Notes on non-discrete subgroups of $\hat{U}(1, n ; \boldsymbol{F})$

Shigeyasu Kamiya
(Received December 24, 1982)

1. Introduction

Let \boldsymbol{F} denote the field \boldsymbol{R} of real numbers, the field \boldsymbol{C} of complex numbers, or the division ring of real quaternions K. Let $V=V^{1, n}(F)$ denote the (right) vector space $\boldsymbol{F}^{\boldsymbol{n + 1}}$, together with the unitary structure defined by the \boldsymbol{F}-Hermitian form

$$
\Phi(z, w)=-\overline{z_{0}} w_{0}+\overline{z_{1}} w_{1}+\cdots+\overline{z_{n}} w_{n}
$$

for $z=\left(z_{0}, z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{0}, w_{1}, \ldots, w_{n}\right)$. An automorphism g of V, that is, an F-linear bijection of V onto V such that $\Phi(g(z), g(w))=\Phi(z, w)$ for $z, w \in V$, will be called a unitary transformation. We denote the group of all unitary transformations by $U(1, n ; \boldsymbol{F})$. Let $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ be the standard basis in V, and set $\hat{e}_{0}=\left(e_{0}-e_{1}\right)(1 / \sqrt{2}), \hat{e}_{1}=\left(e_{0}+e_{1}\right)(1 / \sqrt{2})$ and $\hat{e}_{k}=e_{k}$ for $2 \leqq k \leqq n$. Let D be the matrix which changes the basis $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$ into the basis $\left\{\hat{e}_{0}, \hat{e}_{1}, \ldots, \hat{e}_{n}\right\}$. Let $\mathcal{O}(1, n ; \boldsymbol{F})=D^{-1} U(1, n ; \boldsymbol{F}) D . \quad \hat{O}(1, n ; \boldsymbol{F})$ is the automorphism group of the Hermitian form

$$
\tilde{\Phi}(z, w)=-\left(\overline{z_{0}} w_{1}+\overline{z_{1}} w_{0}\right)+\overline{z_{2}} w_{2}+\cdots+\overline{z_{n}} w_{n}
$$

for $z, w \in V$.
In the study of kleinian groups one is concerned with sufficient conditions for subgroups of Möbius transformations to be non-discrete (cf. [2]). Our purpose here is to give similar conditions for subgroups of $\hat{U}(1, n ; \boldsymbol{F})$ to be nondiscrete.

2. Preliminaries

Let $V_{-}=\{z \in V: \Phi(z, z)<0\}$ and $\hat{V}_{-}=D^{-1}\left(V_{-}\right)$. Obviously \hat{V}_{-}is invariant under $\hat{U}(1, n ; \boldsymbol{F})$. Let $P(V)$ be the projective space obtained from V, that is, the quotient space $V-\{0\}$ with respect to the equivalence relation: $u \sim v$ if there exists $\lambda \in F-\{0\}$ such that $u=v \lambda$. Let $P: V-\{0\} \rightarrow P(V)$ denote the projection map. We denote $P\left(\hat{V}_{-}\right)$by Σ. Let $\bar{\Sigma}$ be the closure of Σ in the projective space. We shall view that each element of $\hat{U}(1, n ; \boldsymbol{F})$ operates in $\bar{\Sigma}$. Let $G_{0}=\{g \in$ $\left.\hat{U}(1, n ; \boldsymbol{F}): g\left(P\left(\hat{e}_{0}\right)\right)=P\left(\hat{e}_{0}\right)\right\}, G_{\infty}=\left\{g \in \hat{U}(1, n ; \boldsymbol{F}): g\left(P\left(\hat{e}_{1}\right)\right)=P\left(\hat{e}_{1}\right)\right\}$ and $G_{0, \infty}=G_{0} \cap G_{\infty}$. The general form of elements in G_{∞} is shown in [1; Lemma
3.3.1]. In the same manner we obtain

Proposition 2.1. Let $g \in G_{0}$. Then (with respect to the basis $\left\{\hat{e}_{0}, \hat{e}_{1}, \ldots, \hat{e}_{n}\right\}$)

$$
g=\left[\begin{array}{ccc}
\xi & t & \beta \\
0 & \eta & 0 \\
0 & \alpha & A
\end{array}\right]
$$

where $t, \xi, \eta \in \boldsymbol{F}$, while α, β and A are $(n-1) \times 1,1 \times(n-1)$ and $(n-1) \times(n-1)$ matrices, respectively. Furthermore, $\bar{\xi} \eta=1, \operatorname{Re}(\bar{\eta} \eta)=(1 / 2)|\alpha|^{2}$ (where $|\alpha|$ is the Euclidean norm of α), $\beta=\xi \bar{\alpha}^{T} A$ (where T denotes the transpose), and $A \in$ $U(n-1 ; F)$.

By [1; Lemma 3.3.1] and Proposition 2.1, we have
Proposition 2.2. An element in $G_{0, \infty}$ has the form

$$
g=\left[\begin{array}{lll}
\mu & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & A
\end{array}\right],
$$

where $\bar{\mu} \lambda=1$ and $A \in U(n-1 ; \boldsymbol{F})$.
Remark 1 (cf. $\left[1 ;\right.$ p. 73]). $G_{0, \infty}=\hat{U}(1 ; \boldsymbol{F}) \times \hat{U}_{0}(1,1 ; \boldsymbol{R}) \times \hat{U}(n-1 ; \boldsymbol{F})$.
Remark 2 (cf. [2; Theorem 1E in Chap. 1]). Even if two elements in $\hat{U}(1, n ; \boldsymbol{F})$ have the same set of fixed points on $\partial \Sigma=\bar{\Sigma}-\Sigma$, they are not necessarily commutative.

3. Sufficient conditions for subgroups of $\hat{U}(1, n ; \boldsymbol{F})$ to be non-discrete

In this section we prove two theorems. We shall call $g \in \hat{O}(1, n ; F)$ loxodromic if it has exactly two fixed points in $\bar{\Sigma}$ and these belong to $\partial \Sigma$.

Theorem 3.1 (cf. [2; Theorem 2I in Chap. 1]). Let $g \in \widehat{U}(1, n ; \boldsymbol{F})$ be loxodromic. Let f be an element in $\hat{\mathcal{U}}(1, n ; \boldsymbol{F})$ which has one and only one fixed point in common with g. Then the group generated by f and g is not discrete.

Proof. By [1; Proposition 2.1.3], we may assume that the fixed points of g are $P\left(\hat{e}_{0}\right)$ and $P\left(\hat{e}_{1}\right)$ and the latter is the common fixed point of f and g. Thus $f \in G_{\infty}$ and $g \in G_{0, \infty}$. By Proposition 2.2, we have

$$
g=\left[\begin{array}{ccc}
\mu & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & A
\end{array}\right]
$$

where $\bar{\mu} \lambda=1$ and $A \in U(n-1 ; \boldsymbol{F})$. By Proposition 2.1, we see that f is of the form

$$
f=\left[\begin{array}{lll}
\xi & 0 & 0 \\
s & \eta & b \\
a & 0 & B
\end{array}\right]
$$

where $\xi, \eta, s \in \boldsymbol{F}$ and a, b and B are $(n-1) \times 1,1 \times(n-1)$ and $(n-1) \times(n-1)$ matrices, respectively, such that $\bar{\xi} \eta=1, \operatorname{Re}(\bar{\xi} s)=(1 / 2)|a|^{2}, b=\eta \bar{a}^{T} B$ and $B \in$ $U(n-1 ; \boldsymbol{F})$. The commutator of f and g^{n} is

$$
f g^{n} f^{-1} g^{-n}=h_{n}=\left[\begin{array}{ccc}
\alpha_{11}^{(n)} & 0 & 0 \\
a_{21}^{(n)} & \alpha_{22}^{(n)} & A_{n} \\
B_{n} & 0 & C_{n}
\end{array}\right],
$$

where

$$
\begin{aligned}
\alpha_{11}^{(n)}= & \xi \mu^{n} \xi^{-1} \mu^{-n}, \\
\alpha_{21}^{(n)}= & s \mu^{n} \xi^{-1} \mu^{-n}-\eta \lambda^{n} \eta^{-1} s \xi^{-1} \mu^{-n}+\eta \lambda^{n} \eta^{-1} b B^{-1} a \xi^{-1} \mu^{-n} \\
& -b A^{n} B^{-1} a \xi^{-1} \mu^{-n}, \\
\alpha_{22}^{(n)}= & \eta \lambda^{n} \eta^{-1} \lambda^{-n}, \\
A_{n}= & -\eta \lambda^{n} \eta^{-1} b B^{-1} A^{-n}+b A^{n} B^{-1} A^{-n}, \\
B_{n}= & a \mu^{n} \xi^{-1} \mu^{-n}-B A^{n} B^{-1} a \xi^{-1} \mu^{-n}
\end{aligned}
$$

and

$$
C_{n}=B A^{n} B^{-1} A^{-n}
$$

We shall show that h_{1}, h_{2}, \ldots are distinct. Suppose that $h_{k}=h_{m}$ for some $k \neq m$, and put $n=m-k$. Then $f g^{n} f^{-1} g^{-n}=i d$. It follows that

$$
\begin{aligned}
& \xi \mu^{n} \xi^{-1} \mu^{-n}=1, \\
& \eta \lambda^{n} \eta^{-1} \lambda^{-n}=1
\end{aligned}
$$

and

$$
a \mu^{n} \xi^{-1} \mu^{-n}-B A^{n} B^{-1} a \xi^{-1} \mu^{-n}=0
$$

From these we see that

$$
\alpha_{21}^{(n)}=s \zeta^{-1}-\bar{\mu}^{-n} s \xi^{-1} \mu^{-n}+\bar{\mu}^{-n} b B^{-1} a \xi^{-1} \mu^{-n}-b B^{-1} a \xi^{-1}=0 .
$$

Hence

$$
\begin{aligned}
\operatorname{Re}\left(\alpha_{21}^{(n)}\right)= & \operatorname{Re}(s \bar{\xi})|\xi|^{-2}-\operatorname{Re}(s \bar{\xi})|\xi|^{-2}|\mu|^{-2 n} \\
& -\left(1-|\mu|^{-2 n}\right) \operatorname{Re}\left(\eta \bar{a}^{T} B B^{-1} a \xi^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =(1 / 2)|a|^{2}|\xi|^{-2}\left(1-|\mu|^{-2 n}\right)-|a|^{2}|\xi|^{-2}\left(1-|\mu|^{-2 n}\right) \\
& =(-1 / 2)|a|^{2}|\xi|^{-2}\left(1-|\mu|^{-2 n}\right)=0
\end{aligned}
$$

Therefore $|\mu|=1$ or $a=0$. If $|\mu|=1$, then g would not be loxodromic. If $a=0$, then $\alpha_{21}^{(n)}=s \xi^{-1}-\bar{\mu}^{-n} s \xi^{-1} \mu^{-n}=0$. Since $|\mu| \neq 1$, it follows that $s=0$. Hence f would fix $P\left(\hat{e}_{0}\right)$. This is a contradiction. Thus h_{1}, h_{2}, \ldots are distinct.
Choosing subsequences, if necessary, we may assume that $\alpha_{11}^{(n)} \rightarrow \alpha$ and $\alpha_{22}^{(n)} \rightarrow \beta$ as $n \rightarrow \infty(|\mu|>1)$ or $n \rightarrow-\infty(|\mu|<1)$. Since $U(n-1 ; \boldsymbol{F})$ is compact, we may also assume that the sequence $\left\{C_{n}\right\}$ converges to some element U in $U(n-1 ; F)$ and from this fact we see that $\left\{A_{n}\right\}$ converges to $b B^{-1} U$. It is easy to show that $\alpha_{21}^{(n)} \rightarrow s \xi^{-1} \alpha$ and $B_{n} \rightarrow a \xi^{-1} \alpha$ as $n \rightarrow \infty$ or $n \rightarrow-\infty$. Hence

$$
h_{n} \longrightarrow\left[\begin{array}{llc}
\alpha & 0 & 0 \\
s \xi^{-1} \alpha & \beta & b B^{-1} U \\
a \xi^{-1} \alpha & 0 & U
\end{array}\right], \quad(n \rightarrow \infty \text { or } n \rightarrow-\infty) .
$$

Noting that the limit matrix belongs to $\hat{U}(1, n ; F)$, we can conclude our assertion.
Theorem 3.2 (cf. [2; Theorem 4J-1 in Chap. 1]). Let $f=\left(\alpha_{i, j}\right)_{i, j=1,2, \ldots, n+1}$ be an element in $\hat{U}(1, n ; \boldsymbol{F})$ and

$$
g=\left[\begin{array}{ccc}
1 & 0 & 0 \\
s & 1 & 0 \\
0 & 0 & E_{n-1}
\end{array}\right]
$$

where $s \neq 0$ and $\operatorname{Re}(s)=0$. Then the group generated by f and g is not discrete if $0<\left|\alpha_{1,2}\right|<1 /|s|$.

Proof. Let $f_{0}=f$ and for $k \geqq 0, k \in Z$, set $f_{k+1}=f_{k} g f_{k}^{-1}$. We shall show that $f_{k+1} \rightarrow g$ as $k \rightarrow \infty$. We write $f_{k}=\left(\alpha_{i, j}^{(k)}\right)_{i, j=1,2, \ldots, n+1}$. Computing f_{k+1}, we have

$$
\begin{align*}
& \alpha_{1,1}^{(k+1)}=1+\alpha_{1,2}^{(k)} s \overline{\alpha_{2,2}^{(k)}}, \tag{1}\\
& \alpha_{1,2}^{(k+1)}=\alpha_{1,2}^{(k)} s \overline{\alpha_{1,2}^{(k)}}, \tag{2}\\
& \alpha_{2,1}^{(k+1)}=\alpha_{2,2}^{(k)} s \overline{\alpha_{2,2}^{(k)}}, \tag{3}\\
& \alpha_{2,2}^{(k+1)}=1+\alpha_{2,2}^{(k)} s \overline{\alpha_{1,2}^{(k)}}, \tag{4}\\
&\left\{\begin{array}{ll}
\alpha_{1, j}^{(k+1)} & =-\alpha_{1,2}^{(k)} s \overline{\alpha_{j, 2}^{(k)}} \\
\left\{\begin{array}{ll}
(k+1) & \text { for } \\
\alpha_{2, j}^{(k+1} & =-\alpha_{2,2}^{(k)} s \overline{\alpha_{j, 2}^{(k)}} \\
& \text { for } 3 \leqq j \leqq n+1, \\
\alpha_{i, 1}^{(k+1)} & =\alpha_{i, 2}^{(k)} s \overline{\alpha_{2,2}^{(k)}}
\end{array} \quad \text { for } 3 \leqq i \leqq n+1,\right. \\
\alpha_{i, 2}^{(k+1)} & =\alpha_{i, 2}^{(k)} s \overline{\alpha_{1,2}^{(k)}}
\end{array} \quad \text { for } 3 \leqq i \leqq n+1,\right. \tag{5}
\end{align*}
$$

and

$$
\begin{equation*}
\alpha_{i, j}^{(k+1)}=\delta_{i, j}-\alpha_{j, 2}^{(k)} s \overline{\alpha_{i, 2}^{(k)}} \quad \text { for } \quad 3 \leqq i, j \leqq n+1 \tag{7}
\end{equation*}
$$

Form (2), it follows that f_{1}, f_{2}, \ldots are distinct and that

$$
\begin{equation*}
|s|\left|\alpha_{1,2}^{(k)}\right|=\left(|s|\left|\alpha_{1,2}^{(0)}\right|\right)^{2 k}, \text { so that } \lim _{k \rightarrow \infty}\left|\alpha_{1,2}^{(k)}\right|=0 \tag{8}
\end{equation*}
$$

Choose r so that $1 /\left(1-|s|\left|\alpha_{1,2}\right|\right)<r$ and $\left|\alpha_{2,2}\right|<r$. If $\left|\alpha_{2,2}^{(k)}\right|<r$, then

$$
\begin{aligned}
\left|\alpha_{2,2}^{(k+1)}\right| & \leqq 1+|s|\left|\alpha_{2,2}^{(k)}\right|\left|\alpha_{1,2}^{(k)}\right| \\
& <1+|s| r\left|\alpha_{1,2}^{(k)}\right| \\
& =1+r\left(|s|\left|\alpha_{1,2}^{(0)}\right|\right)^{2 k} \\
& \leqq 1+r|s|\left|\alpha_{1,2}\right|<r .
\end{aligned}
$$

Thus, by induction $\left|\alpha_{2,2}^{(k)}\right|<r$ for all k. From (4) and (8) we conclude that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \alpha_{2,2}^{(k)}=1 \tag{9}
\end{equation*}
$$

Then by (3), we have

$$
\lim _{k \rightarrow \infty} \alpha_{2,1}^{(k)}=s
$$

The equalities (1), (8) and (9) imply that

$$
\lim _{k \rightarrow \infty} \alpha_{1,1}^{(k)}=1
$$

Next we consider $\alpha_{i, 2}^{(k)}$ for $i \geqq 3$. By (8) there exist $\delta>0$ and $N>0$ such that $|s|\left|\alpha_{1,2}^{(k)}\right|<\delta<1$ for any $k \geqq N$. Then by (6)

$$
\left|\alpha_{i, 2}^{(k+1)}\right|<\delta\left|\alpha_{i, 2}^{(k)}\right|<\delta^{k+1}\left|\alpha_{i, 2}\right|
$$

This shows that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \alpha_{i, 2}^{(k)}=0 \tag{10}
\end{equation*}
$$

It follows from (5), (7), (9) and (10) that

$$
\lim _{k \rightarrow \infty} \alpha_{i, j}^{(k)}=\delta_{i, j}
$$

except the case $(i, j)=(2,1)$. Thus $f_{k} \rightarrow g$ as $k \rightarrow \infty$.
Corollary 3.3. Let $f=\left(\alpha_{i, j}\right)_{i, j=1,2, \ldots, n+1}$ be an element in $\hat{\mathcal{U}}(1, n ; \boldsymbol{F})$. Let

$$
g_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
s & 1 & \bar{a}^{T} \\
a & 0 & E_{n-1}
\end{array}\right] \quad \text { and } \quad g_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
t & 1 & \bar{b}^{T} \\
b & 0 & E_{n-1}
\end{array}\right]
$$

where $\operatorname{Re}(s)=(1 / 2)|a|^{2}$ and $\operatorname{Re}(t)=(1 / 2)|b|^{2}$. If $\bar{a}^{T} b \neq \bar{b}^{T} a$ and $0<\left|\alpha_{1,2}\right|<$ $1 /\left|\bar{a}^{T} b-\bar{b}^{T} a\right|$, then the group generated by f, g_{1} and g_{2} is not discrete.

Proof. The commutator of g_{1} and g_{2} is

$$
g_{1} g_{2} g_{1}^{-1} g_{2}^{-1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\bar{a}^{T} b-\bar{b}^{T} a & 1 & 0 \\
0 & 0 & E_{n-1}
\end{array}\right] .
$$

We easily see that $\operatorname{Re}\left(\bar{a}^{T} b-\bar{b}^{T} a\right)=0$. Thus Theorem 3.2 leads immediately to our conclusion.

References

[1] S. S. Chen and L. Greenberg, Hyperbolic spaces, Contributions to Analysis, Academic Press, New York, (1974), 49-87.
[2] J. Lehner, A short course in automorphic functions, Holt, Rinehart and Winston, Inc., New York, 1966.

Department of Mechanical Science
Okayama University of Science

