On the map defined by regarding embeddings as immersions

Tsutomu Yasui
(Received December 20, 1982)

Introduction

Let M be a closed connected smooth manifold of dimension n and R^{m} the m-dimensional Euclidean space. Denote by $\left[M \subseteq R^{m}\right]$ the set of regular homotopy classes of immersions of M in R^{m} and by [$M \subset R^{m}$] the set of isotopy classes of embeddings of M in R^{m}, and consider the commutative diagram

where E_{m} and I_{m} are the maps induced from the natural inclusion $R^{m} \subset R^{m+1}$ and J_{k} is the one defined by regarding embeddings as immersions.

The set $\left[M \subseteq R^{m}\right]$ for $2 m>3 n+1$ is an abelian group by taking 0 arbitrarily if it is not empty, and the map I_{m} is a homomorphism by taking $I_{m}(0)=0$; while so are the set $\left[M \subset R^{m}\right]$ and the maps E_{m} and J_{m} for $2 m>3(n+1)$ (see J. C. Becker [2]).

The purpose of this paper is to study the above commutative diagram when $m=2 n-1$:

$$
\begin{align*}
& {\left[M \subset R^{2 n}\right] \xrightarrow{J_{2 n}}\left[M \subseteq R^{2 n}\right]} \\
& \left(E=E_{2 n-1}, I=I_{2 n-1}\right), \tag{*}\\
& {\left[M \subset R^{2 n-1}\right] \xrightarrow{J_{2 n-1}}\left[M \subseteq R^{2 n-1}\right]}
\end{align*}
$$

(here we assume that the sets in consideration are not empty).
When $n \geqq 4$, the upper groups are determined by A. Haefliger and M. W. Hirsch [3], [5], [6] and so is the group [$M \subseteq R^{2 n-1}$] by D. R. Bausum [1, Th. 37 and Prop. 41], L. L. Larmore and E. Thomas [10, Th. 5.1] and R. D. Rigdon [11, Th. 10.4], and moreover it is proved by R. D. Rigdon [11, Th. 10.4] that I is trivial for even n and is surjective for odd n, respectively. When $n \geqq 6,[M \subset$ $R^{2 n-1}$] is an abelian group and $\operatorname{Im} E$ is determined by R. D. Rigdon [11, Th. 11.11 and Th. 11.26]. Together with these results, we have the following

Main Theorem. Let M be a closed connected smooth manifold of dimension
n with the i-th Stiefel-Whitney class $w_{i} \in H^{i}\left(M ; Z_{2}\right)$, and let

$$
\begin{aligned}
S q^{1}: H^{n-1}\left(M ; Z_{2}\right) & \longrightarrow H^{n}\left(M ; Z_{2}\right), \\
\beta_{2}: H^{n-2}\left(M ; Z_{2}\right) & \longrightarrow H^{n-1}(M ; Z)
\end{aligned}
$$

be the squaring operation and the Bockstein operator, respectively, and $H^{i}(M$; $Z\left[w_{1}\right]$) be the integral cohomology twisted by w_{1}. Then in the diagram (*) there hold the following properties (i)'s,..., (iv)'s, respectively, when
(i) n is even and $w_{1}=0$,
(ii) n is even and $w_{1} \neq 0$,
(iii) n is odd and $w_{1}=0$,
(iv) n is odd and $w_{1} \neq 0$.
(1) Assume that $n \geqq 4$. Then
(i) $\left[M \subset R^{2 n}\right]=H^{n-1}\left(M ; Z_{2}\right), \quad\left[M \subseteq R^{2 n}\right]=Z, \quad J_{2 n}=0$,

$$
\left[M \subseteq R^{2 n-1}\right]=\left\{\begin{array}{ll}
H^{n-1}\left(M ; Z_{2}\right) & \text { if } n \equiv 0(4), \\
H^{n-1}\left(M ; Z_{2}\right)+Z_{2} & \text { if } n \equiv 2(4),
\end{array} \quad I=0 ;\right.
$$

(ii) $\left[M \subset R^{2 n}\right]=Z+\operatorname{Ker} S q^{1}, \quad\left[M \subseteq R^{2 n}\right]=Z, \quad J_{2 n}(a, b)=2 a$,

$$
\left[M \subseteq R^{2 n-1}\right]= \begin{cases}H^{n-1}\left(M ; Z_{2}\right) & \text { if } n \equiv 0(4), \quad I=0 \\ \operatorname{Ker} S q^{1}+Z_{4} & \text { if } n \equiv 2(4),\end{cases}
$$

(iii) $\left[M \subset R^{2 n}\right]=H^{n-1}(M ; Z), \quad\left[M \subseteq R^{2 n}\right]=Z_{2}, \quad J_{2 n}=0$,

$$
\left[M \subseteq R^{2 n-1}\right]=\left\{\begin{array}{lll}
H^{n-1}(M ; Z)+Z_{2}+Z_{2}, & I(a, b, c)=b & \text { if } n \equiv 1(4) \\
H^{n-1}(M ; Z)+Z_{4}, & I(a, b) \equiv b(2) & \text { if } n \equiv 3(4)
\end{array}\right.
$$

(iv) $\left[M \subset R^{2 n}\right]=H^{n-1}\left(M ; Z_{2}\right), \quad\left[M \subseteq R^{2 n}\right]=Z_{2}, \quad J_{2 n}=0$, $\left[M \subseteq R^{2 n-1}\right]=H^{n-1}\left(M ; Z\left[w_{1}\right]\right)+Z_{2}, \quad I(a, b)=b$.
(2) Assume that $n \geqq 6$. Then
(i) $\operatorname{Im} E=\left[M \subset R^{2 n}\right]$,

$$
\operatorname{Im} J_{2 n-1}= \begin{cases}H^{n-1}\left(M ; Z_{2}\right) & \text { if } n \equiv 2(4) \text { and } w_{2}\left(\operatorname{Ker} \beta_{2}\right)=0, \\ {\left[M \subseteq R^{2 n-1}\right]} & \text { otherwise } ;\end{cases}
$$

(ii) $\operatorname{Im} E=\operatorname{Ker} S q^{1}$,

$$
\operatorname{Im} J_{2 n-1}= \begin{cases}\operatorname{Ker} S q^{1}+Z_{2} & \text { if } n \equiv 2(4) \text { and } w_{1}^{2}+w_{2} \neq 0, \\ \text { Ker } S q^{1} & \text { otherwise } ;\end{cases}
$$

(iii) $\operatorname{Im} E=\operatorname{Im} \beta_{2}$,

$$
\operatorname{Im} J_{2 n-1}= \begin{cases}\operatorname{Im} \beta_{2}+0+Z_{2} & \text { if } n \equiv 1(4) \text { and } w_{2}\left(\operatorname{Ker} \beta_{2}\right) \neq 0, \\ \operatorname{Im} \beta_{2}+Z_{2} & \text { if } n \equiv 3(4) \text { and } w_{2}\left(\operatorname{Ker} \beta_{2}\right) \neq 0, \\ \operatorname{Im} \beta_{2} & \text { otherwise } ;\end{cases}
$$

(iv) $\operatorname{Im} E=\left[M \subset R^{2 n}\right], \quad \operatorname{Im} J_{2 n-1}=H^{n-1}\left(M ; Z\left[w_{1}\right]\right)$.

The group [$M \subset R^{2 n-1}$] will be studied in the forthcoming paper [14].
In $\S 1$, the group structures and the filtrations on $\left[M \subseteq R^{m}\right]$ and $\left[M \subset R^{m}\right]$ are recalled according to [1], [2], [8], [11] and [13], and the methods for computing I_{m}, E_{m} and J_{m} are stated. The groups $\left[M \subseteq R^{2 n}\right],\left[M \subset R^{2 n}\right]$ and $[M \subseteq$ $R^{2 n-1}$] are restated in $\S 2$ and the results on $J_{2 n}$ and I are proved. The map $J_{2 n-1}$ is investigated in $\S \S 3-4$, by using the results on the cohomology of $\left(\Lambda^{2} M\right.$, ΔM) due to L. L. Larmore [7] together with the remarks given in §5. In §5, the twisted integral cohomology groups $H^{i}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$ for $i \geqq 2 n-3$ $\left(v \in H^{1}\left(\Lambda M^{2}-\Delta M ; Z_{2}\right)\right)$ are treated.

§1. Preliminaries

Let M be a closed connected smooth manifold of dimension n. Then there is a fixed point free involution on the tangent sphere bundle $S M$ over M, which is the antipodal map on each fibre S^{n-1}. Thus, for an immersion $f: M \subseteq R^{m}$, we have the Z_{2}-equivariant map

$$
\pi S(f): S M \xrightarrow{S(f)} R^{m} \times S^{m-1} \xrightarrow{\pi} S^{m-1},
$$

where $S(f)$ is the Z_{2}-equivariant map induced from the derivation of f and π is the projection.

Theorem (Haefliger-Hirsch [4]). If $2 m>3 n+1$, then the correspondence which associates the Z_{2}-equivariant homotopy class of $\pi S(f)$ with a regular homotopy class of an immersion f is a bijection between [$M \subseteq R^{m}$] and the set of Z_{2}-equivariant homotopy classes of Z_{2}-equivariant maps of $S M$ to S^{m-1}.

On the other hand, let ΔM be the diagonal of $M \times M$. Then there is a fixed point free involution on $M \times M-\Delta M$ defined by the interchange of factors. Thus, for an embedding $f: M \subset R^{m}$, we have the Z_{2}-equivariant map

$$
\begin{gathered}
f^{\prime}: M \times M-\Delta M \longrightarrow S^{m-1}, \\
f^{\prime}(x, y)=(f(x)-f(y)) /\|f(x)-f(y)\| \quad(x, y \in M, x \neq y) .
\end{gathered}
$$

Theorem (Haefliger [3]). If $2 m>3(n+1)$, then the correspondence which associates the Z_{2}-equivariant homotopy class of f^{\prime} with an isotopy class of an
embedding f is a bijection between $\left[M \subset R^{m}\right]$ and the set of Z_{2}-equivariant homotopy classes of Z_{2}-equivariant maps of $M \times M-\Delta M$ to S^{m-1}.

Let $P M=S M / Z_{2}$ and $M^{*}=(M \times M-\Delta M) / Z_{2}$ be the tangent projective bundle over M and the reduced symmetric product of M, respectively. Moreover, let

$$
\eta: P M \longrightarrow P^{\infty} \quad \text { and } \quad \xi: M^{*} \longrightarrow P^{\infty}
$$

be the classifying maps of the double coverings $S M \rightarrow P M$ and $M \times M-\Delta M \rightarrow M^{*}$, respectively. Now, $S^{\infty} \rightarrow P^{\infty}$ is the universal double covering and $S^{\infty} \times{ }_{Z_{2}} S^{m-1} \rightarrow$ P^{∞} is homotopically equivalent to the natural inclusion $P^{m-1} \subset P^{\infty}$. Therefore the above theorems are restated as follows, where

$$
\left[X, P^{m-1} ; \alpha\right]=\left[X, S^{\infty} \times{ }_{z_{2}} S^{m-1} ; \alpha\right] \quad \text { for } \quad \alpha: X \longrightarrow P^{\infty}
$$

denotes the homotopy sets of liftings of α to $S^{\infty} \times{ }_{Z_{2}} S^{m-1}$:
Theorem 1.1. There exist bijections

$$
\begin{array}{ll}
A:\left[M \subseteq R^{m}\right] \cong\left[P M, P^{m-1} ; \eta\right] & \text { if } 2 m>3 n+1 \\
B:\left[M \subset R^{m}\right] \cong\left[M^{*}, P^{m-1} ; \xi\right] & \text { if } 2 m>3(n+1)
\end{array}
$$

Each set of the right hand sides has the structure of an abelian group by [2] if it is not empty, which induces those of [$M \subseteq R^{m}$] and [$M \subset R^{m}$].

Now $P M$ is a manifold of dimension $2 n-1$ and M^{*} has the homotopy type of a $C W$-complex of dimension less than $2 n$.

Proposition 1.2 (Bausum [1, Prop. 5 and Prop. 6], Larmore-Rigdon [8, Prop. 4.1], Yasui [13, Prop. 1.1]). Assume that X has the homotopy type of a $C W$-complex of dimension less than $2 n(n \geqq 4)$. Then for a map $\alpha: X \rightarrow P^{\infty}$, there exist decreasing filtrations

$$
\begin{aligned}
& {\left[X, P^{2 n-1} ; \alpha\right]=G_{0}(\alpha) \supset G_{1}(\alpha)=0, \quad G_{0}(\alpha)=H^{2 n-1}(X ; Z) ;} \\
& {\left[X, P^{2 n-2} ; \alpha\right]=F_{0}(\alpha) \supset F_{1}(\alpha) \supset F_{2}(\alpha)=0,} \\
& F_{0}(\alpha) / F_{1}(\alpha)=H^{2 n-2}(X ; Z[v]), \\
& F_{1}(\alpha)=\operatorname{Coker}\left(\Theta: H^{2 n-3}(X ; Z[v]) \longrightarrow H^{2 n-1}\left(X ; Z_{2}\right)\right),
\end{aligned}
$$

where $H^{i}(X ; Z[v])$ is the integral cohomology of X twisted by $v=\alpha^{*} u(u \in$ $H^{1}\left(P^{\infty} ; Z_{2}\right)$ is the generator) and

$$
\Theta=S q^{2} \tilde{\rho}_{2}+\binom{2 n-1}{2} v^{2} \tilde{\rho}_{2}
$$

$\left(\tilde{\rho}_{2}: H^{i}(X ; Z[v]) \rightarrow H^{i}\left(X ; Z_{2}\right)\right.$ is the reduction $\left.\bmod 2\right)$.

By the definitions of the maps I_{m}, E_{m} and J_{m} in the introduction and the bijections A and B in Theorem 1.1, we have the commutative diagram

$$
\begin{array}{ccc}
{\left[M \subset R^{m+1}\right] \stackrel{E_{m}}{\longleftrightarrow}\left[M \subset R^{m}\right] \xrightarrow{J_{m}}\left[M \subseteq R^{m}\right] \xrightarrow{I_{m}}\left[M \subseteq R^{m+1}\right]} \\
B \downarrow \cong & A \downarrow \cong & A \downarrow \cong \\
{\left[M^{*}, P^{m} ; \xi\right] \stackrel{i_{\#}}{\longleftrightarrow}\left[M^{*}, P^{m-1} ; \xi\right] \xrightarrow{j^{\#}}\left[P M, P^{m-1} ; \eta\right] \xrightarrow{i_{\#}}\left[P M, P^{m} ; \eta\right]}
\end{array}
$$

for $2 m>3\left(n+1\right.$) (cf. [8], [11]), where $i: P^{m-1} \subset P^{m}$ is the natural inclusion and

$$
j: P M \longrightarrow M^{*} \text { is the embedding with } \xi j=\eta
$$

induced from the Z_{2}-equivariant map $j: S M \rightarrow M \times M-\Delta M$ defined by $j(u)=$ $(\exp (u), \exp (-u))$.

Proposition 1.3 (Larmore-Rigdon [8, Prop. 5.1 and Prop. 6.1]). Let (X, α) represent $(P M, \eta)$ or $\left(M^{*}, \xi\right)$, and consider the filtrations of $\left[X, P^{m-1} ; \alpha\right]$ for $m=2 n-1,2 n$ given in Proposition 1.2. Then
(1) $i_{\sharp}:\left[X, P^{2 n-2} ; \alpha\right] \rightarrow\left[X, P^{2 n-1} ; \alpha\right]$ preserves the filtrations and the induced homomorphism

$$
i_{\sharp}: F_{0}(\alpha) / F_{1}(\alpha)=H^{2 n-2}(X ; Z[v]) \longrightarrow G_{0}(\alpha)=H^{2 n-1}(X ; Z)
$$

is just the multiplication by $V=\widetilde{\beta}_{2}(1) \in H^{1}(X ; Z[v])\left(\widetilde{\beta}_{2}: H^{i}\left(X ; Z_{2}\right) \rightarrow H^{i+1}(X\right.$; $Z[v]$) is the twisted Bockstein operator);
(2) $j^{\#}:\left[M^{*}, P^{m-1} ; \xi\right] \rightarrow\left[P M, P^{m-1} ; \eta\right]$ preserves the filtrations and $j^{\#}$: $G_{0}(\xi) \rightarrow G_{0}(\eta)$ and $j^{\#}: F_{i}(\xi) / F_{i+1}(\xi) \rightarrow F_{i}(\eta) / F_{i+1}(\eta)$ are j^{*} on the cohomology groups and moreover j^{\ddagger} for $m=2 n-1$ induces the map

$$
j_{0}^{\#}: \operatorname{Ker}\left(j^{\#}: F_{0}(\xi) / F_{1}(\xi) \longrightarrow F_{0}(\eta) / F_{1}(\eta)\right) \longrightarrow \operatorname{Coker}\left(j^{\#}: F_{1}(\xi) \longrightarrow F_{1}(\eta)\right),
$$

which is equal to the functional operation

$$
\Theta_{j}: \operatorname{Ker} j^{*}\left(\subset H^{2 n-2}\left(M^{*} ; Z[v]\right)\right) \longrightarrow H^{2 n-1}\left(P M ; Z_{2}\right) /\left(\operatorname{Im} \Theta+\operatorname{Im} j^{*}\right)
$$

given by $\delta^{-1} \Theta i^{*-1}$ in the commutative diagram

of the exact sequences of the pair $\left(M^{*}, P M\right)$, where $v=\xi^{*} u$ and $i: M^{*} \subset\left(M^{*}, P M\right)$.
Furthermore, let $\Lambda^{2} M=(M \times M) / Z_{2}$ be the 2 -fold symmetric product of M, the set of unordered pairs of M. Then $\Lambda^{2} M-\Delta M=M^{*}$ and $P M=j(P M)$ bounds a tubular neighborhood N of ΔM in $\Lambda^{2} M$, and the natural inclusions

$$
\left(M^{*}, P M\right) \subset\left(\Lambda^{2} M, N\right) \supset\left(\Lambda^{2} M, \Delta M\right)
$$

induce isomorphisms of cohomology groups (cf. [8, §5]). Thus we have the following

Lemma 1.4. The cohomology exact sequence of $\left(M^{*}, P M\right)$ with any coefficients (e.g., the one in the diagram in Proposition 1.3) can be replaced by the exact sequence

$$
\begin{aligned}
\cdots \longrightarrow H^{i-1}\left(M^{*}\right) & \xrightarrow{j^{*}} H^{i-1}(P M) \xrightarrow{\delta} H^{i}\left(\Lambda^{2} M, \Delta M\right) \\
& \xrightarrow{i^{*}} H^{i}\left(M^{*}\right) \xrightarrow{j^{*}} H^{i}(P M) \longrightarrow \cdots .
\end{aligned}
$$

Our study is based on these results. Moreover the cohomology of $\left(\Lambda^{2} M\right.$, $\Delta M)$ is investigated by L. L. Larmore[7]. The notations Λx and $\Delta(x, y)$ and the results stated in [7, pp. 908-915] are freely quoted hereafter. We also use the following lemma and the results remarked in $\S 5$.

Lemma 1.5. (1) $\tilde{\rho}_{r}(\Lambda x)=\Lambda\left(\rho_{r} x\right)$ and $\tilde{\rho}_{r}(\Delta(x, y))=\Delta\left(\rho_{r} x, \rho_{r} y\right)$ for $x, y \in$ $H^{*}\left(M ; Z_{s}\right)$, where $r \mid s, s \leqq \infty$ and $\rho_{r}, \tilde{\rho}_{r}$ are the reductions $\bmod r$.
(2) $\Delta(x, y)=\Lambda x \Lambda y+\Lambda(x y)$ for $x, y \in H^{*}\left(M ; Z_{2}\right)$.
(3) $\delta\left(v^{i} x\right)=v^{i+1} \Lambda x$ for $x \in H^{*}\left(M ; Z_{2}\right)$, where $v^{i} x=j^{*} v^{i} \cdot \pi^{*} x \quad(\pi: P M$ $\rightarrow M$ is the projection).

Proof. The relations (1) and (2) are easily obtained by chasing the constructions of Λx and $\Delta(x, y)$ given in [7]. The relation (3) follows from the equality $\delta x=v \Lambda x\left(\delta: H^{i-1}(M)=H^{i-1}(\Delta M) \rightarrow H^{i}\left(\Lambda^{2} M, \Delta M\right)\right)$ in [7, Lemma 6], by noticing that the restriction of the projection $N \rightarrow M$ on $P M$ is equal to π and the one on ΔM is the identity $\Delta M \rightarrow M$.
q.e.d.
§2. $J_{2 n}, I, E$ and $\left[M \subseteq R^{2 n-1}\right]$
The following results are well-known:
(2.1) Let $v \in H^{1}\left(P M ; Z_{2}\right)$ be the first Stiefel-Whitney class of the double covering $S M \rightarrow P M$. Then $1, v, \ldots, v^{n-1}$ form a base of the $H^{*}\left(M ; Z_{2}\right)$-module $H^{*}\left(P M ; Z_{2}\right)$ with the relation

$$
v^{n}=\sum_{i=1}^{n} v^{n-i} w_{i} \quad\left(w_{i}=w_{i}(M)\right)
$$

(2.2) $\left[M \subseteq R^{2 n}\right]=H^{2 n-1}(P M ; Z)$ in Theorem 1.1 and Proposition 1.2 is isomorphic to Z if n is even and Z_{2} if n is odd.
(2.3) ([3], [5] and [11]) $\left[M \subset R^{2 n}\right]=H^{2 n-1}\left(M^{*} ; Z\right)$ in Theorem 1.1 and Proposition 1.2 is isomorphic to
$H^{n-1}(M ; Z) \quad$ if n is odd and $w_{1}=0$,
$Z+K\left(K=\operatorname{Ker}\left(S q^{1}: H^{n-1}\left(M ; Z_{2}\right) \rightarrow H^{n}\left(M ; Z_{2}\right)\right)\right)$ if n is even and $w_{1} \neq 0$,
$H^{n-1}\left(M ; Z_{2}\right)$ otherwise.
Proof of Main Theorem on $J_{2 n}$. By the results stated in $\S 1$, we have a commutative diagram

where the lower sequence is exact by Lemma 1.4, while by Proposition 5.2(2),

$$
H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z\right)= \begin{cases}Z & \text { if } n \text { is even and } w_{1}=0 \\ Z_{2} & \text { otherwise. }\end{cases}
$$

Thus if n is even and $w_{1} \neq 0$ then $\operatorname{Im}\left(j^{*}: Z+K \rightarrow Z\right)=2 Z$, and if it is not then $j^{*}=0$.
q.e.d.

We now recall that the filtration

$$
\left[M \subseteq R^{2 n-1}\right]=\left[P M, P^{2 n-2} ; \eta\right]=F_{0} \supset F_{1} \supset 0 \quad\left(F_{i}=F_{i}(\eta)\right)
$$

satisfies

$$
\begin{aligned}
& F_{0} / F_{1}=H^{2 n-2}(P M ; Z[v]) \\
& F_{1}=\operatorname{Coker}\left(\Theta: H^{2 n-3}(P M ; Z[v]) \longrightarrow H^{2 n-1}\left(P M ; Z_{2}\right)\right)
\end{aligned}
$$

where $\Theta=S q^{2} \tilde{\rho}_{2}+(n-1) v^{2} \tilde{\rho}_{2}$.
The twisted integral cohomology of $P M$ is investigated by R. D. Rigdon and is given as follows:

Proposition 2.4 (Rigdon [11, Prop. 9.2 and 9.13]). Let $M \in H^{n}\left(M ; Z_{2}\right)$ be the generator. Then
(1) if n is even, there exist isomorphisms

$$
\begin{gathered}
H^{2 n-1}(P M ; Z[v])=Z_{2} \\
\theta: H^{n-1}\left(M ; Z_{2}\right) \cong H^{2 n-2}(P M ; Z[v]), \quad \theta(x)=\widetilde{\beta}_{2}\left(v^{n-2} x\right)\left(x \in H^{n-1}\left(M ; Z_{2}\right)\right)
\end{gathered}
$$

(2) if n is odd, there exist isomorphisms

$$
\begin{gathered}
H^{2 n-1}(P M ; Z[v])=Z \\
\theta: H^{n-1}\left(M ; Z\left[w_{1}\right]\right)+H^{n}\left(M ; Z_{2}\right) \cong H^{2 n-2}(P M ; Z[v])
\end{gathered}
$$

$$
\left.\theta(M)=\tilde{\beta}_{2}\left(v^{n-3} M\right), \quad \tilde{\rho}_{2} \theta(y)=\left(v^{n-1}+v^{n-2} w_{1}\right) \tilde{\rho}_{2} y\left(y \in H^{n-1}(M ; Z[v])\right) . *\right)
$$

Let $M^{\prime} \in H^{n-1}\left(M ; Z_{2}\right)$ be the element with $S q^{1} M^{\prime}=M$ when $w_{1} \neq 0$ and let $K=\operatorname{Ker}\left(S q^{1}: H^{n-1}\left(M ; Z_{2}\right) \rightarrow H^{n}\left(M ; Z_{2}\right)\right)$. Then $H^{2 n-2}(P M ; Z[v])$ is the following form by Proposition 2.4, $\left(Z_{r}\langle a\rangle\right.$ denotes the cyclic group of order r generated by a):

$$
\begin{align*}
F_{0} / F_{1} & =\theta H^{n-1}\left(M ; Z_{2}\right) \quad \text { if } n \text { is even and } w_{1}=0, \tag{2.5}\\
& =\theta K+Z_{2}\left\langle\theta M^{\prime}\right\rangle \quad \text { if } n \text { is even and } w_{1} \neq 0, \\
& =\theta H^{n-1}\left(M ; Z\left[w_{1}\right]\right)+Z_{2}\langle\theta M\rangle \quad \text { if } n \text { is odd. }
\end{align*}
$$

Further, by studying Θ, we have

$$
F_{1}=\operatorname{Coker} \Theta= \begin{cases}H^{2 n-1}\left(P M ; Z_{2}\right)=Z_{2} & \text { if } n \text { is odd and } w_{1}=0 \tag{2.6}\\ 0 & \text { otherwise } \quad \text { or } n \equiv 2(4)\end{cases}
$$

In case of $F_{1}=Z_{2}$, the group extension ϕ_{2} of $0 \rightarrow F_{1} \rightarrow F_{0} \rightarrow F_{0} / F_{1} \rightarrow 0$ is given by

$$
\begin{gathered}
\phi_{2}=S q^{2} \tilde{\beta}_{2}^{-1}+(n-1) v^{2} \tilde{\beta}_{2}^{-1}+S q^{1} \tilde{\rho}_{2}:\left\{z \in F_{0} / F_{1} \mid 2 z=0\right\}=\tilde{\beta}_{2} H^{2 n-3}\left(P M ; Z_{2}\right) \\
\longrightarrow F_{1}=H^{2 n-1}\left(P M ; Z_{2}\right),
\end{gathered}
$$

which is proved by using [10, Th. 4.1] (cf. [9, Cor. 3.7]), and so we have the following:
(2.7) The group extension ϕ_{2} is trivial except for

$$
\begin{array}{llll}
\phi_{2}\left(\theta M^{\prime}\right)=v^{n-1} M & \text { if } n \equiv 2(4) & \text { and } & w_{1} \neq 0 \\
\phi_{2}(\theta M)=v^{n-1} M & \text { if } n \equiv 3(4) & \text { and } & w_{1}=0
\end{array}
$$

Theorem 2.8 (Bausum [1, Th. 37 and Prop. 41], Larmore-Thomas [10, Th. 5.1], Rigdon [11, Th. 10.4]). Let $n \geqq 4$. Then the group $\left[M \subseteq R^{2 n-1}\right]=$ $\left[P M, P^{2 n-2} ; \eta\right]$ is as follows:

$$
\begin{aligned}
{\left[M \subseteq R^{2 n-1}\right] } & =\theta H^{n-1}\left(M ; Z_{2}\right) & & \text { if } n \equiv 0(4), \\
& =\theta H^{n-1}\left(M ; Z_{2}\right)+Z_{2} & & \text { if } n \equiv 2(4) \text { and } w_{1}=0, \\
& =\theta K+Z_{4} & & \text { if } n \equiv 2(4) \text { and } w_{1} \neq 0, \\
& =\theta H^{n-1}(M ; Z)+Z_{2}+Z_{2} & & \text { if } n \equiv 1(4) \text { and } w_{1}=0, \\
& =\theta H^{n-1}(M ; Z)+Z_{4} & & \text { if } n \equiv 3(4) \text { and } w_{1}=0, \\
& =\theta H^{n-1}\left(M ; Z\left[w_{1}\right]\right)+Z_{2} & & \text { if } n \equiv 1(2) \text { and } w_{1} \neq 0 .
\end{aligned}
$$

[^0]Proof of Main Theorem on I and E. By (2.2), (2.4) and Proposition 1.3(1), we see that
(2.9) ([11, Th. 10.4]) I is trivial if n is even.

Assume that n is odd and consider the homomorphism

$$
\begin{aligned}
\rho_{2} i_{\#} \theta: H^{n-1}\left(M ; Z\left[w_{1}\right]\right) & +H^{n}\left(M ; Z_{2}\right)
\end{aligned} \begin{aligned}
& \cong H^{2 n-2}(P M ; Z[v])\left(=F_{0} / F_{1}\right) \\
& \xrightarrow{i \#} H^{2 n-1}(P M ; Z)\left(=Z_{2}\right) \xrightarrow{\rho_{2}} H^{2 n-1}\left(P M ; Z_{2}\right) .
\end{aligned}
$$

Then the relation $\rho_{2} i_{\sharp} \theta(x, y)=v^{n-1} y$ follows from Propositions 2.4, 1.3(1) and (2.1). Therefore, by (2.6-8), we have the equalities

$$
\begin{aligned}
& I(a, b, c)=b \quad \text { if } \quad n \equiv 1(4) \quad \text { and } \quad w_{1}=0, \\
& I(a, b) \equiv b(2) \quad \text { if } \quad n \equiv 3(4) \quad \text { and } \quad w_{1}=0, \\
& I(a, b)=b \quad \text { if } \quad n \equiv 1(2) \quad \text { and } \quad w_{1} \neq 0 .
\end{aligned}
$$

These and (2.9) show the desired results on I. The results on E is proved by R. D. Ridgon [11, Th. 11.11 and Th. 11.26].
q.e.d.
§3. $j^{\ddagger}: F_{i}(\xi) / F_{i+1}(\xi) \rightarrow F_{i}(\eta) / F_{i+1}(\eta)$ in Proposition 1.3
In this and next sections, we investigate the homomorphism

$$
J_{2 n-1}=j^{\#}:\left[M \subset R^{2 n-1}\right]=\left[M^{*}, P^{2 n-2} ; \xi\right] \longrightarrow\left[M \subseteq R^{2 n-1}\right]=\left[P M, P^{2 n-2} ; \eta\right]
$$

in Proposition 1.3(2), which preserves the filtrations

$$
\left[M^{*}, P^{2 n-2} ; \xi\right]=F_{0}(\xi) \supset F_{1}(\xi) \supset 0, \quad\left[P M, P^{2 n-2} ; \eta\right]=F_{0}(\eta) \supset F_{1}(\eta) \supset 0
$$

given in Proposition 1.2.
Lemma 3.1. $\quad j^{\#}=j^{*}: F_{1}(\xi)=H^{2 n-1}\left(M^{*} ; Z_{2}\right) \rightarrow F_{1}(\eta)=H^{2 n-1}\left(P M ; Z_{2}\right) \quad$ is trivial.

Proof. This is an immediate consequence of E. Thomas [12, Prop. 2.9(c)]. q.e.d.

Next, we study the homomorphism

$$
\begin{aligned}
j^{\#}=j^{*}: F_{0}(\xi) / F_{1}(\xi)=H^{2 n-2} & \left(M^{*} ; Z[v]\right) \\
& \longrightarrow F_{0}(\eta) / F_{1}(\eta)=H^{2 n-2}(P M ; Z[v]),
\end{aligned}
$$

where the range $H^{2 n-2}(P M ; Z[v])$ is given in Proposition 2.4. Hereafter, we use essentially Propositions 5.2-3 given in $\S 5$ below.

Lemma 3.2. (1) If n is even and $w_{1}=0$, then j^{*} is surjective.
(2) If n is even and $w_{1} \neq 0$, then $\operatorname{Im} j^{*}=\theta \rho_{2} H^{n-1}(M ; Z)=\theta K$.
(3) If n is odd and $w_{1}=0$, then $\operatorname{Im} j^{*}=\theta \beta_{2} H^{n-2}\left(M ; Z_{2}\right)$.
(4) If n is odd and $w_{1} \neq 0$, then $\operatorname{Im} j^{*}=\theta H^{n-1}\left(M ; Z\left[w_{1}\right]\right)$.

Proof. We prove the lemma by using the exact sequence

$$
\begin{align*}
\cdots & H^{2 n-2}\left(M^{*} ; Z[v]\right) \xrightarrow{j^{*}} H^{2 n-2}(P M ; Z[v]) \tag{3.3}\\
& \xrightarrow{\dot{o}} H^{2 n-1}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \xrightarrow{i^{*}} H^{2 n-1}\left(M^{*} ; Z[v]\right) \\
& \xrightarrow{j^{*}} H^{2 n-1}(P M ; Z[v]) \xrightarrow{\dot{o}} H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \longrightarrow 0
\end{align*}
$$

in Lemma 1.4. In this sequence, the following is given by R. D. Rigdon [11, Prop. 11.9 and Prop. 11.19]:

$$
\begin{align*}
H^{2 n-1}\left(M^{*} ; Z[v]\right) & \cong H^{n-1}(M ; Z) & & \text { if } n \text { is even and } w_{1}=0 \tag{3.4}\\
& \cong Z+K & & \text { if } n \text { is odd and } w_{1} \neq 0 \\
& \cong H^{n-1}\left(M ; Z_{2}\right) & & \text { otherwise. }
\end{align*}
$$

(1) Assume that n is even and $w_{1}=0$. Then for any $z \in H^{n-1}(M ; Z)$, we have $\delta \widetilde{\beta}_{2}\left(v^{n-2} z^{\prime}\right)=\tilde{\beta}_{2} \delta\left(v^{n-2} z^{\prime}\right)=\tilde{\beta}_{2}\left(v^{n-1} \Lambda z^{\prime}\right)=\tilde{\beta}_{2}\left(\Lambda z^{\prime} \Lambda z^{\prime}+v^{n-2} \Lambda\left(S q^{1} z^{\prime}\right)\right)=$ $\tilde{\beta}_{2} \tilde{\rho}_{2} \Delta(z, z)=0\left(\rho_{2} z=z^{\prime}\right)$ by Lemma 1.5 and [7, Lemma 10]. Therefore the first δ in (3.3) is trivial by Proposition 2.4 (1) and so (1) is shown.
(2) Assume that n is even and $w_{1} \neq 0$. Then the exact sequence (3.3) is equal to

$$
H^{2 n-2}\left(M^{*} ; Z[v]\right) \xrightarrow{j^{*}} \theta K+Z_{2} \xrightarrow{\delta} K+Z_{4} \longrightarrow K+Z_{2} \longrightarrow Z_{2} \longrightarrow Z_{2} \longrightarrow 0
$$

by Proposition 2.4(1), (3.4) and Propositions 5.2-3, and so $\operatorname{Im} \delta=Z_{2}$. Now $\delta \theta K=0$ is proved in the above case. Thus $\operatorname{Im} j^{*}=\operatorname{Ker} \delta=\theta K$.
(3) Assume that n is odd and $w_{1}=0$. Then (3.3) induces an exact sequence

$$
\begin{align*}
& H^{2 n-2}\left(M^{*} ; Z[v]\right) \xrightarrow{j^{*}} \theta G+Z_{2}\left\langle\tilde{\beta}_{2}\left(v^{n-3} M\right)\right\rangle \tag{3.5}\\
& \quad \xrightarrow{i} G+Z_{2}\left\langle\tilde{\beta}_{2}\left(v^{n-2} \Lambda M\right)\right\rangle \xrightarrow{i^{*}} K=\rho_{2} G,\left(G \cong H^{n-1}(M ; Z)\right),
\end{align*}
$$

by Proposition 2.4(2), (3.4) and Propositions 5.2-3. Here the relation

$$
\delta \tilde{\beta}_{2}\left(v^{n-3} M\right)=\tilde{\beta}_{2}\left(v^{n-2} \Lambda M\right)
$$

holds by Lemma 1.5(3), and the relation

$$
\begin{equation*}
\delta(\theta G) \subset G \tag{3.6}
\end{equation*}
$$

holds, because $\tilde{\rho}_{2} \tilde{\beta}_{2}\left(v^{n-2} \Lambda M\right)=v^{n-1} \Lambda M$ in $H^{2 n-1}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right)$ by [7, Lemma

10] and $\tilde{\rho}_{2} \delta \theta G=\delta \tilde{\rho}_{2} \theta G=0$ by Lemma 1.5 and Proposition 2.4(2). Therefore the sequence (3.5) induces an exact sequence

$$
\begin{equation*}
H^{2 n-2}\left(M^{*} ; Z[v]\right) \xrightarrow{\theta^{-1} j^{*}} G \xrightarrow{f} G \xrightarrow{g} K \longrightarrow 0, \quad\left(f=\delta \theta, g=i^{*}\right) . \tag{3.5}
\end{equation*}
$$

Here $K=\rho_{2} G=G / 2 G$. Hence $g(2 G)=0$ and g induces an epimorphism $g^{\prime}: G / 2 G$ $\rightarrow K$, which is isomorphism because $G / 2 G$ is finite. Therefore $2 G=\operatorname{Ker} g=$ $\operatorname{Im} f$. Since rank $G=\operatorname{rank} 2 G$ and $2 G=\operatorname{Im} f$, we see that

$$
\operatorname{Ker} f \subset T \text { and } f(T)=2 T \text { (} T \text { is the torsion subgroup of } G \text {) }
$$

by noticing that the torsion subgroup of $2 G$ is equal to $2 T$. Thus f determines an epimorphism

$$
f \mid T: T \longrightarrow 2 T .
$$

If we can prove

$$
\begin{equation*}
{ }_{2} G(=\{x \in G \mid 2 x=0\})=\beta_{2} H^{n-2}\left(M ; Z_{2}\right) \subset \operatorname{Ker} f \text { in }(3.5)^{\prime}, \tag{3.7}
\end{equation*}
$$

then ${ }_{2} T(=\{x \in T \mid 2 x=0\})={ }_{2} G \subset \operatorname{Ker}(f \mid T)$ an $f \mid T$ induces an epimorphism $T / 2 T \rightarrow 2 T$, which is isomorphic because the orders of the two groups are finite and coincident with each other. Hence $\operatorname{Ker} f={ }_{2} G$ and Lemma 3.2(3) is proved.

To show (3.7), we notice that $\theta\left(\beta_{2} H^{n-2}\left(M ; Z_{2}\right)\right) \subset \tilde{\beta}_{2} H^{2 n-3}\left(P M ; Z_{2}\right)$. For any element $X \in \theta\left(\operatorname{Im} \beta_{2}\right)$, there is an element $Y \in H^{2 n-3}\left(P M ; Z_{2}\right)$ such that $\tilde{\beta}_{2} Y=X$ and

$$
Y=\lambda v^{n-3} M+v^{n-2} x+\left(v^{n-1} y+v^{n-3} S q^{2} y\right)
$$

for some $\lambda \in Z_{2}, x \in H^{n-1}\left(M ; Z_{2}\right)$ and $y \in H^{n-2}\left(M ; Z_{2}\right)$ by (2.1). For $x \in H^{n-1}(M$; Z_{2}), there is a relation $\tilde{\rho}_{2} \tilde{\beta}_{2}\left(v^{n-3} x\right)=v^{n-2} x$ and so $\tilde{\beta}_{2}\left(v^{n-2} x\right)=0$. Further the relation $\delta \tilde{\beta}_{2}\left(v^{n-1} y+v^{n-3} S q^{2} y\right)=0$ for $y \in H^{n-2}\left(M ; Z_{2}\right)$ follows from Lemma 1.5 and [7, Th. 11]. Thus $\delta X=\delta \tilde{\beta}_{2} Y=\lambda \tilde{\beta}_{2}\left(v^{n-2} \Lambda M\right)$ and so $\tilde{\rho}_{2} \delta X=\lambda v^{n-1} \Lambda M$. This and (3.6) imply $\lambda=0$ and so $\delta X=0$. This completes the proof of (3.7).
(4) Assume that n is odd and $w_{1} \neq 0$. Then $\tilde{\rho}_{2}: H^{2 n-1}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \rightarrow$ $H^{2 n-1}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right)$ is monomorphic by Proposition 5.3(iv). Further, by Lemma 1.5 and Proposition 2.4, we see that

$$
\tilde{\rho}_{2} \delta \tilde{\beta}_{2}\left(v^{n-3} M\right)=v^{n-1} \Lambda M, \quad \tilde{\rho}_{2} \delta \theta(x)=0 \quad \text { for } \quad x \in H^{n-1}\left(M ; Z\left[w_{1}\right]\right) .
$$

Therefore $\operatorname{Im} j^{*}=\operatorname{Ker} \delta=\theta H^{n-1}\left(M ; Z\left[w_{1}\right]\right)$. q.e.d.
§4. $J_{2 n-1}:\left[M \subset R^{2 n-1}\right] \rightarrow\left[M \subseteq R^{2 n-1}\right]$
This section is a continuation of $\S 3$ and we will determine $\operatorname{Im} J_{2 n-1}$ by using Proposition 1.3(2).

If $F_{1}(\eta)=0$, then $\operatorname{Im} J_{2 n-1}=\operatorname{Im}\left(j^{\#}: F_{0}(\xi) / F_{1}(\xi) \rightarrow F_{0}(\eta) / F_{1}(\eta)\right)$ and so by Proposition 1.3(2), (2.6) and Lemma 3.2, we have the following

Proposition 4.1. (1) If $n \equiv 0(4)$ and $w_{1}=0$, then $\operatorname{Im} J_{2 n-1}=\left[M \subseteq R^{2 n-1}\right]$.
(2) If $n \equiv 0(4)$ and $w_{1} \neq 0$, then $\operatorname{Im} J_{2 n-1}=\theta \rho_{2} H^{n-1}(M ; Z)=\theta K$.
(3) If $n \equiv 1(2)$ and $w_{1} \neq 0$, then $\operatorname{Im} J_{2 n-1}=\theta H^{n-1}\left(M ; Z\left[w_{1}\right]\right)$.

In the rest of this section, we study $J_{2 n-1}$ in case when $n \equiv 1(2)$ and $w_{1}=0$, or $n \equiv 2(4)$. In these cases, $F_{1}(\eta)=H^{2 n-1}\left(P M ; Z_{2}\right)$ and we have to study the homomorphism
$j_{0}^{\#}: \operatorname{Ker}\left(j^{\#}: F_{0}(\xi) / F_{1}(\xi) \longrightarrow F_{0}(\eta) / F_{1}(\eta)\right) \longrightarrow \operatorname{Coker}\left(j^{\sharp}: F_{1}(\xi) \longrightarrow F_{1}(\eta)\right)$ induced from $j^{\#}:\left(F_{0}(\xi), F_{1}(\xi)\right) \rightarrow\left(F_{0}(\eta), F_{1}(\eta)\right)$. By Lemma 3.1,

$$
\operatorname{Coker}\left(j^{\#}: F_{1}(\xi) \longrightarrow F_{1}(\eta)\right)=F_{1}(\eta)=H^{2 n-1}\left(P M ; Z_{2}\right)=Z_{2} .
$$

Further by the second half of Proposition 1.3(2),

$$
\begin{equation*}
\operatorname{Im} j_{0}^{\sharp}=\operatorname{Im} \delta^{-1} \Theta \tag{4.2}
\end{equation*}
$$

where

$$
\Theta=S q^{2} \tilde{\rho}_{2}+(n-1) v^{2} \tilde{\rho}_{2}: H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \longrightarrow H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right)
$$

Because $H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right)=Z_{2}$,
(4.3) the homomorphism $\delta: H^{2 n-1}\left(P M ; Z_{2}\right) \rightarrow H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right)$ in (4.2) is an isomorphism.

We now assume that the integral cohomology groups $H^{i}(M ; Z)$ for $i=n$, $n-1$ are given as in (5.1). Let $K_{i}(i=1, \ldots, 4)$ be the subgroups of $H^{2 n-2}\left(\Lambda^{2} M\right.$, $\left.\Delta M ; Z_{2}\right)$ defined as follows:

$$
\begin{aligned}
& K_{1}=\left\{\Lambda \rho_{2} x \Lambda \rho_{2} y \mid x, y \in H^{n-1}(M ; Z)\right\} \\
& K_{2}=\left\{\Lambda \rho_{2} x \Lambda M \mid x \in H^{n-2}(M ; Z)\right\},\left(M=\rho_{2} M \text { if } w_{1}=0\right), \\
& K_{3}=Z_{2}\left\langle v^{n-2} \Lambda M\right\rangle \\
& K_{4}=\sum_{i=\alpha+1}^{\beta} Z_{2}\left\langle\Lambda M \Lambda \rho_{2} y_{i}+(r(i) / 2) \Lambda M^{\prime} \Lambda \rho_{2} x_{i}\right\rangle \text { if } w_{1} \neq 0 .
\end{aligned}
$$

Lemma 4.4. With the above notation, $\tilde{\rho}_{2} H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$ is
(1) $\sum_{i=1}^{3} K_{i}$ if n is even and $w_{1}=0$,
(2) $\sum_{i=1}^{4} K_{i} \quad$ if n is even and $w_{1} \neq 0$,
(3) $K_{1}+K_{2}$ if n is odd and $w_{1}=0$.

Proof. (1) Assume that n is even and $w_{1}=0$. Then $H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right)$ is given by [7, Th. 11] as follows:

$$
H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right)=K_{1}+K_{2}+K_{3}+K_{5}
$$

where

$$
K_{5}=\sum_{i=\alpha+1}^{\beta} Z_{2}\left\langle\Lambda \rho_{2} y_{i} \Lambda M\right\rangle
$$

By Lemma 1.5 and the relation $\tilde{\rho}_{2} \tilde{\beta}_{2}=S q^{1}+v$, we have the relations

$$
\begin{aligned}
& \tilde{\rho}_{2} \Delta(x, y)=\Lambda \rho_{2} x \Lambda \rho_{2} y \quad \text { for } \quad x, y \in H^{n-1}(M ; Z) \\
& \tilde{\rho}_{2} \Delta(x, M)=\Lambda \rho_{2} x \Lambda \rho_{2} M=\Lambda \rho_{2} x \Lambda M \quad \text { for } x \in H^{n-2}(M ; Z), \\
& \tilde{\rho}_{2} \tilde{\beta}_{2}\left(v^{n-3} \Lambda M\right)=v^{n-2} \Lambda M \\
& \tilde{\beta}_{2}\left(\Lambda \rho_{2} y_{i} \Lambda M\right)=\tilde{\beta}_{2} \tilde{\rho}_{2} \Delta\left(y_{i}, \rho_{r(i)} M\right)=(r(i) / 2) \tilde{\beta}_{r(i)} \Delta\left(y_{i}, \rho_{r(i)} M\right),
\end{aligned}
$$

and so

$$
K_{1}+K_{2}+K_{3} \subset \tilde{\rho}_{2} H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)
$$

On the other hand, $(r(i) / 2) \tilde{\beta}_{r(i)} \Delta\left(y_{i}, \rho_{r(i)} M\right)$ for $\alpha<i \leqq \beta$ form a base of $\tilde{\beta}_{2} H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right)$ by Proposition 5.3(i). This completes the proof of (1).
(2) Assume that n is even and $w_{1} \neq 0$. Then we have, in the same way as the above proof,

$$
H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right)=\sum_{i=1}^{4} K_{i}+K_{6}, \quad K_{6}=\left\{\Lambda M^{\prime} \Lambda x \mid x \in H^{n-1}\left(M ; Z_{2}\right)\right\}
$$

and

$$
K_{1}+K_{3} \subset \tilde{\rho}_{2} H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)
$$

Moreover, we have the relations

$$
\begin{aligned}
& \tilde{\rho}_{2} \tilde{\beta}_{2}\left(\Lambda \rho_{2} x \Lambda M^{\prime}\right)=\Lambda \rho_{2} x \Lambda M \\
& \tilde{\rho}_{2} \tilde{\beta}_{2}\left(\Lambda M^{\prime} \Lambda \rho_{2} y_{i}\right)=\Lambda M \Lambda \rho_{2} y_{i}+(r(i) / 2) \Lambda M^{\prime} \Lambda \rho_{2} x_{i} \quad \text { for } \quad \alpha<i \leqq \beta
\end{aligned}
$$

and so $K_{2}+K_{4} \subset \tilde{\rho}_{2} H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$. On the other hand, we see that $\operatorname{dim}_{Z_{2}} \tilde{\beta}_{2} H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right)=\beta+1$ by Proposition 5.3(ii) and $\operatorname{dim}_{Z_{2}} K_{6}=$ $\beta+1$. This implies (2).
(3) is obtained by the method similar to those of the above cases. q.e.d.

Lemma 4.5. Im $j_{0}^{*}\left(\subset H^{2 n-1}\left(P M ; Z_{2}\right)=Z_{2}\right)$ is given as follows:
(1) When $n \equiv 2(4)$ and $w_{1}=0, \operatorname{Im} j_{0}^{*}=0$ if and only if $w_{2} \rho_{2} H^{n-2}(M ; Z)=0$.
(2) When $n \equiv 2(4)$ and $w_{1} \neq 0, \operatorname{Im} j_{0}^{*}=0$ if and only if $w_{2}+w_{1}^{2}=0$.
(3) When $n \equiv 1(2)$ and $w_{1}=0, \operatorname{Im} j_{0}^{\hbar}=0$ if and only if $w_{2} \rho_{2} H^{n-2}(M ; Z)=0$.

Proof. The $\left(S q^{2}+(n-1) v^{2}\right)$-image of $K_{i}(i=1, \ldots, 4)$ are easily obtained by using [7, Lemmas 7 and 10] as follows:

$$
\begin{aligned}
& \left(S q^{2}+(n-1) v^{2}\right)\left(K_{1}+K_{3}\right)=0, \\
& \left(S q^{2}+(n-1) v^{2}\right) K_{2}=\left\{\Lambda S q^{2} \rho_{2} x \Lambda M \mid x \in H^{n-2}(M ; Z)\right\}, \\
& \left(S q^{2}+v^{2}\right)\left(\Lambda M \Lambda \rho_{2} y_{i}+(r(i) / 2) \Lambda M^{\prime} \Lambda \rho_{2} x_{i}\right)=\Lambda M \Lambda S q^{2} \rho_{2} y_{i} \quad(\alpha<i \leqq \beta) .
\end{aligned}
$$

Using these relations and the well-known fact that $S q^{2} x=\left(w_{2}+w_{1}^{2}\right) x$ for $x \in$ $H^{n-2}\left(M ; Z_{2}\right)$, we have

$$
\begin{aligned}
\Theta H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)= & \left\{\Lambda w_{2} \rho_{2} x \Lambda M \mid x \in H^{n-2}(M ; Z)\right\} \\
& \quad \text { in cases (1) and (3), } \\
= & \left\{\Lambda\left(w_{2}+w_{1}^{2}\right) x \Lambda M \mid x \in H^{n-2}\left(M ; Z_{2}\right)\right\} \text { in case (2). }
\end{aligned}
$$

This and (4.3) show the lemma.
q.e.d.

We are now ready to determine $\operatorname{Im} J_{2 n-1}$ for $n \equiv 1(2)$ and $w_{1}=0$, or $n \equiv 2(4)$.
Proposition 4.6. (1) Assume that $n \equiv 2(4)$ and $w_{1}=0$. Then

$$
\operatorname{Im} J_{2 n-1}= \begin{cases}{\left[M \subseteq R^{2 n-1}\right]} & \text { if } w_{2} \rho_{2} H^{n-2}(M ; Z) \neq 0, \\ \theta H^{n-1}\left(M ; Z_{2}\right) & \text { otherwise. }\end{cases}
$$

(2) Assume that $n \equiv 2(4)$ and $w_{1} \neq 0$. Then

$$
\operatorname{Im} J_{2 n-1}= \begin{cases}\theta K+Z_{2} & \text { if } w_{2}+w_{1}^{2} \neq 0 \\ \theta K & \text { otherwise } .\end{cases}
$$

(3) Assume that $n \equiv 1(2)$ and $w_{1}=0$. Then

$$
\begin{aligned}
\operatorname{Im} J_{2 n-1} & =\theta \beta_{2} H^{n-2}\left(M ; Z_{2}\right) & & \text { if } w_{2} \rho_{2} H^{n-2}(M ; Z)=0, \\
& =\theta \beta_{2} H^{n-2}\left(M ; Z_{2}\right)+0+Z_{2} & & \text { if } n \equiv 1(4) \text { and } w_{2} \rho_{2} H^{n-2}(M ; Z) \neq 0, \\
& =\theta \beta_{2} H^{n-2}\left(M ; Z_{2}\right)+Z_{2} & & \text { otherwise. }
\end{aligned}
$$

Proof. This is an immediate consequence of Lemmas 3.1, 3.2, 4.5 and (2.7).

Propositions 4.1 and 4.6 give the results on $J_{2 n-1}$ in Main Theorem. Thus Main Theorem in the introduction is proved.
§5. Appendix on $H^{i}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$ for $i \geqq 2 n-3$
In the previous sections, the cohomology of $\left(\Lambda^{2} M, \Delta M\right)$ plays an important part. L. L. Larmore [7] investigated it but the author can not understand the proof of [7, Th. 20]. Therefore we should like to try to describe the cohomology
groups $H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z\right)$ and $H^{i}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$ for $i \geqq 2 n-3$ by using the notations and the results stated in [7, pp. 908-915]. We note that Propositions $5.4-5$ for $i=2 n-2,2 n-3$ are not used in this paper and are prepared for the forthcoming paper [14].

Let M be a closed connected n-manifold and assume that

$$
\begin{align*}
& H^{n}(M ; Z)=Z\langle M\rangle \text { if } w_{1}=0, \quad=Z_{2}\left\langle\beta_{2} M^{\prime}\right\rangle\left(S q^{1} M^{\prime}=M\right) \text { if } w_{1} \neq 0, \tag{5.1}\\
& H^{m}(M ; Z)=\sum_{i=1}^{\gamma(m)} Z_{r(m, i)}\left\langle x_{m, i}\right\rangle \text { (direct sum) for } m \leqq n-1, \\
& x_{m, i}=\beta_{r(m, i)} y_{m, i}\left(y_{m, i} \in H^{m-1}\left(M ; Z_{r(m, i)}\right) \text { for } \alpha(m)<i \leqq \gamma(m),\right.
\end{align*}
$$

where the order $r(m, i)$ is infinite for $1 \leqq i \leqq \alpha(m)$, a power of 2 for $\alpha(m)<i \leqq \beta(m)$ and a power of an odd prime for $\beta(m)<i \leqq \gamma(m)$, and if $\alpha(m)<i<j$ then either $(r(m, i), r(m, j))=1$ or $r(m, i) \mid r(m, j)$ holds.

Furthermore, for the simplicity,
(5.1)' denote $\alpha(m), \beta(m), \gamma(m), r(m, i), x_{m, i}$ and $y_{m, i}$ in (5.1) respectively by

$$
\begin{array}{ll}
\alpha, \beta, \gamma, r(i), x_{i} \text { and } y_{i} & \text { when } m=n-1, \\
\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}, r^{\prime}(i), x_{i}^{\prime} \text { and } y_{i}^{\prime} & \text { when } m=n-2 .
\end{array}
$$

Then we have the following propositions, where (i)'s,..., (iv)'s hold respectively when
(i) n is even and $w_{1}=0$,
(ii) n is even and $w_{1} \neq 0$,
(iii) n is odd and $w_{1}=0$,
(iv) n is odd and $w_{1} \neq 0$.

Proposition 5.2. (1) $H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$ is
(i) $Z_{2}\left\langle\tilde{\beta}_{2}\left(v^{n-1} \Lambda \rho_{2} M\right)\right\rangle$,
(ii) $Z_{2}\left\langle\tilde{\beta}_{2}\left(v^{n-1} \Lambda M\right)\right\rangle$,
(iii) $Z\langle\Delta(M, M)\rangle$,
(iv) $Z_{2}\left\langle\tilde{\beta}_{2}\left(\Lambda M^{\prime} \Lambda M\right)\right\rangle$.
(2) $H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z\right)$ is
(i) $Z\langle\Lambda M \Lambda M\rangle$,
(ii) $Z_{2}\left\langle\beta_{2}\left(\Lambda M^{\prime} \Lambda M\right)\right\rangle$,
(iii) $Z_{2}\left\langle\beta_{2}\left(v^{n-1} \Lambda \rho_{2} M\right)\right\rangle$,
(iv) $Z_{2}\left\langle\beta_{2}\left(v^{n-1} \Lambda M\right)\right\rangle$.

Proposition 5.3. $H^{2 n-1}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$ is
(i) G,
(ii) $Z_{4}\left\langle(1 / 2) \tilde{\beta}_{2}\left(v^{n-1} \Lambda M^{\prime}\right)\right\rangle+K$,
(iii) $Z_{2}\left\langle\widetilde{\beta}_{2}\left(v^{n-2} \Lambda \rho_{2} M\right)\right\rangle+G$,
(iv) $Z_{2}\left\langle\tilde{\beta}_{2}\left(v^{n-2} \Lambda M\right)\right\rangle+K$, and $\tilde{\rho}_{2}: H^{2 n-1}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \rightarrow H^{2 n-1}\left(\Lambda^{2} M\right.$, $\Delta M ; Z_{2}$) is monomorphic,
where

$$
\begin{aligned}
& G=\sum_{i=1}^{\alpha} Z\left\langle\Delta\left(x_{i}, M\right)\right\rangle+\sum_{i=\alpha+1}^{\gamma} Z_{r(i)}\left\langle\tilde{\beta}_{r(i)} \Delta\left(y_{i}, \rho_{r(i)} M\right)\right\rangle\left(\cong H^{n-1}(M ; Z)\right), \\
& K=\sum_{i=1}^{\beta} Z_{2}\left\langle\tilde{\beta}_{2} \Delta\left(M^{\prime}, \rho_{2} x_{i}\right)\right\rangle\left(\cong \operatorname{Im}\left(\rho_{2}: H^{n-1}(M ; Z) \longrightarrow H^{n-1}\left(M ; Z_{2}\right)\right)\right) .
\end{aligned}
$$

Proposition 5.4. $H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$ is
(i) $Z_{2}\left\langle\tilde{\beta}_{2}\left(v^{n-3} \Lambda \rho_{2} M\right)\right\rangle+G_{1}+G_{2}+G_{3}+G_{4}+G_{6}$,
(ii) $Z_{2}\left\langle\tilde{\beta}_{2}\left(v^{n-3} \Lambda M\right)\right\rangle+G_{1}+G_{2}+G_{3}+G_{4}+G_{7}$,
(iii) $G_{1}+G_{3}+G_{5}+G_{6}$,
(iv) $Z_{2}\left\langle\tilde{\beta}_{2}\left(v^{n-2} \Lambda M^{\prime}\right)\right\rangle+G_{1}+G_{3}+G_{5}+G_{7}$,
where
$G_{1}=\sum_{1 \leqq i<j \leqq \alpha} Z\left\langle\Delta\left(x_{i}, x_{j}\right)\right\rangle, \quad G_{2}=\sum_{i=1}^{\alpha} Z\left\langle\Delta\left(x_{i}, x_{i}\right)\right\rangle$,
$G_{3}=\left(\sum_{1 \leqq i \leqq \alpha<j \leqq \gamma}+\sum_{\alpha<j<i \leqq \gamma}\right) Z_{r(j)}\left\langle\tilde{\beta}_{r(j)} \Delta\left(y_{j}, \rho_{r(j)} x_{i}\right)\right\rangle$,
$G_{4}=\sum_{i=\alpha+1}^{\gamma} Z_{r(i)}\left\langle\tilde{\beta}_{r(i)} \Delta\left(y_{i}, \rho_{r(i)} x_{i}\right)\right\rangle, \quad G_{5}=\sum_{i=1}^{\beta} Z_{2}\left\langle\tilde{\beta}_{2}\left(v^{n-2} \Lambda \rho_{2} x_{i}\right)\right\rangle$,
$G_{6}=\sum_{k=1}^{\alpha^{\prime}} Z\left\langle\Delta\left(x_{k}^{\prime}, M\right)\right\rangle+\sum_{k=\alpha^{\prime}+1}^{\gamma^{\prime}} Z_{r^{\prime}(k)}\left\langle\tilde{\beta}_{r^{\prime}(k)} \Delta\left(y_{k}^{\prime}, \rho_{r^{\prime}(k)} M\right)\right\rangle\left(\cong H^{n-2}(M ; Z)\right)$,
$G_{7}=\sum_{k=1}^{\beta^{\prime}} Z_{2}\left\langle\tilde{\beta}_{2} \Delta\left(M^{\prime}, \rho_{2} x_{k}^{\prime}\right)\right\rangle+\sum_{i=\alpha+1}^{\beta} Z_{2}\left\langle\tilde{\beta}_{2} \Delta\left(M^{\prime}, \rho_{2} y_{i}\right)\right\rangle\left(\cong H^{n-2}\left(M ; Z_{2}\right)\right)$.
Proposition 5.5. $\quad \tilde{\rho}_{2} H^{2 n-3}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) / \delta H^{2 n-4}\left(P M ; Z_{2}\right)$ is isomorphic to
(i) H ,
(ii) $H+H_{4}$,
(iii) $H+H_{5}$,
(iv) $\mathrm{H}+\mathrm{H}_{4}+\mathrm{H}_{5}$,
where

$$
\begin{aligned}
& H=H_{1}+H_{2}+H_{3}, \\
& H_{1}=\left\{\begin{array}{lll}
\left\{\Lambda \rho_{2} x \Lambda \rho_{2} M \mid x \in H^{n-3}(M ; Z)\right\} & \text { if } w_{1}=0, \\
\left\{\Lambda \rho_{2} x \Lambda M \mid x \in H^{n-3}(M ; Z)\right\} & \text { if } w_{1} \neq 0,
\end{array}\right. \\
& H_{2}=\left\{\Lambda \rho_{2} x \Lambda \rho_{2} y \mid x \in H^{n-2}(M ; Z), y \in H^{n-1}(M ; Z)\right\}, \\
& H_{3}=\sum_{\alpha<i<j \leqq \beta} Z_{2}\left\langle\Lambda \rho_{2} x_{i} \Lambda \rho_{2} y_{j}+(r(j) / r(i)) \Lambda \rho_{2} y_{i} \Lambda \rho_{2} x_{j}\right\rangle, \\
& H_{4}=\sum_{k=\alpha^{\prime}+1}^{\beta} Z_{2}\left\langle\Lambda \rho_{2} y_{k}^{\prime} \Lambda M+\left(r^{\prime}(k) / 2\right) \Lambda \rho_{2} x_{k}^{\prime} \Lambda M^{\prime}\right\rangle, \\
& H_{5}=\sum_{i=\alpha+1}^{\beta} Z_{2}\left\langle\Lambda \rho_{2} y_{i} \Lambda \rho_{2} x_{i}\right\rangle .
\end{aligned}
$$

To prove these propositions, we use the following results frequently:
(5.6) ([7, p. 914]) For any cyclic group G, there is an exact sequence

$$
\begin{aligned}
& \cdots \longrightarrow H^{i-1}\left(\Lambda^{2} M, \Delta M ; G\right) \xrightarrow{V \cdot} H^{i}\left(\Lambda^{2} M, \Delta M ; G[v]\right) \\
& \xrightarrow{\pi^{*}} H^{i}\left(M^{2}, \Delta M ; G\right)
\end{aligned} H^{i}\left(\Lambda^{2} M, \Delta M ; G\right) \longrightarrow \cdots, ~ l
$$

where $\pi:\left(M^{2}, \Delta M\right) \rightarrow\left(\Lambda^{2} M, \Delta M\right)$ is the natural projection, v is the first StiefelWhitney class of the double covering $M^{2}-\Delta M \rightarrow \Lambda^{2} M-\Delta M=M^{*}$ and $V=$ $\tilde{\beta}_{2}(1) \in H^{1}\left(M^{*} ; Z[v]\right)$.
(5.7) For any positive integer p, there is the Bockstein exact sequence

$$
\begin{aligned}
\cdots \longrightarrow & H^{i-1}\left(\Lambda^{2} M, \Delta M ; Z_{p}[v]\right) \xrightarrow{\tilde{\beta}_{p}} H^{i}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \\
& \xrightarrow{\times p} H^{i}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \xrightarrow{\tilde{\rho}_{p}} H^{i}\left(\Lambda^{2} M, \Delta M ; Z_{p}[v]\right) \xrightarrow{\tilde{\beta}_{p}} \cdots .
\end{aligned}
$$

(5.8) ([7, Remark 13]) For any odd prime $p, \pi^{*}: H^{*}\left(\Lambda^{2} M, \Delta M ; Z_{p}[v]\right) \rightarrow$ $H^{*}\left(M^{2}, \Delta M ; Z_{p}\right)$ is monomorphic and

$$
\operatorname{Im} \pi^{*}=\left\{x \mid x \in H^{*}\left(M^{2}, \Delta M ; Z_{p}\right), t^{*} x=-x\right\}
$$

where $t:\left(M^{2}, \Delta M\right) \rightarrow\left(M^{2}, \Delta M\right)$ is a map defined by $t(x, y)=(y, x)$.
(5.9) (cf. [7, p. 914]) For $x \in H^{r}\left(M ; Z_{t}\right)$ and $y \in H^{s}\left(M ; Z_{t}\right)(t \leqq \infty)$,

$$
\pi^{*} \Delta(x, y)=x \otimes y-(-1)^{r s} y \otimes x \quad \text { and } \quad \pi^{*} \Lambda x=x \otimes 1-1 \otimes x
$$

and moreover the order of $\Delta(x, y)$ for $x \neq y$ is the greatest common factor of those of x and y, and the order of Λx is equal to that of x.

We now sketch the proofs of Propositions 5.2-5.
By (5.6), the following relation holds:
$\operatorname{rank} H^{i}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)+\operatorname{rank} H^{i}\left(\Lambda^{2} M, \Delta M ; Z\right)=\operatorname{rank} H^{i}\left(M^{2}, \Delta M ; Z\right)$.
By using (5.9) and Lemma 1.5(1), we can choose generators (mod torsions) of $H^{i}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$ and $H^{i}\left(\Lambda^{2} M, \Delta M ; Z\right)$. In particular we have

Lemma 5.10. There hold the following congruences mod torsions:
(1) $H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z\right) \equiv \begin{cases}Z\langle\Lambda M \Lambda M\rangle & \text { if } n \text { is even and } w_{1}=0, \\ 0 & \text { otherwise. }\end{cases}$
(2) $H^{2 n}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \equiv \begin{cases}Z\langle\Delta(M, M)\rangle & \text { if } n \text { is odd and } w_{1}=0, \\ 0 & \text { otherwise. }\end{cases}$
(3) $H^{2 n-1}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \equiv \begin{cases}\sum_{i=1}^{\alpha} Z\left\langle\Delta\left(x_{i}, M\right)\right\rangle & \text { if } w_{1}=0, \\ 0 & \text { if } w_{1} \neq 0 .\end{cases}$
(4) $H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$ is congruent mod torsion to the direct sum of G_{1} and

G_{2}	if n is even,
$\sum_{k=1}^{\alpha^{\prime}} Z\left\langle\Delta\left(x_{k}^{\prime}, M\right)\right\rangle$	if $\quad w_{1}=0$.

To determine the odd torsion subgroup of $H^{i}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$, let p be an odd prime. Then the Z_{p}-base of $H^{i}\left(\Lambda^{2} M, \Delta M ; Z_{p}[v]\right)$ can be determined by (5.8-9). Thus the p-primary component and its generators of $H^{i}\left(\Lambda^{2} M, \Delta M\right.$; $Z[v]$) are determined by the exact sequence (5.7) for odd prime p and [7, Remark 16]. In particular we have

Lemma 5.11. Denote by T_{o}^{i} the odd torsion subgroup of $H^{i}\left(\Lambda^{2} M, \Delta M\right.$; $Z[v]$). Then
(1) $T_{o}^{2 n}=0$;
(2) $T_{o}^{2 n-1}= \begin{cases}(G)_{o}=\sum_{i=\beta+1}^{\gamma} Z_{r(i)}\left\langle\tilde{\beta}_{r(i)} \Delta\left(y_{i}, \rho_{r(i)} M\right)\right\rangle & \text { if } w_{1}=0, \\ 0 & \text { if } w_{1} \neq 0 ;\end{cases}$
(3) $T_{o}^{2 n-2}$ is the direct sum of

$$
\left(G_{3}\right)_{o}=\left(\sum_{1 \leqq i \leqq \alpha, \beta<j \leqq \gamma}+\sum_{\beta<j<i \leqq \gamma}\right) Z_{r(j)}\left\langle\tilde{\beta}_{r(j)} \Delta\left(y_{j}, \rho_{r(j)} x_{i}\right)\right\rangle
$$

and

$$
\begin{array}{ll}
\left(G_{4}\right)_{o}=\sum_{i=\beta+1}^{\gamma} Z_{r(i)}\left\langle\tilde{\beta}_{r(i)} \Delta\left(y_{i}, \rho_{r(i)} x_{i}\right)\right\rangle & \text { if } n \text { is even, } \\
\left(G_{6}\right)_{o}=\sum_{k=\beta^{\prime}+1}^{\gamma^{\prime}} Z_{r^{\prime}(k)}\left\langle\tilde{\beta}_{r^{\prime}(k)} \Delta\left(y_{k}^{\prime}, \rho_{r^{\prime}(k)} M\right)\right\rangle & \text { if } w_{1}=0 .
\end{array}
$$

The proof of (1) of Proposition 5.2 is given by using Lemmas 5.10-11, (5.7) for $p=2$ and [7, Th. 11], and that of (2) is given by using the ordinary Bockstein exact sequence instead of (5.7).

In the rest of this section, we study the 2-primary components of $H^{i}\left(\Lambda^{2} M\right.$, $\Delta M ; Z[v]$) for $2 n-3 \leqq i \leqq 2 n-1$. First we consider the case (ii) n is even and $w_{1} \neq 0$. By (5.7) for $p=2$, Lemmas 5.10-11 and [7, Th. 11], we have

$$
\begin{aligned}
& H^{2 n-1}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)=K+Z_{s}\left(K=\sum_{i=1}^{\beta} Z_{2}\left\langle\tilde{\beta}_{2} \Delta\left(M^{\prime}, \rho_{2} x_{i}\right)\right\rangle\right), \\
& \tilde{\rho}_{2} Z_{s}=Z_{2}\left\langle v^{n-1} \Lambda M+\Lambda M^{\prime} \Lambda M\right\rangle, \text { for some integer } s \geqq 2 .
\end{aligned}
$$

In the exact sequence (3.3), both groups $H^{2 n-2}(P M ; Z[v])$ and $H^{2 n-1}\left(M^{*} ; Z[v]\right)$ are isomorphic to $H^{n-1}\left(M ; Z_{2}\right)$ by Proposition 2.4 and (3.4) and so $s \leqq 4$. On the other hand,

$$
\tilde{\rho}_{2} \tilde{\beta}_{2} H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z_{2}\right) \nexists v^{n-1} \Lambda M+\Lambda M^{\prime} \Lambda M
$$

follows briefly. Thus $s \geqq 4$ and so $s=4$. Moreover by (5.7) for $p=2$, (5.9) and Lemmas 1.5 and 5.10 , we see that

$$
Z_{s}=Z_{4}\left\langle(1 / 2) \tilde{\beta}_{2}\left(v^{n-1} \Lambda M^{\prime}\right)\right\rangle,
$$

and

$$
\begin{array}{r}
H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z[v]\right) \equiv Z_{2}\left\langle\tilde{\beta}_{2}\left(v^{n-3} \Lambda M\right)\right\rangle+G_{1}+G_{2}+G_{7} \\
+\left(\sum_{1 \leqq i \leq \alpha<j \leqq \beta}+\sum_{\alpha<j<i \leqq \beta}\right) Z_{r(j)}\left\langle\Delta\left(x_{j}, x_{i}\right)\right\rangle+\sum_{j=\alpha+1}^{\beta} Z_{s(j)}\left\langle\Delta\left(x_{j}, x_{j}\right)\right\rangle \\
\bmod \text { odd torsion, }
\end{array}
$$

where $s(j)$ is the order of $\Delta\left(x_{j}, x_{j}\right)$. As for the element $\Delta\left(x_{j}, x_{i}\right)$, if $i \neq j$ then $\pi^{*} \widetilde{\beta}_{r(j)} \Delta\left(y_{j}, \rho_{r(j)} x_{i}\right)=\pi^{*} \Delta\left(x_{j}, x_{i}\right)$ by (5.9) and hence

$$
\tilde{\beta}_{r(j)} \Delta\left(y_{j}, \rho_{r(j)} x_{i}\right)=\Delta\left(x_{j}, x_{i}\right)+V X_{j, i} \text { for some } X_{j, i} \in H^{2 n-3}\left(\Lambda^{2} M, \Delta M ; Z\right)
$$

by (5.6). Further we see easily that

$$
\tilde{\rho}_{2} \tilde{\beta}_{r(j)} \Delta\left(y_{j}, \rho_{r(j)} x_{i}\right)=\Lambda \rho_{2} x_{j} \Lambda \rho_{2} x_{i}+v \rho_{2} X_{j, i} \neq 0
$$

by Lemma 1.5. Therefore we can replace $\Delta\left(x_{j}, x_{i}\right)$ by $\tilde{\beta}_{r(j)} \Delta\left(y_{j}, \rho_{r(j)} x_{i}\right)$. If $i=j$ and $r(j)=2$, then

$$
\tilde{\rho}_{2} \tilde{\beta}_{2} \Delta\left(y_{j}, \rho_{2} x_{j}\right)=\Lambda \rho_{2} x_{j} \Lambda \rho_{2} x_{j}=\tilde{\rho}_{2} \Lambda\left(x_{j}, x_{j}\right)
$$

by Lemma 1.5 , and so $s(j)=2$ and $\Delta\left(x_{j}, x_{j}\right)$ can be replaced by $\tilde{\beta}_{2} \Delta\left(y_{j}, \rho_{2} x_{j}\right)$. If $i=j$ and $r(j) \geqq 4$, then we see easily that

$$
\tilde{\beta}_{r(j)} \Delta\left(y_{j}, \rho_{r(j)} x_{j}\right)=\Delta\left(x_{j}, x_{j}\right)+V Y_{j} \quad\left(Y_{j} \in H^{2 n-3}\left(\Lambda^{2} M, \Delta M ; Z\right)\right)
$$

by (5.6) and (5.9), and that

$$
\tilde{\beta}_{2}\left(\Lambda \rho_{2} y_{j} \Lambda \rho_{2} x_{j}\right) \neq 0
$$

by (5.7) for $p=2$. Using Lemma 1.5 and the relation $\tilde{\beta}_{2} \tilde{\rho}_{2}=(r / 2) \tilde{\beta}_{r}$: $H^{i-1}\left(\Lambda^{2} M, \Delta M ; Z_{r}[v]\right) \rightarrow H^{i}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)$, we see that

$$
(r(j) / 2) \tilde{\beta}_{r(j)} \Delta\left(y_{j}, \rho_{r(j)} x_{j}\right)=\tilde{\beta}_{2} \tilde{\rho}_{2} \Delta\left(y_{j}, \rho_{r(j)} x_{j}\right)
$$

The above three relations imply that $s(j)=r(j)$ and $\Delta\left(x_{j}, x_{j}\right)$ can be replaced by $\tilde{\beta}_{r(j)} \Delta\left(y_{j}, \rho_{r(j)} x_{j}\right)$. This completes the proofs of (ii)'s of Propositions 5.3-4. The proof of Proposition 5.5(ii) is given by Lemma 1.5(3) and (5.7) for $p=2$ immediately.

The proofs of (i)'s, (iii)'s and (iv)'s of Propositions 5.3-5 are similar to, but simpler than, those of (ii)'s except the results concerning H_{5} of Proposition 5.5 for odd n.

Let n be odd. By simple calculations, using Lemma 1.5, Proposition 5.4 and (5.9), we see that

$$
\tilde{\beta}_{2}\left(\Lambda \rho_{2} y_{j} \Lambda \rho_{2} x_{j}\right) \in \operatorname{Ker} \pi^{*} \quad\left(\subset H^{2 n-2}\left(\Lambda^{2} M, \Delta M ; Z[v]\right)\right)
$$

and

$$
\operatorname{Ker} \pi^{*}=\left\{\widetilde{\beta}_{2}\left(v^{n-2} \Lambda x\right) \mid x \in H^{n-1}\left(M ; Z_{2}\right)\right\}
$$

This implies that there is an element $X_{j} \in H^{n-1}\left(M ; Z_{2}\right)$ such that

$$
\Lambda \rho_{2} y_{j} \Lambda \rho_{2} x_{j}+v^{n-2} \Lambda X_{j} \in \operatorname{Im} \tilde{\rho}_{2}
$$

Using this result, Lemma 1.5(3) and (5.7) for $p=2$, we have Proposition 5.5(iii)(iv) completely.

References

[1] D. R. Bausum, Embeddings and immersions of manifolds in Euclidean space, Trans. Amer. Math. Soc., 213 (1975), 263-303.
[2] J. C. Becker, Cohomology and the classification of liftings, Trans. Amer. Math. Soc., 133 (1968), 447-475.
[3] A. Haefliger, Plongements de variétés dans le domaine stable, Séminaire Bourbaki 1962/ 63, $n^{\circ} 245$.
[4] A. Haefliger and M. W. Hirsch, Immersions in the stable range, Ann. of Math., 75 (1962), 231-241.
[5] and - On the existence and classification of differentiable embeddings, Topology, 2 (1963), 129-135.
[6] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc., 93 (1959), 242-276.
[7] L. L. Larmore, The cohomology of $\left(\Lambda^{2} X, \Delta X\right)$, Canad. J. Math., 27 (1973), 908-921.
[8] L. L. Larmore and R. D. Rigdon, Enumerating immersions and embeddings of projective spaces, Pacific J. Math., 64 (1976), 471-492.
[9] L. L. Larmore and E. Thomas, Group extensions and principal fibrations, Math. Scand., 30 (1972), 227-248.
[10] ——and Group extensions and twisted cohomology theories, Illinois J. Math., 17 (1973), 397-410.
[11] R. D. Rigdon, Immersions and embeddings of manifolds in Euclidean space, Thesis, Univ. of California at Berkeley, 1970.
[12] E. Thomas, Embedding manifolds in Euclidean space, Osaka J. Math., 13 (1976), 163186.
[13] T. Yasui, The enumeration of embeddings of lens spaces and projective spaces, Hiroshima Math. J., 8 (1978), 235-253.
[14] —, Enumerating embeddings of n-manifolds in (2n-1)-dimensional Euclidean space, preprint.

[^0]: *) This relation is different from that of Rigdon [11], but his relation can be modified as stated in the proposition by chasing his construction of θ.

