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In this paper we consider three types of questions concerning the ideal and
subideal structure of Lie algebras with certain finiteness conditions. First we
consider the question of finding conditions under which the join of subideals of a
Lie algebra is a subideal. We prove (Theorem 1.2) that when L is a Lie algebra
over a field of characteristic zero and {Hλ \ λ e A} is a set of subideals of L with J
their join, J is a subideal of L if and only if the set of subideals of L lying in J has
a maximal element. We also find another condition under which the join of two
subideals of a Lie algebra is a subideal (Theorem 1.5).

The second problem is to investigate the structure of Lie algebras with a
certain chain condition on subideals using the notion of prime ideals and prime
algebras (defined by analogy with associative rings). In particular we prove
(Theorem 2.1) that when L is a Lie algebra over any field and X is one of max-<αn

(n>2), max-si, min-o", min-si, Leϊ if and only if
(i) σ(L) is a finite-dimensional soluble ideal of L.
(ii) L/σ(L) is a subdirect sum of a finite number of prime algebras in 3E.

σ(L) denotes a generalization of soluble radical.
Thirdly, we generalize the minimal condition on ideals, leading to a new class

of quasi-Artinian algebras which possesses several of the main properties of
min-<α. We prove (Theorems 3.2, 3.3) that the class of quasi-Artinian algebras
is Q-closed and that a locally nilpotent quasi-Artinian Lie algebra is soluble.

I should like to thank my supervisor Dr. Ian Stewart for his constant help,
valuable suggestions and encouragement at all stages in the preparation of this
work. I would also like to thank Professor S. Togo for his helpful comments
on this work.

1. The join of subideals

It is well-known that the join of two subideals of a Lie algebra need not be a
subideal (see [1, Lemma 2.1.11]). This raises the question of finding conditions
under which the join is a subideal. The same question arises in group theory.
Wielandt [9, Theorem 2.10.5] has shown that when {Hλ\ λeΛ} is a set of sub-
normal subgroups of a group G and J is their join, / is subnormal in G if and only
if the set of subnormal subgroups of G lying in J contains a maximal member.
We obtain a similar result for Lie algebras. In particular we prove an analogue
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of Wielandt's theorem for Lie algebras over a field of characteristic zero. We
also find another condition under which the join of subideals is a subideal.

Notation for Lie algebras will follow Amayo and Stewart [1]. In particular

"<", "<α", "<]"", "si" denote respectively the relation subalgebra, ideal, n-step
subideal, subideal (see [1, pp. 2, 9, 10]). Triangular brackets < > denote the
subalgebra generated by their contents. Let L be a Lie algebra over any field.
We write Le max-si if L satisfies the maximal condition on subideals: Every
non-empty collection of subideals of L has a maximal element.

Let L be a Lie algebra over a field F of characteristic zero and let F0 = F<ί>
be the field of formal power series in the indeterminate t. Let D be the set of all

formal power series x = Σί=n*r*r» xreL and n = n(x)eZ. Let y = Σ.y rf
r eLT,

and define addition, multiplication, and multiplication of elements of D by scalars

from F0 according to the rules:

x + y = Σ(*r+Λ)ίr»
[*, y\ = Σ zrt

r, where zr = Σ;+y=r [*ί> yd >

αx = Σ crr, where cr = Σί+, =r <*,•*/•

It is easy to verify that this makes D into a Lie algebra over F0. Let M<L
and Mτ be the set of all elements x = Σxrt

r eLT with x reM. Then clearly Mt

is an F0-subalgebra of L τ . Now let M be a subset of LV We define (see [1,
p. 80]) a subset M4- of L by M; = {x e L| x = 0 or x is the first coefficient of some
element of M}.

Now we prove the following, which is the Lie algebra analogue of [9, Lemma
2.10.4].

LEMMA 1.1. Let L be a Lie algebra over afield of characteristic zero and
let S<L. Let B = {B\B<S, B siL} and let H be a maximal element of B.

Then #<ι S and H > B for every BeB.

PROOF. Let H have subideal index m in S and suppose that m>2. Denote

the ϊ'-th ideal closure of H in S by Ht. It follows that there exists xeH m _ 2 with
[H, x]£H. By [1, Lemma 4.1.l(b)] Jf t<amSt and W <S*. Let θ = exp(t ad x).
Then H^siL^ and H^^H^. But H^H^, hence Htβ idealises H^ and

and //t+H^^S^. By [1, Lemma 4.1.2 (b),(f)] we have
nd(^^+H^)^<5. Hence (W +&')*> e B. By [1, Lemma

4.1.2 (c), (f)] H^=H and H<^(W+WΘY, but H is maximal, hence (W +
WΘY=H. Now take /ιe# such that [Λ, x]^H. Then ftβ-Λ = [Λ, x]f+ —
and therefore {/zβ — /i}1 eί//1 +H^Θ)^=H which is a contradiction. Therefore

and clearly H>B for every 5 e B.

THEOREM 1.2. Let L be a Lie algebra over a field of characteristic zero
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and HλsiL, λeλ. Let J = (Hλ\λeΛy and B = {B\B<J, BsiL}. Then Js iL
if and only if B has a maximal element.

PROOF. The only if part is clear. To prove the if part, let H be a maximal
element in B. Then by Lemma 1.1, Ho J and each Hλ<H so J<H and J = H.

Therefore J si L.

COROLLARY. Let L be a Lie algebra over afield of characteristic zero and
let J=(Hλ\HλsiL, λeλy. Then J si L if one of the following holds.

(i) Lemax-si.
(ii) J 6 max-si.

The first part of this corollary is a special case of [6, Theorem 8]. Next we
prove the following, which is the Lie algebra analogue of a well-known result in
group theory.

THEOREM 1.3. Let L be a Lie algebra over afield of characteristic zero and
H, K be subideals of L. Suppose that the set of subideals of L lying between
H and J = <JF/, K) contains at least one maximal member. Then JsiL.

PROOF. Without loss of generality we may assume that H is a maximal
member of the set of subideals of L lying in J and containing the original H.
By Lemma 1.1, //<α J and by [1, Lemma 2.1.2] J si L.

As an application of this theorem, we have the following, which is proved in
[1, p. 64] by a different method.

COROLLARY 1. Let L be a finite-dimensional Lie algebra over a field of
characteristic zero and let H, K be subideals of L. Then J = (H,Ky is a
finite-dimensional subideal of L.

PROOF. That JsiL follows from Theorem 1.3. Further J is finite-
dimensional since L is.

COROLLARY 2. Let L be a Lie algebra over a field of characteristic zero
and let H, K be subideals of L. If H has finite codimension in J = <//, K>,

then J si L.

Finally we find another condition under which the join of two subideals of a
Lie algebra is a subideal. For this we shall need the following definitions (see
[1, pp. 18, 19, 20, 30, 67]). Let H and K be subsets of a Lie algebra L. The
circle product of H and K denoted by H°K, is defined as #o£ = [H, K]HU*.

It is clear that H°K is the smallest ideal of J = <ff, Ky containing [H, K].
A class 3£ of Lie algebras over a field F is a collection of Lie algebras over F

such that (0) e £ and if H e X and H ̂  K, then K e X. A class ϊ is i-closed provided
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every subideal of an £-algebra is always an £-algebra. A class 3E is N0-closed

if whenever //, K^L and H, Ke£, then H + Ke3E. A class 3ί is locally coa-

lescent if and only if whenever H and K are X-subideals of a Lie algebra L, then
to every finitely generated subalgebra C of / = <#, K> there corresponds an £-

subideal Z of L such that C<X<J. We write Le min-si if L satisfies the minimal

condition on subideals: Every non-empty collection of subideals of L has a mini-
mal element. Now we prove the following

THEOREM 1.4. Suppose that £ 1*5 an {i, N0}-closed and locally coalescent

class over any field. Let H and K be ^-subideals of a Lie algebra L with J =

<#, Ky. IfHoK/(HoK)2 is finitely generated, then Js iL and Jeϊ.

PROOF. Let M = H°K. Now there exists a finitely-generated subalgebra

C of M such that M = C + M2. By the local coalescence of ϊ there exists an

X-subideal X of L with C<X<J. Thus if N = X n M, then NoXsiL and so

ΛΓsiL, Weι£ = £ and M = AΓ + M2. From [1, Lemma 2.1.9] we have M =
N + M^ for all r. By [1, Corollary 2.2.17] we have J(r) eϊ for some r and so

M< r>eι£ = £. Finally by [1, Theorem 2.2.13] we have M = N + M<<r>eX and

MsiL (for J<r) and so M^siL for some r by [1, Theorem 2.2.7]). We also

have by [1, Theorem 2.2.13] that # + M, X-f -Meϊ and /ί + M, K + MsiL and

so by the same result J = H + M + K + Mε3i and JsiL.

COROLLARY. Let L be a Lie algebra over afield of characteristic zero and
let H, K be subideals of L. If H°KEm&\-<3 or #oKemin-<ι, then J —

<#, Ky si L.

2. Prime ideals in Lie algebras with chain conditions

The object of this section is to investigate the structure of Lie algebras with a
certain maximal (resp. minimal) condition on subideals using the notion of prime

ideals and prime algebras (defined by analogy with associative rings).
Let L be a Lie algebra over any field. An ideal P of L is said to be prime

if whenever [H, K] cP with //, K ideals of L, then H^PorK^P (see [7]). We

say that a Lie algebra L is prime if whenever H and K are ideals of L

and [#, K] = 0, then either // = 0 or X = 0. It follows that P is a prime ideal of

L if and only if L/P is a prime algebra. Let ίf<ιL. We denote by rad (H) the
intersection of all the prime ideals of L containing H, which is called the radical

of H. We write rad (L) for rad (0), the intersection of all prime ideals of L, arid

call it the prime radical of L (see [7, p. 683]). Let L be a Lie algebra. Then

σ(L) is defined to be the sum of all soluble ideals of L and L is semi-simple if

σ(L) = 0. Let & be a collection of subsets of L. We say that L satisfies rnax-y

if y7 satisfies the maximal condition: Every ascending chain S^ SS2 £
 4 of ele-
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ments St e £f terminates; so that Sr = SΓ+1 = for some reN. Similarly
L satisfies min-^ if 6f satisfies the minimal condition: Every descending chain

S1 ̂  S2 3 terminates. If L is a Lie algebra and & is respectively the set of ideals,
subideals, n-step subideals of L we write in place of max-^: max-<j, max-si,

" and for min-^ we write min-<ι, min-si, min-<ι".

The main result in this section is :

THEOREM 2.1. Let L be a Lie algebra over any field and let X be one of
max-o n (n > 2), max-si, min-<ι " (n > 2), min-si. Then LeX if and only if

(i) σ(L) is a finite-dimensional soluble ideal of L,
(ii) L/σ(L) is a subdirect sum of a finite number of prime algebras in £.

The proof follows from a series of lemmas.

LEMMA 2.2. //Lemax-<ι and H^L, then there are only a finite number of

prime ideals Pt (i=l,..., m) such that rad(//) = Πf=1 Pf .

PROOF. This can be proved in the same way as for non-associative rings in

[3].

This result is noted in [7, p. 683].

LEMMA 2.3. Let 7<ιL and H be a subideal (resp. n-step subideal) of L.
Then H Π / is a subideal (resp. n-step subideal) of L.

PROOF. The proof is clear.

LEMMA 2.4. Let L be a Lie algebra and let & be respectively the set of ideals,
subideals, n-step subideals of L. Suppose /f<iL, (i = l, 2,..., m) and Γ\f=ι /f = 0.
Let y?

ί = {(tf + / ί)//il#e^}. // L/Jjemax-^i (resp. min-^) for all i, then

L e max-^ (resp.

PROOF. By induction on m we need consider only the case m = 2, then
II π/ 2 = 0. Let H1^H2^-" be an ascending chain of elements HtG^. Then

(/f1+/ι)//1^(H2 + ίι)//ι^ is an ascending chain of elements of &^. There-
fore there exists r e ^V such that

tfr + / i .= / f r + 1 + / 1 = .... (1)

Now Ή j. n / 1 £ H2 n / 1 S . is an ascending chain of elements of &. Therefore

(Hί n /! +/2)/^2 — (ft 2 n Ji +^2)^2 — " is an ascending chain of elements of
SP2 and so there exists rεN such that (Hr n/ 1) + /2=(HΓ+1 n /1) + /2 = .

Therefore Hr+ί n h = (Hr n Il)+.Hr+l n / j n /2 by the modular law, but J j n J2

= 0, hence
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Hr+1 Π Λ - ί Γ , n / ! - (2)

Now from (1) and (2) we have Hr = Hr+ί = -' and so Lemax-^. That
can be proved by a similar method.

LEMMA 2.5. Let L be a Lie algebra and {Lα}αeyl be a family of Lie algebras.
Then L is a subdirect sum of {LΛ}ΛeA if and only if for each βeA, there is a sur-
jective homomorphism gβ: L-+Lβ such that Γ\βeA Ker gβ = Q.

PROOF. This can be proved in the same way as in [4, p. 99].

COROLLARY. Let L be a Lie algebra and let {/α}αe/1 be a family of ideals of

L. If ΛαeΛ^α — Oj ^en L is a subdirect sum of the family of Lie algebras

LEMMA 2.6. If Le max-<ι2 (resp. min-o2), then σ(L) is a finite-dimensional
soluble ideal of L.

PROOF. This follows from [1, Corollary 9.1.3(d) and Lemma 9.2.1].

LEMMA 2.7. Let L be a Lie algebra over any field.
(i) L /5 semi-simple with max-o", n>l (resp. max-si) if and only if L

is a subdirect sum of a finite number of prime algebras satisfying max-o",
n>l (resp. max-si).

(ii) L is semi-simple with min-<ι", n>l (resp. rnin-si) if and only if L is a
subdirect sum of a finite number of prime algebras satisfying min-o", n>l
(resp. min-si).

PROOF, (i) Let L be semi-simple with max-o n (resp. max-si). Then

σ(L) = 0. By Lemma 2.2, rad(L)=Γ\fβι Pf, where Pt are prime ideals of L.
But by [7, Theorem 7] rad (L) = σ(L), hence rad (L) = 0. Since P, is a prime ideal
of L, it follows that L/Pί is a prime algebra and L\P{ 6 max-<ι " (resp. max-si).
Now by Corollary of Lemma 2.5, L is a subdirect sum of a finite number of prime
algebras satisfying max-o " (resp. max-si).

To prove the converse suppose that L is a subdirect sum of a finite number of
prime algebras {LΛ}ΛeA, A = {\, 2,..., m} satisfying max-<ι" (resp. max-si). Let

gβ: L-+Lβ be the surjective homomorphism of Lemma 2.5. Then for each

β, L/KQrgβ^Lβ and Lβ is prime. Hence Ker 00 is a prime ideal of L. Thus
radCpcKer^ for each β, and so rad (L)^Γ\βeA Ker gβ = Q. But by [7,
Theorem 7], σ(L)^rad(L), hence σ(L) = 0 and L is semi-simple. Now that Le
max-<3M (resp. max-si) follows from Lemma 2.4.

(ii) Let L be semi-simple with min-o'1 (resp. min-si). Then Lhas only a
finite number of minimal ideals M1?...,Mr. Let Pί9 l<i<r, be an ideal of L
which is maximal with respect to not containing Mf . We claim that Pt is a prime
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ideal of L. Suppose not; then there exist ideals H, K of L such that
K<£Pi and [H, K]eP.. Now tf + P^P, and K + P^Pi9 so by the choice of
p., H + P^Mί and K + P^M^ Therefore M?c[# + p., K + PJcP,, But

M?7^0 for L is semi-simple, hence M? = M/£p. which is a contradiction. There-

fore Pf is a prime ideal of L and L/Pt is a prime algebra. If Λ^j Pf^O, then
this intersection contains one of the minimal ideals My for some j. But Mj<£Pj9

so Myξ£ ΓM=1 Pt . Hence Γ\'=ι Pi = 0 and by Corollary of Lemma 2.5, it follows
that L is a subdirect sum of a finite number of prime algebras satisfying min-o "

(resp. min-si).

Conversely that L is semi-simple can be proved as in (i), and that L e min-<] "

(resp. min-si) follows from Lemma 2.4.

PROOF OF THEOREM 2.1. The proof follows from Lemmas 2.6 and 2.7.

3. Quasi-Artinian algebras

The object of this section is to generalize the minimal condition on ideals in
such a way that the main properties of Lie algebras with min-<ι are preserved.

Let L be a Lie algebra over any field. We say that L is Artinian if L e min-<].

We say that L is quasi-Artinian if for every descending chain l± 2/ 2Ξ> ••• of ideals
of L there exist r, s e TV such that [L(Γ), /J c/n for all n, or equivalently there exists
m e N such that [L(m), 7m] ̂ /,, for all n. It is clear that every soluble Lie algebra

is quasi-Artinian, but it is easy to construct a soluble Lie algebra which is not
Artinian, so quasi-Artinian algebras need not be Artinian. Further, if L is a hyper-

central Lie algebra and is quasi-Artinian then L is soluble (for L(α) = 0 for some

ordinal α by [1, Lemma 8.1.1]. But L^L(1)^L(2)^ is a descending chain
of ideals of L and L is quasi-Artinian, so there exists m e TV such that [L(m), L(m)] c

L<»> for all n. Hence L^+^L'") for all n. Therefore L^+1) = L^+2> = .
and L(α) = L<m + 1>=0. Thus L is soluble).

THEOREM 3.1. The following are equivalent:

( i ) L is quasi-Artinian.

(ii) There exists me N such that for every descending chain / 12/ 23

of ideals of L, the descending chain of ideals [L(m), /1]2[L(WI), /2]Ξ>
terminates.

(iiΐ) For every non-empty collection <& of ideals of L, there exist an element
left and meN such that [L(m), /] s J for every Jetf with J c /.

PROOF. (i)-»(ii). Let L be quasi-Artinian. Now L2 L(1)2L<2)2 ' . is
is a descending chain of ideals of L, so there exists m e TV such that [L(m), L(w)] c

L<"> for all n>w. Therefore L(m + 1>cL<"> for all n>m and L^m+^^L<m+2^ =

• •• .. Also /^/ j^ is a descending chain of ideals of L, so there exists re^
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such that [L<2w), / r]^/Γ+s for all 56TV. Therefore for all SEN, [L(2m\ /Γ]c
[L<2"'>, iU2m\ /J] £ [L<2«>, /r+s]c[L<2"!>, /,]. Hence [L<2m>, /r] = [L(2l«), /|i+J.
Since the choice of m is independent of the sequence {/„}, the result follows.

(ii)->(iii). Suppose that (iii) does not hold for some #'. Then we can find

successively I^eff, (ί=l, 2,...) such that I^lt+l9 but [L<£>, /Jί/f+i which im-
plies that (ii) does not hold. Hence (ii)->(iii).

(iii)->(i) is clear.

THEOREM 3.2. (i) Let L be a quasi-Artinian Lie algebra and let 7oL.

Then L/I is quasi-Artinian.
(ii) Let 7oL. Then L is quasi-Artinian if one of the following holds:
(a) / is quasi-Artinian and L/I is soluble.

(b) L/I is quasi-Artinian and if /Ξ2/ t Ξ>/ 2Ξ2 , /,-<ιL f/ien there exists
meNsuch that [L<m), /„,]£/„/or all neN.

(c) L// /s quasi-Artinian and I is Artinian.

PROOF, (i) Let π: L-+L/1 be the natural homomorphism and let /^
/23 " be a descending chain of ideals of L = L/I. Then π"~1(/1)^.π~1(/2)3 . .is
a descending chain of ideals of L. But L is quasi-Artinian, so there exists meN

such that [L<M>, π-K/Jl^π-1^) for all «>m. Therefore [(π(L)) ,̂ :/J =

π[L<m>, π-K/Jle/n Thus [L(m),/Jc JM and L is quasi-Artinian,
(ii) (a), (b) Let / t 212 2 be a descending chain of ideals of L. Then / j Π

/ 2 /2 Π / 2 is a descending chain of ideals of / and (1^ + /)// 3 (/2 + /)// 2 is a
descending chain of ideals of L/I. By assumption (a) or (b), there exists meN
such that [L<"'>, / , n n / ] < Ξ / n n / and [L<m>,/m]+/c[Lί">,/„]+/ for all n>m.

Therefore [L<»>, /„]<=/„ + /, but [L("), JJc/m. Hence [L<»>, /Js(/B + /) n
/m = /Λ + (/ M n/)and so [LW, [ί», /J]s[L(*>, /J + [L<«), 7m n/]. Therefore
[L<m+1), 7m]c/π + (/M n /) = /„ and L is quasi-Artinian.

(c) Clear.

REMARK. A finite direct sum of quasi-Artinian Lie algebras is quasi-Artinian.

THEOREM 3.3. Let L be a locally nilpotent quasi-Artinian Lie algebra.
Then L is soluble.

PROOF. Suppose L is not soluble. Then there is a non-soluble ideal / of L.
We claim that / contains a minimal non-soluble ideal of L. Suppose for a con-
tradiction that this is not the case. Let / = / j . Then Q^l[2^lL^\ /J and
[L(1), /J is a non-soluble ideal of L, since / j is not soluble. So there is a non-

soluble ideal I2 of L such that /2g[L^), /JίΞ/^ Now 0=^43)c:[L<2V/2] and
[L(2), 72] is a non-soluble ideal of L since I2 is not soluble. So there is a non-
soluble ideal /3 of L such that 73 §Ξ [L(2), /2] c /2. Continuing this process, there
is a non^soluble ideal In^L^l\ / / ,_ 1 ]c/ n _ 1 ; Then 0^/ί,M+1)c[L(«),/„]
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and [L(/l), /„] is a non-soluble ideal of L since /„ is not soluble. So there is a

non-soluble ideal In+ί of L such that /n + 1§=[L(M), /„]£/„ and so on. Finally
the descending chain / 1 =5/ 2 =D contradicts the hypothesis that L is quasi-

Artinian.

Thus there is such a minimal ideal: call it J. But J2 <Ξ J and J2 is not soluble,

hence J — J2 by the minimality of J. Now either J has trivial centre or not

(i.e. either Z(J) = 0, or Z(J) ̂  0).
Suppose Z(J) = 0. Let ̂  = {X<ιL|Xcj and [K, J]^0}. ^^0for Je^.

We claim that ^ has a minimal element. Suppose not. Put J — Jt. Then CM

[J(!2), ^^[[Lί1), JJ, J], so [I/1', JJetf . Choose J2e<# such that J2^
[LOWJc^. Then 0^[J, J2] = [J2, J2]e[J, [J, J2]] = [J, [J<2>, J2]]<=

[J, [L<2>, J2]]. Hence [L<2>, J2] eίί and so on. Choose Jne# such that

/^[LO -D, J.-JεJ..!. Then 0*[V, JJ = [J<«+1>, JJs[J, [L<«>, JJ].
Therefore [L(w), J,J e ̂ . Repeat this process, then the descending chain of ideals
J1=DJ2=) ••• contradicts the hypothesis that L is quasi-Artinian.

Thus ^ has a minimal element, say K. If X is a minimal ideal of L, then K
is central (see [1, Lemma 7.1.6]) which is a contradiction. If K is not a minimal

ideal of L, then K=>H and H<αL for some H. Now either [#, J] = 0 or

[#, J]^0. If [ff, J]=0, then H^CL(J), but #<ΞJ, hence H<ΞCL(J)nJ =

Z(J) = 0. If [//, J]^0, then H = K by the minimality of K and K is a minimal
ideal of L and in both cases we get a contradiction.

Hence Z(J)^0. Let 17 be the hypercentre of J. Then U^L and ί/<α> = 0

for some infinite α. But L is quasi-Artinian, so l/(α) = L/ ( w ) = 0 for some finite n and

so L/ is soluble. Now J/ U is a minimal non-soluble ideal of L/17 and J/l/ =
(J/l/)2 with Z(J/C/) = 0, and a similar argument as above again gives a contra-
diction. Therefore L is soluble.

It appears likely that a theory of prime ideals of quasi-Artinian Lie algebras

may exist analogously to that for min-<]. In particular this would be the case
if every semi-simple quasi-Artinian Lie algebra were Artinian. We know no

example disproves this, but it remains an open question.

It is possible to define the notion of quasi-Artinian groups in an analogous
way and the proofs of Theorems 3.1, 3.2, 3.3 carry over in this case without

difficulties.
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