On the asymptotic properties for simple semilinear heat equations

Kusuo Kobayashi
(Received May 20, 1982)

§ 1. Introduction

It is known that solutions of Cauchy problems for some semilinear evolution equations may blow up in a finite time (or grow up to infinity as $t \rightarrow \infty$) for some initial values. There are several works concerning the asymptotic behavior of the solution of the Cauchy problem for the equation

$$
\begin{equation*}
\frac{\partial}{\partial t} u(t, x)=\Delta u(t, x)+g(u(t, x)), \quad t>0, x \in \boldsymbol{R}^{N} \tag{1.1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(0, x)=a(x), \quad x \in \boldsymbol{R}^{N} \tag{1.2}
\end{equation*}
$$

The case when $g(\lambda)=\lambda^{1+\alpha}(\alpha>0)$ has been studied by H. Fujita [1], [2], K. Hayakawa [3] and S. Sugitani [7]. Assume that the initial value $a(x)$ is non-negative bounded continuous. Then these results can be stated as follows;
(i) in case $0<\alpha N \leq 2$, for any initial value $a(x)$ not vanishing identically, the solution $u(t, x)$ of (1.1) with (1.2) blows up in a finite time, and
(ii) in case $\alpha N>2$, (a) for sufficiently small initial values $a(x)(\not \equiv 0)$ the solutions $u(t, x)$ of (1.1) with (1.2) converge to 0 uniformly in x as $t \rightarrow \infty$, and (b) for sufficiently large initial values $a(x)$ the solutions $u(t, x)$ of (1.1) with (1.2) blow up in a finite time.

For general f, there is a work of K. Kobayashi-T. Sirao-H. Tanaka [5].
Under what condition on the initial value $a(x)$ does the solution $u(t, x)$ of (1.1) with (1.2) converge to 0 as $t \rightarrow \infty$ in case $\alpha N>2$? And, under what condition on $a(x)$ does the solution $u(t, x)$ blow up in a finite time in the same case?

In this paper we shall consider these kinds of problems for the equation (1.1) replacing g by f defined as follows:

$$
f(\lambda)=\left\{\begin{array}{cl}
p \lambda-p q, & \lambda \geq q \tag{1.3}\\
0, & 0 \leq \lambda<q
\end{array}\right.
$$

where p and q are positive constants.
For any bounded continuous function $a(x)$ on \boldsymbol{R}^{N}, it is known that the equa-
tion (1.1) replacing g by f with (1.2) has a global solution, which is denoted by $u(t, x)$ or $u(t, x ; a, f)$, and that the following comparison theorem holds:

$$
\begin{gather*}
a(x) \leq \tilde{a}(x) \quad \text { and } \quad a(x) \not \equiv \tilde{a}(x) \quad \text { imply that } \tag{1.4}\\
u(t, x ; a, f)<u(t, x ; \tilde{a}, f) \quad \text { for } \quad t>0 .
\end{gather*}
$$

In this paper we assume that the initial value $a(x)$ is non-negative bounded continuous and the dimension N is not less than 3 . For these initial values $a(x)$ not vanishing identically the solutions $u(t, x ; a, f)$ of the equation (1.1) replacing g by f with (1.2) are positive global solutions, that is, $u(t, x ; a, f)>0$ for any $t>0$ and $x \in \boldsymbol{R}^{N}$. The positive global solution $u(t, x ; a, f)$ may grow up to infinity as $t \rightarrow \infty$ for some large initial value $a(x)$, that is, for each positive constant M and each compact set K in \boldsymbol{R}^{N} there exists $T>0$ such that $t>T$ and $x \in K$ imply $u(t, x ; a, f)>M$. We seek a sufficient condition on the initial value $a(x)$ under which the solution $u(t, x ; a, f)$ grows up to inifinity as $t \rightarrow \infty$. For this purpose we seek the stationary solutions of (1.1). The simplest stationary solutions will be radially symmetric ones, that is, solutions $u(x)$ of $\Delta u+f(u)=0$ that depend only on $|x|$. To find such solutions $u(|x|)$, we set $|x|=r$. Then $u(r)$ satisfies the equation

$$
\left\{\begin{array}{l}
\frac{d^{2} u}{d r^{2}}+\frac{N-1}{r} \frac{d u}{d r}+f(u)=0, \quad r>0 \tag{1.5}\\
u(0)>0, \quad \frac{d u}{d r}(0)=0
\end{array}\right.
$$

It is obvious that for each $\ell(0 \leq \ell \leq q), u(r)=\ell$ is a solution of (1.5) with $0 \leq u(0)=$ $\ell \leq q$. In Theorem 2.2 in $\S 2$, it is shown that for each $\ell(0 \leq \ell<q)$ there exists a unique solution $u_{\ell}(r)$ of (1.5) such that $u_{\ell}(0)>q, u_{\ell}(r)>\ell$ for any $r \geq 0$ and $u_{\ell}(r) \downarrow \ell$ as $r \rightarrow \infty$.

Consequently the non-negative radially symmetric stationary solutions of (1.1) are constatns $\ell(0 \leq \ell \leq q)$ and positive functions $u_{\ell}(|x|)(0 \leq \ell<q)$. Using these stationary solutions we can obtain the following results for each $0 \leq \ell<q$ (see Theorem 3.1 in §3):
(a) In the case when $\ell \leq a(x) \leq u_{\ell}(|x|)$ and $\ell \not \equiv a(x) \not \equiv u_{\ell}(|x|)$, the solution $u(t, x ; a, f)$ greater than ℓ converges to ℓ uniformly in x as $t \rightarrow \infty$.
(b) In the case when $a(x) \geq u_{\ell}(|x|)$ and $a(x) \not \equiv u_{\ell}(|x|)$, the solution $u(t, x ; a, f)$ grows up to infinity as $t \rightarrow \infty$.
(c) In the case when $a(x) \geq q$ and $a(x) \not \equiv q$, the solution $u(t, x ; a, f)$ grows up to infinity as $t \rightarrow \infty$.

The author wishes to thank Professor H. Tanaka and Professor M. Mimura for their helpful suggestions and advice.

§ 2. On positive solutions of $u^{\prime \prime}+(N-1) u^{\prime} \mid r+f(u)=0, N \geq 3$

In order to study the existence of stationary solutions of the equation (1.1) replacing g by f defined by (1.3), we shall consider the equation (1.5). If $0 \leq u(0)=$ $\ell \leq q$, then $u(r)=\ell$ is the unique solution of (1.5). We shall seek the positive solution of (1.5) with $u(0)>q$. Let $(\cdot)^{\prime}=d(\cdot) / d r$ and first consider the following equation

$$
\left\{\begin{array}{l}
u^{\prime \prime}+(N-1) u^{\prime} \mid r+p u-p q=0, \quad r>0, \tag{2.1}\\
u(0)=u_{0}>q, \quad u^{\prime}(0)=0 .
\end{array}\right.
$$

Let $J_{v}(r)$ be a standard Bessel function, that is,

$$
J_{v}(r)=\sum_{k=0}^{\infty}(-1)^{k}(r / 2)^{2 k+v} / k!\Gamma(v+k+1) .
$$

It is known that the unique solution $u_{(1)}(r)$ of the above equation (2.1) is given by

$$
u_{(1)}(r)=\left(u_{0}-q\right) \Gamma(N / 2)(\sqrt{p} r / 2)^{(2-N) / 2} J_{(N-2) / 2}(\sqrt{p} r)+q .
$$

Lemma 2.1. The positive solution $u(r)$ of (1.5) with $u(0)>q$, if it exists, is strictly decreasing in r and converges to some non-negative constant ℓ less than q as $r \rightarrow \infty$.

Proof. First we note that $u(r)$ satisfies the integral equation

$$
u(r)=u(0)+\frac{1}{N-2} \int_{0}^{r}\left\{r^{2-N}-s^{2-N}\right\} s^{N-1} f(u(s)) d s .
$$

Since $u^{\prime}(r)=-r^{1-N} \int_{0}^{r} s^{N-1} f(u(s)) d s<0, u(r)$ is strictly decreasing in r. Suppose that $u(r)$ converges to $\ell \geq q$ as $r \rightarrow \infty$. Then $u(r)>q$ for $r \geq 0$, and hence $f(u(r))=$ $p u(r)-p q$. Therefore the positive solution $u(r)$ is equal to the solution $u_{(1)}(r)$ of the equation (2.1) with $u_{0}=u(0)$. On the other hand, $u_{(1)}(r)$ is smaller than q for some $r>0$ since $J_{(N-2) / 2}(\sqrt{p} r)$ has simple zeros in $(0, \infty)$. This contradiction completes the proof of Lemma 2.1.

If $u(r) \leq q$, then $f(u(r))=0$. Therefore we next consider the equation $u^{\prime \prime}+$ $(N-1) u^{\prime} \mid r=0$. For $0 \leq \ell<q$,

$$
u_{(2)}(r)=\ell+m r^{2-N}, m>0
$$

are the positive solutions of the equation

$$
\left\{\begin{array}{l}
u^{\prime \prime}+(N-1) u^{\prime} / r=0, \quad r>0 \tag{2.2}\\
\lim _{r \rightarrow \infty} u(r)=\ell .
\end{array}\right.
$$

Choosing suitable constants u_{0} and m, and using a part of $u_{(1)}(r)$ and a part of $u_{(2)}(r)$, we can construct a positive solution $u(r)$ of the equation (1.5) with $u(0)>q$.

Theorem 2.2. For each constant ℓ with $0 \leq \ell<q$, there exists a positive solution $u(r)$ of (1.5) with $u(0)>q$ such that $u(r)$ is strictly decreasing in r and converges to ℓ as $r \rightarrow \infty$.

Proof. Let r_{0} be the smallest positive zero of the Bessel function $J_{(N-2) / 2}(\sqrt{p} r)$, that is,

$$
\begin{equation*}
r_{0}=\min \left\{r>0: u_{(1)}(r)=q\right\} \tag{2.3}
\end{equation*}
$$

Putting $m=(q-\ell) r_{0}^{N-2}$, we have $u_{(1)}\left(r_{0}\right)=q=u_{(2)}\left(r_{0}\right)$. Differentiating $u_{(1)}(r)$ and $u_{(2)}(r)$ yields

$$
u_{(1)}^{\prime}\left(r_{0}\right)=-\left(u_{0}-q\right) \Gamma(N / 2) \sqrt{p}\left(\sqrt{p} r_{0} / 2\right)^{(2-N) / 2} J_{N / 2}\left(\sqrt{p} r_{0}\right)<0
$$

and

$$
u_{(2)}^{\prime}\left(r_{0}\right)=m(2-N) r_{0}^{1-N}=(2-N)(q-\ell) r_{0}^{-1}<0
$$

Therefore, we can choose $u_{0}>q$ such that $u_{(1)}^{\prime}\left(r_{0}\right)=u_{(2)}^{\prime}\left(r_{0}\right)$. That is, putting

$$
u_{0}=q+(N-2)(q-\ell) r_{0}^{-1} /\left\{\Gamma(N / 2) \sqrt{p}\left(\sqrt{p} r_{0} / 2\right)^{(2-N) / 2} J_{N / 2}\left(\sqrt{p} r_{0}\right)\right\}>q,
$$

we obtain the positive solution

$$
\begin{align*}
& u_{\ell}(r) \tag{2.4}\\
& \quad= \begin{cases}(N-2)(q-\ell)\left(r / r_{0}\right)^{(2-N) / 2} J_{(N-2) / 2}(\sqrt{p} r) / \sqrt{p} r_{0} J_{N / 2}\left(\sqrt{p} r_{0}\right)+q \\
& 0<r \leq r_{0} \\
\ell+(q-\ell) r_{0}^{N-2} r^{2-N}, & r>r_{0}\end{cases}
\end{align*}
$$

of (1.5) with $u(0)>q$ and $\lim _{r \rightarrow \infty} u(r)=\ell$.
Example. When $N=3$,

$$
u_{\ell}(r)= \begin{cases}(q-\ell) \sin \sqrt{p} r / \sqrt{p} r+q, & 0<r \leq p^{-1 / 2} \pi \\ \ell+(q-\ell)(\sqrt{p} r)^{-1} \pi, & r>p^{-1 / 2} \pi\end{cases}
$$

§3. Asymptotic behavior of the solution $u(t, x ; a, f)$

In the present section we consider the Cauchy problem for the semilinear heat equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta u+f(u), \quad t>0, x \in \boldsymbol{R}^{N} \tag{3.1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
u(0, x)=a(x), \quad x \in \boldsymbol{R}^{N}, \tag{3.2}
\end{equation*}
$$

where $f(\lambda)$ is the function defined by (1.3) for the positive given numbers p and q, $a(x)$ is a non-negative bounded continuous function on \boldsymbol{R}^{N} and N is greater than or equal to 3 . For any non-negative bounded continuous initial value $a(x)$ not vanishing identically, the equation (3.1) with (3.2) has a unique positive global solution $u(t, x ; a, f)$. There exist non-negative stationary solutions of (3.1) as was seen in $\S 2$, that is, the non-negative bounded radially symmetric solutions of $\Delta u+f(u)=0$ are non-negative constants $\ell(0 \leq \ell \leq q)$ and $u_{\ell}(|x|)(0 \leq \ell<q)$, where $u_{\ell}(r)$ is the positive solution of (1.5) with $u(0)>q$ defined by (2.4) and satisfying $\lim _{r \rightarrow \infty} u_{\ell}(r)=\ell$. We denote $u_{\ell}(|x|)$ by $u_{\ell}(x)$ for simplicity throughout this section.

Theorem 3.1. Let ℓ be a constant with $0 \leq \ell<q$ and suppose that $a(x)$ is a non-negative bounded continuous function.
(i) If $\ell \leq a(x) \leq u_{\ell}(x)$ and $a(x) \not \equiv u_{\ell}(x)$, then the solution $u(t, x ; a, f)$ of (3.1) with (3.2) converges to ℓ uniformly in x as $t \rightarrow \infty$.
(ii) If $a(x) \geq u_{\ell}(x)$ and $a(x) \not \equiv u_{\ell}(x)$, then the solution $u(t, x ; a, f)$ of (3.1) with (3.2) grows up to infinity as $t \rightarrow \infty$.

When $a(x) \geq \ell$ and $a(x) \not \equiv \ell$, the comparison theorem (1.4) implies that $u(t, x ; a, f)>\ell$ for any $t>0$ and $x \in \boldsymbol{R}^{N}$. Therefore $v(t, x)=u(t, x ; a, f)-\ell$ is the positive solution of the following equation

$$
\left\{\begin{array}{l}
\frac{\partial v}{\partial t}=\Delta v+f_{\ell}(v), \quad t>0 \\
v(0, x)=a(x)-\ell
\end{array}\right.
$$

where

$$
f_{\ell}(\lambda)=\left\{\begin{array}{cl}
p \lambda-p(q-\ell), & \lambda \geq q-\ell, \\
0, & 0 \leq \lambda<q-\ell .
\end{array}\right.
$$

Hence it is sufficient to show this theorem for any $q>0$ on the assumption $\ell=0$.
For proving this theorem we prepare several lemmas. We start with some estimates on $f(\lambda)$ defined by (1.3).

Lemma 3.2. For each $\lambda_{0}>0$, there exists a positive number α such that

$$
\begin{equation*}
f(\gamma \lambda) \leq \gamma^{1+2 \alpha} f(\lambda) \quad \text { for } \quad 0 \leq \lambda \leq \lambda_{0}, 0<\gamma \leq 1, \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
f(\gamma \lambda) \geq \gamma^{1+2 \alpha} f(\lambda) \quad \text { for } \quad 0 \leq \gamma \lambda \leq \lambda_{0}, \gamma \geq 1 . \tag{3.4}
\end{equation*}
$$

Proof. Since (3.4) follows from (3.3), we shall show (3.3). When $\gamma \lambda \leq q$, (3.3) holds for any $\alpha>0$ since $f(\gamma \lambda)=0$. Therefore it is sufficient to show (3.3) for $q / \gamma<\lambda \leq \lambda_{0}$ and $0<\gamma<1$. For $q<\gamma \lambda<\lambda$, we write

$$
\begin{equation*}
\frac{f(\gamma \lambda)}{f(\lambda)}=\frac{p \gamma \lambda-p q}{p \lambda-p q}=\frac{\gamma(\lambda-q)-q(1-\gamma)}{\lambda-q}=\gamma\left\{1-\frac{q}{\lambda-q}\left(\frac{1}{\gamma}-1\right)\right\} . \tag{3.5}
\end{equation*}
$$

Putting $\beta=1 / \gamma-1>0$ and $\lambda^{\prime}=q /(\lambda-q)>0$ in (3.5), we have

$$
\frac{\log \{f(\gamma \lambda) / f(\lambda)\}}{\log \gamma}=\frac{-\log (1+\beta)+\log \left(1-\lambda^{\prime} \beta\right)}{-\log (1+\beta)}=1-\frac{\log \left(1-\lambda^{\prime} \beta\right)}{\log (1+\beta)} .
$$

Because $\log \left(1-\lambda^{\prime} \beta\right) \leq-\lambda^{\prime} \log (1+\beta)$, we have for $\lambda \leq \lambda_{0}$

$$
\frac{\log \{f(\gamma \lambda) / f(\lambda)\}}{\log \gamma} \geq 1+\lambda^{\prime}=1+\frac{q}{\lambda-q}>1+\frac{q}{\lambda_{0}-q} \equiv 1+2 \alpha>1
$$

and hence

$$
\log \{f(\gamma \lambda) / f(\lambda)\} \leq(1+2 \alpha) \log \gamma \quad \text { for } \quad q / \gamma<\lambda \leq \lambda_{0}, 0<\gamma<1 \text {, }
$$

which completes the proof of Lemma 3.2.
The heat equation (3.1) with (3.2) is transformed into the integral equation

$$
\begin{equation*}
u(t, x)=H_{t} a(x)+\int_{0}^{t} H_{t-s} f(u(s, \cdot))(x) d s \tag{3.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& H_{t} a(x)=\int_{R^{N}} H(t, x, y) a(y) d y \\
& H(t, x, y)=(4 \pi t)^{-N / 2} \exp \left(-|x-y|^{2} / 4 t\right)
\end{aligned}
$$

We consider a class of monotone radially symmetric functions as follows:

$$
\mathscr{A}=\left\{a \in C\left(\boldsymbol{R}^{N}\right): a(x) \geq 0, \not \equiv 0, a(x) \geq a(y) \quad \text { for } \quad|x| \leq|y|\right\} .
$$

It is obvious that $u_{0}(x)$ belongs to \mathscr{A}. Since f is non-decreasing, the following lemma holds (see Lemma 3.2 in [5]).

Lemma 3.3. If $a(x) \in \mathscr{A}$, then $H_{t} a(x) \in \mathscr{A}$ and $u(t, x ; a, f) \in \mathscr{A}$ for each $t \geq 0$.

Let $a(x)$ be an initial value satisfying the assumption in (i) of Theorem 3.1, that is, a bounded continuous function with $0 \leq a(x) \leq u_{0}(x)$ and $a(x) \not \equiv u_{0}(x)$.

Then, applying the comparison theorem (1.4) to the equation (3.1) with initial values $a(x)$ and $u_{0}(x)$, we have

$$
0 \leq u(t, x ; a, f)<u\left(t, x ; u_{0}, f\right)=u_{0}(x) \quad \text { for } \quad t>0
$$

Since $u_{0}(x) \in \mathscr{A}$, for each $t_{*}>0$ there exists a function $a^{*}(x) \in \mathscr{A}$ such that

$$
0 \leq u\left(t_{*}, x ; a, f\right) \equiv a_{*}(x) \leq a^{*}(x)<u_{0}(x)
$$

for any $x \in \boldsymbol{R}^{N}$. Applying the comparison theorem (1.4) to the equation (3.1) with initial values $a_{*}(x), a^{*}(x)$ and $u_{0}(x)$, we have

$$
u\left(t, x ; a_{*}, f\right) \leq u\left(t, x ; a^{*}, f\right)<u\left(t, x ; u_{0}, f\right)
$$

and hence

$$
u\left(t+t_{*}, x ; a, f\right) \leq u\left(t, x ; a^{*}, f\right)<u_{0}(x)
$$

for any $t>0$ and $x \in \boldsymbol{R}^{N}$. Therefore it is sufficient to prove (i) of Theorem 3.1 for each initial value $a(x) \in \mathscr{A}$ satisfying $0 \leq a(x)<u_{0}(x)$. Similarly, we have only to prove (ii) of Theorem 3.1 for each initial value $a(x) \in \mathscr{A}$ satisfying $a(x)>$ $u_{0}(x)$.

We shall estimate the solution $u(t, x ; a, f)$ of (3.1) with (3.2) using the stationary solution $u_{0}(x)$.

Lemma 3.4. (i) If $0 \leq a(x)<u_{0}(x)$ for any $x \in \boldsymbol{R}^{N}$, then for each $r \geq r_{0}$ there exists a positive number $\gamma<1$ such that

$$
u(t, x ; a, f) \leq \gamma u_{0}(x)
$$

whenever $t \geq 0$ and $|x| \leq r$, where r_{0} is the positive constant given by (2.3).
(ii) If a(x)>$u_{0}(x)$ for any $x \in \boldsymbol{R}^{N}$, then for each $r \geq r_{0}$ there exists a positive number $\gamma>1$ such that

$$
u(t, x ; a, f) \geq \gamma u_{0}(x)
$$

whenever $t \geq 0$ and $|x| \leq r$.
Proof. First, we note that the solution $u(t, x ; a, f)=u(t, x)$ of (3.6) and the stationary solution $u_{0}(x)$ can be constructed by iteration as follows. Putting

$$
\begin{aligned}
& \left\{\begin{array}{l}
u^{(0)}(t, x)=H_{t} a(x), \\
u^{(n+1)}(t, x)=H_{t} a(x)+\int_{0}^{t} d s \int_{R^{N}} H(t-s, x, y) f\left(u^{(n)}(s, y)\right) d y, n=0,1,2, \ldots,
\end{array}\right. \\
& \left\{\begin{array}{l}
u_{0}^{(0)}(t, x)=H_{t} u_{0}(x), \\
u_{0}^{(n+1)}(t, x)=H_{t} u_{0}(x)+\int_{0}^{t} d s \int_{R^{N}} H(t-s, x, y) f\left(u_{0}^{(n)}(s, y)\right) d y, n=0,1,2, \ldots,
\end{array}\right.
\end{aligned}
$$

we have $u^{(n)}(t, x) \uparrow u(t, x)$ and $u_{0}^{(n)}(t, x) \uparrow u_{0}(x)$ as $n \rightarrow \infty$. Let α be a positive number defined in Lemma 3.2 for $\lambda_{0}=2 \max _{x \in R^{N}} u_{0}(x)=2 u_{0}(0)$ and let β be such that $0<\beta<2 \alpha /(1+2 \alpha)$. For arbitrarily fixed $r \geq r_{0}$, we choose a constant q^{\prime} so that $0<q^{\prime}<\min _{|x| \leq r} u_{0}(x)$. Recall that $u_{0}(x)=q$ for $|x|=r_{0}$ and note $q^{\prime}<q$. Furthermore we define

$$
\begin{equation*}
\tau=\inf \left\{t: H_{t} u_{0}(x) \leq \beta q^{\prime} \quad \text { for any } \quad x \in \boldsymbol{R}^{N}\right\}=\inf \left\{t: H_{t} u_{0}(0) \leq \beta q^{\prime}\right\} \tag{3.7}
\end{equation*}
$$

Now we proceed with the proof of (i). Define a positive number

$$
\begin{equation*}
\gamma=\max _{0 \leq t \leq \tau,|x| \leq r}\left(H_{t} a(x) / H_{t} u_{0}(x)\right) \vee \gamma_{0}<1, \tag{3.8}
\end{equation*}
$$

where $a \vee b=\max (a, b)$ and γ_{0} is the solution in $(0,1)$ of

$$
\varphi(\gamma) \equiv(1-\beta) \gamma^{1+2 \alpha}-\gamma+\beta=0 .
$$

Step 1 is to prove that

$$
\begin{equation*}
u^{(n)}(t, x) \leq \gamma u_{0}^{(n)}(t, x), \quad n=0,1,2, \ldots \tag{3.9}
\end{equation*}
$$

provided $|x| \leq r$ and $u_{0}^{(n)}(t, x)>q^{\prime}$. We shall show (3.9) by induction. Noting that $H_{t} u_{0}(x) \in \mathscr{A}$ and using the definition (3.7) of τ, we have for $t \geq \tau$

$$
H_{t} u_{0}(x) \leq H_{\tau} u_{0}(0)=\beta q^{\prime}<q^{\prime} \quad \text { for any } \quad x \in \boldsymbol{R}^{N} .
$$

Therefore, assuming that $u_{0}^{(0)}(t, x)=H_{t} u_{0}(x)>q^{\prime}$, we get $0 \leq t \leq \tau$, and hence by the definition (3.8) of γ we have (3.9) for $n=0$.

Next we shall show that (3.9) holds for $n+1$ under the hypothesis that (3.9) holds for n. Since $u^{(n)}(s, y) \leq u(s, y)<u_{0}(y)<q$ for $|y|>r \geq r_{0}, f\left(u^{(n)}(s, y)\right)=0$ for $|y|>r$ and hence

$$
\begin{equation*}
u^{(n+1)}(t, x)=H_{t} a(x)+\int_{0}^{t} d s \int_{|y| \leq r} H(t-s, x, y) f\left(u^{(n)}(s, y)\right) d y . \tag{3.10}
\end{equation*}
$$

In the case when $|y| \leq r$ and $u_{0}^{(n)}(s, y)>q^{\prime}$, using the induction hypothesis, and next using (3.3) of Lemma 3.2 with $\lambda=u_{0}^{(n)}(s, y) \leq u_{0}(y) \leq u_{0}(0)<\lambda_{0}$, we have

$$
f\left(u^{(n)}(s, y)\right) \leq f\left(\gamma u_{0}^{(n)}(s, y)\right) \leq \gamma^{1+2 \alpha} f\left(u_{0}^{(n)}(s, y)\right) .
$$

While in the case when $|y| \leq r$ and $u_{0}^{(n)}(s, y) \leq q^{\prime}$, noting $u^{(n)}(s, y) \leq u_{0}^{(n)}(s, y) \leq$ $q^{\prime}<q$, we have

$$
f\left(u^{(n)}(s, y)\right)=0=\gamma^{1+2 \alpha} f\left(u_{0}^{(n)}(s, y)\right)
$$

Therefore we get from (3.10)

$$
\begin{equation*}
u^{(n+1)}(t, x) \leq H_{t} a(x)+\gamma^{1+2 \alpha} \int_{0}^{t} d s \int_{|y| \leq r} H(t-s, x, y) f\left(u_{0}^{(n)}(s, y)\right) d y \tag{3.11}
\end{equation*}
$$

$$
\leq H_{t} a(x)+\gamma^{1+2 \alpha} \int_{0}^{t} d s \int_{R^{N}} H(t-s, x, y) f\left(u_{0}^{(n)}(s, y)\right) d y
$$

Let us assume that $|x| \leq r$ and $u_{0}^{(n+1)}(t, x)>q^{\prime}$. In case $0 \leq t \leq \tau$, noting the definition (3.8) of γ, we get from (3.11)

$$
\begin{aligned}
u^{(n+1)}(t, x) & \leq \gamma H_{t} u_{0}(x)+\gamma^{1+2 \alpha} \int_{0}^{t} d s \int_{R^{N}} H(t-s, x, y) f\left(u_{0}^{(n)}(s, y)\right) d y \\
& \leq \gamma u_{0}^{(n+1)}(t, x) .
\end{aligned}
$$

Noting that $H_{t} a(x) \leq H_{t} u_{0}(x)$, we get from (3.11)

$$
\begin{align*}
& u^{(n+1)}(t, x)-\gamma u_{0}^{(n+1)}(t, x) \tag{3.12}\\
& \quad \leq(1-\gamma) H_{t} u_{0}(x)+\left(\gamma^{1+2 \alpha}-\gamma\right) \int_{0}^{t} d s \int_{R^{N}} H(t-s, x, y) f\left(u_{0}^{(n)}(s, y)\right) d y \\
& \quad \leq(1-\gamma) H_{t} u_{0}(x)+\left(\gamma^{1+2 \alpha}-\gamma\right)\left(q^{\prime}-H_{t} u_{0}(x)\right) \\
& \quad=\left(1-\gamma^{1+2 \alpha}\right) H_{t} u_{0}(x)+\left(\gamma^{1+2 \alpha}-\gamma\right) q^{\prime},
\end{align*}
$$

where we have used the assumption $u_{0}^{(n+1)}(t, x)>q^{\prime}$, that is,

$$
\int_{0}^{t} d s \int_{R^{N}} H(t-s, x, y) f\left(u_{0}^{(n)}(s, y)\right) d y>q^{\prime}-H_{t} u_{0}(x)
$$

in deriving the last inequality of the above. In case $t>\tau$, noting the definition (3.7) of τ, we get from (3.12)

$$
u^{(n+1)}(t, x)-\gamma u_{0}^{(n+1)}(t, x) \leq\left(\beta-\beta \gamma^{1+2 \alpha}+\gamma^{1+2 \alpha}-\gamma\right) q^{\prime}=\varphi(\gamma) q^{\prime} \leq 0,
$$

because $\varphi(\gamma) \leq 0$ for $\gamma_{0} \leq \gamma<1$, and hence we obtain (3.9).
Step 2. Here the proof of (i) will be completed as follows. Let a positive number T be fixed. Since $\min _{|x| \leq r} u_{0}(x)>q^{\prime}$ and $u_{0}^{(n)}(t, x)$ converges to $u_{0}(x)$ uniformly in $(t, x) \in[0, T] \times \boldsymbol{R}^{N}$ as $n \rightarrow \infty$, there exists a positive integer M such that $n \geq M$ implies that

$$
u_{0}^{(n)}(t, x)>q^{\prime} \quad \text { for } 0 \leq t \leq T \text { and }|x| \leq r .
$$

Therefore, by Step $1, n \geq M$ implies that

$$
u^{(n)}(t, x) \leq \gamma u_{0}^{(n)}(t, x) \quad \text { for } 0 \leq t \leq T \text { and }|x| \leq r
$$

and hence

$$
u(t, x) \leq \gamma u_{0}(x) \quad \text { for } 0 \leq t \leq T \text { and }|x| \leq r,
$$

which establishes the proof of (i) since T is arbitrary.
(ii) can be proved along similar lines to (i). Put

$$
\begin{equation*}
\gamma \equiv \min _{0 \leq t \leq t,|x| \leq r}\left(H_{t} a(x) / H_{\imath} u_{0}(x)\right) \wedge 2>1, \tag{3.13}
\end{equation*}
$$

where $a \wedge b=\min (a, b)$. We shall prove

$$
\begin{equation*}
u^{(n)}(t, x) \geq \gamma u_{0}^{(n)}(t, x), \quad n=0,1,2, \ldots, \tag{3.14}
\end{equation*}
$$

provided $|x| \leq r$ and $u_{0}^{(n)}(t, x)>q^{\prime}$, which yields (ii) similarly to (i). When $n=0$, (3.14) follows from the definition (3.13) of γ. Suppose that (3.14) holds for n. In the case when $|y| \leq r$ and $u_{0}^{(n)}(s, y)>q^{\prime}$, using the induction hypothesis and next using (3.4) of Lemma 3.2 with $\lambda=u_{0}^{(n)}(s, y) \leq(2 / \gamma) u_{0}(0)=\lambda_{0} / \gamma$, we get

$$
\begin{equation*}
f\left(u^{(n)}(s, y)\right) \geq \gamma^{1+2 \alpha} f\left(u_{0}^{(n)}(s, y)\right) \tag{3.15}
\end{equation*}
$$

While in the case when $|y|>r \geq r_{0}$ or $u_{0}^{(n)}(s, y) \leq q^{\prime}<q$, (3.15) also holds since the right hand side of (3.15) vanishes. Therefore we have

$$
\begin{equation*}
u^{(n+1)}(t, x) \geq H_{t} a(x)+\gamma^{1+2 \alpha} \int_{0}^{t} d s \int_{R^{N}} H(t-s, x, y) f\left(u_{0}^{(n)}(s, y)\right) d y . \tag{3.16}
\end{equation*}
$$

Assume that $|x| \leq r$ and $u_{0}^{(n+1)}(t, x)>q^{\prime}$. In case $0 \leq t \leq \tau$, it follows from (3.16) that

$$
u^{(n+1)}(t, x) \geq \gamma u_{0}^{(n+1)}(t, x)
$$

using the definition (3.13) of γ. While in case $t>\tau$, using the definition (3.7) of τ, we have from (3.16)

$$
u^{(n+1)}(t, x)-\gamma u_{0}^{(n+1)}(t, x) \geq\left(1-\gamma^{1+2 \alpha}\right) H_{t} u_{0}(x)+\left(\gamma^{1+2 \alpha}-\gamma\right) q^{\prime} \geq \varphi(\gamma) q^{\prime}>0,
$$

since $\varphi(\gamma)>0$ for $\gamma>1$. Thus the proof of Lemma 3.4 is completed.
Lemma 3.5. (i) If $0 \leq a(x)<u_{0}(x)$ for any $x \in \boldsymbol{R}^{N}$, then for each $r \geq r_{0}$ there exist positive numbers $\alpha>0,0<\gamma<1$ and an increasing sequence $\left\{t_{n}\right\}$ with $t_{0}=0$ such that

$$
\begin{equation*}
u(t, x ; a, f) \leq \gamma^{(1+\alpha)^{n}} u_{0}(x) \tag{3.17}
\end{equation*}
$$

for $t \geq t_{n},|x| \leq r$ and $n=0,1,2, \ldots$.
(ii) If $a(x)>u_{0}(x)$ for any $x \in \boldsymbol{R}^{N}$, then for each $r \geq r_{0}$ and $M^{\prime}>\sup _{x \in \boldsymbol{R}^{N}} a(x)$ there exist positive numbers $\alpha>0, \gamma>1$ and an increasing sequence $\left\{t_{n}\right\}$ with $t_{0}=0$ such that

$$
\begin{equation*}
u(t, x ; a, f) \geq \gamma^{(1+\alpha)^{n}} u_{0}(x) \tag{3.18}
\end{equation*}
$$

for $t \geq t_{n}$ and $|x| \leq r$, provided

$$
\begin{equation*}
\gamma^{(1+\alpha)^{n-1}} u_{0}(0) \leq M^{\prime} \tag{3.19}
\end{equation*}
$$

Proof. Put $u(t, x)=u(t, x ; a, f)$ and let $r \geq r_{0}$ be fixed.
(i) Let γ be a positive number less than 1 defined in Lemma 3.4 for r, and let α be a positive number defined in Lemma 3.2 for $\lambda_{0}=u_{0}(0)$. We shall prove (3.17) by induction. When $n=0$, (3.17) holds by (i) of Lemma 3.4. Suppose (3.17) is true for n. Let $t>t_{n}$. Since $u(t, x ; a, f)=u\left(t-t_{n}, x ; u\left(t_{n}, \cdot\right), f\right)$, noting that $u\left(t_{n}+s, y\right)<u_{0}(y)<q$ namely $f\left(u\left(t_{n}+s, y\right)\right)=0$ for $|y|>r$, we have

$$
\begin{align*}
u(t, x) & =H_{t-t_{n}} u\left(t_{n}, x\right)+\int_{0}^{t-t_{n}} d s \int_{\boldsymbol{R}^{N}} H\left(t-t_{n}-s, x, y\right) f\left(u\left(t_{n}+s, y\right)\right) d y \tag{3.20}\\
& =H_{t-t_{n}} u\left(t_{n}, x\right)+\int_{0}^{t-t_{n}} d s \int_{|y| \leq r} H\left(t-t_{n}-s, x, y\right) f\left(u\left(t_{n}+s, y\right)\right) d y .
\end{align*}
$$

Using the induction hypothesis and next applying (3.3) of Lemma 3.2 to $f(\tilde{\gamma} \lambda)$ with

$$
0<\tilde{\gamma}=\gamma^{(1+\alpha)^{n}}<1 \quad \text { and } \quad \lambda=u_{0}(x) \leq u_{0}(0)=\lambda_{0},
$$

we have

$$
f\left(u\left(t_{n}+s, y\right)\right) \leq f\left(\gamma^{(1+\alpha)^{n}} u_{0}(y)\right) \leq \gamma^{(1+\alpha)^{n}(1+2 \alpha)} f\left(u_{0}(y)\right)
$$

for $|y| \leq r$. Therefore, noting $u\left(t_{n}, x\right)<u_{0}(x)$ for $x \in \boldsymbol{R}^{N}$, we have from (3.20)

$$
\begin{align*}
u(t, x) \leq & H_{t-t_{n}} u_{0}(x) \tag{3.21}\\
& +\gamma^{(1+\alpha)^{n}(1+2 \alpha)} \int_{0}^{t-t_{n}} d s \int_{|y| \leq r} H\left(t-t_{n}-s, x, y\right) f\left(u_{0}(y)\right) d y
\end{align*}
$$

Since $u_{0}(y)<q$ namely $f\left(u_{0}(y)\right)=0$ for $|y|>r \geq r_{0}$, noting that $u_{0}(x)$ is the solution of the integral equation (3.6) replacing $a(x)$ by $u_{0}(x)$, we have

$$
\begin{aligned}
& \int_{0}^{t-t_{n}} d s \int_{|y| \leq r} H\left(t-t_{n}-s, x, y\right) f\left(u_{0}(y)\right) d y \\
& \quad=\int_{0}^{t-t_{n}} d s \int_{R^{N}} H\left(t-t_{n}-s, x, y\right) f\left(u_{0}(y)\right) d y=u_{0}(x)-H_{t-t_{n}} u_{0}(x) .
\end{aligned}
$$

Combining this with (3.21) yields

$$
\begin{align*}
& u(t, x) \leq H_{t-t_{n}} u_{0}(x)+\gamma^{(1+\alpha)^{n}(1+2 \alpha)}\left\{u_{0}(x)-H_{t-t_{n}} u_{0}(x)\right\} \tag{3.22}\\
& =\gamma^{(1+\alpha)^{n+1}} u_{0}(x) \\
& \quad+\left\{1-\gamma^{(1+\alpha)^{n}(1+2 \alpha)}\right\} H_{t-t_{n}} u_{0}(x)+\gamma^{(1+\alpha)^{n+1}}\left\{\gamma^{(1+\alpha)^{n} \alpha}-1\right\} u_{0}(x) \\
& \quad \equiv \gamma^{(1+\alpha)^{n+1}} u_{0}(x)+I_{n}(t, x) .
\end{align*}
$$

Since $H_{t-t_{n}} u_{0}(x)$ converges to 0 uniformly in x as $t \rightarrow \infty$, there exists a positive number t_{n+1} greater than t_{n} such that $I_{n}(t, x)<0$ for any $t \geq t_{n+1}$ and $|x| \leq r$, and hence by (3.22)

$$
u(t, x) \leq \gamma^{(1+\alpha)^{n+1}} u_{0}(x) \quad \text { for } \quad t \geq t_{n+1},|x| \leq r
$$

which completes the proof of (i).
(ii) can be proved by induction in a similar way to (i). Let $M^{\prime}>\sup _{x \in \mathbf{R}^{\mathrm{N}}} a(x)$ be fixed. Let γ be a number greater than 1 defined in (ii) of Lemma 3.4 for r and let α be a positive number defined in Lemma 3.2 for $\lambda_{0}=M^{\prime}$. Since (3.18) is valid for $n=0$, we shall prove (3.18) for $n+1$ under the hypothesis that (3.18) holds for n. Assume $\gamma^{(1+\alpha)^{n}} u_{0}(0) \leq M^{\prime}$. Then $\gamma^{(1+\alpha)^{n-1}} u_{0}(0) \leq M^{\prime}$, and hence using the induction hypothesis we have

$$
f\left(u\left(t_{n}+s, y\right)\right) \geq f\left(\gamma^{(1+\alpha)^{n}} u_{0}(y)\right) \geq \gamma^{(1+\alpha)^{n}(1+2 \alpha)} f\left(u_{0}(y)\right)
$$

for $s \geq 0$ and $|y| \leq r$, where we have applied (3.4) of Lemma 3.2 to $f\left(\gamma^{(1+\alpha)^{n}} u_{0}(y)\right)$ since $\gamma^{(1+\alpha)^{n}} u_{0}(y) \leq \gamma^{(1+\alpha)^{n}} u_{0}(0) \leq M^{\prime}=\lambda_{0}$ and $\gamma^{(1+\alpha)^{n}}>1$. Consequently we similarly obtain

$$
\begin{aligned}
u(t, x) \geq & H_{t-t_{n}} u_{0}(x)+\gamma^{(1+\alpha)^{n}(1+2 \alpha)} \int_{0}^{t-t_{n}} d s \int_{R^{N}} H\left(t-t_{n}-s, x, y\right) f\left(u_{0}(y)\right) d y \\
= & \gamma^{(1+\alpha)^{n+1}} u_{0}(x) \\
& +\left\{1-\gamma^{(1+\alpha)^{n}(1+2 \alpha)}\right\} H_{t-t_{n}} u_{0}(x)+\gamma^{(1+\alpha)^{n+1}}\left\{\gamma^{(1+\alpha)^{n} \alpha}-1\right\} u_{0}(x),
\end{aligned}
$$

and hence we can prove (ii) in a similar way to (i).
Proof of Theorem 3.1. (i) By the remark we made just before Lemma 3.4 we may assume that $a(x) \in \mathscr{A}$ and $0 \leq a(x)<u_{0}(x)$. Since $u(t, x ; a, f) \in \mathscr{A}$ by Lemma 3.3, (i) of Lemma 3.5 implies that there exist positive numbers $\alpha>0$, $0<\gamma<1$ and a sequence $\left\{t_{n}\right\}$ such that

$$
u(t, x ; a, f) \leq u(t, 0 ; a, f) \leq \gamma^{(1+\alpha)^{n}} u_{0}(0)
$$

for $t \geq t_{n}, x \in \boldsymbol{R}^{N}$ and $n=0,1,2, \ldots$, which completes the proof of (i).
(ii) We may similarly assume that $a(x)>u_{0}(x)$. For any constants $r \geq r_{0}$ and $M>\sup _{x \in \boldsymbol{R}^{N}} a(x)$, let $\left|x_{r}\right|=r$ and $M^{\prime}=\left\{u_{0}(0) / u_{0}\left(x_{r}\right)\right\} M$. Then the assumption (3.19) is equivalent to the assumption $\gamma^{(1+\alpha)^{n-1}} u_{0}\left(x_{r}\right) \leq M$. Therefore, it follows from (ii) of Lemma 3.5 that there exist $\alpha>0, \gamma>1$ and a sequence $\left\{t_{n}\right\}$ such that

$$
u(t, x ; a, f) \geq \gamma^{(1+\alpha)^{n}} u_{0}(x) \geq \gamma^{(1+\alpha)^{n}} u_{0}\left(x_{r}\right)
$$

for $t \geq t_{n}$ and $|x| \leq\left|x_{r}\right|=r$, provided $\gamma^{(1+\alpha)^{n-1}} u_{0}\left(x_{r}\right) \leq M$, which implies (ii). Thus the proof of Theorem 3.1 is completed.

References

[1] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_{t}=\Delta u+u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109-124.
[2] H. Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic
equations, Proc. Symp. Pure Math., AMS 18 (1969), 105-113.
[3] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503-505.
[4] K. Kobayashi, On some semilinear evolution equations with time-lag, Hiroshima Math. J. 10 (1980), 189-227.
[5] K. Kobayashi, T. Sirao and H. Tanaka, On the growing up problem for semilinear heat equations, J. Math. Soc. Japan 29 (1977), 407-424.
[6] M. Nagasawa and T. Sirao, Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation, Trans. Amer. Math. Soc. 139 (1969), 301-310.
[7] S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math. 12 (1975), 45-51.
[8] G. N. Watson, A treatise on the theory of Bessel functions, 2 nd edition, Cambridge U. P., 1958.

> Department of Mathematics, College of Liberal Arts, Toyama University

