (2.5). Thus the

cokernel of φ*\ πn+ί(X)-^πn+i(X, Sn) is a torsion group whose order is prime to

p, and </>*®l: πn+ί(X)®Zp->πn+ί(X9 Sn)®Zp is epic. Therefore we have

elements gteπn+ t(X) such that

Φ*h(gt®ΐ) = h(φ*®l) (gt®l) = φ*(ut) (ίSt^j-1),
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where uteHn+ι(X; Zp) is the dual element of xteHn+1(X; Zp) (i<*t<j) with

respect to the basis {xkί'-xkι I kί<-~<kι} of H*(X; Zp). Here h(gt®l) and ut

are primitive elements. Also Hn+1(Sn9 Zp) has no non-zero primitive elements,

because any non-zero element in Hn+1(Sn9 Zp) is decomposable. Further

f«:HH+1(Sm;Zp)->HΛ+ι(X;Zp)is monic, because / * : H*(X; Zp)-*H*(Sn; Zp)

is epic by (*). Thus the above equality and the lower exact sequence in the above

diagram show that

h(gt®l) = ut in Hn+ί(X;Zp) (i£t£j-l).

Therefore by the definition of ut9 gt: Snt = Sn+1-*X satisfies that

(•*) QΪ(xt) is a generator of Hn+ί(Sn* 9 Zp) (i^t^j-\).

Now, by using a multiplication μ of a mod p H-space X, define a map

(2.9) μt: X x x X (I copies) > X by μ2 = μ and μf = μ(μj_ x x 1),

and put

fH+1 = μj-i+i(fnxgtx~ xgj-i): SΛ+1 =SnxSn>x ~xS»J-1 > X.

Then by (*) and (**), we see immediately that ft+ι\^n+i: Jn+i~-*H*(Sn+il Zp)
is an isomorphism, as desired. q. e. d.

Thus we have proved Theorem 2.3 completely.

To prove Theorem 2.6, we use the following

LEMMA 2.10 ([19; 1.1.6]). Let F(Au...9Ak) be the fat wedge of complexes

u4j,..., Ak, i.e.,

F(Aί9..., Ak) = {(al9..., ak)eAί x ••• xAk\at = * for some i) .

Then ΣF(Aι,...9 Ak) is a retract of Σ(Aί x ••• xAk), where Σ denotes the reduced

suspension.

In the following, the product space and the fat wedge of spheres are denoted

simply by

S(n) = SniX'"xSnk a n d F(n) = F ( S Π l , . . . , Sn«) for n = (nί9...9nk)9

respectively. Then we have a cell decomposition

(2.11) S(n) = (*Ue ; l l )x x(*U £?"*) = F(n) U\ ξe^ ( J n ^ n ^ + nfc),

where the attaching map ξ: S'"'"1-*/7^) is the Whitehead product of higher order.

LEMMA 2.12. Assume that a countable complex X is an H-space. Then
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f+(ξ) = 0 in π μ i _ 1 (X)/or any map f \ F(n) —-> X,

where F(n), \n\ and ξ are the ones in (2.11).

PROOF. Put S = S(n) and F = F(n) and let r: ΣS-+ΣF be the retraction by

Lemma 2.10, and g: S-+ΩΣX (Ω denotes the loop space) be the adjoint map of

(Σf)r: ΣS->ΣF->ΣX. Then g\F = cf: F->ΩΣX (c.XcuΩΣX). On the other

hand, according to James [5; 1.8], there is a retraction q: ΩΣX-^X by the as-

sumption. Thus we have a map

f=qg:S >ΩΣX >X w i t h f\F = qcf = f.

Therefore/*(£) = 0 by the cell decomposition in (2.11). q.e. d.

Now we use the following notations:

(2.13) (1) For any sequence u = (n!,..., nk) of (2.1), the set of finite complexes

X satisfying the condition (ext)n, (H)π or (reg)π will be denoted by ext(n), H(n) or

reg(n), respectively.

(2) For any sequence n = (nu...9 nk), we set \n\ = n1-\ Vnk. For any

sequences n and m,n\Jm denotes the sequence consisting of integers in n or m;

and for a subsequence m of n, n — m denotes the complementary subsequence of

m in n.

LEMMA 2.14. For any sequences n and m of (2Λ), a finite complex X sati-

sfies (ext)n, (H)n or (reg)n if and only if XxS(m) satisfies (ext)n U m, ( H ) n U m or

(reg)nUm, respectively, where S(m) is the product space of the spheres in (2.11).

PROOF. By the definition of (ext)n, (H)n or (reg)n, we see easily the lemma

by Corollary 1.10 (ii) and (1.13). q.e.d.

PROPOSITION 2.15. For an odd prime p and a sequence n = (nίi..., nk) of

(2.1), the follow ing hold:

( i ) ίfk^l and Pπ\n^γ{Sni)Φ0 for some ι, then ext(re)^H(n).

(ii) Ifk = 2 and 'π l l 2 - . 1 (S n 0#0, then ext(n)Ξgreg(rc). Ifp^5 in addition,

(iii) If k^3 and ^ , n | _ n i _ , ( S n 0 ^ 0 / o r some /, then ext(n)^H(n).

Before proving this proposition, we prove Theorem 2.6.

PROOF OF THEOREM 2.6. (iii) Assume that (2.4) with 5^2 does not hold for

n = (n1,..., nk). Then we have a subsequence m = (m1,..., ms) of n such that

5^2 and ^π | m | - . 1 (S" i )#0 f° r some ί.

In case of nt = mt for some t, Proposition 2.15 (i) shows that there is a finite

complex Ye ext (m) — H(m). Then X = Yx S(n — m)e ext (n) — H(n) as desired,

by Lemma 2.14.
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In case of nΛφmt for any ί, consider the subsequence m' = mU(n {) of n.

Then Proposition 2.15 (iii) shows that there is Ye ext (m') — H(m'), and

YxS(n-m')eext(n)-H(#ι).

(i) Assume that (2.4) does not hold for n = (ni,..., nk). Then we have a

subsequence m = (m1,...,m s) of n such that pπ\m\_1(S"i)φ0 for some /. If

s^2, then ext(n)igH(n)IDreg(n) by (iii). Assume s = l . Then mΛ=nJ>ni

for some 7 and ^πn._1(S/l/)?έ0. Therefore the first half of Proposition 2.15 (ii)

shows that there is Ye ext {m') — reg (m') where m' = (nh Πj). Thus X=Yx

5(Λ — m') e ext (n) — reg (#ι) by Lemma 2.14.

(ii) Assume that p^5 and (2.5) does not hold for n = (n l 5..., nk). Then
pπ l l i /_ I(SW i)^0 for some w,-</?,.. Thus the second half of Proposition 2.15 (ii)

shows that there is YeH(m) —reg(m) where m = (nh tij). Hence X=Yx

— m)eH(rc) — reg(τι) by Lemma 2.14. q.e.d.

PROOF OF PROPOSITION 2.15. (i) Let aeπ^-^S"1) be an element of order

p by the assumption. Consider the fat wedge F(n) = F(SHi,...9 S"k) in (2.11)

and the inclusion c: SniaF(n). Then c*\ π*(Sni)^>π*(F(n)) is monic and the

order of β = ̂ (α) e πHe(F(w)) is also p. Consider the diagram

S\n\-1 __£_> F(n) . ^ ̂ ( n ) = yr^) ^ ^ e\n\

0

Y = F(n) \Jpξ βl l

s\n\-ι ξ_±β> F(n) -^-> X = F ( Λ ) W ξ + ^ el"l

of cofiber sequences, where ξ is the map in (2.11) and Θ is a map of degree p.

Since f*(0) = pξ and (ξ + β)*(θ) = p(ξ + β) = pξ9 there exist maps φ: Y-+S(n)

and ι/f: Y-^X such that the above diagram is homotopy commutative. There-

fore φ and φ are O-equivalences by the five lemma, since so is θ. Thus H*(X Q) =

H*(Y; Q)^H*(S(n); Q). Furthermore dim H*(5(n); Q) is equal to the number

of cells of S(n) in (2.11), and the latter is equal to that of X by definition. There-

fore H*(X; Z) is torsion free. Consider

//*(5(n) Z) -^> //*( Y Z) ^ //*(X Z ) .

Then 0* and ψ* are isomorphisms if * < | n | . If * = |Λ|, then these groups are

Z, and ψ* and ψ* send generators to p times of generators. Hence we see

that H*(X',Zp)*H*(S(n);Zp)9 and H*(X; Zp) = Λ(xl9..., xk)(xjeH»J(X; Zp)).

Thus Xeext(n). Furthermore the induced homomorphism λj: H*(X; Zp)-+

H*(S"J;ZP) of the restriction λj = λ\SaJ: SnJ-+X of λ in the above diagram

satisfies ?.J(Xj)Φ0 ( lg j^/c) . Therefore, if X is a modp //-space with multi-
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plication μ, then

(2.16) μk(λ j x x λk): S(n) -+Xx>~xX(k copies) J% X (μk is the map in (2.9))

is a p-equivalence, and there is a p-equivalence / : X-^S(n) by Lemma 2.12.

Consider the compositions

g: F(n) - ^ X ^ S(n) - ^ s»i -?-> Sfo and <κ: S»' <= F(n) > S»(p).

Then #£ is also a ^-equivalence. On the other hand, g*(ξ) = 0 by Lemma 2.12

and λ*(£ + j?) = O by the definition of λ. Thus g*(β) = 0 and (0O*(a) = 0*(0)==O-

This contradicts that the order of α is p. Therefore X ί H ( n ) .

(ii) The first half: For /§;2, the induced homomorphism

p+: ττ*(S0(2/)) > π*(S2l~ι) (p: 50(2/) > 5 2 / - χ is the projection)

is epic if 1 = 2 or 4 and Imp J | s = 2π*(S2/~1) otherwise by [14; 23.4]. Let

αeπ M 2 _ 1 (S' t l ) be an element of order p{φl) by the assumption. Then we can

take βeπn2_λ{SO(nx -hi)) such that p*(β) = 2oc, and we have the n r sphere bundle

X over S"2 with characteristic class β. Since n2 > nΛ + 1 , it is clear that X e ext(n).

On the other hand, consider the homotopy exact sequence π,,2(S"2)—>πM2_ ι(Snι)-+

0. Then Im δ is generated by 2α, and pπn2-1(X) = p(πn2-ι(Snχ)l\m. (

pπn2_x(Snt) since the order of 2α is p. Thus X^reg(n) as desired.

The second half: The result is immediate consequence of Harper's result

([3; p. 554]) that for any αeπ / J 2 _ 1 (S W l ) ? there is a modp //-space Y" such that

Ya is p-equivalent to Snι\jae
n2\jenι+n2 (p^5) . If we take α to be an element

of order p by assumption, then ^πΠ 2_ 1(yα) = p π M 2 _ 1 (S" 1 \JΛe
nί) ^ p π M 2 _j(S W ι )

and we see that YΛ e H (n) — reg (n).

(iii) Let α e π | m ) _ 1 ( S / l i ) be an element of order p by the assumption, where

m = n — (/if). Then by the same way as the proof of the first half of (ii), we have

the sphere bundle

5 n < —e-+ Y - ^ SIm I with characteristic class β e π, m, _ ί (SOfa +1)),

where p^(β) = 2cc. Consider the pull-back diagram

- I !•
S ( m ) Jϋ_> ^l"1 '

where φ is the map collapsing the fat wedge F(m) to *. Then the induced homo-

morphism c'*\ H*(X; Zp)-+H*(Sni; Zp) is epic, because φc' = c and c* is epic.

Thus Sni is totally non homologous to zero in X, and we see that H*(X; Z ) =
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Λ(xί9...9 xk) where Xj = π'*(Uj) iΐjφi and xf is an element with ί'*(xi) = wi (w; is a

generator of //";(S"; Zp)) (cf. [17; 15.47]). Therefore X e ext (n).

Now consider a lifting $: ^Iml->X of the characteristic map φ: e^m{-^S(τn)

of the |m|-cell of S(m) in (2.11) with φ | Si™!"1 = ̂ : Slml~ι->F(m). Then ξ =

ΦISI"*'"1 is a lifting of ξ9 and φξ = pr2ξ represents pHs(j9) = 2αeπ,m |_1(SW i) by the

constructions. Therefore X has a cell decomposition

X = F(m)xSnt W(e | m | x Snί) = F(m)xSni \Jξ + 2Λ^m] x * ) W ( e | m | x e ' " ) .

Assume that X is a mod p //-space with multiplication μ. Then the restriction

A7 = λ I S"; (λf = c') of the inclusion λ: F(m) x S'H c= X and μ define a p-equivalence

S(Λ)-)>X by (2.16). Thus there is a p-equivalence / : X->S(n) by Lemma 1.12.

Consider the composition

g: F(m) x S ' - ^ l X S(n) - ^ S-' - ^ Sf1^ .

Then ^ | S Π ί is also a p-equivalence. On the other hand, g^(ξ) — O by Lemma

2.12, and λ*(ξ + 2cή = 0 by the above cell decomposition of X. Thus 20s|t(α) = O

and (# I SΠί)*(α) = 0. This is a contradiction and X is not a mod p //-space.

q.e.d.

Thus Theorem 2.6 is proved completely.

In the conclusion of this section, we notice the following theorem which

gives a sufficient condition that a complex in ext(n) belongs to reg(n).

THEOREM 2.17. For n = (nΛ,..., nk) of (2.1), let Xeext(n), i.e.,

H*(X; Zp) = Λ(xl9...9 xk)9 XίeH"*(X; Zp)\

and suppose that there is a subsequence m of n satisfying

(2.18) ^π| n |_ 1 (S' l i ) = 0/or any i and any subsequence n' of n with n^m and

Then Xereg(n) if X satisfies the following two conditions:

(2.19) There exists a map f \ X->S(m) such thatf*: H*(S(m); Z p)-//*(X; Zp)

sends a generator UjeH*(Snj; Zp) to Xjfor any n y em.

(2.20) ^ 1 x ί = 0 in Hn^2P~\X\ Zp) for any i with nt £ m.

PROOF. Under the conditions (2.20) and (2.18), we prove the following

(2.21) For any i with n ^ m , there is a map gt: X-+S'H such that gf(Ui) = Xi for

gf: H*(Sni\ Zp)^>H*(X; Zp) and a generator ιι£e/f"'(S"'; Zp).

Then these maps ί/f together with/in the condition (2.19) define a p-equivalence
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/x Unien-m 9i X > S(m) x S(n-m) = S(n),

and the theorem is proved.

To prove (2.21), we take / with n^m and set n = «f, q = Πι-\-2p — 3 and x = xf

for the simplicity. Since pπm(S") = 0 for m<q by [12; V, Prop. 4], we can

construct

g : χi > S'{p) with g*(u) = c*(x)

(u is a generator of //"(Sfo; Zp) = //"(S«; Z,))

by the same way as the proof of Lemma 2.8, where c: XqaX.

Now take any (q + l)-cell of X with attaching map η: Sq^Xq. Then, for

gη: Sq-+S'{p), we have a homotopy commutative diagram

Sq—*-» S\p) < Sq

\g

for some homotopy equivalence /? and some map v, where e's are the

p-localizations. Every horizontal map in this diagram is a p-equivalence, and

hence

H*(Cβη;Zp)*H*(Cv',Zp) (Cα is the mapping cone of α).

It is well known that 0>x = 0 on H*(CV; Zp) if and only if v e πq(S") is 0 in pπq(Sn)

(e.g., cf. [16; 5.2]). Thus we see that

(*) ^ = 0 o n H*(Cgη Zp) if and only if gη = 0 in 'π,(S(-p)) = πq(S»(p)).

Consider the induced homomorphisms

;Zp) -£+ Hq+HCη;Zp) ^- Hq+'(Xq+ί Zp) ^- Hq^(X; Zp)\

where g: Cη-+Cgη is the map induced by g, and c' and ί" are the inclusions.

Then g* is clearly isomorphic, and (2.20) and the equality g*(u) = c*(x) show that

^ 3 l = 0 on H*(Cgη; Zp). Thus gη = 0 by (*); and we have an extension

g>:X*+i ,Sfp) of ^ with 6f'*(w) = ^ /*W.

Now, by the same way as the proof of Lemma 2.8 by using the condition (2.18),

we can get a map

g: X • Sn with g*(u) = x.

Thus (2.21) is proved. q. e. d.
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§ 3. The p-regularity of the Stiefel manifolds

In this section, we study the p-regularity (p: odd prime) of the complex

(resp. quaternion) Stiefel manifold

\Vnk = SU(n)/SU(n-k) (resp. Sp(n)/Sp(n -/c)),

which is a typical example of a complex satisfying (ext)π in §2 for n =

(n-k + \)-\9...,2dn-\l in fact,

(3.1) H*(Wny, Zp) = Λ(ω2d(n_k+ί)_u..., ωldn__λ\ degω, = 7 ,

where J = 1 (resp. 2), (cf. [16; IV, 4.7]). We notice that

(n) (resp. Sp(n))

is p-regular if and only if p^dn by [13; V, Prop. 7]. Furthermore, WnΛ =

S2dn~ι is p-regular.

The main result of this section is the following theorem, where

(3.2) r(ί) = d(n-i+\\ s(i) = /{r(/) + r ( l ) - l } = ιι(ΐ, /),

THEOREM 3.3. Let 2^/c^n — 1 and consider the condition

(3.4) d(k-\)+l<p, or d(k-l)+\=p and n = 0 m o d p (d=\ (reps. 2)).

(i) // (3.4) does not hold, then the complex (resp. quaternion) Stiefel

manifold Wnk is not p-regular.

(ii) Under the condition (3.4), Wnk is p-regular if the following condition

(1) or (2) holds:

(1) dn^p, or(s(k) + 2)/r(k)^p(e.g., p^2/c + l and dn^dk2-k-d + 2).

(2) dn > p, (s(k) + 2)jr(k)>pand

Pπ^^S2^0-1) = 0 for any t = 2da-\-u(iJ) ̂  2r(/)4-2p-2,

where i,j and a are integers with 2^j^i^k, O^a^j(i-j) and (s(i) + 2)lr(ϊ)>p.

By using this theorem, we shall give some p-regular Stiefel manifolds in

Examples 3.9, 3.11 and 3.12 below.

To prove Theorem 3.3, we prepare some results. The following proposition

is well known and is verified easily by the comparison theorem of Zeeman [20;

Th. 2].

PROPOSITION 3.5. Suppose that a complex X of finite type satisfies
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H*(X\Zp) = Λ(ua\aeA)®Zp[vb\beB] for * < N,

where the degrees of ua and vb are odd and even, respectively, and Z p [ ] denotes

the polynomial algebra. Then

H*(ΩX Zp) = Λ(σvb \bεB)® Zp[_σua \aeA\

for * < min {N — 2, pάeg(σua)—\ \aeA},

where σ denotes the cohomology suspension.

The following theorem is a generalization of StashefΓs result [14; Prop. 4]:

THEOREM 3.6. Let X and Y be complexes and f: X->Ω2lY be a map for

some / ^ l , and suppose that

H*(X; Zp) = Λ(xu...9 xr)9 H*(Y; Zp) = Λ(yl9...9 yr)

and f*(σ2lyd — χi for any l^*ΊSί% where nf = degxf = deg^ — 2/ is odd and
nί^'"^nr. If

then X is a mod p H-space.

PROOF. By the assumption on Y and by the repeated use of the above
proposition, we see that

H*(Ω2lY',Zp) = Λ(σ2ιyu...,σ
2lyr) for < p(ιι1 + l )-3.

Therefore the homotopy fibre F of / ( p ) : X(p)^(Ω2lY)ip) is (p(nι + l)-5)-
connected. Furthermore F is homotopy eqivalent to the p-localization of the
homotopy fibre of/([4; II, 1.10]), and hence π*(F) is p-local.

Consider the homotopy commutative diagram

X(p) x

where c is the inclusion, V is the folding map and μ is the loop multiplication of
Ω2lY. Then the obstruction for extending V to a multiplication X ( p ) xI ( p ) ->
X(p) are in

This is 0 for *:gp(n1 + l) — 4, since F is (p(ni + l) — 5)-connected. On the other



Mod p H-spaces and ^-regularities 415

hand, because H*(Xip);Zp)*H*(X; Zp) = Λ(xl9...9xr), H*(Xip);Z) (*>N) is
a torsion group whose order is prime to p and hence so is H*(Xip)ΛX(p); Z)

(*>2N). Thus the group of (*) is 0 for * > p ( n 1 + l) — 4 by the universal coeffi-

cient theorem, since π*(F) is p-local and p(nί + l) — 4^2iV by the assumption.

Therefore Xip) is an //-space and X is a mod p if-space by Proposition 1.8.

q.e.d.

Now we can prove Theorem 3.3 by using the following

LEMMA 3.7. (i) (James [6; Th. 1.4]) There exists a positive integer m>k such

that the projection π: Wmtk-*Wmtί = S2dm~ι has a cross-section Θ: S2dm~ι—>Wmk.

(ii) Let J: Wnfk-+Ω2dmWm+njc be the adjoint map of the composition of

Sidm Λ Wnk = s2d<»-ι*wn>k^-> wm>k*wn,k - ^ wm+Htk9

where * denotes the join and h is the intrinsic join due to James. Then

t_j _ ω2dt-2dm-i for any m + n —/c + 1 g ί g m + H.

PROOF OF THEOREM 3.3. (i) According to [10; Th. 1.1], (3.4) is equivalent to

the condition that ^ > 1 = 0 on H*(Wny, Zp). It is clear that 0>γ = 0 on H*(X; Zp)

for any p-regular space X. Thus we see (i).

(ii) We prove fii) for Wnfk = SU(n)/SU(n-k) and d = l . The result for

Sp(n)/Sp(n — k) and d = 2 can be proved similarly.

(1.) The case n^p\ In this case, there is a p-equivalence φ: S3 x S5 x ••• x

S2"-1->Sl/(n) by Corollary 2.7 and (3.1). Let π: SU(ή)-+Wntk be the projection

and put

f = π ( φ \ S2("-k)+ι x ••• x S 2 " - 1 ) : S2^~k)+ί x ••• xS2n~ι > WK
Ktk.

Then we see easily that / is p-equivalence.

The case (s(k) + 2)/r(fc) ̂  p: Since p ^ (s(/c) + 2)/r(/c) = {k(2n - k) + 2}/(n - /c + 1)

by (3.2), we can apply Theorem 3.6 to J in Lemma 3.7 (ii) and we see that Wnk

is a mod p //-space. Thus Wn>k is p-regular by Corollary 2.7 becauae p ^(s(k) + 2)/

(2) Let k\<k) be the maximum number with (s{k')Λ-2)jr(k')^p. Then

(3.4) holds also for k — k'. Thus WnA is p-regular by (1). Assume inductively

that WnJ is p-regular for k'^i<k, and consider X=Wnti+ι and the composition

f=φπ:X= WΛti+ι >WnΛ >S(m) (m = (2n-2/ + l, 2n-2/ + 3,..., 2 n - J ) )

of the projection π and a p-equivalence φ. Then n in Theorem 2.17 is

( 2 n - 2 / - l ) U m, and (2.19) holds clearly. Further (2.20) holds by [10; Th. 1.1]

since (3.4) holds for fc = ί + 1 . The condition (2.18) is contained in the last con-
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dition in (2). Thus Λr=VKn/+1 is p-regular by Theorem 2.17, and so is Wnk by

the induction. q.e.d.

PROOF OF LEMMA 3.7. We prove (ii) by using (i) which is proved in [6;

Th. 1.4].

We regard Wab as the set of all normal systems (Al5..., λb) of vectors )H in

Fa(F is the complex or quaternion field) with (λh λj) = δu. For any a>b>c

and /, let

(3.8) ε : W.tb > Wa+ιb+ι a n d π : Wa,b >WaJb.c

b e t h e i n c l u s i o n a n d t h e p r o j e c t i o n g i v e n b y ε ( λ l 9 . . . 9 λ b ) = ( λ ί 9 . . . 9 λ b 9 ea+ί9...9 e a + ι )

(et i s t h e /-th u n i t v e c t o r in Fa+ι) a n d π ( λ ί 9 . . . , λ b ) = ( λ c + ί 9 . . . 9 λ b ) . T h e i n t r i n s i c

j o i n h: Wm%b*Wa%b-+Wm.Va%h is defined by

(•) /ί((iI,...,ij,(/i1,...,/αo=(v1,...,vj,vi=;,,

Then the diagram

W W τ Λ

ym+a,b

is homotopy commutative. In fact, ((A,,..., A f c + 1), ( μ l v . . , /i/,), t)e Wmb+ι*Wab

is mapped to

(v1 ?..., vft, v) (vy is the one in (*) and v = λb+i cos(πt/2) + ea+ι sin(πί/2))

by /i(l*ε), and to (v,,..., vb, em+a+ί) by εh(π*\)(φ*ί) where φ: WMtb+ι^Wmtb+ί

is the map given by φ(λu..., λb, λb+ί) = (λb+u λl9...9 λb). Therefore / ί ( l * ε ) -

ε/ί(π*l)(^>*l)^ε/?(π*l) and (**) is homotopy commutative, because φ~i.

Now let Θ: S2dm~ι-+Wmtk be a cross section of π: Wm^WmΛ=S2dm-χ given

in (i) and put

Ob = πθ: S2dm~ι > Wmtk > Wm%b for any 1 ^fcgfc,

which is a cross section of π : ^Kw,fc->W^ f ϊ f l=52 d m"1. Furthermore let J f t : Wa%b

Ω2dmWm+ab be the adjoint map of the composition of

Wm+βtb

Then by the homotopy commutativity of (**), we have the homotopy commutative

diagram
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yyab > Wa+ltb+\ > Λ

JΛ JΛ+i U
QldmU/ Ω2dmε QidmUf Ω2dmπ Q2dm^2d(m+a+l)-l

By noticing that J j is the adjoint map of 1: S2dm

 AS
2d(a+ι)-1->S2d(m+a+1)-1 and

by the induction on b, we see easily that

satisfies J%(σ2dmω2dt-ί) = ω2dt-2dm+i f° r m + α-b + l ( =
Thus J = Jk satisfies the desired equality. q.e.d.

Thus Theorem 3.3 is proved completely.
In the rest of this section, we give some examples satisfying the conditions

of Theorem 3.3.

EXAMPLE 3.9. Assume that dn>p, (s(k) + 2)/r(k)>p9 s(k-l)<2p2-4 and
(3.4). Then the condition (2) in (ii) of Theorem 3.3 holds, if one of the following
(l)-(3) holds for any integers i and j with l^j^i^k and

(1) b(i,j)<2(p-ϊ) whenj=\ moά2d.
(2) b(ij)<min{p(p-ί), r(i)(p-l)} when j = 2 mod2d.
(3) a(ij)φθ moάp-\ and [fl(/, j)/(P-l)] = [6(i,Λ/(p-l)

mod 2d, where a(i, j) = [iι(ι, j)/2] - r(i) + 1 , b(i, j) = [S(j)/2] - r(i) + 1 .

PROOF. For any ΐ and j with 2 ̂  j ^ / g /c and (s(z) + 2)/r(i) > p, put

ί = 2da + w(/, j) and / = t - 2r(i) where 0 ^ α ^ j(ί - j ) .

Then M(I, j)£t£2dj(i- j) + ιι(i, ) = s(7) by (3.2) and

(«) /0 = u(i, j)-2dr(i) S / ύ /i = s(j)-2dr(i), I-10 = 0 mod 2d.

Furthermore /^/i <>s(k)-2dr(k) = s(k-1)- l < 2 p 2 - 5 by the assumption. On
the other hand, by a result of Toda [18; Th. 7.1],

(3.10) %_1(S2 d Γ< ί )-1) = 0 (/ = ί - 2 d r ( 0 < 2 p 2 - 5 ) ,

/// /s noί ê fi/α/ to 2c(p- l )- l ( l ^ c ^ p ) , 2c(p-l)-2 (dr(ϊ)<^c<>p) or 2p(p-l)
- 2 .

Assume that 7 = 1 mod2d. Then / is odd, and (1) implies that /x <c4(p— 1) — 1.
Further (3) implies that 2 c ( p - l ) - l < / 0 ^ / 1 < 2 ( c + l ) ( p - l ) - l for c = [α(ί,j)/
(P-1)] T n u s P 1 0 ) h o l d s f o r t^2dr(ί) + 2p-2 by (*). Assume that ; = 2
mod2d. Then / is even, and (2) implies that /1=26(/, ; )-2<min {2p(p-ί)-2,
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2rfr(0(p-l)-2}. Further (3) implies 2 c ( p - l ) - 2 < / 0 ^ / 1 < 2 ( c + l ) ( p - 1 ) - 2

for c = [fl(i,j)/(p-l)] T n u s ( 3 1 0 ) h o l d s by (*)• Assume that d = 2 and./ = 0, 3

mod4. Then / - / O Ξ 0 mod4 and /0 = 0, 1 mod4, and (3.10) holds. q.e.d.

EXAMPLE 3.11. (i) SU(n)ISU(n-k) (2<^/cg6) is p-regular in the following

cases:

(/c = 2) p ^ 5 , or p = 3 and n = 4, 5, 7.

(fe = 3) p ^ 7 , or p = 5 «nrf n = 5, 6, 8, 10, 12.

(/c = 4) p^ll, or p = 7 and n = 6, 7, 9, 12, 15.

(fc = 5) p ^ l 3 , or />=11 αnίί 7 ^ n ^ l l , n = 14, 19, n^21, or p = 7 and n = 7.

(/c = 6) p^ll, or p= 13 andS^n^ 13, n^31, or p = 11

(ii) Sp(n)/Sp(n — k) (2^fe^6) is p-regular in the following cases:

(k = 2) p ^ 5 , or p = 3 and n = 6, 9.

(/c = 3) p ^ 7 , or p = 5 and n = 5, 15, 20, 25.

(fc = 4) p^M, or p = 11 and n^7.

(fc = 5) p^ll, or p=13 and n^ll, or p=ll and n^

(k = 6) p^ 19, or jp= 17 and n = 8, n ^ l l , or p = 13 and n ^

This example follows from Theorem 3.3 by using Example 3.9. Furthermore,

by using a result of Toda [18] on Pπn+ι(Sn) (n: odd) for 2p 2 -5g/<2(> 2 + /?)

(p— 1)—5, we see the following

EXAMPLE 3.12. (i) SU(n)/SU(n — k) is also p-regular in the following cases:

(k = 2) /? = 3 and 8 ^ n g l 8 with n # U , 14, 16.

(k = 3) p = 5andn is even with 14 ̂  n g 58, n # 20, 22, 34, 38, 40, 44, 48.

(ii) Sp(n)/Sp(n — k) is also p-regular in the following cases:

(fc = 2) p = 3αndn = 6, 9. (/c = 3) p = 5 and n = 15, 20, 25.
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