On the asymptotic properties for simple semilinear heat equations

Kusuo KOBAYASHI (Received May 20, 1982)

§1. Introduction

It is known that solutions of Cauchy problems for some semilinear evolution equations may blow up in a finite time (or grow up to infinity as $t \rightarrow \infty$) for some initial values. There are several works concerning the asymptotic behavior of the solution of the Cauchy problem for the equation

(1.1)
$$\frac{\partial}{\partial t}u(t, x) = \Delta u(t, x) + g(u(t, x)), \quad t > 0, x \in \mathbf{R}^N,$$

with the initial condition

(1.2)
$$u(0, x) = a(x), \quad x \in \mathbf{R}^{N}.$$

The case when $g(\lambda) = \lambda^{1+\alpha}$ ($\alpha > 0$) has been studied by H. Fujita [1], [2], K. Hayakawa [3] and S. Sugitani [7]. Assume that the initial value a(x) is non-negative bounded continuous. Then these results can be stated as follows;

(i) in case $0 < \alpha N \le 2$, for any initial value a(x) not vanishing identically, the solution u(t, x) of (1.1) with (1.2) blows up in a finite time, and

(ii) in case $\alpha N > 2$, (a) for sufficiently small initial values $a(x) (\neq 0)$ the solutions u(t, x) of (1.1) with (1.2) converge to 0 uniformly in x as $t \to \infty$, and (b) for sufficiently large initial values a(x) the solutions u(t, x) of (1.1) with (1.2) blow up in a finite time.

For general f, there is a work of K. Kobayashi-T. Sirao-H. Tanaka [5].

Under what condition on the initial value a(x) does the solution u(t, x) of (1.1) with (1.2) converge to 0 as $t \to \infty$ in case $\alpha N > 2$? And, under what condition on a(x) does the solution u(t, x) blow up in a finite time in the same case?

In this paper we shall consider these kinds of problems for the equation (1.1) replacing g by f defined as follows:

(1.3)
$$f(\lambda) = \begin{cases} p\lambda - pq, & \lambda \ge q, \\ 0, & 0 \le \lambda < q, \end{cases}$$

where p and q are positive constants.

For any bounded continuous function a(x) on \mathbb{R}^{N} , it is known that the equa-

Kusuo Kobayashi

tion (1.1) replacing g by f with (1.2) has a global solution, which is denoted by u(t, x) or u(t, x; a, f), and that the following comparison theorem holds:

(1.4)
$$a(x) \le \tilde{a}(x)$$
 and $a(x) \ne \tilde{a}(x)$ imply that
 $u(t, x; a, f) < u(t, x; \tilde{a}, f)$ for $t > 0$.

In this paper we assume that the initial value a(x) is non-negative bounded continuous and the dimension N is not less than 3. For these initial values a(x)not vanishing identically the solutions u(t, x; a, f) of the equation (1.1) replacing g by f with (1.2) are positive global solutions, that is, u(t, x; a, f) > 0 for any t > 0 and $x \in \mathbb{R}^N$. The positive global solution u(t, x; a, f) may grow up to infinity as $t \to \infty$ for some large initial value a(x), that is, for each positive constant M and each compact set K in \mathbb{R}^N there exists T > 0 such that t > T and $x \in K$ imply u(t, x; a, f) > M. We seek a sufficient condition on the initial value a(x)under which the solution u(t, x; a, f) grows up to inifinity as $t \to \infty$. For this purpose we seek the stationary solutions of (1.1). The simplest stationary solutions will be radially symmetric ones, that is, solutions u(x) of $\Delta u + f(u) = 0$ that depend only on |x|. To find such solutions u(|x|), we set |x| = r. Then u(r) satisfies the equation

(1.5)
$$\begin{cases} \frac{d^2u}{dr^2} + \frac{N-1}{r} \frac{du}{dr} + f(u) = 0, \quad r > 0, \\ u(0) > 0, \quad \frac{du}{dr}(0) = 0. \end{cases}$$

It is obvious that for each $\ell(0 \le \ell \le q)$, $u(r) = \ell$ is a solution of (1.5) with $0 \le u(0) = \ell \le q$. In Theorem 2.2 in §2, it is shown that for each $\ell(0 \le \ell < q)$ there exists a unique solution $u_{\ell}(r)$ of (1.5) such that $u_{\ell}(0) > q$, $u_{\ell}(r) > \ell$ for any $r \ge 0$ and $u_{\ell}(r) \downarrow \ell$ as $r \to \infty$.

Consequently the non-negative radially symmetric stationary solutions of (1.1) are constatus $\ell(0 \le \ell \le q)$ and positive functions $u_{\ell}(|x|)$ ($0 \le \ell < q$). Using these stationary solutions we can obtain the following results for each $0 \le \ell < q$ (see Theorem 3.1 in §3):

(a) In the case when $\ell \le a(x) \le u_{\ell}(|x|)$ and $\ell \ne a(x) \ne u_{\ell}(|x|)$, the solution u(t, x; a, f) greater than ℓ converges to ℓ uniformly in x as $t \to \infty$.

(b) In the case when $a(x) \ge u_{\ell}(|x|)$ and $a(x) \ne u_{\ell}(|x|)$, the solution u(t, x; a, f) grows up to infinity as $t \to \infty$.

(c) In the case when $a(x) \ge q$ and $a(x) \ne q$, the solution u(t, x; a, f) grows up to infinity as $t \to \infty$.

The author wishes to thank Professor H. Tanaka and Professor M. Mimura for their helpful suggestions and advice.

§2. On positive solutions of u'' + (N-1)u'/r + f(u) = 0, $N \ge 3$

In order to study the existence of stationary solutions of the equation (1.1) replacing g by f defined by (1.3), we shall consider the equation (1.5). If $0 \le u(0) = \ell \le q$, then $u(r) = \ell$ is the unique solution of (1.5). We shall seek the positive solution of (1.5) with u(0) > q. Let $(\cdot)' = d(\cdot)/dr$ and first consider the following equation

(2.1)
$$\begin{cases} u'' + (N-1)u'/r + pu - pq = 0, \quad r > 0, \\ u(0) = u_0 > q, \quad u'(0) = 0. \end{cases}$$

Let $J_{\nu}(r)$ be a standard Bessel function, that is,

$$J_{\nu}(r) = \sum_{k=0}^{\infty} (-1)^{k} (r/2)^{2k+\nu} / k! \Gamma(\nu+k+1).$$

It is known that the unique solution $u_{(1)}(r)$ of the above equation (2.1) is given by

$$u_{(1)}(r) = (u_0 - q)\Gamma(N/2)(\sqrt{pr/2})^{(2-N)/2}J_{(N-2)/2}(\sqrt{pr}) + q.$$

LEMMA 2.1. The positive solution u(r) of (1.5) with u(0) > q, if it exists, is strictly decreasing in r and converges to some non-negative constant ℓ less than q as $r \rightarrow \infty$.

PROOF. First we note that u(r) satisfies the integral equation

$$u(r) = u(0) + \frac{1}{N-2} \int_0^r \{r^{2-N} - s^{2-N}\} s^{N-1} f(u(s)) ds.$$

Since $u'(r) = -r^{1-N} \int_0^r s^{N-1} f(u(s)) ds < 0$, u(r) is strictly decreasing in r. Suppose that u(r) converges to $\ell \ge q$ as $r \to \infty$. Then u(r) > q for $r \ge 0$, and hence f(u(r)) = pu(r) - pq. Therefore the positive solution u(r) is equal to the solution $u_{(1)}(r)$ of the equation (2.1) with $u_0 = u(0)$. On the other hand, $u_{(1)}(r)$ is smaller than q for some r > 0 since $J_{(N-2)/2}(\sqrt{pr})$ has simple zeros in $(0, \infty)$. This contradiction completes the proof of Lemma 2.1.

If $u(r) \le q$, then f(u(r)) = 0. Therefore we next consider the equation u'' + (N-1)u'/r = 0. For $0 \le \ell < q$,

$$u_{(2)}(r) = \ell + mr^{2-N}, m > 0$$

are the positive solutions of the equation

(2.2)
$$\begin{cases} u'' + (N-1)u'/r = 0, \quad r > 0, \\ \lim_{r \to \infty} u(r) = \ell. \end{cases}$$

Choosing suitable constants u_0 and m, and using a part of $u_{(1)}(r)$ and a part of $u_{(2)}(r)$, we can construct a positive solution u(r) of the equation (1.5) with u(0) > q.

THEOREM 2.2. For each constant ℓ with $0 \le \ell < q$, there exists a positive solution u(r) of (1.5) with u(0) > q such that u(r) is strictly decreasing in r and converges to ℓ as $r \rightarrow \infty$.

PROOF. Let r_0 be the smallest positive zero of the Bessel function $J_{(N-2)/2}(\sqrt{pr})$, that is,

(2.3)
$$r_0 = \min\{r > 0: u_{(1)}(r) = q\}.$$

Putting $m = (q - \ell)r_0^{N-2}$, we have $u_{(1)}(r_0) = q = u_{(2)}(r_0)$. Differentiating $u_{(1)}(r)$ and $u_{(2)}(r)$ yields

$$u'_{(1)}(r_0) = -(u_0 - q)\Gamma(N/2)\sqrt{p}(\sqrt{p}r_0/2)^{(2-N)/2}J_{N/2}(\sqrt{p}r_0) < 0,$$

and

.

$$u'_{(2)}(r_0) = m(2-N)r_0^{1-N} = (2-N)(q-\ell)r_0^{-1} < 0$$

Therefore, we can choose $u_0 > q$ such that $u'_{(1)}(r_0) = u'_{(2)}(r_0)$. That is, putting

$$u_0 = q + (N-2)(q-\ell)r_0^{-1}/\{\Gamma(N/2)\sqrt{p}(\sqrt{p}r_0/2)^{(2-N)/2}J_{N/2}(\sqrt{p}r_0)\} > q,$$

we obtain the positive solution

(2.4)
$$u_{\ell}(r) = \begin{cases} (N-2)(q-\ell)(r/r_0)^{(2-N)/2}J_{(N-2)/2}(\sqrt{p}r)/\sqrt{p}r_0J_{N/2}(\sqrt{p}r_0) + q, \\ 0 < r \le r_0, \\ \ell + (q-\ell)r_0^{N-2}r^{2-N}, \quad r > r_0, \end{cases}$$

of (1.5) with u(0) > q and $\lim_{r \to \infty} u(r) = \ell$.

EXAMPLE. When N = 3,

$$u_{\ell}(r) = \begin{cases} (q-\ell) \sin \sqrt{pr} / \sqrt{pr} + q, & 0 < r \le p^{-1/2}\pi, \\ \ell + (q-\ell) (\sqrt{pr})^{-1}\pi, & r > p^{-1/2}\pi. \end{cases}$$

§3. Asymptotic behavior of the solution u(t, x; a, f)

In the present section we consider the Cauchy problem for the semilinear heat equation

Semilinear Heat Equations

(3.1)
$$\frac{\partial u}{\partial t} = \Delta u + f(u), \quad t > 0, \ x \in \mathbf{R}^{N},$$

with the initial condition

$$(3.2) u(0, x) = a(x), \quad x \in \mathbf{R}^N,$$

where $f(\lambda)$ is the function defined by (1.3) for the positive given numbers p and q, a(x) is a non-negative bounded continuous function on \mathbb{R}^N and N is greater than or equal to 3. For any non-negative bounded continuous initial value a(x) not vanishing identically, the equation (3.1) with (3.2) has a unique positive global solution u(t, x; a, f). There exist non-negative stationary solutions of (3.1) as was seen in §2, that is, the non-negative bounded radially symmetric solutions of $\Delta u + f(u) = 0$ are non-negative constants $\ell(0 \le \ell \le q)$ and $u_{\ell}(|x|) (0 \le \ell < q)$, where $u_{\ell}(r)$ is the positive solution of (1.5) with u(0) > q defined by (2.4) and satisfying $\lim_{r\to\infty} u_{\ell}(r) = \ell$. We denote $u_{\ell}(|x|)$ by $u_{\ell}(x)$ for simplicity throughout this section.

THEOREM 3.1. Let ℓ be a constant with $0 \le \ell < q$ and suppose that a(x) is a non-negative bounded continuous function.

(i) If $\ell \le a(x) \le u_{\ell}(x)$ and $a(x) \ne u_{\ell}(x)$, then the solution u(t, x; a, f) of (3.1) with (3.2) converges to ℓ uniformly in x as $t \to \infty$.

(ii) If $a(x) \ge u_{\ell}(x)$ and $a(x) \ne u_{\ell}(x)$, then the solution u(t, x; a, f) of (3.1) with (3.2) grows up to infinity as $t \to \infty$.

When $a(x) \ge \ell$ and $a(x) \ne \ell$, the comparison theorem (1.4) implies that $u(t, x; a, f) > \ell$ for any t > 0 and $x \in \mathbb{R}^N$. Therefore $v(t, x) = u(t, x; a, f) - \ell$ is the positive solution of the following equation

$$\begin{cases} \frac{\partial v}{\partial t} = \Delta v + f_{\ell}(v), \quad t > 0, \\ v(0, x) = a(x) - \ell, \end{cases}$$

where

$$f_\ell(\lambda) = \left\{egin{array}{ll} p\lambda - p(q-\ell), & \lambda \geq q-\ell, \ 0, & 0 \leq \lambda < q-\ell \end{array}
ight.$$

Hence it is sufficient to show this theorem for any q > 0 on the assumption $\ell = 0$.

For proving this theorem we prepare several lemmas. We start with some estimates on $f(\lambda)$ defined by (1.3).

LEMMA 3.2. For each $\lambda_0 > 0$, there exists a positive number α such that (3.3) $f(\gamma \lambda) \leq \gamma^{1+2\alpha} f(\lambda)$ for $0 \leq \lambda \leq \lambda_0, 0 < \gamma \leq 1$, and

(3.4)
$$f(\gamma\lambda) \ge \gamma^{1+2\alpha}f(\lambda)$$
 for $0 \le \gamma\lambda \le \lambda_0, \gamma \ge 1$.

PROOF. Since (3.4) follows from (3.3), we shall show (3.3). When $\gamma \lambda \leq q$, (3.3) holds for any $\alpha > 0$ since $f(\gamma \lambda) = 0$. Therefore it is sufficient to show (3.3) for $q/\gamma < \lambda \leq \lambda_0$ and $0 < \gamma < 1$. For $q < \gamma \lambda < \lambda$, we write

(3.5)
$$\frac{f(\gamma\lambda)}{f(\lambda)} = \frac{p\gamma\lambda - pq}{p\lambda - pq} = \frac{\gamma(\lambda - q) - q(1 - \gamma)}{\lambda - q} = \gamma \left\{ 1 - \frac{q}{\lambda - q} \left(\frac{1}{\gamma} - 1 \right) \right\}.$$

Putting $\beta = 1/\gamma - 1 > 0$ and $\lambda' = q/(\lambda - q) > 0$ in (3.5), we have

$$\frac{\log \left\{ f(\gamma \lambda) / f(\lambda) \right\}}{\log \gamma} = \frac{-\log \left(1 + \beta\right) + \log \left(1 - \lambda' \beta\right)}{-\log \left(1 + \beta\right)} = 1 - \frac{\log \left(1 - \lambda' \beta\right)}{\log \left(1 + \beta\right)}$$

Because $\log(1 - \lambda'\beta) \le -\lambda' \log(1 + \beta)$, we have for $\lambda \le \lambda_0$

$$\frac{\log \left\{ f(\gamma \lambda) / f(\lambda) \right\}}{\log \gamma} \ge 1 + \lambda' = 1 + \frac{q}{\lambda - q} > 1 + \frac{q}{\lambda_0 - q} \equiv 1 + 2\alpha > 1,$$

and hence

$$\log \{f(\gamma \lambda)/f(\lambda)\} \le (1+2\alpha)\log \gamma \quad \text{for} \quad q/\gamma < \lambda \le \lambda_0, \ 0 < \gamma < 1,$$

which completes the proof of Lemma 3.2.

The heat equation (3.1) with (3.2) is transformed into the integral equation

(3.6)
$$u(t, x) = H_t a(x) + \int_0^t H_{t-s} f(u(s, \cdot))(x) ds,$$

where

$$H_t a(x) = \int_{\mathbb{R}^N} H(t, x, y) a(y) dy,$$

$$H(t, x, y) = (4\pi t)^{-N/2} \exp(-|x-y|^2/4t)$$

We consider a class of monotone radially symmetric functions as follows:

$$\mathscr{A} = \{a \in C(\mathbb{R}^N) \colon a(x) \ge 0, \neq 0, a(x) \ge a(y) \quad \text{for} \quad |x| \le |y|\}.$$

It is obvious that $u_0(x)$ belongs to \mathscr{A} . Since f is non-decreasing, the following lemma holds (see Lemma 3.2 in [5]).

LEMMA 3.3. If $a(x) \in \mathcal{A}$, then $H_t a(x) \in \mathcal{A}$ and $u(t, x; a, f) \in \mathcal{A}$ for each $t \ge 0$.

Let a(x) be an initial value satisfying the assumption in (i) of Theorem 3.1, that is, a bounded continuous function with $0 \le a(x) \le u_0(x)$ and $a(x) \ne u_0(x)$.

44

Then, applying the comparison theorem (1.4) to the equation (3.1) with initial values a(x) and $u_0(x)$, we have

$$0 \le u(t, x; a, f) < u(t, x; u_0, f) = u_0(x)$$
 for $t > 0$.

Since $u_0(x) \in \mathcal{A}$, for each $t_* > 0$ there exists a function $a^*(x) \in \mathcal{A}$ such that

$$0 \le u(t_*, x; a, f) \equiv a_*(x) \le a^*(x) < u_0(x),$$

for any $x \in \mathbb{R}^{N}$. Applying the comparison theorem (1.4) to the equation (3.1) with initial values $a_{*}(x)$, $a^{*}(x)$ and $u_{0}(x)$, we have

$$u(t, x; a_*, f) \le u(t, x; a^*, f) < u(t, x; u_0, f),$$

and hence

$$u(t+t_*, x; a, f) \le u(t, x; a^*, f) < u_0(x),$$

for any t>0 and $x \in \mathbb{R}^N$. Therefore it is sufficient to prove (i) of Theorem 3.1 for each initial value $a(x) \in \mathscr{A}$ satisfying $0 \le a(x) < u_0(x)$. Similarly, we have only to prove (ii) of Theorem 3.1 for each initial value $a(x) \in \mathscr{A}$ satisfying $a(x) > u_0(x)$.

We shall estimate the solution u(t, x; a, f) of (3.1) with (3.2) using the stationary solution $u_0(x)$.

LEMMA 3.4. (i) If $0 \le a(x) < u_0(x)$ for any $x \in \mathbb{R}^N$, then for each $r \ge r_0$ there exists a positive number $\gamma < 1$ such that

$$u(t, x; a, f) \le \gamma u_0(x)$$

whenever $t \ge 0$ and $|x| \le r$, where r_0 is the positive constant given by (2.3).

(ii) If $a(x) > u_0(x)$ for any $x \in \mathbb{R}^N$, then for each $r \ge r_0$ there exists a positive number $\gamma > 1$ such that

$$u(t, x; a, f) \ge \gamma u_0(x)$$

whenever $t \ge 0$ and $|x| \le r$.

PROOF. First, we note that the solution u(t, x; a, f) = u(t, x) of (3.6) and the stationary solution $u_0(x)$ can be constructed by iteration as follows. Putting

$$\begin{cases} u^{(0)}(t, x) = H_t a(x), \\ u^{(n+1)}(t, x) = H_t a(x) + \int_0^t ds \int_{\mathbb{R}^N} H(t-s, x, y) f(u^{(n)}(s, y)) dy, \ n = 0, 1, 2, ..., \\ u^{(0)}_0(t, x) = H_t u_0(x), \\ u^{(n+1)}_0(t, x) = H_t u_0(x) + \int_0^t ds \int_{\mathbb{R}^N} H(t-s, x, y) f(u^{(n)}_0(s, y)) dy, \ n = 0, 1, 2, ..., \end{cases}$$

we have $u^{(n)}(t, x) \uparrow u(t, x)$ and $u_0^{(n)}(t, x) \uparrow u_0(x)$ as $n \to \infty$. Let α be a positive number defined in Lemma 3.2 for $\lambda_0 = 2 \max_{x \in \mathbb{R}^N} u_0(x) = 2u_0(0)$ and let β be such that $0 < \beta < 2\alpha/(1+2\alpha)$. For arbitrarily fixed $r \ge r_0$, we choose a constant q' so that $0 < q' < \min_{|x| \le r} u_0(x)$. Recall that $u_0(x) = q$ for $|x| = r_0$ and note q' < q. Furthermore we define

(3.7)
$$\tau = \inf \{t: H_t u_0(x) \le \beta q' \text{ for any } x \in \mathbb{R}^N\} = \inf \{t: H_t u_0(0) \le \beta q'\}.$$

Now we proceed with the proof of (i). Define a positive number

(3.8)
$$\gamma = \max_{0 \le t \le \tau, |x| \le r} (H_t a(x) / H_t u_0(x)) \lor \gamma_0 < 1,$$

where $a \lor b = \max(a, b)$ and γ_0 is the solution in (0, 1) of

$$\varphi(\gamma) \equiv (1-\beta)\gamma^{1+2\alpha} - \gamma + \beta = 0.$$

Step 1 is to prove that

(3.9)
$$u^{(n)}(t, x) \leq \gamma u_0^{(n)}(t, x), \quad n = 0, 1, 2, \dots$$

provided $|x| \le r$ and $u_0^{(n)}(t, x) > q'$. We shall show (3.9) by induction. Noting that $H_t u_0(x) \in \mathscr{A}$ and using the definition (3.7) of τ , we have for $t \ge \tau$

$$H_t u_0(x) \le H_t u_0(0) = \beta q' < q' \quad \text{for any} \quad x \in \mathbf{R}^N.$$

Therefore, assuming that $u_0^{(0)}(t, x) = H_t u_0(x) > q'$, we get $0 \le t \le \tau$, and hence by the definition (3.8) of γ we have (3.9) for n=0.

Next we shall show that (3.9) holds for n+1 under the hypothesis that (3.9) holds for n. Since $u^{(n)}(s, y) \le u(s, y) < u_0(y) < q$ for $|y| > r \ge r_0$, $f(u^{(n)}(s, y)) = 0$ for |y| > r and hence

(3.10)
$$u^{(n+1)}(t, x) = H_t a(x) + \int_0^t ds \int_{|y| \le r} H(t-s, x, y) f(u^{(n)}(s, y)) dy.$$

In the case when $|y| \le r$ and $u_0^{(n)}(s, y) > q'$, using the induction hypothesis, and next using (3.3) of Lemma 3.2 with $\lambda = u_0^{(n)}(s, y) \le u_0(y) \le u_0(0) < \lambda_0$, we have

$$f(u^{(n)}(s, y)) \le f(\gamma u_0^{(n)}(s, y)) \le \gamma^{1+2\alpha} f(u_0^{(n)}(s, y))$$

While in the case when $|y| \le r$ and $u_0^{(n)}(s, y) \le q'$, noting $u^{(n)}(s, y) \le u_0^{(n)}(s, y) \le q' < q$, we have

$$f(u^{(n)}(s, y)) = 0 = \gamma^{1+2\alpha} f(u_0^{(n)}(s, y)).$$

Therefore we get from (3.10)

(3.11)
$$u^{(n+1)}(t, x) \le H_t a(x) + \gamma^{1+2\alpha} \int_0^t ds \int_{|y| \le r} H(t-s, x, y) f(u_0^{(n)}(s, y)) dy$$

Semilinear Heat Equations

$$\leq H_t a(x) + \gamma^{1+2\alpha} \int_0^t ds \int_{\mathbf{R}^N} H(t-s, x, y) f(u_0^{(n)}(s, y)) dy.$$

Let us assume that $|x| \le r$ and $u_0^{(n+1)}(t, x) > q'$. In case $0 \le t \le \tau$, noting the definition (3.8) of γ , we get from (3.11)

$$u^{(n+1)}(t, x) \leq \gamma H_t u_0(x) + \gamma^{1+2\alpha} \int_0^t ds \int_{\mathbf{R}^N} H(t-s, x, y) f(u_0^{(n)}(s, y)) dy$$

$$\leq \gamma u_0^{(n+1)}(t, x).$$

Noting that $H_t a(x) \le H_t u_0(x)$, we get from (3.11)

$$(3.12) \quad u^{(n+1)}(t, x) - \gamma u_0^{(n+1)}(t, x) \\ \leq (1-\gamma)H_t u_0(x) + (\gamma^{1+2\alpha} - \gamma) \int_0^t ds \int_{\mathbf{R}^N} H(t-s, x, y) f(u_0^{(n)}(s, y)) dy \\ \leq (1-\gamma)H_t u_0(x) + (\gamma^{1+2\alpha} - \gamma)(q' - H_t u_0(x)) \\ = (1-\gamma^{1+2\alpha})H_t u_0(x) + (\gamma^{1+2\alpha} - \gamma)q',$$

where we have used the assumption $u_0^{(n+1)}(t, x) > q'$, that is,

$$\int_0^t ds \int_{\mathbf{R}^N} H(t-s, x, y) f(u_0^{(n)}(s, y)) dy > q' - H_t u_0(x)$$

in deriving the last inequality of the above. In case $t > \tau$, noting the definition (3.7) of τ , we get from (3.12)

$$u^{(n+1)}(t, x) - \gamma u_0^{(n+1)}(t, x) \le (\beta - \beta \gamma^{1+2\alpha} + \gamma^{1+2\alpha} - \gamma)q' = \varphi(\gamma)q' \le 0,$$

because $\varphi(\gamma) \le 0$ for $\gamma_0 \le \gamma < 1$, and hence we obtain (3.9).

Step 2. Here the proof of (i) will be completed as follows. Let a positive number T be fixed. Since $\min_{|x| \le r} u_0(x) > q'$ and $u_0^{(n)}(t, x)$ converges to $u_0(x)$ uniformly in $(t, x) \in [0, T] \times \mathbb{R}^N$ as $n \to \infty$, there exists a positive integer M such that $n \ge M$ implies that

$$u_0^{(n)}(t, x) > q'$$
 for $0 \le t \le T$ and $|x| \le r$.

Therefore, by Step 1, $n \ge M$ implies that

$$u^{(n)}(t, x) \leq \gamma u_0^{(n)}(t, x)$$
 for $0 \leq t \leq T$ and $|x| \leq r$,

and hence

$$u(t, x) \leq \gamma u_0(x)$$
 for $0 \leq t \leq T$ and $|x| \leq r$,

which establishes the proof of (i) since T is arbitrary.

(ii) can be proved along similar lines to (i). Put

Kusuo Kobayashi

(3.13)
$$\gamma \equiv \min_{0 \le t \le \tau, |x| \le r} \left(H_t a(x) / H_t u_0(x) \right) \land 2 > 1,$$

where $a \wedge b = \min(a, b)$. We shall prove

(3.14)
$$u^{(n)}(t, x) \ge \gamma u_0^{(n)}(t, x), \quad n = 0, 1, 2, ...,$$

provided $|x| \le r$ and $u_0^{(n)}(t, x) > q'$, which yields (ii) similarly to (i). When n=0, (3.14) follows from the definition (3.13) of γ . Suppose that (3.14) holds for n. In the case when $|y| \le r$ and $u_0^{(n)}(s, y) > q'$, using the induction hypothesis and next using (3.4) of Lemma 3.2 with $\lambda = u_0^{(n)}(s, y) \le (2/\gamma)u_0(0) = \lambda_0/\gamma$, we get

(3.15)
$$f(u^{(n)}(s, y)) \ge \gamma^{1+2\alpha} f(u_0^{(n)}(s, y)).$$

While in the case when $|y| > r \ge r_0$ or $u_0^{(n)}(s, y) \le q' < q$, (3.15) also holds since the right hand side of (3.15) vanishes. Therefore we have

(3.16)
$$u^{(n+1)}(t, x) \ge H_t a(x) + \gamma^{1+2\alpha} \int_0^t ds \int_{\mathbf{R}^N} H(t-s, x, y) f(u_0^{(n)}(s, y)) dy$$

Assume that $|x| \le r$ and $u_0^{(n+1)}(t, x) > q'$. In case $0 \le t \le \tau$, it follows from (3.16) that

$$u^{(n+1)}(t, x) \ge \gamma u_0^{(n+1)}(t, x),$$

using the definition (3.13) of γ . While in case $t > \tau$, using the definition (3.7) of τ , we have from (3.16)

$$u^{(n+1)}(t, x) - \gamma u_0^{(n+1)}(t, x) \ge (1 - \gamma^{1+2\alpha}) H_t u_0(x) + (\gamma^{1+2\alpha} - \gamma) q' \ge \varphi(\gamma) q' > 0,$$

since $\varphi(\gamma) > 0$ for $\gamma > 1$. Thus the proof of Lemma 3.4 is completed.

LEMMA 3.5. (i) If $0 \le a(x) < u_0(x)$ for any $x \in \mathbb{R}^N$, then for each $r \ge r_0$ there exist positive numbers $\alpha > 0$, $0 < \gamma < 1$ and an increasing sequence $\{t_n\}$ with $t_0 = 0$ such that

(3.17)
$$u(t, x; a, f) \le \gamma^{(1+\alpha)^n} u_0(x)$$

for $t \ge t_n$, $|x| \le r$ and n = 0, 1, 2, ...

(ii) If $a(x) > u_0(x)$ for any $x \in \mathbb{R}^N$, then for each $r \ge r_0$ and $M' > \sup_{x \in \mathbb{R}^N} a(x)$ there exist positive numbers $\alpha > 0$, $\gamma > 1$ and an increasing sequence $\{t_n\}$ with $t_0 = 0$ such that

(3.18)
$$u(t, x; a, f) \ge \gamma^{(1+\alpha)^n} u_0(x)$$

for $t \ge t_n$ and $|x| \le r$, provided

(3.19)
$$\gamma^{(1+\alpha)^{n-1}}u_0(0) \le M'.$$

PROOF. Put u(t, x) = u(t, x; a, f) and let $r \ge r_0$ be fixed.

(i) Let γ be a positive number less than 1 defined in Lemma 3.4 for r, and let α be a positive number defined in Lemma 3.2 for $\lambda_0 = u_0(0)$. We shall prove (3.17) by induction. When n=0, (3.17) holds by (i) of Lemma 3.4. Suppose (3.17) is true for n. Let $t > t_n$. Since $u(t, x; a, f) = u(t - t_n, x; u(t_n, \cdot), f)$, noting that $u(t_n + s, y) < u_0(y) < q$ namely $f(u(t_n + s, y)) = 0$ for |y| > r, we have

(3.20)
$$u(t, x) = H_{t-t_n}u(t_n, x) + \int_0^{t-t_n} ds \int_{\mathbb{R}^N} H(t-t_n-s, x, y)f(u(t_n+s, y))dy$$
$$= H_{t-t_n}u(t_n, x) + \int_0^{t-t_n} ds \int_{|y| \le r} H(t-t_n-s, x, y)f(u(t_n+s, y))dy.$$

Using the induction hypothesis and next applying (3.3) of Lemma 3.2 to $f(\tilde{\gamma}\lambda)$ with

$$0 < \tilde{\gamma} = \gamma^{(1+\alpha)^n} < 1 \quad \text{and} \quad \lambda = u_0(x) \le u_0(0) = \lambda_0,$$

we have

$$f(u(t_n+s, y)) \le f(\gamma^{(1+\alpha)^n}u_0(y)) \le \gamma^{(1+\alpha)^n(1+2\alpha)}f(u_0(y))$$

for $|y| \le r$. Therefore, noting $u(t_n, x) < u_0(x)$ for $x \in \mathbb{R}^N$, we have from (3.20)

(3.21)
$$u(t, x) \leq H_{t-t_n} u_0(x)$$

+ $\gamma^{(1+\alpha)^n (1+2\alpha)} \int_0^{t-t_n} ds \int_{|y| \leq r} H(t-t_n-s, x, y) f(u_0(y)) dy.$

Since $u_0(y) < q$ namely $f(u_0(y)) = 0$ for $|y| > r \ge r_0$, noting that $u_0(x)$ is the solution of the integral equation (3.6) replacing a(x) by $u_0(x)$, we have

$$\int_{0}^{t-t_{n}} ds \int_{|y| \le r} H(t-t_{n}-s, x, y) f(u_{0}(y)) dy$$

=
$$\int_{0}^{t-t_{n}} ds \int_{\mathbf{R}^{N}} H(t-t_{n}-s, x, y) f(u_{0}(y)) dy = u_{0}(x) - H_{t-t_{n}} u_{0}(x).$$

Combining this with (3.21) yields

$$(3.22) \quad u(t, x) \leq H_{t-t_n} u_0(x) + \gamma^{(1+\alpha)^n (1+2\alpha)} \{ u_0(x) - H_{t-t_n} u_0(x) \}$$

$$= \gamma^{(1+\alpha)^{n+1}} u_0(x)$$

$$+ \{ 1 - \gamma^{(1+\alpha)^n (1+2\alpha)} \} H_{t-t_n} u_0(x) + \gamma^{(1+\alpha)^{n+1}} \{ \gamma^{(1+\alpha)^n \alpha} - 1 \} u_0(x)$$

$$\equiv \gamma^{(1+\alpha)^{n+1}} u_0(x) + I_n(t, x).$$

Since $H_{t-t_n}u_0(x)$ converges to 0 uniformly in x as $t\to\infty$, there exists a positive number t_{n+1} greater than t_n such that $I_n(t, x) < 0$ for any $t \ge t_{n+1}$ and $|x| \le r$, and hence by (3.22)

$$u(t, x) \le \gamma^{(1+\alpha)^{n+1}} u_0(x)$$
 for $t \ge t_{n+1}, |x| \le r$,

which completes the proof of (i).

(ii) can be proved by induction in a similar way to (i). Let $M' > \sup_{x \in \mathbb{R}^N} a(x)$ be fixed. Let γ be a number greater than 1 defined in (ii) of Lemma 3.4 for r and let α be a positive number defined in Lemma 3.2 for $\lambda_0 = M'$. Since (3.18) is valid for n = 0, we shall prove (3.18) for n + 1 under the hypothesis that (3.18) holds for n. Assume $\gamma^{(1+\alpha)n}u_0(0) \le M'$. Then $\gamma^{(1+\alpha)n-1}u_0(0) \le M'$, and hence using the induction hypothesis we have

$$f(u(t_n+s, y)) \ge f(\gamma^{(1+\alpha)^n}u_0(y)) \ge \gamma^{(1+\alpha)^n(1+2\alpha)}f(u_0(y))$$

for $s \ge 0$ and $|y| \le r$, where we have applied (3.4) of Lemma 3.2 to $f(\gamma^{(1+\alpha)^n}u_0(y))$ since $\gamma^{(1+\alpha)^n}u_0(y) \le \gamma^{(1+\alpha)^n}u_0(0) \le M' = \lambda_0$ and $\gamma^{(1+\alpha)^n} > 1$. Consequently we similarly obtain

$$u(t, x) \ge H_{t-t_n} u_0(x) + \gamma^{(1+\alpha)^n (1+2\alpha)} \int_0^{t-t_n} ds \int_{\mathbf{R}^N} H(t-t_n-s, x, y) f(u_0(y)) dy$$

= $\gamma^{(1+\alpha)^{n+1}} u_0(x)$
+ $\{1-\gamma^{(1+\alpha)^n (1+2\alpha)}\} H_{t-t_n} u_0(x) + \gamma^{(1+\alpha)^{n+1}} \{\gamma^{(1+\alpha)^n \alpha} - 1\} u_0(x),$

and hence we can prove (ii) in a similar way to (i).

PROOF OF THEOREM 3.1. (i) By the remark we made just before Lemma 3.4 we may assume that $a(x) \in \mathscr{A}$ and $0 \le a(x) < u_0(x)$. Since $u(t, x; a, f) \in \mathscr{A}$ by Lemma 3.3, (i) of Lemma 3.5 implies that there exist positive numbers $\alpha > 0$, $0 < \gamma < 1$ and a sequence $\{t_n\}$ such that

$$u(t, x; a, f) \le u(t, 0; a, f) \le \gamma^{(1+\alpha)^n} u_0(0)$$

for $t \ge t_n$, $x \in \mathbb{R}^N$ and n = 0, 1, 2, ..., which completes the proof of (i).

(ii) We may similarly assume that $a(x) > u_0(x)$. For any constants $r \ge r_0$ and $M > \sup_{x \in \mathbb{R}^N} a(x)$, let $|x_r| = r$ and $M' = \{u_0(0)/u_0(x_r)\}M$. Then the assumption (3.19) is equivalent to the assumption $\gamma^{(1+\alpha)^{n-1}}u_0(x_r) \le M$. Therefore, it follows from (ii) of Lemma 3.5 that there exist $\alpha > 0$, $\gamma > 1$ and a sequence $\{t_n\}$ such that

$$u(t, x; a, f) \ge \gamma^{(1+\alpha)^n} u_0(x) \ge \gamma^{(1+\alpha)^n} u_0(x_r)$$

for $t \ge t_n$ and $|x| \le |x_r| = r$, provided $\gamma^{(1+\alpha)^{n-1}} u_0(x_r) \le M$, which implies (ii). Thus the proof of Theorem 3.1 is completed.

References

- [1] H. Fujita, On the blowing up of solutions of the Cauchy problem for $u_t = \Delta u + u^{1+\alpha}$, J. Fac. Sci. Univ. Tokyo Sect. I 13 (1966), 109–124.
- [2] H. Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic

equations, Proc. Symp. Pure Math., AMS 18 (1969), 105-113.

- [3] K. Hayakawa, On nonexistence of global solutions of some semilinear parabolic differential equations, Proc. Japan Acad. 49 (1973), 503-505.
- [4] K. Kobayashi, On some semilinear evolution equations with time-lag, Hiroshima Math. J. 10 (1980), 189–227.
- [5] K. Kobayashi, T. Sirao and H. Tanaka, On the growing up problem for semilinear heat equations, J. Math. Soc. Japan 29 (1977), 407-424.
- [6] M. Nagasawa and T. Sirao, Probabilistic treatment of the blowing up of solutions for a nonlinear integral equation, Trans. Amer. Math. Soc. 139 (1969), 301-310.
- [7] S. Sugitani, On nonexistence of global solutions for some nonlinear integral equations, Osaka J. Math. 12 (1975), 45-51.
- [8] G. N. Watson, A treatise on the theory of Bessel functions, 2 nd edition, Cambridge U. P., 1958.

Department of Mathematics, College of Liberal Arts, Toyama University