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1. Introduction

The hyperbolic equation

(1.1) utt - uss + p(s, t)u = 0 Q»0)

has the physical interpretation of prescribing the u-displacement of a vibrating

string subject to a linear restoring force. This fact suggests the possibility of

formulating a hyperbolic boundary value problem by specifying boundary con-

ditions for the string at times t = 0 and t=T. In analogy with the ordinary

differential equation

(1.2) _ ^ _ + J P ( O M = O Q»0)

(describing the w-displacement of a single particle), one might expect that such

boundary values will also give rise to eigenvalues for hyperbolic equations of the

form

(1.3) utt - uss + λp(s, t)u = 0.

While there have been a number of hyperbolic generalizations of the Sturm

comparison theorem (see for example [2], [3], [5], [6]) which can be useful in

this regard, these extensions of classical ODE results require careful attention to

boundary conditions in the space variable s as well as in t. The present paper

attempts to avoid the complications associated with spatial boundary conditions

by considering focal point problems for (1.1) in characteristic triangles of the

form

R(s, t) = {(σ, τ): s - ( t - τ ) < σ < s + ( ί-τ) , 0 < τ < ί } .

For example, we shall study (1.3) in R(Q, T) with various boundary conditions

assigned at ί = 0 and at t=T.

It is assumed throughout that p(s, t) is continuous in R(09 T) and that all

solutions are C2 functions which satisfy the underlying equation in the classical

sense.
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2. Right focal points

In order to study (1.3) in R(0, T) subject to the right focal point boundary

conditions wf(s, 0) = w(0, Γ) = 0 for -T<s<T, we first consider the Cauchy

problem

(2.1) utt - uss + /(5, 0 = 0 in R(0, T),

(2.2) u(st 0) = kg(s\ wf(5,0) = 0 in [ - Γ , r | ,

where /(s, t) is assumed continuous in R(0, T), g(s) is positive and continuous in

[—T, T] and k is a constant yet to be determined. By DΆlembert's formula

(2.1), (2.2) has the solution

u(s, t) = \[jg{s + t) + g{s-tj\ - \ \ \ f(σ, τ)dσdτ.
2 I JjR(S,t)

In order to impose u(0, T) = 0 on a solution of (2.1), (2.2) we define go =

choose

JR(O,T)

to obtain

ff A τ)dσdτ _ 1 (f / ( σ >
JJR(Ό,T) £ JjR(s,t)

This can also be written

(2.3) u(s, t) = [[ G(5, t; σ, τ)/(σ, τ)dσdτ,
JJR(O,T)

where the right focal point Green's function satisfies

G(s, / ; σ, τ) = ^ ( ^ + 0 + ^ ( ^ - 0 f o r ( σ > τ ) i n ^ ( Q , T)-R(S, /),

(2.4)
g ( * + 0 + g ( * 0 _ i f o r ( σ > τ ) i n

We note that if g is concave in [ - Γ, Γ], (e.g. if #"(s)<0 in [ - Γ, Γ]), then G(s, t;

σ9 τ ) > 0 in R(0, T) x jR(O, T), while in case g(s) is constant we obtain

G(5, ί σ, τ) = y in Λ(0, Γ) - Λ(s, ί),

(2.5)
= 0 in R(s, t).
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However G(s, t: σ, τ) is not symmetric, as can be seen from the fact that in (2.5)

; O , - | - ) = O and G(O, X-; 0,X-; 0, ̂ ) = -1.

From (2.3) it follows that the hyperbolic eigenvalue problem

w« - uss + λp(s9 t)u = 0 in K(0, T ) ,

(2.6) u(s9θ) = kg(s)9 Wί(5,0) = 0 in [-T, T ] ,

i*(0, T) = 0

is equivalent to

(2.7) χu(s , *) = * [ > ] ,

where

#[u] = [[ G(s, t\ σ, τ)p(σ, τ)u(σ, τ)dσdτ.
JJR(O,T)

Assuming p(s, t)>0 in R(0, T), ^ defines a positive operator on the cone of

functions u: R(0, T)-*R+. The theory of Krasnoselskii [1, Chapter 2] then

implies the following.

THEOREM 2.1. Ifg(s) is positive and concave in [— T, Γ], then there exists a

unique eigenvalue λg>0for which (2.6) has a nontrivial solution u(x, t) which is

nonnegative in R(0, T). All other eigenvalues of (2.6) satisfy \λ\>λg.

A somewhat different right focal point condition can be formulated for (1.1)

in its alternate canonical form

(2.8) uxy + p(x, y)u = 0.

Again considering (2.8) in a characteristic triangle

R(x, y) = {(ξ, η): -η<ξ<x, -ξ<η<y},

we seek a point (X, Y) such that there exists a nontrivial solution of (2.8) satisfying

(2.9) ux(x, -x) = 0 for - Y< x < X and u{X9 Y) = 0

or

(2.10) u£-y,y) = 0 for - X < y < Y and u(X, Y) = 0.

Since the Cauchy problem for (2.8) consists of assigning u and ux (or uy) along

a line x + y = 0, we shall consider (2.9) or (2.10) in conjunction with the initial



206 Kurt KREITH

values u(x, —x) = g(x). Such Cauchy data gives rise to the compatibility con-

dition

ux(x, -x) - uy(x, -x) = g\x)9

so that g(x) = constant implies the equivalence of (2.9), (2.10), and the equivalence

of (2.9) with the right focal points previously considered. However, for

nonconstant initial data g(x)>0 the various right focal points have different

meanings.

It will be useful (for the discussion in Sec. 3) to generalize our considerations

to include differential inequalities of the form

uxy + p(x, y)u < 0 ,

u(x, -x) = g(x)\ ux(x, -x) = 0,

where g(x) is continuous and positive. We shall now be able to use a generalized

Riccati transformation [4] and a comparison theorem of W. Walter [7] to es-

tablish criteria for the existence of right focal points for (2.11). Unlike Theorem

2.1, these criteria will not require the positivity of p(x, y).

Noting that w(x, y) = exp [— U(x, y)'] transforms (2.11) into

Uxy = p(x, y) + UxUy,

U(x9 - x ) = - \ogg(x)9 Ux(x9 -x) = 0,

the focal point condition u(X9 Y) = 0 becomes

These observations enable us to establish the existence of right focal points of

(2.11) by means of the following comparison theorem.

THEOREM 2.2. Let v(x, y) be a nontrivial solution of

vxy + P(x, y)v > 0, (x,y)eR(X, Y)

φ c , _ χ ) = G ( x ) , v x ( x , - x ) = 0 , -Y<x<X

satisfying υ>09 vx<0, υy<0 in the interior ofR(X, Y). Ifu(x, y) is positive and

satisfies (2.11) with p(x, y)>P(x, y) in R(X9 Y) and g(x)<G(x) for -Y<x<X,

then v(x9 y)>u(x, y) in R(X9 Y).

PROOF. The transformations

ι/(x, y) = exp [ - U(x9 y)~] v(x9 y) = exp [ - F(x, y)]

transform (2.11) and (2.11)' into the form
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Uxy > / ( * , y, U, Ux, Uy) in R(X, Y),

Vxy <f(x,y, V, Vχ9Vy) in R(X,Y),

where/(x, y, V, Vχ9 Vy) = P(x, y) + VxVy and Vx>09 Vy>0 in the interior of R(X,

Y). From the equivalent integral equations

U(x, y)>-ln g(x9 y) + \ [[ f(ξ, η, Uξ9 UJdξdη,

V(x, y)<-ln G(x, y) + \- \ [ f(ξ, η, V, Vζ9 Vη)dξdη.

[7, Theorem 21. V] implies that Ux(x, y)>Vx(x9 y)>0, Uy(x9 y)> Vy(x, y)>0,

and U(x, y)>V(x, y) in R(X, 7). It therefore follows that u(x, y)<υ(x, y) in

COROLLARY 2.3. Under the hypotheses of Theorem 2.2, t/(2.11)/ has a right

focal point defined by (2.9) in R(x9 y)9 then so does (2.11).

In order to apply Corollary 2.3, we may consider (2.11)' in the special case

where P(x, y) = Q(x 4- y) and G(x) = 1. The substitution s = x + y w(s) — v(x, y)

then yields

(2.12) - * £ - + Q(s)w = 0

and, as a consequence, the following criterion for the existence of right focal

points defined by (2.9).

THEOREM 2.4. Suppose (2.12) has a nontriυial solution w(s) satisfying

w'(0) = 0 = w(S) and w'(s) < 0 for 0 < s < S. If p(x, y) > Q(x + y) in R(X, S - X\

then (2.11) will have a right focal point in R(X, S-X).

3. Left focal points

Given the variety of generalizations of right focal point from (1.2) to (1.1),

one would expect that left focal points would allow an analogous treatment. A

natural effort in this direction is to consider

w« - uss + p(s, t)u = 0 for (σ, τ) in R(0, T),

(3.1) u(s, 0) = 0, ut{s, 0) = kg(s) for -T<s<T9

w,(0, T) = 0

and again seek conditions such that (3.1) has nontrivial solutions. Proceeding

as before, one would solve the Cauchy problem
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w« - uss + /(s, 0 = 0,

u(s, 0) = 0; ut(s, 0) = kg(s)

in the form

Ir Cs+t 1 (t fs+(f-τ)

2 Js-t I JθJs-(t-τ)

obtaining

ut(s, t) = ^-[jg(s + t) + g(s-ty] - - i - £ [ / ( s + (f-τ), τ) +/(s-( ί-τ), τ)]dτ.

Thus the boundary condition wf(0, T) = 0 leads to the representation (3.2) with

* =

Unfortunately this expression for k seems to preclude a representation of (3.1) in

terms of a Green's function such as that which underlies Theorem 2.1.

Attempts to establish left focal points by means of generalized Riccati trans-

formations encounter similar difficulties. In the ODE case of

(3.3) -̂ -f- + p(t)u = 0

right focal points are obtained from the transformation h(f)= —u'(t)/u(t), and

this reduces to the transformation u(t) = e~u^ when h(t)=U'(t). However,

there seems to be no corresponding exponential form of the Riccati transformation

H(t) = u(t)lu'(t) which is used to study left focal points of (3.3).

In view of these difficulties, we shall establish the existence of left focal points

by different means. These do, however, require additional hypotheses on p(s, t)

or p(x, y).

Defining w(s9 t) = ut(s9 ή9 we note that (3.1) becomes equivalent to

wtt - wss + K5> Ow = - Pt \ w(s, τ)dτ,
Jo

(3.4) vφ, 0) = 0; w(s, 0) = kg(s),

w(0, T) = 0.

If pt > 0 and w(σ, τ ) > 0 in some R(s, i), then we obtain the differential inequality

w* - wM + p(s, t)w < 0,

w,(5, 0) = 0; w(0, T) = 0

to which the results of Sec. 2 can be applied. Recalling that for g(s) = l the

various definitions of right focal points coincide, we can also apply the comparison
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principle of Theorem 2.2 to the differential inequalities

(3.5) wtt - wss + p(s, ήw < 0

and

(3.6) vtt - vss + p(s, t)v = 0.

These observations lead to

THEOREM 3.1. Suppose (3.6) has a right focal point (S, T)for which a non-

trivial solution of (3.6) satisfies

vt(s9 0) = 0, φ , 0) = fc, T - S < s < T + S

v(S, Γ) = 0

If dp/dt>0 in R(S9 T) and g(s) = l, then (3.1) has a left focal point in R(S, T).

4. Conjugate points

In light of the preceding discussion it is natural to consider also the notion of a

conjugate point (0, T) corresponding to the eigenvalue problem

uu - wSs + λp(s, t)u = 0 in R(09 T)

(4.1) u(s, 0) = 0; ut(s, 0) = kg(s)

ιι(0, T) = 0.

Assuming g(s)>0 for —T<s<T9 it is readily shown by the techniques of Sec. 2

that (4.1) is equivalent to

w(s, t) = kgo(s, t) — — \\ p(σ, τ)w(σ, τ)dσdτ,
2 JjR(s,t)

where

1 Γs+ί λ C
go(s9 t)=-r-\ g(σ)dσ and k = ~ , π rpλ \ p(σ, τ)w(σ, τ)dσdτ.

£ Js-t ^yo\v9 1 ) jR(o,τ)

Thus (4.1) is equivalent to

(4.2) 4-M(S, t) = &[u] = \\ G(s, ί; σ, τ)p(σ, τ)w(σ,
Λ JJΛ(O,Γ)

where

G(Sί ί ; σ ' τ ) = " ^ ^ r y f0Γ ( σ ' τ ) i n
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ψrγ — -7r for (σ, τ) in R(s, t).

Unfortunately this Green's function is neither non-negative nor symmetric,
making it difficult to draw any conclusion about the existence of real eigenvalues
for (4.1). Nor do the techniques we have used for focal points seem to lend
themselves to establishing the existence of such conjugate points.

Yet the compelling physical interpretation cited in Sec. 1 suggests that real
eigenvalues should exist for (4.1) in a variety of situations. The development of
criteria for their existence seems to be a problem worth pursuing.
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