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§1. Introduction

In the main theorem of the previous paper [1], we have proved the following

(1.1) Let (G, M) be a smooth action of a compact connected Lie group G
on a connected closed smooth manifold M with orbit of codimension 1. IfM isa
Z,-cohomology sphere, then (G, M) is (essentially) isomorphic to

(a) the linear action on the sphere S" via a representation G—SO(n+1),

(b) the standard action on the Brieskorn manifold W?2m=1(r) for odd
r21, given in [1; Ex. 1.2], or

(c) theaction (SO(4), M) with dim M =7, given in [1; Ex. 1.3], which exists
for each relatively prime integers l; and mg (s=1, 2) with

l=m;=1mod4, 0<Ili—m; =4mod8, [,—m, =0 modS8.

The purpose of this supplement is to prove the following (1.2) whose suffici-
ency is asserted in [1; Ex. 1.3]:

(1.2) Among the actions (SO(4), M) in (c) of (1.1), M is a homotopy sphere
if and only if (I;, m, l,, my)=(1, =3, 1, 1), and then M=S7 and the action
is linear.

By virtue of (1.2), the following theorem is an immediate consequence of
(1.1), because it is well-known that W2"~1(r) in (b) is a homotopy sphere if and only
if both m and r are odd (cf. [2; Satz 1]).

THEOREM 1.3. If M isa homotopy sphere in addition, then (G, M) in (1.1)
is (essentially) isomorphic to a linear action in (a) or the action on W2™~(r) in
(b) for odd m and odd r=1.

We prepare some lemmas on the cohomology of certain coset spaces of
S3x S3in § 2, and prove (1.2) in § 3.
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§2. Preliminaries

Let G=S3x S3 and consider its subgroups

D=D*®)={(p, p); peD'} (D' ={z,zj;zeSY(=0), z* =1} = §%),
(2.1)

S =S8, m={(z z";zeS}, U=U(lm=SUS(j,J,
given in [1; § 9.7], where [ and m are given integers such that

(2.2) [l and m are relatively prime and [ = m = 1 mod 4.

Then we have the following lemmas on the integral cohomology (its coefficient
Z is omitted throughout this note) of G/D, G/S and G/U.

LemMma 2.3. (i) S3x(S3/D')~G/D by sending (p,[q]) to [pg, q]

(p, g€ S3).
(i) H*(G/D)~ H*(S*)@H*(S3/D’) and

H{(S3DY=Zifi=0,3, =xZ,®Z,ifi=2, =0 otherwise.

Proor. (i) The inverse is given by sending [p, q] to (pq~1, [q]).
(i) The first half is a consequence of (i). The second half holds, since S3/D’
is orientable and H(S3/D')~ H{D’) for i=1, 2 (cf. [3; 12-7]). g.e.d.

LemMma 2.4. (i) H*(G/S)= H*(S?)@ H*(S3).

(ii) Let j be the involution of G/S given by j([p, q])=[pj, qj1. Then the
induced automorphism j* of H(G/S) is — 1 if i=2 or 5, and 1 otherwise.

(iii) G/U is the orbit space of the free involution j in (ii).

(iv) H(G/U)= H(P,(R)x S3) (P,(R) is the real projective plane).

(v) The projection 0: G/S—G/|U induces the isomorphism 0*: H3(G/U)x
H3(G/S).

Proor. (i) We see immediately (i) from the Gysin sequence of the circle
bundle s: G—G/S for the projection s.
(i) Put T=S'x S!(>S), and let j' and j” be the free involutions of S3 and

S3/St given by j'(p)=pj and j’([p])=[pj], respectively. Then we have the
commutative diagrams

HXG|S)—L——H2(G[S)  HYG|S)—L—H*(G/S)
] v* . Iv* ls* 15*
HGIT) L 6y, H36) - B3y,

where v is the projection. In these diagrams, we see that v* is epimorphic and s*
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is monomorphic by the Gysin sequence of the circle bundles v: G/S—G/T and
s: G—G/S, respectively. Furthermore, (j” xj")*=—1 and (j' xj’)*=1 because
Jj” reverses the orientations and j’ preserves them. Thus we see (ii).

(iii) The definition (2.1) shows (iii).

(iv), (v) By (iii) and [3; 12-2, Th. 2], there is a spectral sequence {E7 ;, d"}
such that E? ;=HYZ,; H/(G/S)) and E* is the associated graded group of
H*(G/U). By (i), (ii) and [3; 3-7], we have

H3G/S)=Z ifi=0 and j=3,
(*) E? ,~(Z, ifiisodd>0and j=2,5, oriiseven>0 and j =0, 3,
s J
0 otherwise.

Then it is clear that H(G/U)=0 and H*(G/U)=~Z,. On the other hand, H5(G/U)
~Z, and H{(G/U)=0 (i=6) because G/U is a non-orientable 5-manifold.

We now show that
() the differential d3: E3 , (=E},~Z,) — E3 , (=E},=Z,) is isomorphic.
Assume the contrary. Then Ef,=E3},, and (*) implies that H*(G/U)=Z, or
H3G/U)=Z®Z, according as d*: E§ 3 (=E} ;) E%, is trivial or non-trivial.
Hence HYG/U; Z,)=Z,®Z, (since H3(G/U)=~Z,) or HXG/U; Z,)>Z,®Z, by
the universal coefficient theorem. This contradicts that Hi(G/U; Z,)=~Z, for
0<i<5([1; Lemma 9.7.1 (i)]). Thus (*#) holds.

By (x) and (xx), we see that H*(G/U)=E{,=0 and H3G/U)=Eg;=
E3 ;=Z. Thus (iv) holds. Furthermore (v) holds, because 0* is the composition
of H3G|U)=E3 ;= H3G/S). g.e.d.

LemMMA 2.5. Consider the commutative diagram

§3 A, G(=83x53) 4§53

L

i G/D 4’ SB/D/,

where i, (t=1, 2) is the inclusion into the t-th factor, 4 is the diagonal map, d
and d' are the projections, i,=di, and A'([p])=[p, p]. Further consider the
projections s: G—G|S and u: GID—-G|/U. Then the homomorphisms induced
from these maps on H3 satisfy

(2.6) i*¥s*(6) = m2v, i%s*(0) = — v, A*s*(8) = (m2—I?)y,
2.7 it*u*(0’) = m2v, A"*u*(') = (m2—12)/8)v,

for some generators 6 € H3G/[S), ¢ € H3(G/U), ve H¥S3) and v' e H¥S3/D")
of the infinite cyclic groups.
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Proor. Take the subgroup L=S3xS!(>S) of G. Then S3/Z,~L/S by
the map induced by i;, because i7!(S)=Z, by (2.1). Thus we have the fibering
S3/Z,, s G|S—G/L with G/L~ §3/S'~ S2, and its Wang exact sequence is in the
commutative diagram

H3(G|S)(=2Z) 5 H¥(S3| Z, (2 Z) — H¥(S%|Z,) (2Z,) — 0

ls* ja*
it

H3(G) H3($%)(=2Z)

(H4G/S)=0 by Lemma 2.4 (i)), where g: S3—>S3/Z,, is the projection of the m-
fold covering. Therefore

i¥s*(0) = g*iF¥(6) = m?v for some generators 6 € H3(G/S) and ve H3(S3).
By interchanging the factors of G=S3x S3 in the above proof, we have
(*) i¥s*(0) = el?v (e==+1), and hence A*s*(8) = (m2+¢l?)v.

Now put n=|l—m|. Then we can define a map 4,: S3/Z,—G/S by 4o([p]) =
[4(p)], because 4-Y(S)=Z, by (2.1). Therefore we have the commutative
diagram

H3(G/S) —=4— H*(S*|Z,)

Js [

H3G) —4* 5 H3(S?),

where h is the projection of the n-fold covering. By this diagram, the last equality
in (*) implies that m?+¢l? is a multiple of n=|/—m|. On the other hand, the
assumption (2.2) implies that /| —m=0 and I>+m?=2 mod 4. Therefore e= —1,
and (2.6) is proved.

Set §’=6*~1(6) e H3(G/U), where 6* is isomorphic by Lemma 2.4 (v). Since
uiy =udi, =0si,, the first equality in (2.7) follows from the one in (2.6). Since
ud’'d’=udA4=0s4, the last equality in (2.6) implies d’'*4’*u*(6")=(m?—I?)v.
This implies the second equality in (2.7), because d’': S3*—S3/D’ is an 8-fold
covering. g.e.d.

§3. Proof of (1.2)
Let I, and m, (s=1, 2) be given integers such that

(3.1) I, and my are relatively prime and I, = my, = 1 mod 4 (s=1, 2),

and by using the subgroups in (2.1), set
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G=S8x83 K,=U(l,m)(=oK; = S, my)) for s=1,2,
O kg =@ B =i, K= DY®).
Then [1; Ex. 1.3, Prop. 9.4.2 (0), § 9.7, (3.2-6)] shows the following
(3.3) The simply connected closed 7-manifold M in (1.1)(c) is given by
(3.4 M=X,UX; X,nX;=G|K,

where X, and X/, are the mapping cones of the projections f,: G/K—G|K, and
f5: GIK—G/K3, respectively.

Now we can prove (1.2) by the following

PROPOSITION 3.5. Let A=(ay,) be the 2x2 matrix given by
(3.6) agy =(=1r*"mi, a,=(=1p"'"mi-1)8 (s=12).

Then the integral cohomology of M in (3.4) satisfies the following (i) and (ii):

(i) H{(M)=H(S7) if ix34.

(ii) Ifi=3, 4, then the rank of H'(M) is equal to 2—rank A. Furthermore,
if det AxO0, then H¥M)=0 and H*(M) is a finite group of order |det A|=
[I3m3 — 13m3|/8.

Proor oF (1.2) BY ProrosiTiON 3.5. If M is a homotopy sphere, then Pro-
position 3.5 shows that

(Iymy=Lym)(Iimy+1,my) = + 8.

Since I;m,=Il,m;=1 mod4 by (3.1), this implies that I;m,—1I,m;=+4 and
Iimy+1l,m;=+2, and hence (I;m,, I,m;)=(—3,1) or (1, —3). Therefore
(14, my, 1, my)=(1, =3, 1, 1) by (3.1) and the assumption I, >m, in (1.1)(c),
and (1.2) is proved. g.e.d.

RBMARK 3.7. Proposition 3.5 implies also the fact in [1; p. 613] that M is
a Z,-cohomology sphere if and only if (I, —m, + 1, —m,)/4is odd, because 13m}—
EZm?=2(l; —m, +1,—m,) mod 16 by (3.1).

PrOOF OoF ProPOSITION 3.5. Since M is a simply connected 7-manifold, (i)
holds for i=0, 1, 6, 7. Consider the Mayer-Vietoris exact sequence of (M,
X,, X;)in (3.4). Then, by noticing that X; and X; are homotopy equivalent to
G/K, and G/K;=~G/[K, respectively, and by using Lemmas 2.3 (ii) and 2.4 (iv),
we see (i) for i =5, and hence for i=2; and furthermore we have the exact sequence

(3.7)  0— HXM)— H¥G/K,) ® H¥G/K}) L1=1%, H¥(G/K)— H*(M)—0.
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In this sequence, we see that H3(G/K,))=H3(G/K;)=Z (s=1, 2), H}G/K)=
Z®Z and
(3.8) f(69) = m}v + (m—13)[8)v'
for some generators 6,€ H3(G/K,) and v, v' € H}G/K),

by (3.2), Lemmas 2.4 (iv), 2.3 and (2.7), (f,: G/K—G/K, is the projection).
On the other hand, we have the commutative diagram

G/K, L2 G/K~S3x (S3/D')

cal lca lc/;'Xc,;'

GIK, L G/K~S3x (S3/D"),

where cy([x])=[B""'xB] (x€ G), cy(p)=p"~"pB’, s ([pD=[B"~'pB'1(p € S?), and
the homeomorphism is the one given in Lemma 2.3 (i). It is easy to see that the
two c; preserve the orientations. Thus this diagram shows that cf=1: H3(G/K)
—H3(G/K) and

(3.9 f5*(63) = m3v + ((m3—13)/8)v'
for a generator 65 = cf~'(6,) e HYG/K3)(=Z),
by (3.8) for s=2.
Now (3.8) and (3.9) show that the homomorphism f§—f*: ZOZ->ZDZ

in (3.7) is represented by the matrix A=(a,,) given by (3.6). Thus we see (ii) by
the exact sequence (3.7), and the proof of the proposition is completed. g.e.d.
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