On the group of self-homotopy equivalences of principal \boldsymbol{S}^{3}-bundles over spheres

Dedicated to Professor Minoru Nakaoka on his 60th birthday
Mamoru Mimura and Norichika Sawashita
(Received January 14, 1984)

Introduction

For any (based) space X, the set $\mathscr{E}(X)$ of all homotopy classes of homotopy equivalences of X to itself forms a group under the composition of maps. The group $\mathscr{E}(X)$ has been studied by several authors. In particular, in case when X is a principal S^{3}-bundle over S^{n}, the group $\mathscr{E}(X)$ is already known for $X=S U(3)$, $S p(2)$ by [10], for $X=S^{3} \times S^{n}$ by [13] and for $X=E_{k \omega}$ by J. W. Rutter [11], where $E_{k \omega}$ is the principal S^{3}-bundle over S^{7} with characteristic class $k \omega \in \pi_{6}\left(S^{3}\right)$, ω a generator of $\pi_{6}\left(S^{3}\right)=Z_{12}$.

The purpose of this note is to study groups $\mathscr{E}(X)$ for principal S^{3}-bundles over spheres. Our main result is stated as follows:

Theorem 3.1. Let E_{f} be the principal S^{3}-bundle over $S^{n}(n \geqq 5)$ with characteristic class $f \in \pi_{n-1}\left(S^{3}\right)$. Assume that $\omega \circ S^{3} f \in f_{*} \pi_{n+2}\left(S^{n-1}\right)$. Then we have the following exact sequence:

$$
0 \rightarrow \pi_{n+3}\left(E_{f}\right) \rightarrow \mathscr{E}\left(E_{f}\right) \rightarrow \mathscr{E}\left(S^{3} \cup_{f} e^{n}\right) \rightarrow 1
$$

where $S^{3} \cup_{f} e^{n}$ is the mapping cone of f.
The group $\mathscr{E}\left(S^{3} \cup_{f} e^{n}\right)$ is given in [10, Th. 3.15] up to extension (see (2.2)), and the homotopy group $\pi_{n+3}\left(E_{f}\right)$ is studied for some f in $\S 3$.

Throughout this note, all spaces have base points, and all maps and homotopies preserve base points. For given spaces X and Y, we denote by $[X, Y]$ the set of (based) homotopy classes of maps of X to Y, and by the same letter a map $f: X \rightarrow Y$ and its homotopy class $f \in[X, Y]$.

§ 1. The homomorphism ϕ and its kernel

Throughout this note, let $f \in \pi_{n-1}\left(S^{3}\right)$ for $n \geqq 5$ be a given element, and let $X=E_{f}$ denote the principal S^{3}-bundle over S^{n} with characteristic class f and $K=S^{3} \cup_{f} e^{n}$ the mapping cone of f. Then by James-Whitehead [8], X has a cell structure given by

$$
X=K \cup e^{n+3}
$$

Since $j_{*}:[K, K] \rightarrow[K, X](j: K \subset X$ is the inclusion) is bijective, the homomorphism

$$
\phi: \mathscr{E}(X) \rightarrow \mathscr{E}(K)
$$

is defined by the restriction on $\mathscr{E}(X)$ of the composition $[X, X] \xrightarrow{j_{*}}[K, X] \stackrel{j_{*}}{{ }^{*}}$ [K, K].

In this section, we consider the kernel of ϕ. We define the coaction

$$
\ell: X=K \cup e^{n+3} \rightarrow K \cup e^{n+3} \vee S^{n+3}=X \vee S^{n+3}
$$

by shrinking the equator $S^{n+2} \times\{1 / 2\}$ of e^{n+3} to the base point. Since $\pi_{n+3}\left(S^{3}\right)$ and $\pi_{n+3}\left(S^{n}\right)$ for $n \geqq 5$ are finite groups (cf. [14, (4.2)]), $\pi_{n+3}(X)$ is a finite group by the exact sequence associated with the principal S^{3}-bundle X over S^{n} :

$$
\begin{equation*}
S^{3} \xrightarrow{i} X \xrightarrow{p} S^{n} . \tag{1.1}
\end{equation*}
$$

Therefore, by the Blakers-Massey theorem and the exact sequence of the pair (X, K) we have
(1.2) $j_{*}: \pi_{n+3}(K) \rightarrow \pi_{n+3}(X)$ is epimorphic.

By Barcus-Barratt [1, Th. 6.1] and J. W. Rutter [11, Th. 2], we can define a homomorphism

$$
\begin{equation*}
\lambda: \pi_{n+3}(X)=j_{*} \pi_{n+3}(K) \rightarrow \mathscr{E}(X) \quad \text { by } \quad \lambda(\alpha)=\nabla \circ(1 \vee \alpha) \circ \ell, \tag{1.3}
\end{equation*}
$$

where $\alpha \in \pi_{n+3}(X), \nabla: X \vee X \rightarrow X$ is the folding map and 1 is the class of the identity map of X; and since the attaching element $g \in \pi_{n+2}(K)$ of e^{n+3} in $X=$ $K \cup e^{n+3}$ is of infinite order by [3, Th. 3.2], we have

$$
\begin{equation*}
\operatorname{Im} \lambda=\operatorname{Ker}(\phi: \mathscr{E}(X) \rightarrow \mathscr{E}(K)) . \tag{1.4}
\end{equation*}
$$

Let $h: S^{n-1} \times S^{3} \rightarrow S^{3}$ be the map defined by $h=\left(f \circ p_{1}\right) \cdot p_{2}$ where p_{1} and p_{2} are the projections and \cdot is the canonical multiplication on S^{3}. Then by [7, (3.1)] and [3, (3.6)], we have

$$
\begin{equation*}
S g=i_{*} H\left(\left(f \circ p_{1}\right) \cdot p_{2}\right)=i_{*} \gamma \circ S^{4} f \tag{1.5}
\end{equation*}
$$

where $i: S^{4} \subset S K$ is the inclusion, H is the Hopf construction and γ is the Hopf map $S^{7} \rightarrow S^{4}$. Therefore

$$
\begin{equation*}
S X=K_{1} \cup_{i_{1} \circ S f} e^{n+1}, \quad K_{1}=S^{4} \cup_{\gamma \circ S^{4} f} e^{n+4} \tag{1.6}
\end{equation*}
$$

where $i_{1}: S^{4} \subset K_{1}$ is the inclusion.

Lemma 1.7. Let $S: \pi_{n+3}(X) \rightarrow \pi_{n+4}(S X)$ be the suspension homomorphism. Then Ker S is generated by $i_{*} v^{\prime} \circ S^{3} f \circ \eta_{n+2}$, where $v^{\prime} \in \pi_{6}\left(S^{3}\right)=Z_{12}$ is an element of order 4 and $\eta_{n+2} \in \pi_{n+3}\left(S^{n+2}\right)=Z_{2}$ is a generator.

Proof. Let $H_{S f}: \pi_{n+6}\left(S^{n+1}\right) \rightarrow \pi_{5}\left(S^{4}\right)$ be the homomorphism defined by the composition:

$$
\pi_{n+6}\left(S^{n+1}\right) \xrightarrow{H} \pi_{n+6}\left(S^{2 n+1}\right) \stackrel{S^{n+1}}{\longleftrightarrow} \pi_{5}\left(S^{n}\right) \xrightarrow{(S f)_{*}} \pi_{5}\left(S^{4}\right),
$$

where H is the generalized Hopf invariant of [15]. Let $Q: \pi_{5}\left(S^{4}\right) \rightarrow \pi_{n+5}\left(S K, S^{4}\right)$ be the homomorphism defined by $Q\left(\eta_{4}\right)=\left[u_{n+1}, \eta_{4}\right]$, where $S K=S^{4} \cup_{s f} e^{n+1}$, u_{n+1} is a generator of $\pi_{n+1}\left(S K, S^{4}\right) \cong \pi_{n+1}\left(S^{n+1}\right)=Z$ and [,] denotes the relative Whitehead product. Then by [4, Th. 2.1], we have the following exact sequence:

$$
\pi_{n+6}\left(S^{n+1}\right) \xrightarrow{H_{s f}} \pi_{5}\left(S^{4}\right) \xrightarrow{Q} \pi_{n+5}\left(S K, S^{4}\right) \longrightarrow \pi_{n+5}\left(S^{n+1}\right)
$$

By [14, Table of $\pi_{n+k}\left(S^{n}\right)$, I], we have $\pi_{n+6}\left(S^{n+1}\right)=\pi_{n+5}\left(S^{n+1}\right)=0$ for $n \geqq 6$, $\pi_{11}\left(S^{6}\right)=Z$ and $\pi_{10}\left(S^{6}\right)=0$. Let $\Delta\left(\iota_{13}\right)$ be the generator of $\pi_{11}\left(S^{6}\right)$. Then $H\left(\Delta\left(\iota_{13}\right)\right)= \pm 2 \iota_{11}$ by [14, Prop. 2.7]. Since $\pi_{5}\left(S^{4}\right)=Z_{2}$, we have $H_{S_{f}}=0$: $\pi_{11}\left(S^{6}\right) \rightarrow \pi_{5}\left(S^{4}\right)$. Hence Q is an isomorphism in the above sequence for $n \geqq 5$ and we have

$$
\begin{equation*}
\pi_{n+5}\left(S K, S^{4}\right) \cong \pi_{5}\left(S^{4}\right)=Z_{2} \tag{1.8}
\end{equation*}
$$

which is generated by $\left[u_{n+1}, \eta_{4}\right]$.
Consider the following commutative diagram including the exact sequence of the triad ($S X, S K, S^{4}$):

where $j_{1}: K_{1} \subset S X$ is the inclusion given in (1.6), $\pi: S X \rightarrow S X / S K=S^{n+4}$ and $\pi_{1}: K_{1} \rightarrow K_{1} / S^{4}=S^{n+4}$ are the collapsing maps. We see that $\pi_{n+6}\left(S^{n+4}\right)=Z_{2}$, $\pi_{n+5}\left(S^{n+4}\right)=Z_{2}, \pi_{n+5}\left(S K, S^{4}\right)=Z_{2}$ by (1.8) and π_{*} and $\pi_{1 *}$ in the both squares are isomorphisms by the Blakers-Massey theorem. Therefore we have

$$
\begin{equation*}
\pi_{n+5}\left(S X, S^{4}\right)=Z_{2} \oplus Z_{2} \text { generated by } j_{*}\left[u_{n+1}, \eta_{4}\right] \text { and } j_{1 *} \tilde{\eta}_{n+4} \tag{1.9}
\end{equation*}
$$

where $\tilde{\eta}_{n+4}$ is a coextension of η_{n+4}.
Consider the following commutative diagram:
(*)

$$
\begin{gathered}
\pi_{n+3}\left(S^{3}\right) \xrightarrow{i_{*}} \pi_{n+3}(X) \xrightarrow{p_{*}} \pi_{n+3}\left(S^{n}\right) \\
\pi_{n+5}\left(S X, S^{4}\right) \xrightarrow{\partial} \pi_{n+4}\left(S^{4}\right) \xrightarrow{i_{*}} \pi_{n+4}(S X) \xrightarrow{(S p)_{*}} \pi_{n+4}\left(S^{n+1}\right),
\end{gathered}
$$

where the left homomorphism S is monomorphic by [14, Lemma 4.5] and the right homomorphism S is isomorphic for $n \geqq 5$. Here, we have

$$
\begin{aligned}
\partial j_{*}\left[u_{n+1}, \eta_{4}\right] & =-\left[\partial u_{n+1}, \eta_{4}\right]=\left[S f, \eta_{4}\right] & & \text { by }[2,(3.5)] \\
& =\left[\epsilon_{4}, \iota_{4}\right] \circ S^{4} f \circ \eta_{n+3} & & \text { by }[15,(3.59)] \\
& =\left(2 v_{4}-S v^{\prime}\right) \circ S^{4} f \circ \eta_{n+3} & & \text { by }[14,(5.8)] \\
& =S v^{\prime} \circ S^{4} f \circ \eta_{n+3}, & &
\end{aligned}
$$

and $\partial j_{1 *} \tilde{\eta}_{n+4}=\gamma \circ S^{4} f \circ \eta_{n+3}$ by the following commutative diagram:

$$
\begin{aligned}
& \pi_{n+5}\left(S X, S^{4}\right) \xrightarrow{\partial} \pi_{n+4}\left(S^{4}\right) \stackrel{\left(\gamma^{\circ} S^{4} f\right)_{*}}{\longleftrightarrow} \pi_{n+4}\left(S^{n+3}\right) \\
& \begin{array}{ll}
\sum_{1 *} \oint_{\partial_{1}} & \cong \mid S \\
\pi_{n+5}\left(K_{1}, S^{4}\right) \xrightarrow{\pi_{1 *}} \pi_{n+5}\left(S^{n+4}\right) .
\end{array}
\end{aligned}
$$

Since $\pi_{n+4}\left(S^{4}\right)=S \pi_{n+3}\left(S^{3}\right) \oplus \gamma_{*} \pi_{n+4}\left(S^{7}\right)$ as is well known, (1.9) and these equalities show that

$$
S \pi_{n+3}\left(S^{3}\right) \cap \partial \pi_{n+5}\left(S X, S^{4}\right)=\left\{S\left(v^{\prime} \circ S^{3} f \circ \eta_{n+2}\right)\right\}
$$

Hence $\operatorname{Ker}\left(S: \pi_{n+3}(X) \rightarrow \pi_{n+4}(S X)\right)=\left\{i \circ \nu^{\prime} \circ S^{3} f \circ \eta_{n+2}\right\}$ by the diagram (*). q.e.d.
Remark 1.10. The kernel of the homomorphism $S: \pi_{n+3}(X) \rightarrow \pi_{n+4}(S X)$ is investigated by S. Sasao [12, Lemma 4.1] for S^{m}-bundles X over S^{n} with the condition $3<m+1<n<2 m-2$.

Lemma 1.11. Let $g \in \pi_{n+2}(K)$ be the attaching element of e^{n+3} in $X=$ $K \cup e^{n+3}$. Then the induced homomorphism $\left(S^{2} g\right)^{*}:\left[S^{2} K, S X\right] \rightarrow \pi_{n+4}(S X)$ is trivial.

Proof. Consider the following commutative diagram which is obtained by (1.5):

$$
\left.\begin{gathered}
\pi_{5}\left(S^{4}\right) \xrightarrow{i_{*}} \pi_{5}(S X) \stackrel{i^{*}}{\longleftrightarrow}\left[S^{2} K, S X\right] \\
\left|(S \gamma)^{*} \quad\right|(S \gamma)^{*}
\end{gathered} \right\rvert\,\left(S^{2} g\right)^{*} .
$$

where the upper i_{*} is isomorphic for $n \geqq 6$ and is epimorphic for $n=5$. Since $\eta_{4} \circ S \gamma=\eta_{4} \circ v_{5}=S v^{\prime} \circ \eta_{7}$ by [14, Lemma 5.4, Prop. 5.6 and (5.9)] and $\partial j_{*}\left[u_{n+1}, \eta_{4}\right]=$ $S v^{\prime} \circ S^{4} f \circ \eta_{n+3}$ in the proof of Lemma 1.7, we have

$$
\left(S^{5} f\right)^{*} i_{*}(S \gamma)^{*} \eta_{4}=i_{*} S v^{\prime} \circ \eta_{7} \circ S^{5} f=i_{*} S v^{\prime} \circ S^{4} f \circ \eta_{n+3}=i_{*} \partial j_{*}\left[u_{n+1}, \eta_{4}\right]=0 .
$$

Therefore, by the above diagram,

$$
\operatorname{Im}\left(S^{2} g\right)^{*} \subset \operatorname{Im}\left(S^{5} f\right)^{*}(S \gamma)^{*}=\operatorname{Im}\left(S^{5} f\right)^{*}(S \gamma)^{*} i_{*}=\left\{\left(S^{5} f\right)^{*} i_{*}(S \gamma)^{*} \eta_{4}\right\}=0 . \quad \text { q.e.d. }
$$

Proposition 1.12. The kernel of $\lambda: \pi_{n+3}(X) \rightarrow \mathscr{E}(X)$ in (1.3) is contained in the subgroup generated by $i_{*} \nu^{\prime} \circ S^{3} f \circ \eta_{n+2}$.

Proof. For the suspended complex $S X=S^{4} \cup e^{n+1} \cup e^{n+4}$, we define a homomorphism

$$
\lambda_{1}: j_{*} \pi_{n+4}(S K) \rightarrow \mathscr{E}(S X) \text { by } \lambda_{1}(\alpha)=\nabla \circ(1 \vee \alpha) \circ \ell_{1},
$$

where $\alpha \in j_{*} \pi_{n+4}(S K)$ and $\ell_{1}: S X \rightarrow S X \vee S^{n+4}$ is the coaction defined by the similar way to ℓ. Then by (1.2) we have the commutative diagram

where $S: \mathscr{E}(X) \rightarrow \mathscr{E}(S X)$ is the suspension homomorphism. We notice that λ_{1} coincides with the restriction of $\lambda_{1}^{\prime}: \pi_{n+4}(S X) \rightarrow[S X, S X]$ given by $\lambda_{1}^{\prime}(\alpha)=$ $1+\pi^{*} \alpha$, where $\pi: S X \rightarrow S X / S K=S^{n+4}$ is the collapsing map, $\pi^{*}: \pi_{n+4}(S X) \rightarrow$ [$S X, S X]$ and + is the comultiplication on $S X$. Then, by Lemma 1.11,

$$
\lambda_{1}^{-1}(1) \subset \pi^{*-1}(0)=\left(S^{2} g\right)^{*}\left[S^{2} K, S X\right]=0 .
$$

Hence the above diagram shows that

$$
\begin{aligned}
\lambda^{-1}(1) & \subset \lambda^{-1}\left(S^{-1}(1)\right)=S^{-1}\left(\lambda_{1}^{-1}(1)\right) \\
& =S^{-1}(0)=\left\{i \circ v^{\prime} \circ S^{3} f \circ \eta_{n+2}\right\} \quad \text { by Lemma 1.7. } \quad \text { q.e.d. }
\end{aligned}
$$

§ 2. The image of ϕ

In this section we consider the image of $\phi: \mathscr{E}(X) \rightarrow \mathscr{E}(K)$ defined in $\S 1$, where $X=K \cup_{g} e^{n+3}, g \in \pi_{n+2}(K) . \quad$ By [10, Lemma 2.2], we have

$$
\begin{equation*}
\operatorname{Im} \phi=\left\{h \in \mathscr{E}(K): h \circ g=\varepsilon g(\varepsilon= \pm 1) \quad \text { in } \quad \pi_{n+2}(K)\right\} . \tag{2.1}
\end{equation*}
$$

Let $\ell_{2}: K=S^{3} \cup e^{n} \rightarrow S^{3} \cup e^{n} \vee S^{n}=K \vee S^{n}$ be the coaction defined by shrinking the equator $S^{n-1} \times\{1 / 2\}$ of e^{n} in $S^{3} \cup e^{n}$ to the base point. Then we can define a homomorphism

$$
\lambda_{2}: i_{*} \pi_{n}\left(S^{3}\right) \rightarrow \mathscr{E}(K) \quad \text { by } \quad \lambda_{2}(\alpha)=\nabla_{0}(1 \vee \alpha) \circ \ell_{2}
$$

where $\alpha \in i_{*} \pi_{n}\left(S^{3}\right)$. Furthermore, let τ and ρ be the elements in $\mathscr{E}(K)$ such that the following diagrams are homotopy commutative, respectively:

where $S^{3} \xrightarrow{i} K \xrightarrow{\pi} S^{n}$ is the cofibering of $K=S^{3} \cup e^{n}$. Then, we have the following (2.2) by applying [10, Th. 3.15]:
(2.2) For the cell complex $K=S^{3} \cup_{f} e^{n}(n \geqq 5)$, we have the exact sequence

$$
0 \rightarrow H_{1} \rightarrow \mathscr{E}(K) \rightarrow Z_{2} \rightarrow 1
$$

Here, by using $H=\pi_{n}\left(S^{3}\right) /\left\{f_{*} \pi_{n}\left(S^{n-1}\right)+(S f)^{*} \pi_{4}\left(S^{3}\right)\right\}, H_{1}$ is given by

$$
H_{1}=H \quad \text { if } \quad 2 f \neq 0 ; H_{1}=D(H) \quad \text { if } \quad 2 f=0,
$$

where $D(H)$ is the split extension

$$
0 \rightarrow H \rightarrow D(H) \rightarrow Z_{2} \rightarrow 1
$$

acting $Z_{2}=\{1,-1\}$ on H by $(-1) \cdot a=-a$ for $a \in H$. Furthermore, τ exists always, ρ exists only when $2 f=0$ and

$$
\mathscr{E}(K)=\left\{\begin{array}{l}
\left\{\lambda_{2}(\alpha) \circ \tau^{\delta}: \alpha \in i_{*} \pi_{n}\left(S^{3}\right), \delta=0 \text { or } 1\right\} \quad \text { if } 2 f \neq 0, \tag{2.3}\\
\left\{\lambda_{2}(\alpha) \circ \tau^{\delta_{1} \circ} \rho^{\delta_{2}}: \alpha \in i_{*} \pi_{n}\left(S^{3}\right), \delta_{k}=0 \text { or } 1(k=1,2)\right\} \text { if } 2 f=0 .
\end{array}\right.
$$

Lemma 2.4. The normal subgroup $\left\{\lambda_{2}(\alpha): \alpha \in i_{*} \pi_{n}\left(S^{3}\right)\right\}$ of $\mathscr{E}(K)$ is contained in $\operatorname{Im} \phi$ given in (2.1).

Proof. Since $j_{*} g= \pm\left[u_{n}, \iota_{3}\right]$ by [3, Th. 3.2] for the generator u_{n} of $\pi_{n}\left(K, S^{3}\right)=Z$, we have $\ell_{2 *} g=k_{*} g \pm\left[k_{n}, k_{3}\right]$ by [5, Lemma 5.4], where $k: S^{3} \cup$ $e^{n} \rightarrow S^{3} \cup e^{n} \vee S^{n}$ and $k_{r}: S^{r} \rightarrow S^{3} \cup e^{n} \vee S^{n}(r=3, n)$ are the inclusions. Therefore, for $\alpha=i_{*} \alpha^{\prime} \in i_{*} \pi_{n}\left(S^{3}\right)$,

$$
\begin{aligned}
\lambda_{2}(\alpha) \circ g & =\nabla \circ(1 \vee \alpha) \circ \ell_{2} \circ g=\nabla \circ(1 \vee \alpha) \circ\left(k \circ g \pm\left[k_{n}, k_{3}\right]\right) \\
& =\nabla \circ(1 \vee \alpha) \circ k \circ g \pm \nabla \circ(1 \vee \alpha) \circ\left[k_{n}, k_{3}\right] \\
& =g \pm\left[\nabla \circ(1 \vee \alpha) \circ k_{n}, \nabla \circ(1 \vee \alpha) \circ k_{3}\right] \\
& =g \pm[\alpha, i]=g \pm i_{*}\left[\alpha^{\prime}, c_{3}\right]=g .
\end{aligned}
$$

Hence we have $\left\{\lambda_{2}(\alpha): \alpha \in i_{*} \pi_{n}\left(S^{3}\right)\right\} \subset \operatorname{Im} \phi$.
q.e.d.

By [3, (3.4)], we may regard X in (1.1) as the push-out

Then we have the following
Lemma 2.6. (i) If $2 f=0$, then ρ in (2.2) can be taken in $\operatorname{Im} \phi$ of (2.1).
(ii) If f satisfies the assumption

$$
\begin{equation*}
\omega \circ S^{3} f \in f_{*} \pi_{n+2}\left(S^{n-1}\right), \tag{2.7}
\end{equation*}
$$

then τ in (2.2) can be taken in $\operatorname{Im} \phi$.
Proof. (i) Since $2 f=0$, the diagram

is homotopy commutative. Therefore from (2.5) we have an element $\bar{\rho} \in \mathscr{E}(X)$ such that $\bar{\rho} \mid K=\phi(\bar{\rho})$ is an element ρ in (2.2).
(ii) Let $\phi: S^{3} \times S^{3} \rightarrow S^{3}$ be the commutator defined by $\phi=p_{2}^{-1} \cdot p_{1}^{-1} \cdot p_{2} \cdot p_{1}$, where p_{i} is the projection. Then by [6, p. 176],
(2.8) $\pi_{6}\left(S^{3}\right)=Z_{12}$ is generated by ω such that $\omega_{*} \pi=\phi$,
where $\pi: S^{3} \times S^{3} \rightarrow S^{3} \times S^{3} / S^{3} \vee S^{3}=S^{6}$ is the collapsing map. By the assumption (2.7), there exists an element

$$
\begin{equation*}
\beta \in \pi_{n+2}\left(S^{n-1}\right) \text { such that } \omega_{*} S^{3} f=f_{*} \beta \text {. } \tag{2.9}
\end{equation*}
$$

Denote by F the composition of maps:

$$
\begin{array}{r}
F=\nabla \circ\left\{\left(-\iota_{n-1}\right) \circ p_{1} \vee \beta\right\} \circ \ell: S^{n-1} \times S^{3} \xrightarrow{\ell} S^{n-1} \times S^{3} \vee S^{n+2} \\
\xrightarrow{\left(-\iota_{n-1}\right) \circ p_{1} \vee \beta} S^{n-1} \vee S^{n-1} \xrightarrow{\nabla} S^{n-1},
\end{array}
$$

where $\ell: S^{n-1} \times S^{3} \rightarrow S^{n-1} \times S^{3} \vee S^{n+2}$ is the coaction defined by shrinking the equator $S^{n+1} \times\{1 / 2\}$ of e^{n+2} to the base point and $p_{1}: S^{n-1} \times S^{3} \rightarrow S^{n-1}$ is the projection. We see that $f \circ F=\left(\left(-c_{3}\right) \circ f \circ p_{1}\right) \cdot(f \circ \beta \circ \pi)$, where $\pi: S^{n-1} \times S^{3} \rightarrow$ $S^{n-1} \times S^{3} / S^{n-1} \vee S^{3}=S^{n+2}$ is the collapsing map. So,

$$
\begin{aligned}
& \left(\left(f \circ p_{1}\right) \cdot p_{2}\right) \circ\left(F,\left(-c_{3}\right) \circ p_{2}\right)=(f \circ F) \cdot\left(\left(-c_{3}\right) \circ p_{2}\right) \\
& \quad=\left(\left(-\iota_{3}\right) \circ f \circ p_{1}\right) \cdot(f \circ \beta \circ \pi) \cdot\left(\left(-\iota_{3}\right) \circ p_{2}\right) \\
& \quad=(f \circ \beta \circ \pi) \cdot\left(\left(-\iota_{3}\right) \circ \circ \circ p_{1}\right) \cdot\left(\left(-\iota_{3}\right) \circ p_{2}\right) \text { by the similar way to [13, Lemma 6.5] } \\
& \quad=\left(\omega \circ S^{3} f \circ \pi\right) \cdot\left(\left(-\iota_{3}\right) \circ f \circ p_{1}\right) \cdot\left(\left(-\iota_{3}\right) \circ p_{2}\right) \text { by (2.9) } \\
& \quad=\left(\phi \circ\left(f \times \iota_{3}\right)\right) \cdot\left(\left(-\iota_{3}\right) \circ f \circ p_{1}\right) \cdot\left(\left(-\iota_{3}\right) \circ p_{2}\right) \text { by (2.8) }
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\left(-\iota_{3}\right) \circ p_{2}\right) \cdot\left(\left(-\iota_{3}\right) \circ f \circ p_{1}\right) \cdot p_{2} \cdot\left(f \circ p_{1}\right) \cdot\left(\left(-\iota_{3}\right) \circ f \circ p_{1}\right) \cdot\left(\left(-\iota_{3}\right) \circ p_{2}\right) \\
& =\left(-\iota_{3}\right) \circ\left(\left(f \circ p_{1}\right) \cdot p_{2}\right) .
\end{aligned}
$$

Thus we have the following homotopy commutative diagram:

This diagram and (2.5) allow us to construct an element $\bar{\tau} \in \mathscr{E}(X)$ such that $\bar{\tau} \mid K=\phi(\bar{\tau})$ is an element τ in (2.2).
q.e.d.

§3. Main theorem and examples

In this section we prove our main theorem and give some examples of $\mathscr{E}(X)$.
Theorem 3.1. Let $X=E_{f}$ be the principal S^{3}-bundle over $S^{n}(n \geqq 5)$ with characteristic class $f \in \pi_{n-1}\left(S^{3}\right)$. Assume that $\omega_{\circ} S^{3} f \in f_{*} \pi_{n+2}\left(S^{n-1}\right)$ in (2.7). Then we have the following exact sequence:

$$
\begin{equation*}
0 \rightarrow \pi_{n+3}(X) \rightarrow \mathscr{E}(X) \rightarrow \mathscr{E}(K) \rightarrow 1 \tag{3.2}
\end{equation*}
$$

where $K=S^{3} \cup_{f} e^{n}$.
Proof. If $\omega \circ S^{3} f \in f_{*} \pi_{n+2}\left(S^{n-1}\right)$, then $\omega \circ S^{3} f=f \circ \beta$ for some $\beta \in \pi_{n+2}\left(S^{n-1}\right)$ and we have $i_{*} \nu^{\prime} \circ S^{3} f \circ \eta_{n+2}=i_{*} \omega \circ S^{3} f \circ \eta_{n+2}=i_{*} f \circ \beta \circ \eta_{n+2}=0$, since $i \circ f=0$. Therefore, by Proposition 1.12, the homomorphism $\lambda: \pi_{n+3}(X) \rightarrow \mathscr{E}(X)$ is monomorphic. Furthermore, by (2.3) and Lemmas 2.4 and 2.6, the homomorphism $\phi: \mathscr{E}(X) \rightarrow$ $\mathscr{E}(K)$ is epimorphic. Therefore, we have the exact sequence (3.2) by (1.4).

By using the above theorem and (2.2), we give some examples of $\mathscr{E}\left(E_{f}\right)$. For the calculations, we use several results on the homotopy groups of spheres. The main reference is Toda's book [14].

In case when $f=\eta_{3} \in \pi_{4}\left(S^{3}\right), k \omega \in \pi_{6}\left(S^{3}\right)$ or $0 \in \pi_{n-1}\left(S^{3}\right)$, we can see that f satisfies the assumption (2.7). Therefore we obtain exact sequences (3.2) for such f, which are already known for $E_{\eta_{3}}=S U(3), E_{\omega}=S p(2)$ by [10], for $E_{0}=S^{3} \times S^{n}$ by [13], and for $E_{k \omega}(0 \leqq k \leqq 6)$ by J. W. Rutter [11]. The group structure of $\mathscr{E}\left(E_{f}\right)$ is also given in each case except for $E_{6 \omega}$.

Example 3.3. Let $v^{\prime} \circ \eta_{6} \in \pi_{7}\left(S^{3}\right)=Z_{2}$ be the generator. Then we have the following exact sequence:

$$
0 \rightarrow Z_{24} \oplus Z_{2} \rightarrow \mathscr{E}\left(E_{v^{\prime} \circ \eta_{6}}\right) \rightarrow Z_{2} \oplus Z_{2} \rightarrow 1
$$

Proof. Since $\omega \circ S^{3}\left(v^{\prime} \circ \eta_{6}\right)=v^{\prime} \circ 2 v_{6}{ }^{\circ} \eta_{9}=0$ in $\pi_{10}\left(S^{3}\right)$ by [14, (5.5)], we have an exact sequence (3.2) for $f=v^{\prime} \circ \eta_{6}$. In general, let $n \geqq 6$. Then $\pi_{n+4}\left(S^{n}\right)=0$ by [14, Table of $\pi_{n+k}\left(S^{n}\right)$, I] and we have the exact sequence of the principal S^{3}-bundle X over S^{n} in (1.1):

$$
0 \longrightarrow \pi_{n+3}\left(S^{3}\right) \xrightarrow{i_{*}} \pi_{n+3}(X) \xrightarrow{p_{*}} \pi_{n+3}\left(S^{n}\right) \xrightarrow{\partial} \pi_{n+2}\left(S^{3}\right) \longrightarrow \cdots,
$$

where $\pi_{n+3}\left(S^{n}\right)=Z_{24}$ generated by ω_{n} and $\partial\left(\omega_{n}\right)=f \circ \omega_{n-1}$ by [9, (2.2)]. Let $n=8$ in the above sequence and $f=v^{\prime} \circ \eta_{6}$. Then we have an exact sequence

$$
0 \rightarrow Z_{2} \rightarrow \pi_{11}\left(E_{f}\right) \rightarrow Z_{24} \rightarrow 0,
$$

since $f \circ \omega_{7}=v^{\prime} \circ \eta_{6} \circ \omega_{7}=0$, and $\left\{v^{\prime} \circ \eta_{6}, \omega_{7}, 8 \iota_{10}\right\} \supset v^{\prime} \circ\left\{\eta_{6}, \omega_{7}, 8 \iota_{10}\right\} \equiv 0$ modulo $\left(v^{\prime} \circ \eta_{6}\right)_{*} \pi_{11}\left(S^{7}\right)+8 \pi_{11}\left(S^{3}\right)=0$. Therefore, by [9, Th. 2.1], $\pi_{11}\left(E_{f}\right)=Z_{24} \oplus Z_{2}$. For $f=v^{\prime} \circ \eta_{6}$, we can easily see that H in (2.2) is 0 and $\mathscr{E}\left(S^{3} \cup_{f} e^{8}\right)=Z_{2} \oplus Z_{2}$ by [10]. Hence we have the required result.
q.e.d.

Example 3.4. Let $f=v^{\prime} \circ \eta_{6}^{2} \in \pi_{8}\left(S^{3}\right)=Z_{2}$ be the generator. Then we have the following exact sequences:

$$
\begin{aligned}
0 \rightarrow & Z_{2} \oplus Z_{2} \oplus Z_{24} \rightarrow \mathscr{E}\left(E_{f}\right) \rightarrow G \rightarrow 1 \\
& 0 \rightarrow D\left(Z_{3}\right) \rightarrow G \rightarrow Z_{2} \rightarrow 1 .
\end{aligned}
$$

Example 3.5. Let $f=\alpha_{1}(3) \circ \alpha_{1}(6) \in \pi_{9}\left(S^{3}\right)=Z_{3}$ be the generator. Then we have the following exact sequence:

$$
0 \rightarrow Z_{2} \oplus Z_{4} \oplus Z_{72} \rightarrow \mathscr{E}\left(E_{f}\right) \rightarrow Z_{30} \rightarrow 1
$$

These last two examples are obtained by the similar way to Example 3.3.

References

[1] W. D. Barcus and M. G. Barratt: On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc. 88 (1958), 57-74.
[2] A. L. Blakers and W. S. Massey: Products in homotopy theory, Ann. of Math. 58 (1953), 295-324.
[3]. P. Hilton and J. Roitberg: On principal S^{3}-bundles over spheres, Ann. of Math. 90 (1969), 91-107.
[4] I. M. James: On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford (2), 5 (1954), 260-270.
[5] -: Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374-383.
[6] -: On H-spaces and their homotopy groups, Quart. J. Math. Oxford (2), 11 (1960), 161-179.
[7] -: On sphere-bundles over spheres, Comment. Math. Helv. 35 (1961), 126-135.
[8] I. M. James and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres (I), Proc. London Math. Soc. (3), 4 (1954), 196-218,
[9] M. Mimura and H. Toda: Homotopy groups of $S U(3), S U(4)$ and $S p(2)$, J. Math. Kyoto Univ. 3 (1964), 217-250.
[10] S. Oka, N. Sawashita and M. Sugawara: On the group of self-equivalences of a mapping cone, Hiroshima Math. J. 4 (1974), 9-28.
[11] J. W. Rutter: The group of self-homotopy equivalences of principal three sphere bundles over the seven sphere, Math. Proc. Camb. Phil. Soc. 84 (1978), 303-311.
[12] S. Sasao: Self-homotopy equivalences of the total space of a sphere bundle over a sphere, (preprint).
[13] N. Sawashita: On the group of self-equivalences of the product of spheres, Hiroshima Math. J. 5 (1975), 69-86.
[14] H. Toda: Composition Methods in Homotopy Groups of Spheres, Annals of Math. Studies 49, Princeton Univ. Press, 1962.
[15] G. W. Whitehead: A generalization of the Hopf invariant, Ann. of Math. 51 (1950), 192-237.

Department of Mathematics,
Faculty of Science,
Okayama University,
and
Department of Mathematics,
Faculty of Engineering,
Tokushima University

