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1. Introduction and main results

Nairn [9], Chapitre IV, has shown how the minimal fine topology and Martin
boundary may be used to obtain elegant generalizations of the maximum principle
and the solution to the Dirichlet problem. The purpose of this paper is to show
that remarkably similar results can be obtained for half-spherical means in the
Euclidean half-space Ω = Rn~ιx(0, -foo).

If £ is a subset of Rn, then its closure and boundary will be denoted by
E and 8E respectively. We represent points of Rn by X, Y or P, and use O for
the origin; sometimes it will be convenient to write X = (Xf, xn), where X' e R""1.
The open ball of radius r centred at P will be abbreviated to B(P, r) and, using σ
to represent surface area measure, we write cn for σ(dB(O, 1)). Another important
constant is

y2 = (2π)-i, y n = {(n-2)cn}-i (n > 3).

We adjoin the isolated point oo to the usual topology on Ω and write Ω* for Ω U
{oo}. The set dΩ U {00} with the topology induced on it by Ω* will be abbreviated
to d*Ω. Provided the integrals exist, we can now define the half-spherical means

N(f: P, r) = r-""1 \ xJ(X)dσ(X)

for P e dΩ, and

iV(/: 00, r) = r-»]V(/: 0, r" 1 ) .

Let G denote the Green kernel for Ω. From well-known inequalities for G
(see, for example, [10], Lemma 1), it follows that the function G(X, Y)l{xnyn}
has an extension G*(X, 7)to ΩxΩ which is jointly continuous (in the extended
sense at points of the diagonal), and that

ynG*(X, Y) = 2\X - Y\-*lcH (Ye dΩ, X e Ω\{Y}).

From the Riesz decomposition theorem and [7], Theorem 2.25, it is now easy
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to deduce that there is a one-to-one correspondence between positive superhar-
monic functions u in Ω, and members v of the class M+ of non-zero Borel measures
on Ω* for which

( (l + \X\)-»dv(X) < +00.
JΩ

The correspondence is given by

u(X) = Gv(X) = xπ{v({α)}) + γn f G*(X, Y)dv(Y)} . (1)
JΩ

We shall use v to denote a fixed positive superharmonic function in Ω with
corresponding measure A on Ω*. It follows from the definition of G* that, if
A is a Borel subset of Ω, then (in the distributional sense)

and, denoting by h the greatest harmonic minorant of υ in Ω, we have

h(X) = xB{4({oo}) + 2c"1 ί | X - y |

Throughout this paper, υ and /ι will have these meanings. Recall (for example,
see [8], Theorem 4) that, if PedΩ, then N(υ: P, r) is real-valued and decreasing
as a function of r. If s is subharmonic with a non-negative harmonic majorant
in Ω, it is easy to see that N(s: P, r) must also be real-valued. In imitation of the
theory of the fine Dirichlet problem (see [6], pp. 144, 145) we say that a point
P e d*Ω is mean weak i -regular if N(υ: P, r)-> + oo as r->0 +. The following is
a type of maximum principle.

THEOREM 1. Let s be a subharmonic function in Ω such that s+ has a har-
monic majorant in Ω. If

lim infr_0 + N(s: P, r)/N(v: P, r) < + oo VP e dm (2)

and

limππ%o+ N(s: P, r)/N(v: P, r) < 0 /or α.e. (yl)Ped*Ω, (3)

thens<OinΩ.

This generalizes a result of Armitage (see [4], Theorem 1), which deals only
with the case where both s and υ are harmonic, requires more than (3) when P =
oo, and includes the redundant hypothesis that every Ped*Ω is mean weak ir-
regular. Following Armitage, we can take v(X) = 1 + xn, so that A consists of
(n — l)-dimensional Lebesgue measure on dΩ together with the Dirac measure



Half-spherical means and boundary behaviour 341

at oo. Since riV(l: P, r) is independent of r, we have the following improvement
of [4], Theorem 3.

COROLLARY. Let s be a subharmonίc function in Ω such that s+ has a
harmonic majorant in Ω. If

liminfr_>0 + rN(s: P, r)

is less than +oo for all PedΩ and non-positive for a.e. (σ)PedΩ, and

liminfΓ_» + OQN(s: 0 , r) < 0,

then s<0 in Ω.

Now let h be non-zero. Armitage ([3], p. 236) has already remarked that,
even if 5 is harmonic, the limiting behaviour of

N(s:P,r)/N(h:P, r)

as r-»0+ does not coincide with the limiting behaviour of sjh at P in the minimal
fine topology. However, Theorem 1 is reminiscent of [9], Theoreme 22 and
suggests that many of the boundary limit theorems involving the minimal fine
topology (see, for example, [6], XVI, 11-16) can be rewritten without much
difficulty in terms of half-spherical means. We shall be content to give an
analogue of the fine Dirichlet problem (see [6], XVI, §5).

Let sf be the Alexandroff point for Ω, and recall that the Martin compacti-
fication for Ω and Alexandroff compactification for Ω are equivalent. By setting
/(oo)=/(jaθ, any function / on the Martin boundary Δ1 can be regarded as a
function on d*Ω. If \f(X)\dΛ(X) defines a member of M + , then we say that/
is /ι-resolutive; in particular, if/is continuous on Aί9 then it is easy to see that/
is /ι-resolutive. For the equivalence of this definition to that involving upper and
lower classes, we refer the reader to [6], Theorems XVI, 3 and 9. If / is h-
resolutive, we use f+Λ and f~ A to denote the measures on d*Ω defined by

df+Λ(X)=f+(X)dΛ(X) and df~A{X) =f~(X)dΛ(X),

and we abbreviate Gf+Λ-Gf~Λ to GfΛ. We shall say that Ped*Ω is mean
/ι-regular if, for every function /continuous on Al9 we have

N(GfΛ: P, r)IN(h: P, r) >/(P) (r->0 + ). (4)

Further, P is said to be mean strong /z-regular if, for every /i-resolutive function
/which is continuous (in the extended sense) at P, (4) holds.

THEOREM 2. If Ped*Ω, then the following are equivalent:
( i ) P is mean weak h-regular;
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(ii) P is mean h-regular;
(iii) P is mean strong h-regular;

(iv) \ \P-Y\~ndΛ(Y)=+00
JδΩ

ifPedΩ, or

A(dΩ) + Λ({oo}) (+oo) = +00

ifP=oo. (We adopt the convention that 0 (+ oo) = 0.)

COROLLARY. The non mean h-regular points of d*Ω form a set of zero
A-measure.

The proofs of Theorems 1 and 2, which rely on results to be given in § 2,
may be found in §§3 and 4 respectively.

2. Preparatory results

We introduce the class M comprising those signed measures μ defined on the
relatively compact Borel subsets A of Ω* by

μ(A) = μi(A) - μ2(A)

for some μί9 μ2eM+

9 and write Gμ for Gμί — Gμ2 (we allow both μx and μ2 to
have infinite total mass). If s is subharmonic in Ω and s+ has a harmonic
majorant in Ω9 it follows from two applications of (1) that s = Gμ for some μeM.
It will be convenient to write

μ(P9 r) = μ(B{P9 r) n Ω) (r>0).

LEMMA 1. If μeM and r>0, then

N(Gμ: P, r) = \°° Γ^μ(P9 i)dt + cnμ({π})l(2n) (5)
Jr

when P e dΩ9 and

N(Gμ: oo, r) = ^ " { J ^ rn^μ{09 i)dt + cnμ({oo})/(2n)J (6)

>, r~H)dt + cnr"
πμ({oo})/(2n). (7)

Since iV(xM: P, r) has the constant value cj(2n), it is sufficient to establish
that

N(Gμ: P9 r) = f°° rn~^(P9 t)dt (8)
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when μeM+ and μ({oo})=0; equations (5) and (6) will then be immediate, and
(7) follows by a simple substitution. Let μx and μ2 denote respectively the
restrictions of μ to dΩ and Ω. Equation (8) with μ = μι has been proved in [3],
Lemma 3. Let Ifr denote the Dirichlet solution in B(P9 r)Γ\Ω of the function
equal to / on dB(P, r)Γ\Ω and 0 on B(P9 r) Π dΩ. Then, since Gμ2 is a potential
in Ω, it is easy to check that the same is true of the function u given by

[ IGμ2tr{X) if XeB(P,r)()Ω

[ Gμ2(X) if XeΩ\B(P,r).

Further, u continuously vanishes on B(P, r) Π dΩ (see [1], Theorem 2). It now
follows from two results of Armitage ([2], Theorems 4 and 8) that

{2nT'cn l i m ^ o u{X)jxn = ̂ Γ^μ2(P, t)dt + o(l) (R-+ + oo).

Since the left hand side of this equation can be written as N(Gμ2: P, r) (see [2],
Lemma C(i)), the result is proved.

The following result is a generalization of [3], Theorem 1.

THEOREM 3. Let μeM and Ped*Ω be mean weak v-regular. Then

if PedΩ,and

< Km
< Urn

for allro>0ifP=oo.

For the proof of (i) we follow an argument similar to that of [3], Theorem 1.
First observe that, since P is mean weak t -regular, it follows from (5) that Λ(P,
r) is non-zero for all r>0, and so all the quotients in (i) are defined. Next, since
—μ is also in M, we need prove only the final inequality, and can assume that the
last upper limit c, say, is not +oo. Let c<C< + oo. Then there exists R>0
such that
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μ{P,r)<CΛ{P,r) (re (0,2?)).

It follows from the mean weak υ-regularity of P and (5) that, as r-*0+, we have

N(Gμ: P, r) = (* r"~^{P, t)dt + 0(1)
Jr

< c {Rr»-1Λ(P, t)dt + 0(1)

= {C + o(l)}N(v.P,r),

and (i) is proved.

In the case of (ii), oo is mean weak i -regular and so, if Λ({oo}) = 0, it follows

from (7) that, for every r o > 0 , there exists R>r0 such that Λ(P9 R)>Λ(P, r0).

Hence the quotients in (ii) are defined for all sufficiently small r. Again we need

only deal with the final inequality, and can assume that the last upper limit c,

say, is not +00. Fix r o > 0 .

First suppose that at least one of the numbers Λ({oo}) and μ({oo}) is non-

zero. It follows from (6) that

N(Gμ: oo, r) _ o(l) + μ({co}) / - > 0 + x (9)

N(v:oo,r) o(l) + Λ({oo}) V Ό^}' K )

Now observe that

rnΛ(O9 r-1) < n {°° r"" 1 Λ(0 ' , t)dt >0 (r->0 + )

and also (by considering separately the measures μx and μ2 used to define μeM)

Hence

and so (ii) is proved in this case.

We are left with the case where Λ({oo}) and μ({oo}) are both zero. Let

c < C < + 00. Then there exists R > 0 such that

, r-1) - μ(O9 ro) < C[Λ{0, r-i) - Λ(0, r0)] (re(0, R)).

It follows from the mean weak t -regularity of 00 and (6) that, as r-»0 + , we have

N(Gμ: 00, r) = r ^ Γ Γ'^lμiO, t) - μ(O, rβ)]Λ + 0(1)
J 1
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< Cr-» Γ r'-^lΛφ, ί) - Λ(O, rjβdt + 0(1)
Jr"1

= {C + O(1)}N(Ό: oo, r) ,

and (ii) is proved.

3. Proof of Theorem 1

We shall require the following result, due to Watson ([11], Theorem 1),

which relies on a theorem of Besicovitch ([5], Theorem 3).

THEOREM A. Let λ be a measure on Rn such that λ(B(X, r ))>0 for each

XeRn and each r > 0 . If μ is a signed measure on Rn and

liminfr_>0 + μ(B(X, r))/λ(B(X,r))

is less than + co for all l e Rn and is non-positive a.e. (λ), then —μ is a measure

on Rn.

The proof of Theorem 1 will now the given. Although both this theorem

and the result of Armitage which it generalizes rely on Theorem A, the way in

which we apply the latter result is quite different.

Since s+ has a harmonic majorant in Ω, there exists μeM such that s = Gμ.

We define the signed measure μ0 on the bounded Borel subsets A of Rn by μo(Λ) =

μ(A ΓΊ Ω). Thus

μo(R»\Ω) = 0 (10)

and, if A c= Ω,

( χ-idμo(X)=-{Δs)(χA). (11)
JA

Using τ to denote n-dimensional Lebesgue measure, we define λ on the Borel

subsets A of Rn by

λ{A) = A(A n Ω) + τ(A).

For each P e dΩ we also define τp on the Borel subsets A of Ω* by

Using bn to represent the volume of an n-dimensional unit ball, it follows from

(5) that

P: P, r) > N(GτP: P, r) = (°° Γ^HpiP, t)dt
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+ 0 0

and so P is mean weak (GΛ + GτP)-regular. From Theorem 3 (i) (with v replaced

by GΛ + GτP) we deduce that

Thus, using (3),

lim infr->0+

for a.e. (Λ)P e dΩ, and (2) shows that the lower limit is less than + oo everywhere

on dΩ. If P e Ω, then (12) follows from (11) while, if P e Rn\Ω, then (10) shows

that (12) still (trivially) holds. Since every open ball in Rn has positive n-

dimensional Lebesgue measure, we can apply Theorem A to deduce that — μ0

is a measure on Rn, and so μ < 0 on Ώ. Hence

s(X) = Gμ(X) < xnμ({oo}) (XeΩ). (13)

If μ({oo})>0 and Λ({oo}) = 0 (respectively Λ({oo})>0) then (9) and (2) (respectively

(9) and (3)) yield a contradiction. Thus μ({oo})<0 and the result follows from

(13).

4. Proof of Theorem 2 and Corollary

(i)=>(iii). Suppose P is mean weak //-regular and / is /ί-resolutive and

continuous (in the extended sense) at P. If P e dΩ, then

{f+Λ(P, r) -f'Λ(P, r)}/Λ(P9 r) —

and the result follows from Theorem 3 (i). If P = o o and Λ({oo})>0, then (4)

follows from (9). Otherwise

If/is (finite and) continuous at oo, then, for any ε>0, there exists ro>0 such that

ε (Ye dΩ\B(O, r0)),
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and it follows from Theorem 3 (ii) that

|/(oo) - N(GfΛ: oo, r)/N(h: oo, r)\ < ε

for all sufficiently large r, as required. An analogous argument deals with the

case where/(oo) = ± oo.

(iii)=>(ii). Immediate.

(ii)=>(i). Suppose P is not mean weak /i-regular. If P e dΩ, it follows from

(5) that N(h: P, r) increases to a finite positive limit as r decreases to 0. In

particular, Λ({P}) = 0 and the function / given by

ί min{l, \X-P\} if XedΩ

f(X) =

[ l if X = J3f

is continuous on Δx and positive a.e. {A). It follows that GfΛ is positive and so

N(GfΛ: P, r)/N(h: P9 r) > / > 0 =/(P) (r
contradicting the mean /^-regularity of P. If P=oo, we apply an analogous

argument, using instead the function

f min{l, l^l"1} if XedΩ

f(X) =
[ 0 if I = J / .

(i)o(iv). Rewriting (5) as

N(Gμ: P, r) = n

we can use integration by parts to obtain

N(h: P, r) = n-1^^ min {|P-

when P e 3ί2, and

N(h: oo, r) = r~"iV(/2: O, r"1)

-» |y |-, \}dΛ(Y)

The result now follows on letting r-»0+ and appealing to the monotone con-

vergence theorem.

Finally, we give the proof of the Corollary. In the terminology of Nairn,

condition (iv) of Theorem 2 is equivalent to the (9-potential associated with

h being valued + oo at P (see the expressions given for Θ in [9], p. 239). From
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[9], p. 237, Application 2, this is true for a.e. (Λ)Ped*Ω, and so the result is
proved.
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