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Martin boundary for 4-P
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§1. One of interesting problems concerning the Martin boundary is to
determine when it is homeomorphic to the Euclidean boundary. In the present
note, we give sufficient conditions for the Martin boundary of a bounded domain
Q in the n-dimensional Euclidean space R" (n=2) with respect to the operator
of the form Lp,=4— P to be homeomorphic to the Euclidean boundary 02, where
A denotes the Laplace operator and P is a non-negative locally Hoélder continuous
function on Q.

We say that a domain Q has bounded curvature if there exists a positive
number d such that for each point Y e 0Q there exist points x, and x;, such that

B(x,, d) = Q, B(x), d) = CQ and Ye0dB(x,, d) n 0B(x}, d),

where B(x, d) denotes the open ball in R* of radius d >0 centered at x. We call
d an admissible radius of Q. We define a function 6, on Q by

do(x) = dist (x, 09).
Our main result is the following

THEOREM 1. Let Q be a bounded domain in R" of bounded curvature.
Suppose that a non-negative locally Hélder continuous function P on Q satisfies
the following condition (a) or (b):

(a) Qis of Ct*~class (a>0) and

S r{max;, s, P(x)}dr < .
o z

(b) Pe L4Q) for some q>n/2.
Then the Martin boundary of Q with respect to Lp=A4—P is homeomorphic to
the Euclidean boundary.

Related results have been given by A. Ancona ([1], Théoréme 6) and H.
Imai ([5], Theorem 2). Ancona showed the equivalence of the Martin boundary
and the Euclidean boundary of a bounded Lipschitz domain in the half-space

1={x e R"; x,>0} with respect to an elliptic operator L of the form

Lu(x) = X ay(xJu;(x) + x7* T bi(x)uix) + x5~ 2e(x)u(x),
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where 0<f<1 and a;;, b; and c are Holder continuous functions on RZ. On
the other hand, Imai proved the above equivalence for an annulus {xe R";
A<|x| <1} with respect to the elliptic operator L, with any rotation free P.

In the last section, we give an example of P on a ball for which the conclusion
of Theorem 1 does not hold. This example shows that conditions (a) and (b)

in Theorem 1 are fairly sharp.
The author would like to thank Professor F-Y. Maeda for his constant

encouragement.

§2. Consider the Green function Gg(x, y) on the domain Q with respect to
4. The Green function G§(x, y) on Q with respect to Lp exists and the equality

o Ga(x, y) = GE(x, y) + Scs(x, 2)P(2)Golz, y)dz

holds. Note that Gh(x, y)=GE(y, x) and Gn(x, y)=GE(x, y).

By the general theory of Martin compactification, in order to obtain the
equivalence of the Martin boundary and the Euclidean boundary it is sufficient
to show that quotients of the Green functions have continuous extension to the
Euclidean closure and they separate points of the Euclidean boundary (cf. [3],
ch. 12, [6] and [9]). Hence if the Green functions G, and G§ are comparable,
we can reduce the problem for L, to that for 4, that is to be exact, we have the

following

THEOREM 2. Let Q be a bounded domain and suppose that the following two

conditions are satisfied :
(*) The Martin boundary of Q with respect to A is homeomorphic to the

Euclidean boundary.
(**) For a fixed point x, in Q, there exists a positive constant A satisfying

Gﬂ(xw y) <
Ghxoy) = A forall yeQ.

Then the Martin boundary of Q with respect to Lp is homeomorphic to the
Euclidean boundary.

Proor. For each Yin 0Q, we put

there exists a sequence (y,)5, in Q with
My = { u; lim,_, y, = Ysuch that lim,_, , GE(x, ¥,)/GE(Xo, Vu)

=u(x) for every x € Q.

Note that My#@ and Lpu=0 for any u in M,. As remarked in the beginning
of the preceding paragraph, to obtain Theorem 2 it is sufficient to show that
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My consists of a single element and that My, #My, if Y;#Y,. Let u;eMy
(j=1,2). By (xx), we get

Ga(x, ¥) < 4 Galx, )
G};(xo’ y) - Gﬂ(xm y)

forevery ye Q. It follows from () that Go(x, ¥)/Ggo(x,, ) converges to a minimal
A-harmonic function vy as y tends to Y (a positive 4-harmonic function v on Q is
said to be minimal if for any non-negative 4-harmonic function h, v=h on Q
implies h=cv for some ¢=>0). Hence we have

on Q

u; < dvy (j=1,2).

Now put s;=Avy—u; (j=1,2). Then it is clear that s; is a non-negative 4-
superharmonic function so that, by the Riesz decomposition theorem, there exist
a non-negative Borel measure x; on Q and a non-negative 4-harmonic function
h; on Q such that si(x)= [ Gg(x, z)dugz)+hy(x). Since Avy2h; and vy is
minimal, we get h;=cvy for some c;=0. Furthermore du;(x)=P(x)u;(x)dx,
because Au (x)=P(x)u(x). Thus there exist 4;>0 such that

) uy(x) = Appy(x) — S Golx, P(Uf2)dz (j = 1, 2).
Eliminating vy from (2), we obtain
At = Aui(x) = { Galx, )P (Apr(2) = Ayur()dz.

Since G, satisfies the domination principle, the above equality gives 4 u,=A4,u,.
Therefore u,(x,)=u,(x,)=1 implies u, =u, on Q. Furthermore by () and (2)
we see that My # My, if Y; #Y,. This completes the proof.

ReMARk 3. The above result holds also for more general second order
elliptic differential operators.

As for a parabolic operator, we make the following

REMARK 4. Let D be a bounded mixed-Lipschitz domain in R" x R as defined
in [8]. Let (X, T)eD and put Dy=Dn{(x, t); t<T}. Then by a theorem
of J. T. Kemper ([8], Theorem 1.10), we can interpret the parabolic boundary
0,Dr as the Martin boundary of Dy with respect to the heat equation. Here the
parabolic boundary 0,Dy is the set consisting of all points on the Euclidean bound-
ary of Dy which can be connected to some point in the interior by a continuous
curve along which time ¢ decrease as the boundary point is approached. Analo-
gously to Theorem 2, we see the following: Let P(x, tf) be a non-negative
locally Hoélder continuous function on D with P(x, )< M for some constant
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M>0. Then the Martin boundary of D; with respect to Hp=4—0/0t— P(x, t)
is identified with the parabolic boundary d,Dr. In fact, denoting by G, ((x, ?),
(7, 9)), G ((x, 1), (v, 5)) and GY¥.((x, t), (y, 5)) the Green functions on Dy with
respect to 4-0/0t, Hp and H,, respectively, we have G, =Gp, = G} and GY¥ ((x, 1),
(v, ) =eMGy ((x, t), (v, 5)). Therefore Gy, /Gh,. is bounded and hence an
argument similar to the proof of Theorem 2 leads to the above conclusion.
As for the potential theoretic properties of the heat equation, we refer to [12].

§3. In this section, we prepare some lemmas which we shall require in the
the proof of Theorem 1. We prove first the following

LEMMA 5. Let Q be a bounded domain of bounded curvature and let x € Q.
Then there exist positive numbers c, and d, such that

(3) €5100(y) £ Go(x,, ¥) S co00(y)
Jor any y € Q with do(y)<d,.

PrROOF. Put d; =(1/2) min (do(x,), do), Where d, is an admissible radius of
Q, and set F={yeQ; do(y) < d,}. For any yeF, there exist Y,e0Q, x,eQ
and x,eCQ such that d,(y)=dist(y, Y,), B(x,, do)=Q, B(x,, dg)=CQ and
Y, € 0B(x,, dg) N 0B(x,, dgy). It is easy to see that y lies on the segment con-
necting x, and Y,. We now choose a domain U and a positive number d, satisfying

{xeQ; 09(x) 2 di} = U = {xeQ; do(x) > do} .

Since a set {x,; y € F} is contained in the compact set {x € Q; do(x)=d,}, it follows
from the Harnack inequality that there exists ¢ >0 satisfying

c_]GQ(xy’ y) é GQ(xo’ y) é CG.Q(xy’ y)
for any y with do(y)<d,. Since B=B(x,, dp)=Q<D=CB(x}, dy),
c'Gp(x,, y) < Go(xos ¥) < ¢Gp(x,, p).

Describing the function Gy and G, explicitly and evaluating the values Gy(x,, y)
and Gp(x,, y), we obtain our assertion without difficulty.

LEMMA 6. Let Q be a bounded domain of C':*-class («>0) and let x,€ Q.
Set Q. ={xeQ; Gy(x,, x)>r}. Then there exist positive numbers r, and c,
such that for any r with 0Zr=<r,, Q, is a domain and

4 — (0/0ny)Go(Xe, y) 2 ¢! forany yedQ,
where 0/0n denotes the exterior normal derivative. Furthermore

® ds, < cidwy,
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where dS, is the surface element on 0Q, and dw is the harmonic measure on
0Q, at x,eQ,.

In fact, since Gg (x,, X)=Gq(x,, X)—r, we see that the function —(d/0n,)G,_-
(x5, ¥) (y€0Q,) is continuous and positive on {ye @; Go(x,, ) <r,} (cf. [13],
Theorems 2.4 and 2.5). Hence there exists c¢,>0 which satisfies (4). By the
equality

dwiy(y) = —(0/0n,)Gg,(Xe, )AS(y) (0 <r < 1)
(see [6], p. 310) and (4), we obtain (5) immediately.
The following lemmas are given in [2].

LEMMA 7 ([2], Theorem 1). Let Q be a bounded domain of bounded curva-
ture. If u>0 is A-superharmonic in Q, x,€Q and 0<q<n/(n—1), then ue
L4(Q) and

fuscadx < 4uacx,),

where A, is a positive constant depending only on Q, x, and q.

LeEmMMA 8 ([2], Theorem 3). Let Q be a bounded domain of bounded curva-
ture. If u>0 is A-superharmonic in Q, x,€ and 0<q<n/(n—2) (if n=2, the
last term means ), then dqu € L4(Q) and

[ Gatoueaysax < A,
where A, is a positive constant depending only on Q, x, and q.

§4. Keeping the notation of previous sections, we devote ourselves to the
proof of Theorem 1 in this section. Let us assume that Q@ and P satisfy all
the conditions in Theorem 1. Then it is well-known that the Martin boundary
of Q with respect to 4 is homeomorphic to the Euclidean boundary (see, for ex-
ample, [4]) and hence by Theorem 2 it is sufficient to show the boundedness
of Gg(x,, x)/GE(x,, x). For this, we first show that for -any. Ye0Q and any
()%, in Q with lim,,, , y,=Y

Gﬂ(xo’ yn)

where vy(z)=lim,_ o, Go(2, ¥»)/Ga(Xos Yu)- Since Gz, yy)/GolXos yn) converges
uniformly on any compact set as n— oo, in order to obtain (6), it is therefore
sufficient to show that for any £>0, there exists a compact set K in € such that

©  limyn | GB(502) P(a) F2ELa) gz = (680 D P@OL)Ez,
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' P Gn(z » Y n)
%) [ 680w 22P(2) SHa ) ds <
foralln=1.

In case condition (a) is satisfied: For a given ¢>0, we choose r; >0 and
t; >0 such that ry <r,, t; Sc,ry, @, 2{z€Q; dp(z)=r,} and

ry ,
(7 rmaxsns P@Yr < sfefe?,
where r,, c, and ¢ are the constants in Lemmas 5 and 6. Then

S GE(x,, 2) P(z) S2Z: ¥n)_ 4,
c9.,

Go(xos Vn)
v Go(z,y,) | O -
(" P Z, Y, 1
—SO San. Galxe 2)P(2) G:f(xo, V) | On, Ga.(xo 2)|  dSi(z)dt.

By the facts GE(x,, z) < Go(x,, 2), (3), (4) and (5), we see that (8) is dominated by

(2" timax,eon P} | -Z2E 2 da(z)de

ti/co
§ (Cé)zco SO r{maxdn(z)?_, P(z)}dr < &.

Thus (7) is obtained.

In case condition (b) is satisfied: Suppose that P e L4(Q) with some g > n/2.
Then there exists p>0 satisfying p<n/(n—2) and 1/p+1/q=1/r<1. By
Lemmas 5 and 8, we get for any n>1,

(S"n(z)éro (G“(x‘” 2)P(z) g:((;oj;z) ) dz>l/r

(s 33 4) v

< copy? ([ p(yraz) ",

which leads to (7) immediately.

Remark here that in both cases (7) is valid even if GB(x,, z) is replaced with
Go(x,, 2).

Next we shall verify the condition (%) in Theorem 2. Suppose on the
contrary that there exists a sequence (y,)%, in  with lim,, . y,=Ye dQ such
that GH(x,, ¥,)/Go(%,, ¥,)—0 as n—>oo. Then by the Harnack inequality for any
xeQ

Gﬂ(x’ y n) =0,

llmn_.w Gﬂ(xo’ yn)
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Hence by (1) and (6) we have vy(x)=[ GE(x, z)P(z)vy(z)dz. On the other hand,
the above remark about (7) implies that | Go(x, z)P(z)vy(z)dz # o0, namely, this
is a potential on Q. Since

vy(x) = S GE(x, 2) P(z)vy(z)dz £ S Go(x, z)P(z)vy(2)dz

and vy is 4-harmonic, it follows that v, vanishes identically, which is absurd.
Thus (##) in Theorem 2 is fulfilled. = This completes the proof of
Theorem 1.

§5. Using the inequality in (#+*) and Lemmas 7 and 8, we obtain the global
integrability of non-negative Lp-superharmonic functions. Recall that u is
Lp-superharmonic if u is lower semi-continuous and —Lpu=0 in the sense of
distribution (see [7], Theorem 2).

COROLLARY 9. Let Q and P be as in Theorem 1. If u is non-negative
Lp-superharmonic, x,€Q, 0<q,<nf(n—1) and 0<q,<n/(n—2), then there
exist positive constants B, and B, independent of u such that

Su‘“(x)dx < B,u%(x,)

and
[(Gatouoymsdx = Baus(xy).

§6. Finally, we give an example of P such that the Martin boundary with
respect to Lp is not homeomorphic to the Euclidean boundary. Let Q be the open
ball in R? of radius 1/2 centered at (1/2, 0), and let P,(x)=|x|"2(1*k) (0<k<1) on
Q. For any |t| <7/8, we put

s dx) = exp ((cos k(0 —1)/kr¥) (x = re'?, |0] < m),
ci(x) = exp ((cos (n/4)k)/kr*) and

Q.= n {x =re?; r<((sin?(n/d)k)/k cos (n[4)k)'/*, |0 —t| < n[4}.

Then Lp, s, ,=0 on Q (see [10], §5.2), and besides, it is easy to check that — Lp,c, =
0 on ,,, or ¢, is Lp -superharmonic on ©,,, We denote by §,, the Dirichlet
solution on Q for Lp, with the boundary values s, (Y) (Ye dQ\{O}) and 0 at
0=(0, 0). Then h,,=s,,—§,,is positive Lp -harmonic on Q and lim,_,y h; (x)=0
for all YedQ2\{O}. Since there exists a constant A>0 satisfying s; (x)< Acy(x)
for x € 09, \{0}, we see that §, ,< Ac, on @, ,. This observation implies

lim, ¢ h (re'*)exp (—1/krk) = 1,
®
lim, o hy (re'®) exp (—=1/krk) =0 if 0 # t.



74 Noriaki SUZUKI

Now set
I is non-negative Lp, -harmonic on Q and

M=1 h;
lim,.,y h(x) =0  forall YedQ\{O}.

Then by the general theory of Martin boundary (see [6] and [9]), if the Martin
boundary and the Euclidean boundary are homeomorphic, then M ought to be
one dimensional; however, (hy ), <.s are elements in M and it follows from (9)
that they are not proportional to each other. This implies that the Martin
boundary of @ with respect to Lp, can not be identified with the Euclidean
boundary.

ReEMARK 10. In the above example, if k<0, then P, satisfies both conditions
(a) and (b) in Theorem 1. Furthermore, by a recent result of T. Tada [11],
the Martin boundary for Lp, is identified with the Euclidean boundary even if
k=0.
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