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§ 1. One of interesting problems concerning the Martin boundary is to

determine when it is homeomorphic to the Euclidean boundary. In the present

note, we give sufficient conditions for the Martin boundary of a bounded domain

Ω in the n-dimensional Euclidean space Rn (n^2) with respect to the operator

of the form LP = A — P to be homeomorphic to the Euclidean boundary dΩ, where

A denotes the Laplace operator and P is a non-negative locally Holder continuous

function on Ω.

We say that a domain Ω has bounded curvature if there exists a positive

number d such that for each point Ye dΩ there exist points xy and xy such that

B(xy, d) c Ω, B(xf

y, d) c CΩ and YedB(xy, d) n dB(x'y9 d),

where B(x, d) denotes the open ball in Rn of radius d > 0 centered at x. We call

d an admissible radius of Ω. We define a function δΩ on Ω by

δΩ(x) = dist (x, dΩ).

Our main result is the following

THEOREM 1. Let Ω be a bounded domain in Rn of bounded curvature.

Suppose that a non-negative locally Holder continuous function P on Ω satisfies

the following condition (α) or (b):

(a) Ω is of C^'-class (α>0) and

Jo *«(*)^r

(b) P e L«(Ω) for some q > n/2.

Then the Martin boundary of Ω with respect to LP = A—P is homeomorphic to

the Euclidean boundary.

Related results have been given by A. Ancona ([1], Theoreme 6) and H.

Imai ([5], Theorem 2). Ancona showed the equivalence of the Martin boundary

and the Euclidean boundary of a bounded Lipschitz domain in the half-space

R% = {x e Rn xn>0} with respect to an elliptic operator L of the form

Lu(x) = Σ aίj(x)uij(x) + xn X ]
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where 0</?<l and aip bt and c are Holder continuous functions on R^. On

the other hand, Imai proved the above equivalence for an annulus {xe Rn;

λ<\x\ < 1} with respect to the elliptic operator LP with any rotation free P.

In the last section, we give an example of P on a ball for which the conclusion

of Theorem 1 does not hold. This example shows that conditions (a) and (b)

in Theorem 1 are fairly sharp.

The author would like to thank Professor F-Y. Maeda for his constant

encouragement.

§ 2. Consider the Green function GΩ(x, y) on the domain Ω with respect to

A. The Green function G£(Λ;, y) on Ω with respect to LP exists and the equality

(1) GΩ(x, y) = G£(x, y) + J G£(x, z)P(z)GΩ(z, y)dz

holds. Note that G£(x, y) = Gp

Ω(y, x) and Gβ(x, y) ^ G£(x, y).

By the general theory of Martin compactiίication, in order to obtain the

equivalence of the Martin boundary and the Euclidean boundary it is sufficient

to show that quotients of the Green functions have continuous extension to the

Euclidean closure and they separate points of the Euclidean boundary (cf. [3],

ch. 12, [6] and [9]). Hence if the Green functions GΩ and G£ are comparable,

we can reduce the problem for LP to that for A, that is to be exact, we have the

following

THEOREM 2. Let Ω be a bounded domain and suppose that the following two

conditions are satisfied:

( * ) The Martin boundary of Ω with respect to A is homeomorphίc to the

Euclidean boundary.

(**) For a fixed point x0 in Ω, there exists a positive constant A satisfying

Then the Martin boundary of Ω with respect to LP is homeomorphic to the

Euclidean boundary.

PROOF. For each Fin dΩ, we put

(
there exists a sequence (yn)ΐ=i in Ω with

u; l i m ^ yn = Y such that l i m ^ Gg(x, yn)IG^(xO9 yn)

= u(x) for every xeΩ.

Note that Mγ φ 0 and LPu = 0 for any u in Mγ. As remarked in the beginning

of the preceding paragraph, to obtain Theorem 2 it is sufficient to show that
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Mγ consists of a single element and that MYχΦMYl if YXΦY2. Let useMY

0 = 1,2). By( ), we get

GΩ(x,
"7=?—7< o n o

9y) ~ GΩ(xo,y)

for every y e Ω. It follows from (*) that GΩ(x, y)/GΩ(xo, y) converges to a minimal

/d-harmonic function vγ as y tends to Y (a positive zl-harmonic function t; on Ω is

said to be minimal if for any non-negative /d-harmonic function h, v^ih on Ω

implies h = cv for some c^O). Hence we have

Uj^Aυγ 0*== 1,2).

Now put Sj = Avγ — Uj (j = l,2). Then it is clear that Sj is a non-negative Λ-

superharmonic function so that, by the Riesz decomposition theorem, there exist

a non-negative Borel measure μ} on Ω and a non-negative ^-harmonic function

hj on Ω such that s/x)= J GΩ(x, z)dμj{z) + hj{x). Since Avγ^.hj and ι;y is

minimal, we get hj = CjVγ for some Cy^O. Furthermore dμj(x) = P(x)uj(x)dx,

because ΛM/X) = P(JC)U/X). Thus there exist 4/>0 such that

(2) uj(x) = Ajvγ(x) - J Gβ(x, z)P(z)uj(z)dz 0 = 1,2).

Eliminating ι?y from (2), we obtain

A1u2(x) - A2u1(x) = J GΩ(x, z)P(z)(A2uι(z) - Axu2(z))dz.

Since Gβ satisfies the domination principle, the above equality gives Aίu2=A2uί.

Therefore U1(XO) = M2(XO) = 1 implies uί=u2 on Ω. Furthermore by (*) and (2)

we see that MYιφMYl if Yx Φ Y2. This completes the proof.

REMARK 3. The above result holds also for more general second order

elliptic differential operators.

As for a parabolic operator, we make the following

REMARK 4. Let D be a bounded mixed-Lipschitz domain in Rn x R as defined

in [8]. Let (X, T)eD and put DT = D n {(*, i)\ t<T}. Then by a theorem

of J. T. Kemper ([8], Theorem 1.10), we can interpret the parabolic boundary

dpDτ as the Martin boundary of Dτ with respect to the heat equation. Here the

parabolic boundary dpDτ is the set consisting of all points on the Euclidean bound-

ary of Dτ which can be connected to some point in the interior by a continuous

curve along which time t decrease as the boundary point is approached. Analo-

gously to Theorem 2, we see the following: Let P(x, t) be a non-negative

locally Holder continuous function on D with P(x, t)^M for some constant
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M > 0 . Then the Martin boundary of Dτ with respect to HP = A~d/dt-P(x, t)

is identified with the parabolic boundary dpDτ. In fact, denoting by GDτ((x, t),

(y> s)% GDT((X, t), (y, s)) and G%τ((x, t), (y, s)) the Green functions on Dτ with

respect to A-d/dt, HP and HM respectively, we have GDτ ^ G£ τ ̂  G%τ and G$τ((x, t),

(y9 s)) = eM^s-^GDτ((x, t), (y, s)). Therefore GDJG%T is bounded and hence an

argument similar to the proof of Theorem 2 leads to the above conclusion.

As for the potential theoretic properties of the heat equation, we refer to [12].

§ 3. In this section, we prepare some lemmas which we shall require in the

the proof of Theorem 1. We prove first the following

LEMMA 5. Let Ω be a bounded domain of bounded curvature and let xoeΩ.

Then there exist positive numbers co and do such that

(3) c^δΩ{y) S GΩ(xo, y) ^ coδΩ(y)

for any yeΩ with δΩ(y)^do.

PROOF. Put d 1 =(l/2)min(^ β (x o ), dΩ), where dΩ is an admissible radius of

Ω, and set F = {yeΩ; δΩ(y) ^ dt}. For any yeF, there exist Yy e ΘΩ9 xy e Ω

and xf

yeCΩ such that δΩ(y) = άist(y9 Yy), B(xy, dΩ)czΩ, B(x'y, dΩ)czCΩ and

Yy e dB(xy, dΩ) Π dB(xy, dΩ). It is easy to see that y lies on the segment con-

necting xy and Yr We now choose a domain U and a positive number do satisfying

{xeΩ; δΩ(x) ^ dx} c U c {x e Ω; δΩ(x) > d0}.

Since a set {xy; y e F} is contained in the compact set {x e Ω; δΩ(x)'^dί}, it follows

from the Harnack inequality that there exists c>0 satisfying

y, y) ^ GΩ(xo9 y) S cGΩ(xy, y)

for any y with δΩ(y) g d0. Since B = B(xy, dΩ) aΩc:D = CB(x'y9 dΩ),

c~'GB(xr y) ^ GΩ(x09 y) ^ cGD(xy, y).

Describing the function GB and GD explicitly and evaluating the values GB(xy, y)

and GD(xy9 y), we obtain our assertion without difficulty.

LEMMA 6. Let Ω be a bounded domain of C1)<x-class (α>0) and let xoeΩ.

Set Ωr = {xeΩ\ Gβ(xo, x)>r}. Then there exist positive numbers ro and c'o
such that for any r with 0 ^ r ^ r o , Ωr is a domain and

(4) - (dldny)GΩr(xo, y) ^ C 1 for any yedΩ,,

where d/dn denotes the exterior normal derivative. Furthermore

(5) dsr ^
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where dSr is the surface element on dΩr and dωr

o is the harmonic measure on

dΩr at x 0 G Ωr.

In fact, since GΩr(x09 x) = GΩ(xo, x ) - r , we see that the function -{d/dny)GΩr

(χo> y) (yεdΩr) is continuous and positive on {yeΩ; GΩ(xo, y)ί^ro} (cf. [13],

Theorems 2.4 and 2.5). Hence there exists c'o>0 which satisfies (4). By the

equality

dcφ) = -(dldny)GΩr(xo, y)dSr(y) (0 < r < ro)

(see [6], p. 310) and (4), we obtain (5) immediately.

The following lemmas are given in [2].

LEMMA 7 ([2], Theorem 1). Let Ω be a bounded domain of bounded curva-

ture. If u>0 is Δ-superharmonic in Ω, xoeΩ and 0<g<n/(n —1), then ue

L«(Ω) and

where A± is a positive constant depending only on Ω9 xo and q.

LEMMA 8 ([2], Theorem 3). Let Ω be a bounded domain of bounded curva-

ture. If u>0 is Δ-superharmonic in Ω, xoe and 0<q<n/(n — 2) (if n = 2, the

last term means oo), then δΩueLq(Ω) and

where A2 is a positive constant depending only on Ω, xo and q.

§4. Keeping the notation of previous sections, we devote ourselves to the

proof of Theorem 1 in this section. Let us assume that Ω and P satisfy all

the conditions in Theorem 1. Then it is well-known that the Martin boundary

of Ω with respect to A is homeomorphic to the Euclidean boundary (see, for ex-

ample, [4]) and hence by Theorem 2 it is sufficient to show the boundedness

of GΩ(xo, x)/G£(xo, x). For this, we first show that for any YedΩ and any

(6) lim,,^ (G£(xoiz)P(z) ffi*. JO dz = fe(xo, z)P(z)vγ(z)dz,

where ϋ y(z) = lim / I^0 0 GΩ(z, yn)/GΩ(x0, yn). Since GΩ(z, yn)IGΩ(xo, yn) converges

uniformly on any compact set as n->oo, in order to obtain (6), it is therefore

sufficient to show that for any ε>0, there exists a compact set K in Ω such that
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(7) \ G£(xo, z)P(z) <;*£ y»\ dz < ε
JCK <JΩ\XO> yn)

foral ln^l .
In case condition (a) is satisfied: For a given £>0, we choose rί>0 and

tx>0 such that r 1 <r 0 , tί^cor1, Ωtίz>{zeΩ; ^ ( z ) ^ ^ } and

zr P(z)}dr < εlΦΌ)2>

where ro, c0 and cf

0 are the constants in Lemmas 5 and 6. Then

( gf*y»\ dz
(8)

= (" ( GUxo, z)P{z) Gafc y \ * GΩt(x0, z) 'dSt{z)dt.
Jo JΰQ, Ga{x0, yn) ϋnz

By the facts G&(xo, z)gGβ(x0, z), (3), (4) and (5), we see that (8) is dominated by

(c'y \" t{m*xzεdQtP{z)} \ <?Ω(z, y,) d ω l ( z ) dί
Jo JdΩt iJQyXo, yn)

z)^r P(z)}dr < ε.

Thus (7) is obtained.
In case condition (b) is satisfied: Suppose that P e Lq(Ω) with some q > n/2.

Then there exists p>0 satisfying p<nj{n — 2) and l/p+l/q = l/r<l. By
Lemmas 5 and 8, we get for any n ̂  1,

which leads to (7) immediately.
Remark here that in both cases (7) is valid even if G&(xo, z) is replaced with

GΩ(xo, z).

Next we shall verify the condition (**) in Theorem 2. Suppose on the
contrary that there exists a sequence Oπ)£=i ώ ^ with lim^^ yn=YedΩ such
that G£(xo, yn)IGΩ(x09 yn)-+0 as n->oo. Then by the Harnack inequality for any
xeΩ
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Hence by (1) and (6) we have vγ(x) = j G£(x, z)P(z)vγ(z)dz. On the other hand,

the above remark about (7) implies that jGΩ(x, z)P(z)vγ(z)dzφ oo, namely, this

is a potential on Ω. Since

and ι;y is J-harmonic, it follows that vγ vanishes identically, which is absurd.

Thus (**) in Theorem 2 is fulfilled. This completes the proof of

Theorem 1.

§5. Using the inequality in (**) and Lemmas 7 and 8, we obtain the global

integrability of non-negative Lp-superharmonic functions. Recall that u is

Lp-superharmonic if u is lower semi-continuous and — L P u ^ 0 in the sense of

distribution (see [7], Theorem 2).

COROLLARY 9. Let Ω and P be as in Theorem 1. If u is non-negative

Lp-superharmonic, xoeΩ, 0<qΐ<nl(n — l) and 0<g 2 <n/(n — 2), then there

exist positive constants Bx and B2 independent of u such that

\u^{x)dx S B^ixJ

and

% 6. Finally, we give an example of P such that the Martin boundary with

respect to LP is not homeomorphic to the Euclidean boundary. Let Ω be the open

ball in R2 of radius 1/2 centered at (1/2, 0), and let Pfc(x) = |x|"2(1 + k) (0<fc<l) on

Ω. For any |ί| <π/8, we put

sk/x) = exp ((cos k(θ- t)/krk) (x = reiθ, \θ\ < π),

ck(χ) = exp ((cos (π/4)k)/krk) and

Ωktt = Ω n { x = reiθ; r < ((sin2 (πl4)k)/kcos(π/4)k)^k

9 \θ-t\< π/4}.

Then LPkskt = 0 on Ω (see [10], §5.2), and besides, it is easy to check that —LPkck^

0 on Ωkv or ck is LPk-superharmonic on Ωkt. We denote by sktt the Dirichlet

solution on Ω for LPk with the boundary values sktt(Y) (YedΩ\{0}) and 0 at

O=(0, 0). Then hkt = sktt — sktt is positive LPk-harmonic on Ω and limx_y hkt(x)=0

for all YedΩ\{0}. Since there exists a constant A>0 satisfying sktt(x)^Ack(x)

for xGθflfcff\{0}, we see that sktt^Λck on Ωk ί. This observation implies

( o M p
(9)

[ l i / ( ί θ ) ( l / / c r f c ) = 0 if β # ί.
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Now set

( // is non-negative LPl -harmonic on Ω and 1

lirnv_.y /?(*) = 0 for all Ye dΩ\{0}. J

Then by the general theory of Martin boundary (see [6] and [9]), if the Martin

boundary and the Euclidean boundary are homeomorphic, then M ought to be

one dimensional; however, (hktt)^<π/s are elements in M and it follows from (9)

that they are not proportional to each other. This implies that the Martin

boundary of Ω with respect to LPk can not be identified with the Euclidean

boundary.

REMARK 10. In the above example, if k<0, then Pk satisfies both conditions

(a) and (b) in Theorem 1. Furthermore, by a recent result of T. Tada [11],

the Martin boundary for LPk is identified with the Euclidean boundary even if

fc = 0.
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