Modified Rosenbrock methods for stiff systems

Hisayoshi Shintani
(Received April 23, 1982)

1. Introduction

Consider the initial value problem for a stiff system

$$
\begin{equation*}
y^{\prime}=f(y), \quad y\left(x_{0}\right)=y_{0} \tag{1.1}
\end{equation*}
$$

where y is an m-vector and the m-vector function $f(y)$ is assumed to be sufficiently smooth. Let $y(x)$ be the solution of this problem,

$$
\begin{equation*}
x_{j}=x_{0}+j h \quad(j=1,2, \ldots, h>0) \tag{1.2}
\end{equation*}
$$

and let $J(y)$ be the Jacobian matrix of $f(y)$. We are concerned with the case where approximations $y_{j}(j=1,2, \ldots)$ of $y\left(x_{j}\right)$ are computed by A-stable modified Rosenbrock methods of the form

$$
\begin{equation*}
y_{n+1}=y_{n}+\sum_{i=1}^{q} p_{i} k_{i} \quad(n=0,1, \ldots) \tag{1.3}
\end{equation*}
$$

which require per step one evaluation of J, k evaluations of f and the solution of a system of m linear equations for q different right hand sides, where

$$
\begin{equation*}
M k_{i}=h f\left(y_{n}+\sum_{j=1}^{i=1} a_{i j} k_{j}\right)+h J \sum_{j=1}^{i-1} d_{i j} k_{j} \quad(i=1,2, \ldots, q), \tag{1.4}
\end{equation*}
$$

the matrix $M=I-a h J$ is nonsingular, $J=J\left(y_{n}+b h f\left(y_{n}\right)\right), a$ and b are constants and $a>0$.

Nørsett and Wolfbrandt [10] obtained an A-stable method of order 3 for $k=q=2$. Kaps and Rentrop [6] have constructed an A-stable method of order 4 which embeds a method of order 3 for $k=3$ and $q=4$. Kaps and Wanner [7] have shown that there exists no A-stable method of order $k+1$ for $k=q=4,5$ and constructed an A-stable method of order k for $k=q=5,6$.

Bui [2] derived an L-stable method of order k for $k=q=2,3,4$. Cash [4] has obtained a strongly A-stable method of order 3 which embeds a method of order 2 for $k=2$ and $q=4$. Artemev and Demidov [1] have proposed a variable order method which is A-stable and of order k for $k=1,2,3,4$.

The first object of this paper is to show that for $q=2 k+1(k=1,2,3)$ we can construct an A-stable modified Rosenbrock method of order $k+2$ and also a method of order $k+1$ by incorporating the first value of f in the next step of integration. The discrepancy of these two methods can be used for stepsize
control. It is also shown that a strongly A-stable method of order $k+2$ exists for $k=1,2,3$. The second object of this paper is to show that there exists a variable order method which is A-stable and of order $2,3,5$ for $k=1,2,3$ respectively. Finally these methods are illustrated by two numerical examples.

2. Preliminaries

Let

$$
\begin{equation*}
f_{1}=f\left(y_{n}\right), \quad J=J\left(y_{n}+b h f_{1}\right) \quad(n \geqq 0) \tag{2.1}
\end{equation*}
$$

and suppose that the matrix $M=I-a h J(a>0)$ is nonsingular, where a and b are constants. Let

$$
\begin{align*}
& y_{n+1}=y_{n}+\Phi\left(x_{n}, y_{n} ; h\right), \tag{2.2}\\
& t_{n+1}=t\left(x_{n}, y_{n}, y_{n+1} ; h\right), \tag{2.3}\\
& z_{n+1}=y_{n+1}+t_{n+1} \tag{2.4}\\
& \Phi\left(x_{n}, y_{n} ; h\right)=\sum_{j=1}^{k}\left(p_{j} k_{j}+q_{j} l_{j}\right)+r m_{1}+s n_{1} \quad(k=1,2,3), \tag{2.5}\\
& t\left(x_{n}, y_{n}, y_{n+1} ; h\right)=\sum_{j=1}^{k}\left(p_{j}^{*} k_{j}+q_{j}^{*} l_{j}\right)+r^{*} m_{1}+s^{*} n_{1}+t^{*} h f^{*},
\end{align*}
$$

where $q_{3}=q_{3}^{*}=0$,
$k_{j}=K f_{j}(j=1,2,3), l_{i}=L k_{i}(i=1,2), m_{1}=L l_{1}, n_{1}=L m_{1}, f^{*}=f\left(y_{n+1}\right)$, $f_{2}=f\left(y_{n}+c_{21} k_{1}+d_{21} l_{1}\right), f_{3}=f\left(y_{n}+\sum_{i=1}^{2}\left(c_{3 i} k_{i}+d_{3 l} l_{i}\right)+e_{31} m_{1}+g_{31} n_{1}\right)$,
(2.8) $K=h M^{-1}, L=K J, M=I-a h J(a>0)$,
$c_{21}, d_{21}, c_{3 i}, d_{3 i}, q_{i}, q_{i}^{*}(i=1,2), p_{j}, p_{j}^{*}(j=1,2,3), r, s, r^{*}, s^{*}$ and t^{*} are constants.

Let

$$
\begin{align*}
& u_{2}=c_{21}, \quad u_{3}=c_{31}+c_{32}, \quad X=u_{2} c_{32}+d_{31}+d_{32}, \tag{2.9}\\
& Y=d_{21} c_{32}+u_{2} d_{32}+e_{31}, \quad Z=d_{21} d_{32}+g_{31}, \tag{2.10}
\end{align*}
$$

$w_{2}=u_{2}^{2}\left(c_{32} p_{3}+q_{2}\right), \quad w_{3}=u_{2}^{2} d_{32} p_{3}, \quad b_{1}=p_{1}+p_{2}+p_{3}$,
$b_{2}=\sum_{i=2}^{3} u_{i} p_{i}+q_{1}+q_{2}, \quad b_{3}=d_{21} p_{2}+X p_{3}+u_{2} q_{2}+r$,
$b_{4}=Y p_{3}+d_{21} q_{2}+s, \quad b_{5}=Z p_{3}$,

$$
\begin{align*}
& p(a)=(2 a-1) / 2, \quad q(a)=\left(6 a^{2}-6 a+1\right) / 6, \quad r(a)=\left(24 a^{3}-36 a^{2}+12 a-1\right) / 24 \tag{2.11}\\
& s(a)=\left(120 a^{4}-240 a^{3}+120 a^{2}-20 a+1\right) / 120, \\
& t(a)=720 a^{5}-1800 a^{4}+1200 a^{3}-300 a^{2}+30 a-1, \\
& u(a)=2 a^{2}-4 a+1, \quad v(a)=6 a^{3}-18 a^{2}+9 a-1,
\end{align*}
$$

$$
\begin{aligned}
& w(a)=24 a^{4}-96 a^{3}+72 a^{2}-16 a+1, \\
& z(a)=120 a^{5}-600 a^{4}+600 a^{3}-200 a^{2}+25 a-1 .
\end{aligned}
$$

Replacing in (2.10) $p_{i}(i=1,2,3)$ and $q_{j}(j=1,2)$ with p_{i}^{*} and q_{j}^{*} respectively, we define $w_{i}^{*}(i=2,3)$ and $b_{j}^{*}(j=1,2,3,4,5)$. In the sequel for simplicity we impose the condition

$$
\begin{equation*}
d_{21}=u_{2}\left(u_{2}-2 a\right) / 2, \quad X=u_{3}\left(u_{3}-2 a\right) / 2 . \tag{2.12}
\end{equation*}
$$

Let
(2.13) $T(x ; h)=y(x)+\Phi(x, y(x) ; h)-y(x+h)$,
(2.14) $t(x ; h)=t(x, y(x), y(x+h) ; h)$.

Then is Butcher's notation [3] $T(x ; h)$ and $t(x ; h)$ can be expanded into power series in h as follows:

$$
\begin{align*}
& T(x ; h)=A_{1} h f+A_{2}\left(h^{2} / 2\right)[f]+\left(h^{3} / 3!\right)\left(A_{3}\left[{ }_{2} f\right]_{2}+A_{4}\left[f^{2}\right]\right) \tag{2.15}\\
& \quad+\left(h^{4} / 4!\right)\left(B_{1}\left[{ }_{3} f\right]_{3}+B_{2}\left[{ }_{2} f^{2}\right]_{2}+B_{3}[[f] f]+B_{4}\left[f^{3}\right]\right) \\
& \quad+\left(h^{5} / 5!\right)\left(C_{1}[4 f]_{4}+C_{2}\left[{ }_{3} f^{2}\right]_{3}+C_{3}[2[f] f]_{2}+C_{4}\left[{ }_{2} f^{3}\right]_{2}\right. \\
&\left.\quad+C_{5}\left[\left[{ }_{2} f\right]_{2} f\right]+C_{6}\left[\left[f^{2}\right] f\right]+C_{7}\left[[f]^{2}\right]+C_{8}\left[[f] f^{2}\right]+C_{9}\left[f^{4}\right]\right) \\
& \quad+\left(h^{6} / 6!\right)\left(D_{1}[5 f]_{5}+D_{2}\left[4 f^{2}\right]_{4}+D_{3}[3[f] f]_{3}+D_{4}\left[{ }_{3} f^{3}\right]_{3}\right. \\
& \quad+D_{5}\left[2[2 f]_{2} f\right]_{2}+D_{6}\left[2\left[f^{2}\right] f\right]_{2}+D_{7}\left[2[f]^{2}\right]_{2}+D_{8}\left[2[f] f^{2}\right]_{2} \\
& \quad+D_{9}\left[{ }_{2} f^{4}\right]_{2}+D_{10}\left[\left[_{3} f\right]_{3} f\right]+D_{11}\left[\left[{ }_{2} f^{2}\right]_{2} f\right]+D_{12}[[[f] f] f] \\
& \quad+D_{13}\left[\left[f^{3}\right] f\right]+D_{14}\left[\left[{ }_{2} f\right]_{2}[f]\right]+D_{15}\left[\left[f^{2}\right][f]\right]+D_{16}\left[\left[{ }_{2} f\right]_{2} f^{2}\right] \\
&\left.\quad+D_{17}\left[\left[f^{2}\right] f^{2}\right]+D_{18}\left[[f]^{2} f\right]+D_{19}\left[[f] f^{2}\right]+D_{20}\left[f^{4}\right]\right)+O\left(h^{7}\right),
\end{align*}
$$

$$
\begin{equation*}
t(x ; h)=A_{1}^{*} h f+A_{2}^{*}\left(h^{2} / 2\right)[f]+\left(h^{3} / 3!\right)\left(A_{3}^{*}\left[{ }_{2} f\right]_{2}+A_{4}^{*}\left[f^{2}\right]\right)+\cdots \tag{2.16}
\end{equation*}
$$

For $k=1$ and $s=s^{*}=0$ we have
$A_{1}=p_{1}-1, A_{2}=2\left(a p_{1}+q_{1}\right)-1, \quad A_{3}=6\left(r-q(a)+a A_{2}-a^{2} A_{1}\right)$,
$A_{4}=3 b\left(A_{2}+1\right)-1$,
$B_{1}=24 r(a)+12 a\left(A_{3}-3 a A_{2}+2 a^{2} A_{1}\right), \quad B_{2}=4 b\left(A_{3}+1\right)-1, B_{3}=B_{2}-2$, $B_{4}=2 b\left(A_{4}+1\right)-1$,
(2.19) $\quad A_{1}^{*}=p_{1}^{*}+t^{*}, \quad A_{2}^{*}=2\left(a p_{1}^{*}+q_{1}^{*}+t^{*}\right), \quad A_{3}^{*}=6\left(a^{2} p_{1}^{*}+2 a q_{1}^{*}+r^{*}\right)+3 t^{*}$, $A_{4}^{*}=6 b\left(a p_{1}^{*}+q_{1}^{*}\right)+3 t^{*}$,
$B_{1}^{*}=24 a\left(a^{2} p_{1}^{*}+3 a q_{1}^{*}+3 r^{*}\right)+4 t^{*}, \quad B_{2}^{*}=4(1-3 b) t^{*}+4 b A_{3}^{*}$, $B_{3}^{*}=B_{2}^{*}+8 t^{*}, \quad B_{4}^{*}=2 b A_{4}^{*}+2(2-3 b) t^{*}$.

For $b=0$ we have
$A_{1}=b_{1}-1, \quad A_{2}=2\left(b_{2}+p(a)+a A_{1}\right), \quad A_{3}=6\left(b_{3}-q(a)+a A_{2}-a^{2} A_{1}\right)$,
$A_{4}=3 \sum_{i=2}^{3} u_{i}^{2} p_{i}-1$,
$B_{1}=24\left(b_{4}+r(a)\right)+12 a\left(A_{3}-3 a A_{2}+2 a^{2} A_{1}\right), \quad B_{2}=12 w_{2}+4 a-1+4 a A_{1}$,
$B_{3}=3 B_{4}=12 u_{3}^{2}\left(u_{3}-u_{2}\right) p_{3}+4 u_{2}-3+4 u_{2} A_{4}$,
$C_{1}=120\left(b_{5}-s(a)\right)+20 a\left(B_{1}-6 a A_{3}+12 a^{2} A_{2}-6 a^{3} A_{1}\right)$,
$C_{2}=60 w_{3}-20 a^{2}+10 a-1+10 a\left(B_{2}-2 a A_{4}\right)$,
$C_{3}=3 C_{4}=3(5 a-1)-5(4 a-1) u_{2}+5 a B_{3}+5 u_{2}\left(B_{2}-4 a A_{4}\right)$,
$C_{5}=120 u_{3} Y p_{3}-2\left(20 a^{2}-15 a+2\right)+10 a\left(B_{3}-4 a A_{4}\right), C_{6}=60 u_{3} u_{2}^{2} c_{32} p_{3}-4$,
$C_{8}=2 C_{7}=6 C_{9}=-6+15\left(u_{2}+u_{3}\right) / 2+10 u_{2} u_{3}+5\left(u_{2}+u_{3}\right) B_{3} / 2-10 u_{2} u_{3} A_{4}$,
$D_{1}=t(a)+30 a\left(C_{1}-10 a B_{1}+40 a^{2} A_{3}-60 a^{3} A_{2}+24 a^{4} A_{1}\right)$,
$D_{2}=120 a^{3}-90 a^{2}+18 a-1+6 a\left(3 C_{2}-15 a B_{2}+20 a^{2} A_{4}\right)$,
$D_{4}=D_{3} / 3=120 u_{2} w_{3}-30 a^{2}+12 a-1+2 a\left(C_{3}-5 a B_{3}\right)$,
$D_{5}=720 a\left(u_{2}-a\right) w_{2}+4(6 a-1)+6 a C_{5}, \quad D_{6}=4(6 a-1)+6 a C_{6}$,
$D_{9}=D_{8} / 6=D_{7} / 3=30 u_{2}^{2} w_{2}+6 a-1+2 a C_{7}$,
$D_{10}=720 u_{3} b_{5}+240 a^{3}-270 a^{2}+72 a-5+6 a\left(3 C_{5}-15 a B_{3}+40 a^{2} A_{4}\right)$,
$D_{11}=360 u_{3} w_{3}+24 a-5+6 a C_{6}, \quad D_{13}=D_{12} / 3=8 u_{2}-5+2 u_{2} C_{6}$,
$D_{14}=D_{16}=360 u_{3}^{2} Y p_{3}-2\left(45 a^{2}-36 a+5\right)+6 a\left(2 C_{8}-5 a B_{3}\right)$,
$D_{15}=D_{17}=12 u_{3}-10+3 u_{3} C_{6}, \quad D_{19}=2 D_{18} / 3=10 D_{20}=-10+12\left(u_{2}+u_{3}\right)$
$-15 u_{2} u_{3}+2\left(u_{2}+u_{3}\right) C_{8}-5 u_{2} u_{3} B_{3}$,
$A_{1}^{*}=b_{1}^{*}+t^{*}, A_{2}^{*}=2\left(b_{2}^{*}+(1-a) t^{*}+a A_{1}^{*}\right)$,
$A_{3}^{*}=6 b_{3}^{*}+3 u(a) t^{*}+6 a\left(A_{2}^{*}-a A_{1}^{*}\right), \quad A_{4}^{*}=3\left(\sum_{i=2}^{3} u_{i}^{2} p_{i}^{*}+t^{*}\right)$,
(2.26) $\quad B_{1}^{*}=24 b_{4}^{*}-4 v(a) t^{*}+12 a\left(A_{3}^{*}-3 a A_{2}^{*}+2 a^{2} A_{1}^{*}\right)$,
$B_{2}^{*}=12 w_{2}^{*}+4(1-3 a) t^{*}+4 a A_{4}^{*}$,
$B_{3}^{*}=3 B_{4}^{*}=12 u_{3}^{2}\left(u_{3}-u_{2}\right) p_{3}^{*}+12\left(1-u_{2}\right) t^{*}+4 u_{2} A_{4}^{*}$,
(2.27)

$$
\begin{aligned}
& C_{1}^{*}=120 b_{5}^{*}+5 w(a) t^{*}+20 a\left(B_{1}^{*}-6 a A_{3}^{*}+12 a^{2} A_{2}^{*}-6 a^{3} A_{1}^{*}\right), \\
& C_{2}^{*}=60 w_{3}^{*}+5\left(12 a^{2}-8 a+1\right) t^{*}+10 a\left(B_{2}^{*}-2 a A_{4}^{*}\right), \\
& C_{3}^{*}=3 C_{4}^{*}=5\left[3(1-4 a)-5 a(1-3 a) u_{2}\right] t^{*}+5 a B_{3}^{*}+5 u_{2}\left(B_{2}^{*}-4 a A_{4}^{*}\right), \\
& C_{5}^{*}=120\left(u_{3} Y p_{3}^{*}+q(a) t^{*}\right)+10 a\left(B_{3}^{*}-4 a A_{4}^{*}\right), \quad C_{6}^{*}=6 u_{3} u_{2}^{2} c_{32} p_{3}^{*}+20 t^{*}, \\
& C_{8}^{*}=2 C_{7}^{*}=6 C_{9}^{*}=30\left(1-u_{2}\right)\left(1-u_{3}\right) t^{*}+5\left(u_{2}+u_{3}\right) B_{3}^{*}-10 u_{2} u_{3} A_{4}^{*} .
\end{aligned}
$$

The stability function of the method (2.2) for the test system $y^{\prime}=\lambda y$ is given by

$$
\begin{equation*}
R(z)=1+\sum_{j=1}^{5} b_{j} V^{j} \tag{2.28}
\end{equation*}
$$

where $V=z /(1-a z), z=\lambda h$ and λ is an arbitrary complex number. Let $R(z)=$ $P(z) / Q(z)$ and

$$
\begin{equation*}
E(x)=|Q(i x)|^{2}-|P(i x)|^{2}, \tag{2.29}
\end{equation*}
$$

where i is the imaginary unit, and $P(z)$ and $Q(z)$ are polynomials in z. Then the method (2.2) is A-stable [9] if and only if

$$
\begin{equation*}
E(x) \geqq 0 \quad \text { for all real } \quad x . \tag{2.30}
\end{equation*}
$$

Let $R(z)$ be the polynomial in V of exact degree p and

$$
\begin{equation*}
P(z)=\sum_{j=0}^{p} e_{j} z^{p-j}, \quad Q(z)=(1-a z)^{p} . \tag{2.31}
\end{equation*}
$$

Then the method (2.2) is strongly A-stable if and only if $e_{0}=0$ and (2.30) is satisfied.

3. Construction of A-stable methods

In this section we shall show the following
Theorem 1. For $k=1,2,3$ there exists an A-stable method (2.2) of order $k+2$ and a method (2.4) of order $k+1$; a strongly A-stable method of order $k+2$ also exists.

By this theorem the difference t_{n+1} of the methods (2.2) and (2.4) is available for stepsize control. If y_{n+1} is accepted as an approximation of $y\left(x_{n+1}\right)$, then f^{*} can be used as f_{1} in the next step of integration.

3.1. Case $\mathbf{k}=1$

Choosing $A_{i}=0(i=1,2,3,4), A_{j}^{*}=0(j=1,2)$ and $s=s^{*}=0$, we have

$$
\begin{align*}
& p_{1}=1, \quad q_{1}=-p(a), \quad r=q(a), \quad b=1 / 3, \quad B_{1}=24 r(a), \quad B_{2}=-B_{4}=1 / 3, \tag{3.1}\\
& B_{3}=-5 / 3, \\
& p_{1}^{*}=-t^{*}, \quad q_{1}^{*}=(a-1) t^{*}, \quad A_{3}^{*}=6 r^{*}+3 u(a) t^{*}, \quad A_{4}^{*}=t^{*}, \tag{3.2}\\
& B_{1}^{*}=72 a r^{*}+4\left(12 a^{3}-18 a^{2}+1\right) t^{*}, \quad B_{2}^{*}=8 r^{*}+4 u(a) t^{*}, \quad B_{3}^{*}=B_{2}^{*}+8 t^{*}, \\
& B_{4}^{*}=8 t^{*} / 3, \\
& R(z)=1+V-p(a) V^{2}+q(a) V^{3} . \tag{3.3}
\end{align*}
$$

The equation $r(a)=0$ has three positive roots $a_{i}(i=1,2,3)$, where

$$
\begin{equation*}
0<a_{1}<1 / 6<a_{2}<1 / 3, a_{3}=1.068579 . \tag{3.4}
\end{equation*}
$$

We consider first the case $q(a) \neq 0$. In this case we have

$$
\begin{equation*}
E(x)=c_{1} x^{4}+c_{2} x^{6}, \quad e_{0}=-v(a) / 6, \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{1}=-2 r(a), c_{2}=(3 a-1)(6 a-1)\left(v(a)+6 a^{3}\right) / 36 . \tag{3.6}
\end{equation*}
$$

Hence the method (2.2) is A-stable if and only if $c_{i} \geqq 0(i=1,2)$, that is,

$$
\begin{equation*}
1 / 3 \leqq a \leqq a_{3} . \tag{3.7}
\end{equation*}
$$

The choice $a=1 / 3, r^{*}=7 / 432$ and $t^{*}=1 / 8$ yields

$$
\begin{align*}
& y_{n+1}=y_{n}+k_{1}+l_{1} / 6-m_{1} / 18 \tag{3.8}\\
& t_{n+1}=\left(h f^{*}-k_{1}\right) / 8-l_{1} / 12+7 m_{1} / 432 \tag{3.9}
\end{align*}
$$

$$
\begin{equation*}
B_{1}=-1 / 9, A_{3}^{*}=1 / 18, A_{4}^{*}=1 / 8, B_{1}^{*}=1 / 9, B_{2}^{*}=2 / 27, B_{3}^{*}=29 / 27, B_{4}^{*}=1 / 3 . \tag{3.10}
\end{equation*}
$$

The method (2.2) is strongly A-stable if and only if $v(a)=0$ and (3.7) is satisfied, that is,

$$
\begin{equation*}
a=0.4358665215 . \tag{3.11}
\end{equation*}
$$

Choosing $r^{*}=17 / 400$ and $t^{*}=1 / 8$ for this value of a, we have

$$
\begin{equation*}
q_{1}=0.06413347849, \quad r=-0.07922023027, \quad B_{1}=-0.6215300316 \text {, } \tag{3.12}
\end{equation*}
$$

$$
p_{1}^{*}=-1 / 8, \quad q_{1}^{*}=-0.07051668481, \quad A_{3}^{*}=0.1186849362, \quad A_{4}^{*}=1 / 8
$$

$$
B_{1}^{*}=0.6207694834, \quad B_{2}^{*}=0.1582465816, \quad B_{3}^{*}=1.1582465816, \quad B_{4}^{*}=1 / 3 .
$$

Next we consider the case $q(a)=0$, namely $a=(3 \pm \sqrt{ } 3) / 6$. Since

$$
\begin{equation*}
E(x)=(2 a-1)^{2}(4 a-1) x^{4} / 4, \tag{3.14}
\end{equation*}
$$

the method (2.2) is A-stable if and only if $a \geqq 1 / 4$, so that we have

$$
\begin{align*}
& a=(3+\sqrt{ } 3) / 6, \quad B_{1}=-(3+2 \sqrt{ } 3) / 3 \tag{3.15}\\
& y_{n+1}=y_{n}+k_{1}-\sqrt{ } 3 l_{1} / 6 .
\end{align*}
$$

The choice $r^{*}=0$ and $t^{*}=-1 / 16$ leads to

$$
\begin{align*}
& t_{n+1}=\left(k_{1}-h f^{*}\right) / 16+(3-\sqrt{ } 3) l_{1} / 96 \tag{3.17}\\
& A_{3}^{*}=(1+\sqrt{ } 3) / 6, \quad A_{4}^{*}=-1 / 16, \quad B_{1}^{*}=(3+2 \sqrt{ } 3) / 6, \quad B_{2}^{*}=(1+\sqrt{ } 3) / 12, \\
& B_{3}^{*}=-(5-\sqrt{ } 3) / 12, \quad B_{4}^{*}=-1 / 6 .
\end{align*}
$$

3.2. Case $k=2$

Choosing $b=0$ and $A_{i}=B_{i}=A_{i}^{*}=0(i=1,2,3,4)$, we have
(3.19) $\quad c_{21}=3 / 4, \quad d_{21}=3(3-8 a) / 32, \quad p_{1}=11 / 27, \quad p_{2}=16 / 27$, $q_{1}=-(22 a+5) / 54, \quad q_{2}=4(1-4 a) / 27, \quad r=\left(9 \mathrm{a}^{2}-a-1\right) / 9$, $s=-a\left(18 a^{2}-19 a+4\right) / 18$,
(3.20) $C_{1}=-120 s(a), \quad C_{2}=-20 a^{2}+10 a-1, \quad C_{3}=3 C_{4}=3 / 4$, $C_{5}=-2\left(20 a^{2}-15 a+2\right), \quad C_{6}=-4, \quad C_{8}=2 C_{7}=6 C_{9}=-3 / 8$,
(3.21) $p_{1}^{*}=7 t^{*} / 9, p_{2}^{*}=-16 t^{*} / 9, q_{1}^{*}+q_{2}^{*}=(3 a+1) t^{*} / 3, r^{*}+3 q_{2}^{*} / 4=3(2-3 a) t^{*} / 3$,
(3.22) $\quad B_{1}^{*}=24\left(d_{21} q_{2}^{*}+s^{*}\right)-4 v(a) t^{*}, \quad B_{2}^{*}=27 q_{2}^{*} / 4+4(1-3 a) t^{*}, \quad B_{3}^{*}=3 B_{4}^{*}=3 t^{*}$,
(3.23) $C_{1}^{*}=480 a\left(d_{21} q_{2}^{*}+s^{*}\right)-5\left(72 a^{4}-192 a^{3}+72 a^{2}-1\right) t^{*}$,
$C_{2}^{*}=135 a q_{2}^{*} / 2+5\left(1-12 a^{2}\right) t^{*}, \quad C_{4}^{*}=C_{3}^{*} / 3=135 q_{2}^{*} / 16+5(1-3 a) t^{*}$,
$C_{6}^{*}=20 t^{*}, \quad C_{8}^{*}=2 C_{7}^{*}=6 C_{9}^{*}=105 t^{*} / 8$,
(3.24) $R(z)=1+V-p(a) V^{2}+q(a) V^{3}-r(a) V^{4}$.

In the case $r(a) \neq 0$, we have
(3.25) $E(x)=c_{3} x^{6}+c_{4} x^{8}, \quad e_{0}=w(a) / 24$,
where

$$
\begin{align*}
& c_{3}=-\left(756 a^{5}-1224 a^{4}+768 a^{3}-204 a^{2}+24 a-1\right) / 72 \tag{3.26}\\
& c_{4}=(4 a-1)\left(24 a^{2}-12 a+1\right)\left(w(a)+24 a^{4}\right)
\end{align*}
$$

Hence the method (2.2) is A-stable if and only if $c_{i} \geqq 0(i=3,4)$, that is,

$$
\begin{equation*}
a_{4} \leqq a \leqq a_{5}, \tag{3.28}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{4}=(3+\sqrt{ } 3) / 12=0.394338, \quad a_{5}=1.28058 \tag{3.29}
\end{equation*}
$$

The choice $a=2 / 5, q_{2}^{*}=1 / 225, s^{*}=-1 / 1250$ and $t^{*}=1 / 10$ yields
(3.30) $y_{n+1}=y_{n}+\left(11 k_{1}+16 k_{2}\right) / 27-23 l_{1} / 90+m_{1} / 225-2\left(50 l_{2}-9 n_{1}\right) / 1125$,
(3.31) $t_{n+1}=\left(7 k_{1}-16 k_{2}\right) / 90+31 l_{1} / 450+11 m_{1} / 1500+\left(50 l_{2}-9 n_{1}\right) / 11250$ $+h f * / 10$,
(3.32) $\quad d_{21}=-3 / 160, \quad C_{1}=11 / 125, \quad C_{2}=-1 / 5, \quad C_{5}=8 / 5$,
(3.33) $\quad B_{1}^{*}=-157 / 2500, \quad B_{2}^{*}=-1 / 20, \quad B_{3}^{*}=3 B_{4}^{*}=3 / 10, C_{1}^{*}=-259 / 1250$, $C_{2}^{*}=-17 / 50, \quad C_{3}^{*}=3 C_{4}^{*}=-3 / 16, \quad C_{5}^{*}=8 / 9, \quad C_{6}^{*}=2, \quad C_{8}^{*}=2 C_{7}^{*}=$ $6 C_{9}^{*}=21 / 16$.

The method (2.2) is strongly A-stable if $w(a)=0$ and (3.28) is satisfied, namely

$$
\begin{equation*}
a=0.5728160625 \tag{3.34}
\end{equation*}
$$

Choosing $q_{2}^{*}=1 / 12, s^{*}=s q_{2}^{*} / q_{2}$ and $t^{*}=1 / 8$ in this case, we have

$$
\begin{align*}
& d_{21}=-0.1483620469, \quad q_{1}=-0.3259620995, \quad q_{2}=-0.1912984074, \tag{3.35}\\
& r=0.1533609012, \quad c=s / q_{2}=-0.1625898283, \quad C_{1}=3.271078415, \\
& C_{2}=-1.834204204, \quad C_{5}=0.05975221696, \\
& p_{1}^{*}=7 / 72, p_{2}^{*}=-2 / 9, \quad q_{1}^{*}=0.1132686745, \quad q_{2}^{*}=1 / 12, \quad r^{*}=-0.05578010831, \\
& s^{*}=c q_{2}^{*}, \\
& B_{1}^{*}=-0.3103660558, \quad B_{2}^{*}=0.2032759063, \quad B_{3}^{*}=3 B_{4}^{*}=3 / 8, \\
& C_{1}^{*}=-3.555653240, \quad C_{2}^{*}=1.386203541, \quad C_{4}^{*}=C_{3}^{*} / 3=0.2540948828, \\
& C_{5}^{*}=0.9775929186, \quad C_{6}^{*}=5 / 2, \quad C_{8}^{*}=2 C_{7}^{*}=6 C_{9}^{*}=105 / 64 .
\end{align*}
$$

Next we consider the case $r(a)=0$, that is, $a=a_{1}, a_{2}$ or a_{3}. Since $E(x)=$ $c_{2} x^{6}$, by (3.6) the A-stability condition for (2.2) yields $a=a_{3}$,

$$
\begin{aligned}
& C_{1}=3\left(20 a^{2}-10 a+1\right) / 2>39 / 2, \quad C_{2}=-2 C_{1} / 3<-13, \\
& C_{5}=-\left(20 a^{2}-15 a+2\right)<-35 / 2 .
\end{aligned}
$$

Hence no useful method is obtained in this case.

3.3. Case $k=3$

Choosing $b=0, A_{i}=B_{i}=A_{i}^{*}=B_{i}^{*}=0(i=1,2,3,4)$ and $C_{j}=0(j=1,2, \ldots, 9)$, we have

$$
\begin{align*}
& 5(1-4 a) u_{2}=3(1-5 a), \quad u_{3}=1-a, \quad p_{1}+p_{2}+p_{3}=1, \tag{3.37}\\
& u_{2}^{2}\left(u_{2}-u_{3}\right) p_{2}=\left(3-4 u_{3}\right) / 12, \quad u_{3}^{2}\left(u_{3}-u_{2}\right) p_{3}=\left(3-4 u_{2}\right) / 12, \\
& 15 u_{2} u_{3}^{2} c_{32} p_{3}=1, \quad 60 u_{2}^{2} d_{32} p_{3}=20 a^{2}-10 a+1, \\
& 60 u_{3} Y p_{3}=20 a^{2}-15 a+2, \quad Z p_{3}=s(a), \quad 12 u_{2}^{2}\left(c_{32} p_{3}+q_{2}\right)=1-4 a, \\
& u_{2} p_{2}+u_{3} p_{3}+q_{1}+q_{2}=-p(a), \quad d_{21} p_{2}+X p_{3}+u_{2} q_{2}+r=q(a), \\
& Y p_{3}+d_{21} q_{2}+s=-r(a), \tag{3.38}
\end{align*}
$$

$D_{1}=t(a), D_{2}=120 a^{3}-90 a^{2}+18 a-1, D_{4}=D_{3} / 3=2(1-5 a) u_{2}+6 a-1$,
$D_{5}=-2 D_{14}=-2 D_{16}=4\left(60 a^{3}-60 a^{2}+15 a-1\right)$,
$D_{6}=-2 D_{15}=-2 D_{17}=4(6 a-1), D_{8}=2 D_{7}=6 D_{9}=9(1-5 a) u_{2}+6(6 a-1)$,
$D_{10}=240 a^{3}-270 a^{2}+72 a-5+720 u_{3} s(a)$,

$$
\begin{array}{ll}
& D_{11}=-120 a^{3}+180 a^{2}-42 a+1, \quad D_{13}=D_{12} / 3=8 u_{2}-5, \\
& D_{19}=2 D_{18} / 3=10 D_{20}=5 u_{3}^{2}\left(3-4 u_{2}\right)+12 u_{2}-10, \\
(3.39) & p_{1}^{*}+p_{2}^{*}+p_{3}^{*}+t^{*}=0, u_{2}^{2}\left(u_{2}-u_{3}\right) p_{2}^{*}=\left(u_{3}-1\right) t^{*}, u_{3}^{2}\left(u_{3}-u_{2}\right) p_{3}^{*}=\left(u_{2}-1\right) t^{*}, \\
& 5 u_{3} u_{2}^{2} q_{2}^{*}=\left(1-5 a^{2}\right) t^{*}, \quad u_{2} p_{2}^{*}+u_{3} p_{3}^{*}+q_{1}^{*}+q_{2}^{*}+(1-a) t^{*}=0, \\
& d_{21} p_{2}^{*}+X p_{3}^{*}+u_{2} q_{2}^{*}+r^{*}+u(a) t^{*} / 2=0, \quad Y p_{3}^{*}+d_{21} q_{2}^{*}+s^{*}-v(a) t^{*} / 6=0, \\
(3.40) & C_{1}^{*}=5[96(5 a-2) s(a)+w(a)] t^{*}, \quad C_{2}^{*}=\left(400 a^{3}-300 a^{2}+60 a-3\right) t^{*}, \\
& C_{3}^{*}=3 C_{4}^{*}=5\left[3(1-4 a)-4(1-3 a) u_{2}\right] t^{*}, C_{5}^{*}=4\left(200 a^{3}-200 a^{2}+50 a-3\right) t^{*}, \\
& C_{6}^{*}=4(20 a-3) t^{*}, \quad C_{8}^{*}=2 C_{7}^{*}=6 C_{9}^{*}=30 a\left(1-u_{2}\right) t^{*}, \\
\text { (3.41) } & R(z)=1+V-p(a) V^{2}+q(a) V^{3}-r(a) V^{4}+s(a) V^{5} . \tag{3.41}
\end{array}
$$

If $(1-a)(1-4 a)(1-5 a) \neq 0$, from (3.37) $c_{21}, d_{21}, c_{3 i}, d_{3 i}, q_{i}(i=1,2), e_{31}, g_{31}, p_{j}$ ($j=1,2,3$), r and s are determined uniquely for given a.

In the case $s(a) \neq 0$, we have

$$
\begin{equation*}
E(x)=c_{5} x^{6}-2 c_{6} x^{8}+c_{7} x^{10}, \quad e_{0}=-z(a) / 120, \tag{3.42}
\end{equation*}
$$

where
(3.43) $\quad c_{5}=\left(720 a^{5}-1800 a^{4}+1200 a^{3}-300 a^{2}+30 a-1\right) / 360$,
(3.44) $c_{6}=\left(57600 a^{7}-158400 a^{6}+144960 a^{5}-63600 a^{4}+14880 a^{3}-1880 a^{2}\right.$

$$
+120 a-3) / 57600
$$

(3.45) $c_{7}=\left(120 a^{5}+z(a)\right)\left(120 a^{5}-z(a)\right)$.

The method (2.2) is A-stable if and only if $c_{5} \geqq 0, c_{7} \geqq 0$ and $c_{6} \leqq \sqrt{c_{5} c_{7}}$, that is,

$$
\begin{equation*}
a_{6} \leqq a \leqq a_{7} \quad \text { or } \quad a_{8} \leqq a \leqq a_{9}, \tag{3.46}
\end{equation*}
$$

where
(3.47) $\quad a_{6}=0.24651, \quad a_{7}=0.36180, \quad a_{8}=0.42078, \quad a_{9}=0.47326$.

The choice $a=1 / 3$ and $t^{*}=1 / 12$ yields

$$
\begin{align*}
& c_{21}=6 / 5, \quad d_{21}=8 / 25, \quad c_{31}=406 / 729, \quad c_{32}=80 / 729, \tag{3.48}\\
& d_{31}=-2552 / 19683, \quad d_{32}=-40 / 19683, \quad e_{31}=-416 / 6561, \\
& g_{31}= 80 / 19683, \tag{3.49}\\
& y_{n+1}= y_{n}+\left(1144 k_{1}+125 k_{2}+2187 k_{3}\right) / 3456-\left(272 l_{1}+115 l_{2}\right) / 1296 \tag{3.50}\\
& \quad+17 m_{1} / 432+17 n_{1} / 324, \\
& t_{n+1}=\left(80 k_{1}-125 k_{2}-243 k_{3}\right) / 3456+\left(35 l_{1}+10 l_{2}\right) / 1296+m_{1} / 144 \\
& \quad-n_{1} / 648+h f * / 12,
\end{align*}
$$

$$
\begin{align*}
& D_{1}=23 / 27, \quad D_{2}=-5 / 9, \quad D_{3}=3 D_{4}=-9 / 5, \tag{3.51}\\
& D_{5}=-2 D_{14}=-2 D_{16}=-16 / 9, \quad D_{6}=4, \quad D_{8}=2 D_{7}=6 D_{9}=-6 / 5, \\
& D_{10}=-29 / 27, \quad D_{11}=23 / 9, \quad D_{12}=3 D_{13}=69 / 5, \quad D_{15}=D_{17}=-2, \\
& D_{19}=2 D_{18} / 3=10 D_{20}=2 / 5,
\end{align*}
$$

$$
\begin{align*}
& C_{1}^{*}=137 / 972, \quad C_{2}^{*}=-41 / 324, \quad C_{3}^{*}=3 C_{4}^{*}=-5 / 12, \quad C_{5}^{*}=-31 / 81, \tag{3.52}\\
& C_{6}^{*}=11 / 9, \quad C_{8}^{*}=2 C_{7}^{*}=6 C_{9}^{*}=-1 / 6, \\
& D_{1}^{*}=583 / 486, \quad D_{2}^{*}=-29 / 54, \quad D_{3}^{*}=3 D_{4}^{*}=-157 / 90, \quad D_{5}^{*}=-58 / 9, \tag{3.53}\\
& D_{6}^{*}=10 / 9, \quad D_{8}^{*}=2 D_{7}^{*}=6 D_{9}^{*}=181 / 15, \quad D_{10}^{*}=-1037 / 486, \\
& D_{11}^{*}=269 / 162, \quad D_{12}^{*}=3 D_{13}^{*}=43 / 10, \quad D_{14}^{*}=D_{16}^{*}=-161 / 81, \\
& D_{15}^{*}=D_{17}^{*}=37 / 9, \quad D_{19}^{*}=2 D_{18}^{*} / 3=10 D_{20}^{*}=-43 / 45 .
\end{align*}
$$

The method (2.2) is strongly A-stable if $z(a)=0$ and (3.46) is satisfied, that is,

$$
\begin{equation*}
a=0.2780538411 . \tag{3.54}
\end{equation*}
$$

For this value of a we have
$c_{21}=2.086715347, d_{21}=1.596971253, \quad c_{31}=0.6880907035$,
$c_{32}=0.03385545541, \quad d_{31}=-0.009352040051$,
$d_{32}=-0.001431432753, \quad e_{31}=-0.07409613665$,
$g_{31}=0.005937857065$,
$p_{1}=0.3720306131, \quad p_{2}=0.001573567760, \quad p_{3}=0.6263958192$, $q_{1}=-0.2102070122, \quad q_{2}=-0.02335447252, \quad r=-0.02535011637$, $s=0.04882735273$,
(3.57) $\quad D_{1}=0.3816347293, \quad D_{2}=-0.3735928198$,
$D_{4}=D_{3} / 3=-0.9604384354$,
$D_{5}=-2 D_{14}=-2 D_{16}=-0.7127297665$,
$D_{6}=-2 D_{15}=-2 D_{17}=2.673292187$,
$D_{7}=D_{8} / 2=3 D_{9}=-1.659744195, \quad D_{10}=0.4935616656$,
$D_{11}=0.6585551038, \quad D_{12}=3 D_{13}=35.08116834$,
$D_{19}=2 D_{18} / 3=10 D_{20}=1.106496130$.
The choice $t^{*}=1 / 8$ yields

$$
\begin{align*}
& p_{1}^{*}=0.07181502854, \quad p_{2}^{*}=-0.005848618348, \quad p_{3}^{*}=-0.1909664102, \tag{3.58}\\
& q_{1}^{*}=0.05495023631, \quad q_{2}^{*}=0.004878361809, \quad r^{*}=0.007941406168, \\
& s^{*}=0.007189851420, \quad t^{*}=0.125, \\
& C_{1}^{*}=0.03971741473, \quad C_{2}^{*}=-0.1139970082, \tag{3.59}\\
& C_{3}^{*}=3 C_{4}^{*}=-1.075548044, \quad C_{5}^{*}=-0.1303043710, \\
& C_{6}^{*}=1.280538411, \quad C_{8}^{*}=2 C_{7}^{*}=6 C_{9}^{*}=-1.133120162, \\
& D_{1}^{*}=0.3313073918, \quad D_{2}^{*}=-0.4369146771, \\
& D_{4}^{*}=D_{3}^{*} / 3=-1.073879143, \quad D_{5}^{*}=-10.52551645, \\
& D_{6}^{*}=0.9655441270, \quad D_{7}^{*}=D_{8}^{*} / 2=3 D_{9}^{*}=28.12658147, \\
& D_{10}^{*}=-1.274483999, \quad D_{11}^{*}=2.024902351, \\
& D_{12}^{*}=3 D_{13}^{*}=-4.018015275, \quad D_{14}^{*}=D_{16}^{*}=-4.489377832, \\
& D_{15}^{*}=D_{17}^{*}=4.858843171, \quad D_{19}^{*}=2 D_{18}^{*} / 3=10 D_{20}^{*}=-8.631342287 .
\end{align*}
$$

Finally we consider the case $s(a)=0$. Since we have (3.25) in this case, the A-stability condition for (2.2) is given by (3.28). The equation $s(a)=0$ has four positive roots $r_{i}(i=1,2,3,4)$, where

$$
r_{1}=0.09129, \quad r_{2}=0.17448, \quad r_{3}=0.38886, \quad r_{4}=1.34537
$$

These roots do not satisfy the condition (3.28), so that no A-stable method exists in this case.

4. A variable order method

In this section we consider only the case $b=0$ and show the following
Theorem 2. For $k=3$ there exist a method (2.4) of order 4 and an A-stable method (2.2) of order 5 which embeds an A-stable method of order $j+1(j=1,2)$ with j function evaluations.

Let

$(4.1)_{j} \quad y_{n+1}^{j}=y_{n}+\Phi_{j}\left(x_{n}, y_{n} ; h\right) \quad(j=2,3,5)$,
(4.2) $y_{n+1}^{4}=y_{n}+\Psi\left(x_{n}, y_{n}, y_{n+1} ; h\right)$,

$$
\begin{align*}
& \Phi_{j}\left(x_{n}, y_{n} ; h\right)=\sum_{i=1}^{k}\left(p_{i}^{j} k_{i}+q_{i}^{j} l_{i}\right)+r^{j} m_{1}+s^{j} n_{1} \tag{4.3}\\
&\left(j=\left(k^{2}-k+1\right) / 2, k=1,2,3\right)
\end{align*}
$$

$$
\begin{equation*}
\Psi\left(x_{n}, y_{n}, y_{n+1}^{5} ; h\right)=\sum_{i=1}^{3}\left(p_{i}^{4} k_{i}+q_{i}^{4} l_{i}\right)+r^{4} m_{1}+s^{4} n_{1}+t^{4} h f^{*} \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
q_{3}^{j}=0(j=2,3,4,5), \quad q_{2}^{3}=r^{2}=s^{2}=s^{3}=0, \quad f^{*}=f\left(y_{n+1}^{5}\right) \tag{4.5}
\end{equation*}
$$

Let

$$
\begin{align*}
& T_{j}(x ; h)=y(x)+\Phi_{j}(x, y(x) ; h)-y(x+h) \quad(j=2,3,5), \tag{4.6}\\
& T_{4}(x ; h)=y(x)+\Psi(x, y(x), y(x+h) ; h)-y(x+h)
\end{align*}
$$

Then $T_{j}(x ; h)(j=2,3,4,5)$ can be expanded into power series in h as follows:

$$
\begin{equation*}
T_{j}(x ; h)=A_{1}^{j} h f+A_{2}^{j}\left(h^{2} / 2\right)[f]+\left(h^{3} / 3!\right)\left(A_{3}^{j}\left[{ }_{2} f\right]_{2}+A_{4}^{j}\left[f^{2}\right]\right)+\cdots \tag{4.8}
\end{equation*}
$$

The condition $A_{i}^{2}=0(i=1,2)$ yields (3.14) and

$$
\begin{equation*}
p_{1}^{2}=1, \quad q_{1}^{2}=-p(a) \tag{4.9}
\end{equation*}
$$

For this choice of parameters the method (4.1) $)_{2}$ is of order 2 and is A-stable if and only if $a \geqq 1 / 4$.

The choice $A_{i}^{3}=0(i=1,2,3,4)$ leads to (3.5) and

$$
\begin{equation*}
p_{1}^{3}+p_{2}^{3}=1, \quad u_{2} p_{2}^{3}+q_{1}^{3}=-p(a), \quad d_{21} p_{2}^{3}+r^{3}=q(a), \quad u_{2}^{2} p_{2}^{3}=1 / 3 . \tag{4.10}
\end{equation*}
$$

If $u_{2} \neq 0$, from (4.10) $p_{i}^{3}(i=1,2), q_{1}^{3}$ and r^{3} are determined uniquely for any given a and d_{21} and the method (4.1) $)_{3}$ is of order 3. It is A-stable if and only if (3.7) is satisfied.

The condition $A_{i}^{5}=B_{i}^{5}=0(i=1,2,3,4)$ and $C_{j}^{5}=0(j=1,2, \ldots, 9)$ yields (3.37) and (3.42). If $(1-a)(1-4 a)(1-5 a) \neq 0$, then $u_{2} u_{3}\left(u_{3}-u_{2}\right) \neq 0$ and from (3.37) $c_{21}, d_{21}, c_{3 i}, d_{3 i}, q_{i}^{5}(i=1,2), e_{31}, q_{31}, p_{j}^{5}(j=1,2,3), r^{5}$ and s^{5} are determined uniquely for any given a and the method (4.1) $)_{5}$ is of order 5 . It is A-stable if and only if (3.46) is satisfied.

Thus the methods $(4.1)_{j}(j=2,3,5)$ are A-stable together if and only if

$$
\begin{equation*}
1 / 3 \leqq a \leqq a_{7} \quad \text { or } \quad a_{8} \leqq a \leqq a_{9} \tag{4.11}
\end{equation*}
$$

The condition $A_{i}^{4}=B_{i}^{4}=0(i=1,2,3,4)$ yields

$$
\begin{align*}
& u_{2}^{2}\left(u_{2}-u_{3}\right) p_{2}^{4}+\left(1-u_{3}\right) t^{4}=\left(3-4 u_{3}\right) / 12, \quad d_{21} p_{2}^{4}+X p_{3}^{4}+r^{4}+u(a) t^{4} / 2=q(a), \tag{4.12}\\
& \sum_{i=1}^{3} p_{i}^{4}+t^{4}=1, \quad 12 u_{2}^{2}\left(c_{32} p_{3}^{4}+q_{2}^{4}\right)+4(1-3 a) t^{4}=1-4 a, \\
& u_{2} p_{2}^{4}+u_{3} p_{3}^{4}+q_{1}^{4}+q_{2}^{4}+(1-a) t^{4}=-p(a), \\
& u_{3}^{2}\left(u_{3}-u_{2}\right) p_{3}^{4}+\left(1-u_{2}\right) t^{4}=\left(3-4 u_{2}\right) / 12, \quad Y p_{3}^{4}+d_{21} q_{2}^{4}+s^{4}-v(a) t^{4} / 6=-r(a) .
\end{align*}
$$

If $u_{2} u_{3}\left(u_{3}-u_{2}\right) \neq 0$, from these $p_{j}^{4}(j=1,2,3), q_{i}^{4}(i=1,2), r^{4}$ and s^{4} are determined uniquely for any given $a, d_{21}, c_{32}, u_{2}, u_{3}, X, Y$ and t^{4}, and the method (4.2) is of order 4.

Taking into consideration (4.11) and the condition $(1-a)(1-4 a)(1-5 a) \neq 0$, we choose

$$
\begin{equation*}
a=1 / 3, \quad t^{4}=1 / 12 \tag{4.13}
\end{equation*}
$$

Then it follows that
(4.14) $y_{n+1}^{2}=y_{n}+k_{1}+l_{1} / 6$,
(4.15) $\quad A_{3}^{2}=1 / 3, \quad A_{4}^{2}=-1, \quad B_{1}^{2}=11 / 9, \quad B_{2}^{2}=-1, \quad B_{3}^{2}=3 B_{4}^{2}=-3$,
(4.16) $\quad c_{21}=6 / 5, \quad d_{21}=8 / 25$,
(4.17) $y_{n+1}^{3}=y_{n}+\left(83 k_{1}+25 k_{2}\right) / 108-l_{1} / 9-7 m_{1} / 54$,
(4.18) $\quad B_{1}^{3}=-1 / 9, \quad B_{2}^{3}=1 / 3, \quad B_{3}^{3}=3 B_{4}^{3}=9 / 5$,
(4.19) $\quad c_{31}=406 / 729, \quad c_{32}=80 / 729, \quad d_{31}=-40 / 19683$,

$$
d_{32}=-2552 / 19683, \quad e_{31}=-416 / 6561, \quad g_{31}=80 / 19683
$$

(4.20) $\quad y_{n+1}^{5}=y_{n}+\left(1144 k_{1}+125 k_{2}+2187 k_{3}\right) / 3456-\left(272 l_{1}+115 l_{2}\right) / 1296$ $+17 m_{1} / 432+17 n_{1} / 324$,

$$
\begin{align*}
& C_{1}^{4}=137 / 972, \quad C_{2}^{4}=-41 / 324, \quad C_{3}^{4}=3 C_{4}^{4}=-5 / 12, \quad C_{5}^{4}=-31 / 81, \tag{4.22}\\
& C_{6}^{4}=11 / 9, \quad C_{8}^{4}=2 C_{7}^{4}=6 C_{9}^{4}=-1 / 6 .
\end{align*}
$$

5. Numerical examples

Numerical results on two problems are presented in this section.
Problem 1. $y^{\prime}=-B y+U w, y(0)=-(1,1,1,1)^{T}$, where

$$
\begin{align*}
& y=U z, \quad z=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)^{T}, \quad w=\left(z_{1}^{2}, z_{2}^{2}, z_{3}^{2}, z_{4}^{2}\right)^{T}, \tag{5.1}\\
& U=\left(u_{i j}\right), \quad u_{i j}=1 / 2(i \neq j), \quad u_{i i}=-1 / 2(i, j=1,2,3,4), \\
& B=U D U, \quad D=\operatorname{diag}\left(\beta_{1}, \beta_{2}, \beta_{3}, \beta_{4}\right), \quad \beta_{1}=1000, \quad \beta_{2}=800, \\
& \beta_{3}=-10, \quad \beta_{4}=0.001 .
\end{align*}
$$

The exact solution given in [5] is
(5.2) $\quad y(x)=U z(x), \quad z_{l}(x)=\beta_{i} /\left(1+c_{i} e^{\beta_{i} x}\right), \quad c_{i}=-\left(1+\beta_{i}\right) \quad(i=1,2,3,4)$.

Problem 2. $y^{\prime}=A y, y(0)=(2,1,2)^{T}$,
where

$$
\begin{align*}
& A=\left(a_{j j}\right), \quad a_{11}=-0.1, \quad a_{12}=-49.9, \quad a_{22}=-50, \quad a_{32}=70, \tag{5.3}\\
& a_{33}=-120, \quad a_{13}=a_{21}=a_{23}=a_{31}=0, \quad y=\left(y_{1}, y_{2}, y_{3}\right)^{T} .
\end{align*}
$$

The exact solution given in [8] is

$$
\begin{equation*}
y_{1}(x)=e^{-0.1 x}+e^{-50 x}, \quad y_{2}(x)=e^{-50 x}, \quad y_{3}(x)=e^{-50 x}+e^{-120 x} \tag{5.4}
\end{equation*}
$$

To avoid the multiplication of the matrix J by a vector g, the vector $v=L g$ is obtained by the formula $M(v+g / a)=g / a$, because $L=K J=\left(M^{-1}-I\right) / a$ by (2.8). The matrix M is decomposed by $L U$-factorization and the infinity norm is used.

For methods (3.8), (3.30) and (3.49) computation is carried out in the following manner:
(1) Compute $y_{1}, t_{1}, d=\left\|t_{1}\right\|$ and $r=\max \left(1,\left\|y_{1}\right\|\right)$.
(2) If $d>\varepsilon r$, then halve the stepsize; replace δ by $\delta / 8$ if $w=1$; go to (1).
(3) Replace x_{0} and y_{0} by x_{1} and y_{1} respectively and set $w=0$.
(4) If $d<\delta r$, then double the stepsize and set $w=1$.
(5) Go to (1).

Initially $h=1 / 64, \varepsilon=10^{-2} / 2, \delta=2^{-k-4} \varepsilon(k=1,2,3)$ and $w=0$. The error e and the number s of integration steps are listed in Table 1.

The program for the variable order method is as follows:
(1) Compute $y_{1}^{2}, y_{1}^{3}, d=\left\|y_{1}^{3}-y_{1}^{2}\right\|$ and $r=\max \left(1,\left\|y_{1}^{3}\right\|\right)$.
(2) If $d \leqq \varepsilon r$, then set $y_{1}=y_{1}^{3}$ and go to (6).
(3) Compute $y_{1}^{5}, y_{1}^{4}, d=\left\|y_{1}^{5}-y_{1}^{4}\right\|$ and $r=\max \left(1,\left\|y_{1}^{5}\right\|\right)$.
(4) If $d \leqq \varepsilon r$, then set $y_{1}=y_{1}^{5}$ and go to (6).
(5) Halve the stepsize; replace δ by $\delta / 8$ if $w=1$; go to (1).
(6) Replace x_{0} and y_{0} by x_{1} and y_{1} respectively and set $w=0$.
(7) If $d \leqq \delta r$, then double the stepsize and set $w=1$.
(8) Go to (1).

Initially $h=1 / 64, \varepsilon=10^{-2} / 2, \delta=2^{-5} \varepsilon$ and $w=0$. The error e, the number s of integration steps and the number n of steps in which the method of order 5 is not used are listed in Table 2.

Table 1.

Prob	x	$k=1$		$k=2$		$k=3$	
		e	s	e	s	e	s
1	$1 / 64$	$1.614 \mathrm{E}-2$	10	$6.619 \mathrm{E}-3$	8	$3.595 \mathrm{E}-3$	6
	$1 / 8$	$6.975 \mathrm{E}-2$	25	$6.144 \mathrm{E}-2$	16	$9.850 \mathrm{E}-2$	12
	1	$4.628 \mathrm{E}-3$	88	$1.822 \mathrm{E}-3$	62	$1.139 \mathrm{E}-2$	21
	8	$3.401 \mathrm{E}-3$	144	$2.668 \mathrm{E}-3$	84	$4.524 \mathrm{E}-3$	30
2	$1 / 64$	$5.502 \mathrm{E}-4$	2	$9.772 \mathrm{E}-5$	5	$3.903 \mathrm{E}-3$	1
	$1 / 8$	$9.228 \mathrm{E}-3$	10	$6.482 \mathrm{E}-4$	12	$9.291 \mathrm{E}-4$	6
	1	$2.228 \mathrm{E}-2$	19	$8.978 \mathrm{E}-3$	21	$7.050 \mathrm{E}-3$	12
	8	$4.769 \mathrm{E}-2$	29	$3.814 \mathrm{E}-2$	30	$3.054 \mathrm{E}-2$	18

Table 2.

x	Problem 1		Problem 2			
	e	s	n	e	s	n
$1 / 64$	$8.279 \mathrm{E}-3$	7	5	$3.903 \mathrm{E}-3$	1	0
$1 / 8$	$7.243 \mathrm{E}-2$	17	14	$9.570 \mathrm{E}-6$	8	6
1	$1.495 \mathrm{E}-2$	38	34	$1.652 \mathrm{E}-2$	17	15
8	$1.342 \mathrm{E}-2$	47	43	$4.097 \mathrm{E}-2$	26	22

References

[1] S.S. Artemev and G. V. Demidov, An algorithm with variable order and step for the numerical solution of stiff systems of ordinary differential equations, Dokl. Akad. Nauk SSSR 238 (1978) no. 3, 517-520.
[2] T. D. Bui, A note on the Rosenbrock procedure, Math. Comp. 33 (1979), 971-975.
[3] J. C. Butcher, Coefficients for the study of Runge-Kutta integration processes, J. Austral. Math. Soc. 3 (1963), 185-201.
[4] J. R. Cash, A semi-implicit Runge-Kutta formula for the integration of stiff systems of ordinary differential equations, Chem. Engrg. J. 20 (1980), 219-224.
[5] C. W. Gear, Numerical initial value problems in ordinary differential equations, PrenticeHall, Engelwood Cliffs, N. J., 1971.
[6] P. Kaps and P. Rentrop, Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations, Numer. Math. 33 (1979), 55-68.
[7] P. Kaps and G. Wanner, A study of Rosenbrock-type methods of high order, Numer. Math. 38 (1981), 279-298.
[8] L. Lapidus and J. H. Seinfeld, Numerical solution of ordinary differential equations, Academic Press, New York and London, 1971.
[9] S. P. Nørsett, C-polynomials for rational approximation to the exponential function, Numer. Math. 25 (1975), 39-56.
[10] S. P. Nørsett and A. Wolfbrandt, Order conditions for Rosenbrock type methods, Numer. Math. 32 (1979), 1-16.

> Department of Mathematics, Faculty of School Education, Hiroshima University

