A note on excellent forms

Daiji Kijima and Mieo Nishi

(Received September 18, 1981)

The notion of excellent quadratic forms was first introduced in [3] by M. Knebusch and some basic properties were investigated there. However it seems to the authors that the most important theorem, so to speak 'the structure theorem of excellent forms', has not been known yet. The main purpose of this paper is to give theorems of this sort (cf. Theorem 2.1, Theorem 2.4).

§ 1. Definitions and notations

Throughout this paper, a field always means a field of characteristic different from 2. Let k denote the multiplicative group of a field k. The Witt decomposition theorem says that any quadratic form φ is decomposable into $\varphi_{h} \perp \varphi_{a}$, where φ_{a} is anisotropic, and $\varphi_{h} \cong m H$ is hyperbolic. Here, φ_{a} is uniquely determined up to isometry by φ, and so we speak of φ_{a} as the 'anisotropic part' of φ. The integer m above is also uniquely determined by φ, and will be called the 'Witt index' of φ.

For a form φ over k and an element $a \in \dot{k}$, we shall abbreviate $\langle a\rangle \otimes \varphi$ to $a \varphi$ if there is no fear of confusion. For any form φ over k, we denote the set $\{a \in k \mid \varphi$ represents $a\}$ by $D_{k}(\varphi)$ and the set $\{a \in k \mid a \varphi \cong \varphi\}$ by $G_{k}(\varphi)$. The latter is always a subgroup of k. When φ and ψ are similar, namely $\varphi \cong a \psi$ for some $a \in \dot{k}$, we write $\varphi \approx \psi$. We say that ψ is a subform of φ, and write $\psi<\varphi$, if there exists a form χ such that $\varphi \cong \psi \perp \chi$. We say that ψ divides φ, and write $\psi \mid \varphi$, if there exists a form χ such that $\varphi \cong \psi \otimes \chi$.

For an n-tuple of elements $\left(a_{1}, \ldots, a_{n}\right)$ of k, we write $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ to denote the 2^{n}-dimensional Pfister form $\otimes_{i=1, \cdots, n}\left\langle 1, a_{i}\right\rangle$. Since any Pfister form φ respresents 1 , we may write $\varphi \cong\langle 1\rangle \perp \varphi^{\prime}$. The form φ^{\prime} is uniquely determined by φ, and we call φ^{\prime} the pure subform of φ. A form φ over k is called a Pfister neighbour, if there exist a Pfister form ρ, some a in k, and a form η with $\operatorname{dim} \eta<$ $\operatorname{dim} \varphi$ such that $\varphi \perp \eta \cong a \rho$. The forms ρ and η are uniquely determined by φ. We call ρ the associated Pfister form of φ, and η the complementary form of φ, and we say more specifically that φ is a neighbour of ρ. A form φ over k is called excellent if there exists a sequence of forms $\varphi=\eta_{0}, \eta_{1}, \ldots, \eta_{t}(t \geqq 0)$ over k such that $\operatorname{dim} \eta_{t} \leqq 1$ and $\eta_{i}(0 \leqq i<t-1)$ is a Pfister neighbour with complementary form η_{i+1}. Each η_{r} with $0 \leqq r \leqq t$ is uniquely determined by φ, and we call η_{r} the r-th
complementary form of φ. The sequence of forms $\varphi=\eta_{0}, \ldots, \eta_{t}(t \geqq 0)$ is called the chain of complementary forms of φ.

Definition 1.1. Let φ be an excellent form and $\varphi=\eta_{0}, \ldots, \eta_{t}$ be the chain of complementary forms of φ. If $\rho_{r}(0 \leqq r \leqq t-1)$ is the associated Pfister form of η_{r}, then the sequence of Pfister forms $\rho_{0}, \ldots, \rho_{t-1}$ is called the chain of Pfister forms of φ.

Definition 1.2. For a form φ and its subform φ_{1}, there exists a unique form φ_{2} such that $\varphi \cong \varphi_{1} \perp \varphi_{2}$. We then write $\varphi_{2}=\left\langle\varphi-\varphi_{1}\right\rangle$.

Lemma 1.3. Let $\varphi_{0}, \varphi_{1}, \ldots, \varphi_{t}(t \geqq 1)$ be a sequence of forms over k such that $\varphi_{i}>\varphi_{i+1}$ for any $i=0, \ldots, t-1$. Then the following statements hold:

$$
\begin{equation*}
\varphi_{0} \cong\left\langle\varphi_{0}-\varphi_{1}\right\rangle \perp\left\langle\varphi_{1}-\varphi_{2}\right\rangle \perp \cdots \perp\left\langle\varphi_{t-1}-\varphi_{t}\right\rangle \perp \varphi_{t} \tag{1}
\end{equation*}
$$

(2) If t is an odd number, then

$$
\begin{aligned}
& \left\langle\varphi_{0}-\left(\left\langle\varphi_{1}-\varphi_{2}\right\rangle \perp\left\langle\varphi_{3}-\varphi_{4}\right\rangle \perp \cdots \perp\left\langle\varphi_{t-2}-\varphi_{t-1}\right\rangle \perp \varphi_{t}\right)\right\rangle \\
& \quad \cong\left\langle\varphi_{0}-\varphi_{1}\right\rangle \perp\left\langle\varphi_{2}-\varphi_{3}\right\rangle \perp \cdots \perp\left\langle\varphi_{t-1}-\varphi_{t}\right\rangle .
\end{aligned}
$$

(3) If t is an even number, then

$$
\begin{aligned}
& \left\langle\varphi_{0}-\left(\left\langle\varphi_{1}-\varphi_{2}\right\rangle \perp\left\langle\varphi_{3}-\varphi_{4}\right\rangle \perp \cdots \perp\left\langle\varphi_{t-1}-\varphi_{t}\right\rangle\right)\right\rangle \\
& \quad \cong\left\langle\varphi_{0}-\varphi_{1}\right\rangle \perp\left\langle\varphi_{2}-\varphi_{3}\right\rangle \perp \cdots \perp\left\langle\varphi_{t-2}-\varphi_{t-1}\right\rangle \perp \varphi_{t} .
\end{aligned}
$$

Proof. The assertion (1) is proved easily by induction on t, and the other assertions are clear from (1).
Q.E.D.

Remark 1.4. For a sequence of Pfister forms $\rho_{0}, \ldots, \rho_{t-1}(t \geqq 1)$, we consider the following two conditions $\left(e_{0}\right)$ and $\left(e_{1}\right)$.
(e_{0}) $\rho_{i}<\rho_{i-1}, \operatorname{dim} \rho_{i}<\operatorname{dim} \rho_{i-1}$ for any $i=1, \ldots, t-1$ and $\operatorname{dim} \rho_{t-2}>$ $2 \operatorname{dim} \rho_{t-1} \geqq 4$.
(e_{1}) $\quad \rho_{i}<\rho_{i-1}, \operatorname{dim} \rho_{i}<\operatorname{dim} \rho_{i-1}$ for any $i=1, \ldots, t-1$ and $\operatorname{dim} \rho_{t-1} \geqq 4$. Let φ be an excellent form over k and $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of φ. By [3], Lemma 7.16, $\rho_{i}<\rho_{i-1}, \operatorname{dim} \rho_{i}<\operatorname{dim} \rho_{i-1}$ for any $i=0, \ldots, t-1$. Moreover if $\operatorname{dim} \varphi$ is even, then $\operatorname{dim} \rho_{t-2}>2 \operatorname{dim} \rho_{t-1} \geqq 4$ and if $\operatorname{dim} \varphi$ is odd, then $\operatorname{dim} \rho_{t-1} \geqq 4$. These facts are easily shown by the definition of excellent forms. Thus, for the chain of Pfister forms of an excellent form φ, if $\operatorname{dim} \varphi$ is even then the condition $\left(e_{0}\right)$ is satisfied and if $\operatorname{dim} \varphi$ is odd then the condition $\left(e_{1}\right)$ is satisfied.

Remark 1.5. For two Pfister forms φ and ψ, it is well known that $\varphi<\psi$ if and only if there exists a Pfister form χ such that $\varphi \otimes \chi \cong \psi$ (cf. for example, [1] or [4], Exercise 8 for Chapter X). So if a sequence of Pfister forms $\rho_{0}, \ldots, \rho_{t-1}$
satisfies $\left(e_{0}\right)$ or $\left(e_{1}\right)$, then for any $i=1, \ldots, t-1$ there exists a Pfister form τ_{i} such that $\rho_{i} \otimes \tau_{i} \cong \rho_{i-1}$.

The following two lemmas follow immediately from [3], Proposition 7.18 and Corollary 7.19. However these lemmas are easily verified and in order to make our discussions self-contained, we give proofs of them.

Lemma 1.6. Let φ be an excellent form over k, and $\varphi=\eta_{0}, \ldots, \eta_{t}$ be the chain of complementary forms of φ. If $t \geqq 2$ then $\eta_{0}>\eta_{2}$.

Proof. Let $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of φ. Let c be an element of $D\left(\eta_{1}\right)$. Then we have $c \eta_{0} \perp c \eta_{1} \cong \rho_{0}$ and $c \eta_{1} \perp c \eta_{2} \cong \rho_{1}$. It follows from Remark 1.4 that $c \eta_{0} \perp c \eta_{1} \cong \rho_{0}>\rho_{1} \cong c \eta_{1} \perp c \eta_{2}$, which implies that $\eta_{0}>\eta_{2}$.
Q.E.D.

For any form φ over k, we denote by $\operatorname{det}(\varphi)$ the determinant of φ.
Lemma 1.7. Let φ be an odd-dimensional excellent form, and $\varphi=\eta_{0}, \ldots, \eta_{t}$ be the chain of complementary forms of φ. If t is even, then φ represents $\operatorname{det}(\varphi)$.

Proof. We proceed by induction on m, where $t=2 m$. First suppose $m=0$, so $t=0$ and $\operatorname{dim} \varphi=1$. Then we have $\varphi \cong\langle\operatorname{det}(\varphi)\rangle$ in this case. Now assume $m \geqq 1$. Our inductive hypothesis (applied to the form η_{2}) implies that $\operatorname{det}\left(\eta_{2}\right) \in$ $D\left(\eta_{2}\right)$. The facts $\eta_{0} \perp \eta_{1} \approx \rho_{0}$ and $\eta_{1} \perp \eta_{2} \approx \rho_{1}$ imply that $\operatorname{det}\left(\eta_{0}\right) \operatorname{det}\left(\eta_{1}\right)=1$ and $\operatorname{det}\left(\eta_{1}\right) \operatorname{det}\left(\eta_{2}\right)=1$ respectively. Hence we have $\operatorname{det}\left(\eta_{0}\right)=\operatorname{det}\left(\eta_{2}\right)$. By Lemma 1.6, we see that $\operatorname{det}(\varphi)=\operatorname{det}\left(\eta_{2}\right) \in D\left(\eta_{2}\right) \subseteq D(\varphi)$.
Q.E.D.

§ 2. Main theorems

In § 1 we remarked that the chain of Pfister forms of an excellent form φ satisfies the condition $\left(e_{0}\right)$ or the condition $\left(e_{1}\right)$. In this section, we shall rewrite φ explicitly by its chain of Pfister forms.

Theorem 2.1. Let φ be an odd-dimensional excellent form, and $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of φ. Then the following statements hold:
(1) If t is odd, then

$$
\varphi \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots \perp\left\langle\rho_{t-1}-\langle 1\rangle\right\rangle
$$

(2) If t is even, then

$$
\varphi \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots \perp\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle \perp\langle 1\rangle
$$

Conversely, let $\rho_{0}, \ldots, \rho_{t-1}$ be a sequence of Pfister forms which satisfies the
condition (e_{1}). Then the form φ constructed as above is excellent, and the chain of Pfister forms of φ is $\rho_{0}, \ldots, \rho_{t-1}$.

Proof. We first show that the statements (1) and (2) hold. We proceed by induction on t. If $t=0$, then $\operatorname{dim} \varphi=1$ and hence $\varphi \approx\langle 1\rangle$. Now assume $t \geqq 1$. Let $\varphi=\eta_{0}, \ldots, \eta_{t}$ be the chain of complementary forms of φ. We consider the case where t is odd. By the induction hypothesis, we have $\eta_{1} \approx\left\langle\rho_{1}-\rho_{2}\right\rangle \perp$ $\left\langle\rho_{3}-\rho_{4}\right\rangle \perp \cdots \perp\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle \perp\langle 1\rangle$. There exists $a \in k$ such that $a \eta_{1} \cong\left\langle\rho_{1}-\rho_{2}\right\rangle \perp$ $\left\langle\rho_{3}-\rho_{4}\right\rangle \perp \cdots \perp\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle \perp\langle 1\rangle$. Then, we have $a \in D\left(\eta_{1}\right)$. The fact $\eta_{0} \perp \eta_{1}$ $\approx \rho_{0}$ implies that $a \eta_{0} \perp a \eta_{1} \cong \rho_{0}$. Hence, $a \eta_{0} \cong\left\langle\rho_{0}-a \eta_{1}\right\rangle \cong\left\langle\rho_{0}-\left(\left\langle\rho_{1}-\rho_{2}\right\rangle \perp\right.\right.$ $\left.\left.\left\langle\rho_{3}-\rho_{4}\right\rangle \perp \cdots \perp\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle \perp\langle 1\rangle\right)\right\rangle$. By Lemma 1.3, we have $\varphi=\eta_{0} \approx\left\langle\rho_{0}-\rho_{1}\right\rangle$ $\perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots \perp\left\langle\rho_{t-1}-\langle 1\rangle\right\rangle$.

We now consider the case where t is even. By the induction hypothesis $\eta_{1} \approx\left\langle\rho_{1}-\rho_{2}\right\rangle \perp\left\langle\rho_{3}-\rho_{4}\right\rangle \perp \cdots \perp\left\langle\rho_{t-1}-\langle 1\rangle\right\rangle$ and therefore $a \eta_{1} \cong\left\langle\rho_{1}-\rho_{2}\right\rangle \perp$ $\left\langle\rho_{3}-\rho_{4}\right\rangle \perp \cdots \perp\left\langle\rho_{t-1}-\langle 1\rangle\right\rangle$ for some $a \in k$. The determinant of the right hand side is 1 . Hence $\operatorname{det}\left(a \eta_{1}\right)=1$. Since the dimension of the form η_{1} is odd, we have $\operatorname{det}\left(a \eta_{1}\right)=a \operatorname{det}\left(\eta_{1}\right)$, so $a=\operatorname{det}\left(\eta_{1}\right)$. It follows from Lemma 1.7 that $a=$ $\operatorname{det} \eta_{1}=\operatorname{det} \eta_{0} \in D\left(\eta_{0}\right)$. Hence $a \eta_{0} \perp a \eta_{1} \cong \rho_{0}$, and we have $a \eta_{0} \cong\left\langle\rho_{0}-a \eta_{1}\right\rangle \cong$ $\left\langle\rho_{0}-\left(\left\langle\rho_{1}-\rho_{2}\right\rangle \perp\left\langle\rho_{3}-\rho_{4}\right\rangle \perp \cdots \perp\left\langle\rho_{t-1}-\langle 1\rangle\right\rangle\right)\right\rangle$. By Lemma 1.3, $\varphi=\eta_{0} \approx$ $\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots \perp\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle \perp\langle 1\rangle$.

Conversely, let $\rho_{0}, \ldots, \rho_{t-1}$ be a sequence of Pfister forms which satisfies the condition (e_{1}). In order to show that $\varphi=\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots$ is excellent, we define a sequence of forms $\eta_{0}, \ldots, \eta_{t}$ as follows. $\eta_{0}=\varphi=\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle$ $\perp \cdots, \cdots, \eta_{i}=\left\langle\rho_{i}-\rho_{i+1}\right\rangle \perp\left\langle\rho_{i+2}-\rho_{i+3}\right\rangle \perp \cdots, \cdots, \eta_{t-2}=\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle \perp\langle 1\rangle, \eta_{t-1}$ $=\left\langle\rho_{t-1}-\langle 1\rangle\right\rangle, \eta_{t}=\langle 1\rangle$. We shall show that $\varphi=\eta_{0}, \ldots, \eta_{t}$ is the chain of complementary forms of φ. For any $i=0, \ldots, t-1$ we have $\eta_{i} \perp \eta_{i+1} \cong\left(\left\langle\rho_{i}-\rho_{i+1}\right\rangle\right.$ $\left.\perp\left\langle\rho_{i+2}-\rho_{i+3}\right\rangle \perp \cdots\right) \perp\left(\left\langle\rho_{i+1}-\rho_{i+2}\right\rangle \perp\left\langle\rho_{i+3}-\rho_{i+4}\right\rangle \perp \cdots\right) \cong \rho_{i}$. Since $\operatorname{dim} \rho_{i}<$ $\operatorname{dim} \rho_{i-1}$ for any $i=1, \ldots, t-1$ and $\operatorname{dim} \rho_{t-1} \geqq 4$, we have $\operatorname{dim} \eta_{i}>\operatorname{dim} \eta_{i+1}$ for any $i=0, \ldots, t-1$. This shows that φ is an excellent form, $\varphi=\eta_{0}, \ldots, \eta_{t}$ is the chain of complementary forms of φ and $\rho_{0}, \ldots, \rho_{t-1}$ is the chain of Pfister forms of φ. Q.E.D.

Remark 2.2. Let φ be an odd-dimensional excellent form, and $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of φ. By Theorem 2.1, there exists $a \in \dot{k}$ such that $a \varphi \cong\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots$. By calculating the determinants of both sides, we have $a=\operatorname{det}(\varphi)$.

Corollary 2.3. Let φ be an odd-dimensional excellent form. Let $\varphi=$ $\eta_{0}, \ldots, \eta_{t}$ be the chain of complementary forms of φ and $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of φ. Then for any $i=0, \ldots, t, \operatorname{det}(\varphi) \eta_{i} \cong\left\langle\rho_{i}-\rho_{i+1}\right\rangle \perp$ $\left\langle\rho_{i+2}-\rho_{i+3}\right\rangle \perp \cdots$.

Proof. It is easy to show that $\operatorname{det}(\varphi)=\operatorname{det}\left(\eta_{i}\right)$ for any $i=0, \ldots, t$. Then the assertion is clear from Theorem 2.1 and Remark 2.2.
Q.E.D.

Theorem 2.4. Let φ be an even-dimensional excellent form, and $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of φ. Then the following statements hold:
(1) If t is odd, then

$$
\varphi \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots \perp\left\langle\rho_{t-3}-\rho_{t-2}\right\rangle \perp \rho_{t-1}
$$

(2) If t is even, then

$$
\varphi \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots \perp\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle .
$$

Moreover, in both cases, we have a $a \cong\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots$ for any $a \in$ $D\left(\eta_{t-1}\right)$, where η_{t-1} is the $(t-1)$ th complementary form of φ. Conversely, let $\rho_{0}, \ldots, \rho_{t-1}$ be a sequence of Pfister forms which satisfies the condition (e_{0}). Then the form φ constructed as above is excellent, and the chain of Pfister forms of φ is $\rho_{0}, \ldots, \rho_{t-1}$.

Proof. We first show that the statements (1) and (2) hold. We proceed by induction on t. Let $\varphi=\eta_{0}, \ldots, \eta_{t}=0$ be the chain of complementary forms of φ. If $t=1$, we have $\eta_{0} \perp \eta_{1} \cong \eta_{0} \approx \rho_{0}$. Then for any $a \in D\left(\eta_{t-1}\right)=D\left(\eta_{0}\right), a \eta_{0} \cong \rho_{0}$. We now assume that $t>1$. We first consider the case where t is even. By the induction hypothesis, for any $a \in D\left(\eta_{t-1}\right), a \eta_{1} \cong\left\langle\rho_{1}-\rho_{2}\right\rangle \perp\left\langle\rho_{3}-\rho_{4}\right\rangle \perp \cdots \perp$ $\left\langle\rho_{t-3}-\rho_{t-2}\right\rangle \perp \rho_{t-1}$. We have $\left.\eta_{1}\right\rangle \eta_{t-1}$ by Lemma 1.6, so $a \in D\left(\eta_{1}\right)$. This implies that $a \eta_{0} \perp a \eta_{1} \cong \rho_{0}$, and so $a \eta_{0} \cong\left\langle\rho_{0}-a \eta_{1}\right\rangle \cong\left\langle\rho_{0}-\left(\left\langle\rho_{1}-\rho_{2}\right\rangle \perp \cdots \perp\right.\right.$ $\left.\left.\left\langle\rho_{t-3}-\rho_{t-2}\right\rangle \perp \rho_{t-1}\right)\right\rangle$. Using Lemma 1.3, we have $\varphi=\eta_{0} \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle$ $\perp \cdots \perp\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle$.

We now consider the case where t is odd. By the induction hypothesis, for any $a \in D\left(\eta_{t-1}\right), a \eta_{1} \cong\left\langle\rho_{1}-\rho_{2}\right\rangle \perp\left\langle\rho_{3}-\rho_{4}\right\rangle \perp \cdots \perp\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle$. We have $\eta_{0}>\eta_{t-1}$ by Lemma 1.6, so $a \in D\left(\eta_{0}\right)$. This implies that $a \eta_{0} \perp a \eta_{1} \cong \rho_{0}$, and so $a \eta_{0} \cong\left\langle\rho_{0}-a \eta_{1}\right\rangle \cong\left\langle\rho_{0}-\left(\left\langle\rho_{1}-\rho_{2}\right\rangle \perp \cdots \perp\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle\right)\right\rangle$. By Lemma 1.3, we have $\varphi=\eta_{0} \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{t-3}-\rho_{t-2}\right\rangle \perp \rho_{t-1}$.

Conversely, let $\rho_{0}, \ldots, \rho_{t-1}$ be a sequence of Pfister forms and suppose that the condition (e_{0}) holds. We have to show that $\varphi=\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots$ is excellent. We define a sequence of forms $\eta_{0}, \ldots, \eta_{t}$ as follows:

$$
\begin{aligned}
& \eta_{0}=\varphi=\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots, \cdots, \eta_{i}=\left\langle\rho_{i}-\rho_{i+1}\right\rangle \perp\left\langle\rho_{i+2}-\rho_{i+3}\right\rangle \perp \cdots, \\
& \quad \cdots, \eta_{t-2}=\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle, \eta_{t-1}=\rho_{t-1}, \eta_{t}=0 .
\end{aligned}
$$

We shall show that $\varphi=\eta_{0}, \ldots, \eta_{t}$ is the chain of complementary forms of φ. For any $i=0, \ldots, t-1$, we have $\eta_{i} \perp \eta_{i+1} \cong\left(\left\langle\rho_{i}-\rho_{i+1}\right\rangle \perp\left\langle\rho_{i+2}-\rho_{i+3}\right\rangle \perp \cdots\right) \perp\left(\left\langle\rho_{i+1}-\right.\right.$ $\left.\left.\rho_{i+2}\right\rangle \perp\left\langle\rho_{i+3}-\rho_{i+4}\right\rangle \perp \cdots\right) \cong \rho_{i}$. Since $\operatorname{dim} \rho_{i}<\operatorname{dim} \rho_{i-1}$ for any $i=1, \ldots, t-1$
and $\operatorname{dim} \rho_{t-2}>2 \operatorname{dim} \rho_{t-1} \geqq 4$, we have $\operatorname{dim} \eta_{i}>\operatorname{dim} \eta_{i+1}$ for any $i=0, \ldots, t-1$. This shows that φ is an excellent form, $\varphi=\eta_{0}, \ldots, \eta_{t}$ is the chain of complementary forms of φ and $\rho_{0}, \ldots, \rho_{t-1}$ is the chain of Pfister forms of φ.
Q.E.D.

Corollary 2.5. Let φ be an even-dimensional excellent form. Let $\varphi=$ $\eta_{0}, \ldots, \eta_{t}$ be the chain of complementary forms of φ and $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of φ. Then for any $a \in D\left(\eta_{t-1}\right)$ and any $i=0, \ldots, t-1$, we have

$$
a \eta_{i} \cong\left\langle\rho_{i}-\rho_{i+1}\right\rangle \perp\left\langle\rho_{i+2}-\rho_{i+3}\right\rangle \perp \cdots
$$

Remark 2.6. In the above situation, for any $a \in D\left(\eta_{t-1}\right), a \varphi \cong\left\langle\rho_{0}-\rho_{1}\right\rangle \perp$ $\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots$. Conversely, the following Lemma 2.7 shows that $G(\varphi)=$ $G\left(\rho_{t-1}\right)$. Therefore if a is an element of k such that $a \varphi \cong\left\langle\rho_{0}-\rho_{1}\right\rangle \perp$ $\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots$, then a must be an element of $D\left(\eta_{t-1}\right)$.

Lemma 2.7. Let $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of an excellent even-dimensional form φ. Then $G(\varphi)=G\left(\rho_{t-1}\right)$.

Proof. We may assume that $\varphi=\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots$. We first prove that $G(\varphi) \supseteq G\left(\rho_{t-1}\right)$. Let a be any element of $G\left(\rho_{t-1}\right)$. It is sufficient to show that $a \in G\left(\left\langle\rho_{i}-\rho_{i+1}\right\rangle\right)$ for any $i=0, \ldots, t-2$. The fact that $\rho_{i}>\rho_{i+1}$ for any $i=0, \ldots, t-2$, implies that $a \in G\left(\rho_{t-1}\right) \subseteq G\left(\rho_{i}\right)$ for any $i=0, \ldots, t-1$. Then, $\rho_{i+1} \perp\left\langle\rho_{i}-\rho_{i+1}\right\rangle \cong \rho_{i} \cong a \rho_{i} \cong a \rho_{i+1} \perp a\left\langle\rho_{i}-\rho_{i+1}\right\rangle \cong \rho_{i+1} \perp a\left\langle\rho_{i}-\rho_{i+1}\right\rangle$. Hence $\left\langle\rho_{i}-\rho_{i+1}\right\rangle \cong a\left\langle\rho_{i}-\rho_{i+1}\right\rangle$. Thus we see that $G(\varphi) \supseteq G\left(\rho_{t-1}\right)$. We now show the converse inclusion. We let $\operatorname{dim} \rho_{t-1}=2^{n}$ and $\operatorname{dim} \rho_{t-2}=2^{m}$. By Remark 1.4, we have $n<m$. We then define a form ψ as follows:

$$
\begin{aligned}
& \psi=\left\langle\varphi-\rho_{t-1}\right\rangle=\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots \perp\left\langle\rho_{t-3}-\rho_{t-2}\right\rangle(t: \text { odd }) \\
& \psi=\varphi \perp \rho_{t-1}=\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots \perp\left\langle\rho_{t-4}-\rho_{t-3}\right\rangle \perp \rho_{t-2}(t: \text { even }) .
\end{aligned}
$$

It is clear that $\psi \in I^{m} k$ where $I k$ is the fundamental ideal generated by all evendimensional forms of the Witt ring $W(k)$. For any element a of $G(\varphi)$, if t is odd then $\langle 1,-a\rangle \otimes \psi \sim-\langle 1,-a\rangle \otimes \rho_{t-1} \in W(k)$, and if t is even then $\langle 1,-a\rangle \otimes \psi$ $\sim\langle 1,-a\rangle \otimes \rho_{t-1} \in W(k)$. Hence $\langle 1,-a\rangle \otimes \rho_{t-1} \in I^{m+1} k$. It follows from the Arason-Pfister's theorem ([4], p. 289, Theorem 3.1) that $\langle 1,-a\rangle \otimes \rho_{t-1} \sim 0$. Thus $a \in G\left(\rho_{t-1}\right)$ and $G(\varphi) \subseteq G\left(\rho_{t-1}\right)$.
Q.E.D.

§ 3. Applications

Proposition 3.1. Let φ be an isotropic excellent form and $\varphi=\eta_{0}, \ldots, \eta_{t}$ be the chain of complementary forms of φ. Then $\varphi_{a}=(-1)^{i} \eta_{i}$ for some i where φ_{a} is the anisotropic part of φ.

Proof. Let $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of φ. Since φ is
isotropic, we have $\rho_{0} \sim 0$. By the fact that $\rho_{i} \mid \rho_{i-1}$ for any $i=1, \ldots, t-1$, there exists $i(0 \leqq i \leqq t-1)$ such that $\rho_{j} \sim 0$ for any $j \leqq i$ and ρ_{j} is anisotropic for any $j>i$. By Theorem 2.1 and Theorem 2.4, $\varphi \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots$. We first consider the case where i is odd. Then, $\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{i-1}-\rho_{i}\right\rangle$ is hyperbolic and $\left\langle\rho_{i+1}-\rho_{i+2}\right\rangle \perp \cdots$ is anisotropic. This yields that $\varphi_{a} \approx\left\langle\rho_{i+1}-\rho_{i+2}\right\rangle$ $\perp \cdots$. From Corollary 2.3 and Corollary 2.5 , we can readily see that $\varphi_{a} \cong \eta_{i+1}$. We now consider the case where i is even. Since $\varphi \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{i}-\rho_{i+1}\right\rangle$ $\perp \cdots \cong\left\langle\left(\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{i}\right\rangle\right)-\left(\left\langle\rho_{i+1}-\rho_{i+2}\right\rangle \perp \cdots\right)\right\rangle$, we see that $\left\langle\rho_{0}-\rho_{1}\right\rangle$ $\perp \cdots \perp\left\langle\rho_{i}\right\rangle$ is hyperbolic and $\left\langle\rho_{i+1}-\rho_{i+2}\right\rangle \perp \cdots$ is anisotropic. Again by Corollary 2.3 and Corollary 2.5, $\varphi_{a}=-\eta_{i+1}=(-1)^{i+1} \eta_{i+1}$. Q.E.D.

We can strengthen Proposition 7.18 in [3] slightly as follows.
Proposition 3.2. Let φ be an excellent form, $\varphi=\eta_{0}, \ldots, \eta_{t}$ be the chain of complementary forms of φ and $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of φ. Let s be a natural number with $1 \leqq s \leqq t$.
(1) If s is even, then the form $\left\langle\varphi-\eta_{s}\right\rangle$ is excellent. Its chain of Pfister forms is $\rho_{0}, \ldots, \rho_{s-1}$ if $\operatorname{dim} \rho_{s-2} \geqq 4 \operatorname{dim} \rho_{s-1}$ and $\rho_{0}, \ldots, \rho_{s-3}, \rho_{s-1}$ if $\operatorname{dim} \rho_{s-2}=$ $2 \operatorname{dim} \rho_{s-1}$.
(2) If s is odd, then the form $\varphi \perp \eta_{s}$ is excellent. Its chain of Pfister forms is $\rho_{0}, \ldots, \rho_{s-1}$ if $\operatorname{dim} \rho_{s-2} \geqq 4 \operatorname{dim} \rho_{s-1}$ and $\rho_{0}, \ldots, \rho_{s-3}, \rho_{s-1}$ if $\operatorname{dim} \rho_{s-2}=$ $2 \operatorname{dim} \rho_{s-1}$.

Proof. Let s be an even number. Then we have $\eta_{s}<\varphi$ by Lemma 1.6. It follows from Theorem 2.1, Corollary 2.3, Theorem 2.4 and Corollary 2.5 that $\left\langle\varphi-\eta_{s}\right\rangle \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{s-2}-\rho_{s-1}\right\rangle$. If $\operatorname{dim} \rho_{s-2} \geqq 4 \operatorname{dim} \rho_{s-1}$, then the sequence of Pfister forms $\rho_{0}, \ldots, \rho_{s-1}$ satisfies the condition (e_{0}). Hence by Theorem 2.1 and Theorem 2.4, the form $\left\langle\varphi-\eta_{s}\right\rangle$ is excellent and its chain of Pfister forms is $\rho_{0}, \ldots, \rho_{s-1}$. If $\operatorname{dim} \rho_{s-2}=2 \operatorname{dim} \rho_{s-1}$, then we have $\left\langle\rho_{s-2}-\rho_{s-1}\right\rangle$ $\cong a \rho_{s-1}$ for some $a \in D\left(\rho_{s-2}\right)$. Hence $\left\langle\varphi-\eta_{s}\right\rangle \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{s-4}-\rho_{s-3}\right\rangle$ $\perp a \rho_{s-1}$. Since $a \in D\left(\rho_{s-2}\right) \subseteq G\left(\rho_{i}-\rho_{i+1}\right)$ for any $i=0, \ldots, s-4$ we have $\left\langle\varphi-\eta_{s}\right\rangle$ $\approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{s-4}-\rho_{s-3}\right\rangle \perp \rho_{s-1}$. So, the form $\left\langle\varphi-\eta_{s}\right\rangle$ is excellent and its chain of Pfister forms is $\rho_{0}, \ldots, \rho_{s-3}, \rho_{s-1}$. We now proceed to the case where s is odd. Then similarly $\varphi \perp \eta_{s} \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{s-3}-\rho_{s-2}\right\rangle \perp \rho_{s-1}$. If $\operatorname{dim} \rho_{s-2}$ $\geqq 4 \operatorname{dim} \rho_{s-1}$, then the form $\varphi \perp \eta_{s}$ is excellent and its chain of Pfister forms is $\rho_{0}, \ldots, \rho_{s-1}$. If $\operatorname{dim} \rho_{s-2}=2 \operatorname{dim} \rho_{s-1}$, then we have $\left\langle\rho_{s-2}-\rho_{s-1}\right\rangle \cong a \rho_{s-1}$ for some $a \in D\left(\rho_{s-2}\right)$. Hence $\left\langle\rho_{s-3}-\rho_{s-2}\right\rangle \perp \rho_{s-1} \cong\left\langle\rho_{s-3}-\left\langle\rho_{s-2}-\rho_{s-1}\right\rangle\right\rangle \cong$ $\left\langle\rho_{s-3}-a \rho_{s-1}\right\rangle$. Thus we see that $\varphi \perp \eta_{s} \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{s-3}-a \rho_{s-1}\right\rangle$. Since $a \in G\left(\rho_{i}\right)$ for any $i=0, \ldots, s-3$ we have $\varphi \perp \eta_{s} \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{s-3}-\rho_{s-1}\right\rangle$. So the form $\varphi \perp \eta_{s}$ is excellent and its chain of Pfister forms is $\rho_{0}, \ldots, \rho_{s-3}, \rho_{s-1}$.
Q.E.D.

Let φ and ψ be excellent forms．The following question emerges：when does the form $\varphi \perp \psi$ become excellent？We use the following notation：$\varphi=\eta_{0}, \ldots, \eta_{t}$ is the chain of complementary forms of $\varphi, \rho_{0}, \ldots, \rho_{t-1}$ is the chain of Pfister forms of $\varphi, \psi=\xi_{0}, \ldots, \zeta_{s}$ is the chain of complementary forms of ψ and finally $\tau_{0}, \ldots, \tau_{s-1}$ is the chain of Pfister forms of ψ ．

Lemma 3．3．In the above situation，we assume that φ is even dimensional and that $\tau_{0} \mid \rho_{t-1}, \operatorname{dim} \tau_{0}<\operatorname{dim} \rho_{t-1}$ ， $\operatorname{det}(\psi) \in D\left(\eta_{t-1}\right)$（if $\operatorname{dim} \psi$ is odd）and $D\left(\xi_{s-1}\right) \cap D\left(\eta_{t-1}\right) \neq \phi$（if $\operatorname{dim} \psi$ is even）．Then the following statements hold．
（1）If t is even，then the form $\varphi \perp \psi$ is excellent and $\rho_{0}, \ldots, \rho_{t-1}, \tau_{0}, \ldots, \tau_{s-1}$ is the chain of Pfister forms of $\varphi \perp \psi$ ．
（2）If t is odd and $《 1 》 \otimes \rho_{t-1} \mid \rho_{t-2}$ ，then the form $\varphi \perp \psi$ is excellent and $\left.\rho_{0}, \ldots, \rho_{t-2}, 《 1\right\rangle \otimes \rho_{t-1}, \rho_{t-1}, \tau_{0}, \ldots, \tau_{s-1}$ is the chain of Pfister forms of $\varphi \perp \psi$ ．

Proof．We choose an element a as follows：if $\operatorname{dim} \psi$ is odd then $a=\operatorname{det}(\psi)$ and if $\operatorname{dim} \psi$ is even then a is a fixed element of $D\left(\xi_{s-1}\right) \cap D\left(\eta_{t-1}\right)$ ．Note that $a \varphi \cong\left\langle\rho_{0}-\rho_{1}\right\rangle \perp\left\langle\rho_{2}-\rho_{3}\right\rangle \perp \cdots$ and $a \psi \cong\left\langle\tau_{0}-\tau_{1}\right\rangle \perp\left\langle\tau_{2}-\tau_{3}\right\rangle \perp \cdots$ ．If t is even， then $a \varphi \perp a \psi \cong\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{t-2}-\rho_{t-1}\right\rangle \perp\left\langle\tau_{0}-\tau_{1}\right\rangle \perp \cdots$ ．Thus，the form $\varphi \perp \psi$ is excellent and $\rho_{0}, \ldots, \rho_{t-1}, \tau_{0}, \ldots, \tau_{s-1}$ is the chain of Pfister forms of $\varphi \perp \psi$ ． If t is odd，then

$$
\begin{aligned}
& a \varphi \perp a \psi \cong\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{t-3}-\rho_{t-2}\right\rangle \perp \rho_{t-1} \perp\left\langle\tau_{0}-\tau_{1}\right\rangle \perp \cdots \\
& \cong\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{t-3}-\rho_{t-2}\right\rangle \perp \\
&\left.\quad\langle 《 1\rangle \otimes \rho_{t-1}-\rho_{t-1}\right\rangle \perp\left\langle\tau_{0}-\tau_{1}\right\rangle \perp \cdots .
\end{aligned}
$$

Thus the form $\varphi \perp \psi$ is excellent and $\left.\rho_{0}, \ldots, \rho_{t-2}, 《 1\right\rangle \otimes \rho_{t-1}, \rho_{t-1}, \tau_{0}, \ldots, \tau_{s-1}$ is the chain of Pfister forms of $\varphi \perp \psi$ ．

Q．E．D．
Definition 3．4．For any natural number n ，we denote by $e(n)$ the number such that $2^{e(n)}$ is the least 2－power not less than n ，and we put $c(n)=2^{e(n)}-n$ ．

Proposition 3．5．For a form φ ，the following statements are equivalent．
（1）φ is excellent．
（2）Let φ_{a} be the anisotropic part of φ with $\operatorname{dim} \varphi_{a}=n$ and r be the Witt index of φ ．Then φ_{a} is excellent and $r \equiv 0$ or $c(n)\left(\bmod 2^{e(n)}\right)$ ．

Proof．（1）\Rightarrow（2）：Let $\varphi=\eta_{0}, \ldots, \eta_{t}$ be the chain of complementary forms of φ and $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of φ ．By Proposition 3.1 there exists a number $i, 0 \leqq i \leqq t$ ，such that $\varphi_{a}=(-1)^{i} \eta_{i}$ ．Hence it is clear that the form φ_{a} is excellent．If the number i is even，then $\varphi \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{i-2}-\rho_{i-1}\right\rangle \perp$ $\left\langle\rho_{i}-\rho_{i+1}\right\rangle \perp \cdots, \eta_{i} \approx\left\langle\rho_{i}-\rho_{i+1}\right\rangle \perp \cdots$ ．So $\left\langle\varphi-\eta_{i}\right\rangle \cong r H=\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{i-2}-\right.$ $\left.\rho_{i-1}\right\rangle$ ．Since $\operatorname{dim} \rho_{i}=2^{e(n)}$ and $\operatorname{dim} \rho_{i-1}$ divides the dimension of the form $\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{i-2}-\rho_{i-1}\right\rangle$ ，we have $2^{e(n)+1}\left|\operatorname{dim} \rho_{i-1}\right| \operatorname{dim} r H=2 r$ ．So $2^{e(n)} \mid r$
and we have $r \equiv 0\left(\bmod 2^{e(n)}\right)$. If the number i is odd, then $\varphi \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp$ $\left\langle\rho_{i-1}-\rho_{i}\right\rangle \perp \cdots, \eta_{i} \approx\left\langle\rho_{i}-\rho_{i+1}\right\rangle \perp \cdots$. By Corollary 2.3 and Corollary 2.5, we have $\varphi \perp \eta_{i} \approx\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots \perp\left\langle\rho_{i-3}-\rho_{i-2}\right\rangle \perp \rho_{i-1}$. Hence $2^{e(n)+1}=2 \operatorname{dim} \rho_{i} \mid$ $\operatorname{dim} \rho_{i-1} \mid \operatorname{dim}\left(\varphi \perp \eta_{i}\right)=2 r+2 n$. So $2^{e(n)} \mid r+n \quad$ and we have $r \equiv-n \equiv c(n)$ $\left(\bmod 2^{e(n)}\right)$.
(2) $\Rightarrow(1)$: We have to show that $\varphi \cong r H \perp \varphi_{a}$ is excellent. We first consider the case where $r \equiv 0\left(\bmod 2^{e(n)}\right)$. It is clear that $r H$ is excellent. Let $\rho_{0}, \ldots, \rho_{t-1}$ be the chain of Pfister forms of $r H$. Then for any $i, 0 \leqq i \leqq t-1, \rho_{i}$ is hyperbolic. Let $\tau_{0}, \ldots, \tau_{s-1}$ be the chain of Pfister forms of φ_{a}. Then we have $2^{e(n)+1} \mid 2 r=$ $\operatorname{dim} r H$, hence $2^{e(n)+1} \mid \operatorname{dim} \rho_{t-1}$. The fact $\operatorname{dim} \tau_{0}=2^{e(n)}$ implies that $\operatorname{dim} \tau_{0}<$ $\operatorname{dim} \rho_{t-1}$ and $\tau_{0} \mid \rho_{t-1}$. By Lemma 3.3, $\varphi \cong r H \perp \varphi_{a}$ is excellent. We now consider the case where $r \equiv c(n)\left(\bmod 2^{e(n)}\right)$. We put $m=e(\operatorname{dim} \varphi)$ and $r^{\prime}=2^{m}-r-n$. Then $r+n \equiv 0\left(\bmod 2^{e(n)}\right)$ and $r^{\prime}=2^{m}-r-n \equiv-r-n \equiv 0\left(\bmod 2^{e(n)}\right)$. By the case where $r \equiv 0\left(\bmod 2^{e(n)}\right)$, the form $\psi=r^{\prime} H \perp\left(-\varphi_{a}\right)$ is excellent. If $\operatorname{dim} \varphi$ is a power of 2 , then $2^{m}=2 r+n$. Hence $r^{\prime}=2^{m}-r-n=r$ and we obtain $\varphi=-\psi$. Thus φ is excellent. If $\operatorname{dim} \varphi$ is not a power of 2 , then $r^{\prime}-r=2^{m}-r-n-r=$ $2^{m}-\operatorname{dim} \varphi>0$. So $r^{\prime}>r$. We have $\psi \perp \varphi \cong r^{\prime} H \perp\left(-\varphi_{a}\right) \perp r H \perp \varphi_{a}=\left(r^{\prime}+r+n\right) H$ $=2^{m} H$. This implies that φ is the first complementary form of ψ and φ is excellent.
Q.E.D.

Remark 3.6. Let φ be an excellent form. By Proposition 3.1, $\varphi_{a}=(-1)^{i} \eta_{i}$ for some η_{i} which is the i th complementary form of φ. Let r be the Witt index of φ. Then $r \equiv 0\left(\bmod 2^{e(n)}\right)$ if i is even and $r \equiv c(n)\left(\bmod 2^{e(n)}\right)$ if i is odd.

Remark 3.7. Let n be a natural number, and we denote the 2 -adic expansion of n as follows: $\left.n=2^{r_{0}\left(2^{s_{0}}\right.}+\cdots+1\right)+\cdots+2^{r_{i}}\left(2^{s_{i}}+\cdots+1\right)+\cdots+2^{r_{m}\left(2^{s_{m}}\right.}+\cdots$ $+1)$, where $r_{i}+s_{i}+2 \leqq r_{i-1}$ for any $i, 1 \leqq i \leqq m$. Let $\varphi=\left\langle\rho_{0}-\rho_{1}\right\rangle \perp \cdots$ be an $n-$ dimensional excellent form with the chain of Pfister forms $\rho_{0}, \ldots, \rho_{t-1}$. By Remark 1.4 and Remark 1.5, there exist Pfister forms $\tau_{i}, 1 \leqq i \leqq t-1$, such that $\rho_{i} \otimes \tau_{i} \cong \rho_{i-1}$. We have $\left\langle\rho_{i-1}-\rho_{i}\right\rangle \cong\left\langle\rho_{i} \otimes \tau_{i}-\rho_{i}\right\rangle \cong \rho_{i} \otimes \tau_{i}^{\prime}$, where τ_{i}^{\prime} is the pure part of τ_{i}. Then $\left\langle\rho_{2 i}-\rho_{2 i+1}\right\rangle \cong \rho_{2 i+1} \otimes \tau_{2 i+1}^{\prime}$, the subform of φ, corresponds to $2^{r_{i}}\left(2^{s_{i}}+\cdots+1\right)$. It means $\operatorname{dim} \rho_{2 i+1}=2^{r_{i}}$ and $\operatorname{dim} \tau_{2 i+1}^{\prime}=2^{s_{i}}+\cdots+1$. As for the height of a form φ, denoted by $h(\varphi)$ (cf. [2]), if φ is an anisotropic excellent form, then $h(\varphi)$ is determined by m, r_{m} and s_{m} as follows:
(1) If $r_{m}>0, s_{m}>0$ then $h(\varphi)=2 m+2$.
(2) If $r_{m}>0, s_{m}=0$ then $h(\varphi)=2 m+1$.
(3) If $r_{m}=0, s_{m}>0$ then $h(\varphi)=2 m+1$.
(4) If $r_{m}=0, s_{m}=0$ then $h(\varphi)=2 m$.

References

[1] R. Elman and T. Y. Lam, Pfister forms and K-theory of fields, J. Algebra 23 (1972),

181-213.
[2] M. Knebusch, Generic splitting of quadratic forms, I, Proc. London Math. Soc. (3) 33 (1976), 65-93.
[3] M. Knebusch, Generic splitting of quadratic forms, II, Proc. London Math. Soc. (3) 34 (1977), 1-31.
[4] T. Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Reading, Mass., 1973.

Eishin Senior High School, Hiroshima, Japan*)
and
Department of Mathematics, Faculty of Science, Hiroshima University

[^0]
[^0]: *) The present address of the first author is as follows: Department of Mathematics, Faculty of Science, Hiroshima University.

