On the group of self-homotopy equivalences of principal S³-bundles over spheres

Dedicated to Professor Minoru Nakaoka on his 60th birthday

Mamoru MIMURA and Norichika SAWASHITA (Received January 14, 1984)

Introduction

For any (based) space X, the set $\mathscr{E}(X)$ of all homotopy classes of homotopy equivalences of X to itself forms a group under the composition of maps. The group $\mathscr{E}(X)$ has been studied by several authors. In particular, in case when X is a principal S³-bundle over Sⁿ, the group $\mathscr{E}(X)$ is already known for X = SU(3), Sp(2) by [10], for $X = S^3 \times S^n$ by [13] and for $X = E_{k\omega}$ by J. W. Rutter [11], where $E_{k\omega}$ is the principal S³-bundle over S⁷ with characteristic class $k\omega \in \pi_6(S^3)$, ω a generator of $\pi_6(S^3) = Z_{12}$.

The purpose of this note is to study groups $\mathscr{E}(X)$ for principal S³-bundles over spheres. Our main result is stated as follows:

THEOREM 3.1. Let E_f be the principal S^3 -bundle over S^n $(n \ge 5)$ with characteristic class $f \in \pi_{n-1}(S^3)$. Assume that $\omega \circ S^3 f \in f_* \pi_{n+2}(S^{n-1})$. Then we have the following exact sequence:

$$0 \to \pi_{n+3}(E_f) \to \mathscr{E}(E_f) \to \mathscr{E}(S^3 \cup f^n) \to 1,$$

where $S^3 \cup_f e^n$ is the mapping cone of f.

The group $\mathscr{E}(S^3 \cup_f e^n)$ is given in [10, Th. 3.15] up to extension (see (2.2)), and the homotopy group $\pi_{n+3}(E_f)$ is studied for some f in §3.

Throughout this note, all spaces have base points, and all maps and homotopies preserve base points. For given spaces X and Y, we denote by [X, Y] the set of (based) homotopy classes of maps of X to Y, and by the same letter a map $f: X \rightarrow Y$ and its homotopy class $f \in [X, Y]$.

§1. The homomorphism ϕ and its kernel

Throughout this note, let $f \in \pi_{n-1}(S^3)$ for $n \ge 5$ be a given element, and let $X = E_f$ denote the principal S^3 -bundle over S^n with characteristic class f and $K = S^3 \cup_f e^n$ the mapping cone of f. Then by James-Whitehead [8], X has a cell structure given by

$$X=K\cup e^{n+3}.$$

Since $j_*: [K, K] \rightarrow [K, X]$ $(j: K \subset X$ is the inclusion) is bijective, the homomorphism

$$\phi: \mathscr{E}(X) \to \mathscr{E}(K)$$

is defined by the restriction on $\mathscr{E}(X)$ of the composition $[X, X] \xrightarrow{j*} [K, X] \xleftarrow{j*} [K, K]$.

In this section, we consider the kernel of ϕ . We define the coaction

$$\ell: X = K \cup e^{n+3} \rightarrow K \cup e^{n+3} \vee S^{n+3} = X \vee S^{n+3}$$

by shrinking the equator $S^{n+2} \times \{1/2\}$ of e^{n+3} to the base point. Since $\pi_{n+3}(S^3)$ and $\pi_{n+3}(S^n)$ for $n \ge 5$ are finite groups (cf. [14, (4.2)]), $\pi_{n+3}(X)$ is a finite group by the exact sequence associated with the principal S³-bundle X over Sⁿ:

(1.1)
$$S^3 \xrightarrow{i} X \xrightarrow{p} S^n.$$

Therefore, by the Blakers-Massey theorem and the exact sequence of the pair (X, K) we have

(1.2)
$$j_*: \pi_{n+3}(K) \to \pi_{n+3}(X)$$
 is epimorphic.

By Barcus-Barratt [1, Th. 6.1] and J. W. Rutter [11, Th. 2], we can define a homomorphism

(1.3)
$$\lambda: \pi_{n+3}(X) = j_*\pi_{n+3}(K) \to \mathscr{E}(X) \quad \text{by} \quad \lambda(\alpha) = \mathcal{V}(1 \vee \alpha) \circ \ell,$$

where $\alpha \in \pi_{n+3}(X)$, $V: X \vee X \to X$ is the folding map and 1 is the class of the identity map of X; and since the attaching element $g \in \pi_{n+2}(K)$ of e^{n+3} in $X = K \cup e^{n+3}$ is of infinite order by [3, Th. 3.2], we have

(1.4)
$$\operatorname{Im} \lambda = \operatorname{Ker} \left(\phi \colon \mathscr{E}(X) \to \mathscr{E}(K)\right).$$

Let $h: S^{n-1} \times S^3 \to S^3$ be the map defined by $h = (f \circ p_1) \cdot p_2$ where p_1 and p_2 are the projections and \cdot is the canonical multiplication on S^3 . Then by [7, (3.1)] and [3, (3.6)], we have

(1.5)
$$Sg = i_*H((f \circ p_1) \cdot p_2) = i_*\gamma \circ S^4 f,$$

where $i: S^4 \subset SK$ is the inclusion, H is the Hopf construction and γ is the Hopf map $S^7 \rightarrow S^4$. Therefore

(1.6)
$$SX = K_1 \cup_{i_1 \circ Sf} e^{n+1}, \quad K_1 = S^4 \cup_{\gamma \circ S^4 f} e^{n+4},$$

where $i_1: S^4 \subset K_1$ is the inclusion.

416

LEMMA 1.7. Let $S: \pi_{n+3}(X) \to \pi_{n+4}(SX)$ be the suspension homomorphism. Then Ker S is generated by $i_*v' \circ S^3 f \circ \eta_{n+2}$, where $v' \in \pi_6(S^3) = Z_{12}$ is an element of order 4 and $\eta_{n+2} \in \pi_{n+3}(S^{n+2}) = Z_2$ is a generator.

PROOF. Let H_{Sf} : $\pi_{n+6}(S^{n+1}) \rightarrow \pi_5(S^4)$ be the homomorphism defined by the composition:

$$\pi_{n+6}(S^{n+1}) \xrightarrow{H} \pi_{n+6}(S^{2n+1}) \xleftarrow{S^{n+1}} \pi_5(S^n) \xrightarrow{(Sf)_*} \pi_5(S^4)$$

where *H* is the generalized Hopf invariant of [15]. Let $Q: \pi_5(S^4) \rightarrow \pi_{n+5}(SK, S^4)$ be the homomorphism defined by $Q(\eta_4) = [u_{n+1}, \eta_4]$, where $SK = S^4 \cup_{Sf} e^{n+1}$, u_{n+1} is a generator of $\pi_{n+1}(SK, S^4) \cong \pi_{n+1}(S^{n+1}) = Z$ and [,] denotes the relative Whitehead product. Then by [4, Th. 2.1], we have the following exact sequence:

$$\pi_{n+6}(S^{n+1}) \xrightarrow{H_{Sf}} \pi_5(S^4) \xrightarrow{Q} \pi_{n+5}(SK, S^4) \longrightarrow \pi_{n+5}(S^{n+1}).$$

By [14, Table of $\pi_{n+k}(S^n)$, I], we have $\pi_{n+6}(S^{n+1}) = \pi_{n+5}(S^{n+1}) = 0$ for $n \ge 6$, $\pi_{11}(S^6) = Z$ and $\pi_{10}(S^6) = 0$. Let $\Delta(\iota_{13})$ be the generator of $\pi_{11}(S^6)$. Then $H(\Delta(\iota_{13})) = \pm 2\iota_{11}$ by [14, Prop. 2.7]. Since $\pi_5(S^4) = Z_2$, we have $H_{Sf} = 0$: $\pi_{11}(S^6) \to \pi_5(S^4)$. Hence Q is an isomorphism in the above sequence for $n \ge 5$ and we have

(1.8)
$$\pi_{n+5}(SK, S^4) \cong \pi_5(S^4) = Z_2,$$

which is generated by $[u_{n+1}, \eta_4]$.

Consider the following commutative diagram including the exact sequence of the triad (SX, SK, S^4) :

where $j_1: K_1 \subset SX$ is the inclusion given in (1.6), $\pi: SX \to SX/SK = S^{n+4}$ and $\pi_1: K_1 \to K_1/S^4 = S^{n+4}$ are the collapsing maps. We see that $\pi_{n+6}(S^{n+4}) = Z_2$, $\pi_{n+5}(S^{n+4}) = Z_2$, $\pi_{n+5}(SK, S^4) = Z_2$ by (1.8) and π_* and π_{1*} in the both squares are isomorphisms by the Blakers-Massey theorem. Therefore we have

(1.9)
$$\pi_{n+5}(SX, S^4) = Z_2 \oplus Z_2$$
 generated by $j_*[u_{n+1}, \eta_4]$ and $j_{1*}\tilde{\eta}_{n+4}$,

where $\tilde{\eta}_{n+4}$ is a coextension of η_{n+4} .

Consider the following commutative diagram:

where the left homomorphism S is monomorphic by [14, Lemma 4.5] and the right homomorphism S is isomorphic for $n \ge 5$. Here, we have

$$\partial j_*[u_{n+1}, \eta_4] = - [\partial u_{n+1}, \eta_4] = [Sf, \eta_4] \quad \text{by } [2, (3.5)]$$
$$= [\iota_4, \iota_4] \circ S^4 f \circ \eta_{n+3} \qquad \text{by } [15, (3.59)]$$
$$= (2\nu_4 - S\nu') \circ S^4 f \circ \eta_{n+3} \qquad \text{by } [14, (5.8)]$$
$$= S\nu' \circ S^4 f \circ \eta_{n+3},$$

and $\partial j_{1*} \tilde{\eta}_{n+4} = \gamma \circ S^4 f \circ \eta_{n+3}$ by the following commutative diagram:

$$\pi_{n+5}(SX, S^4) \xrightarrow{\partial} \pi_{n+4}(S^4) \xleftarrow{(\gamma \circ S^4 f)_*} \pi_{n+4}(S^{n+3})$$

$$\swarrow j_{1*} \qquad \uparrow \partial_1 \qquad \cong \downarrow S$$

$$\pi_{n+5}(K_1, S^4) \xrightarrow{\pi_{1*}} \pi_{n+5}(S^{n+4}).$$

Since $\pi_{n+4}(S^4) = S\pi_{n+3}(S^3) \oplus \gamma_*\pi_{n+4}(S^7)$ as is well known, (1.9) and these equalities show that

$$S\pi_{n+3}(S^3) \cap \partial \pi_{n+5}(SX, S^4) = \{S(v' \circ S^3 f \circ \eta_{n+2})\}.$$

Hence Ker $(S: \pi_{n+3}(X) \rightarrow \pi_{n+4}(SX)) = \{i \circ \nu' \circ S^3 f \circ \eta_{n+2}\}$ by the diagram (*). q.e.d.

REMARK 1.10. The kernel of the homomorphism $S: \pi_{n+3}(X) \rightarrow \pi_{n+4}(SX)$ is investigated by S. Sasao [12, Lemma 4.1] for S^m -bundles X over S^n with the condition 3 < m+1 < n < 2m-2.

LEMMA 1.11. Let $g \in \pi_{n+2}(K)$ be the attaching element of e^{n+3} in $X = K \cup e^{n+3}$. Then the induced homomorphism $(S^2g)^* : [S^2K, SX] \to \pi_{n+4}(SX)$ is trivial.

PROOF. Consider the following commutative diagram which is obtained by (1.5):

$$\begin{array}{c} \pi_5(S^4) \xrightarrow{i_*} \pi_5(SX) \xleftarrow{i^*} [S^2K, SX] \\ \downarrow (S_7)^* \qquad \downarrow (S_7)^* \qquad \downarrow (S^2g)^* \\ \pi_8(S^4) \xrightarrow{i_*} \pi_8(SX) \xrightarrow{(S^5f)^*} \pi_{n+4}(SX), \end{array}$$

where the upper i_* is isomorphic for $n \ge 6$ and is epimorphic for n = 5. Since $\eta_4 \circ S\gamma = \eta_4 \circ v_5 = Sv' \circ \eta_7$ by [14, Lemma 5.4, Prop. 5.6 and (5.9)] and $\partial j_*[u_{n+1}, \eta_4] = Sv' \circ S^4 f \circ \eta_{n+3}$ in the proof of Lemma 1.7, we have

$$(S^{5}f)^{*}i_{*}(S\gamma)^{*}\eta_{4} = i_{*}S\nu' \circ \eta_{7} \circ S^{5}f = i_{*}S\nu' \circ S^{4}f \circ \eta_{n+3} = i_{*}\partial j_{*}[u_{n+1}, \eta_{4}] = 0.$$

Therefore, by the above diagram,

$$\operatorname{Im} (S^2g)^* \subset \operatorname{Im} (S^5f)^*(S\gamma)^* = \operatorname{Im} (S^5f)^*(S\gamma)^*i_* = \{(S^5f)^*i_*(S\gamma)^*\eta_4\} = 0. \quad q.e.d.$$

PROPOSITION 1.12. The kernel of $\lambda: \pi_{n+3}(X) \rightarrow \mathscr{E}(X)$ in (1.3) is contained in the subgroup generated by $i_*v' \circ S^3 f \circ \eta_{n+2}$.

PROOF. For the suspended complex $SX = S^4 \cup e^{n+1} \cup e^{n+4}$, we define a homomorphism

$$\lambda_1: j_*\pi_{n+4}(SK) \to \mathscr{E}(SX) \text{ by } \lambda_1(\alpha) = \mathcal{P} \circ (1 \lor \alpha) \circ \ell_1,$$

where $\alpha \in j_* \pi_{n+4}(SK)$ and $\ell_1: SX \to SX \vee S^{n+4}$ is the coaction defined by the similar way to ℓ . Then by (1.2) we have the commutative diagram

where $S: \mathscr{E}(X) \to \mathscr{E}(SX)$ is the suspension homomorphism. We notice that λ_1 coincides with the restriction of $\lambda'_1: \pi_{n+4}(SX) \to [SX, SX]$ given by $\lambda'_1(\alpha) = 1 + \pi^* \alpha$, where $\pi: SX \to SX/SK = S^{n+4}$ is the collapsing map, $\pi^*: \pi_{n+4}(SX) \to [SX, SX]$ and + is the comultiplication on SX. Then, by Lemma 1.11,

$$\lambda_1^{-1}(1) \subset \pi^{*-1}(0) = (S^2 g)^* [S^2 K, SX] = 0.$$

Hence the above diagram shows that

$$\lambda^{-1}(1) \subset \lambda^{-1}(S^{-1}(1)) = S^{-1}(\lambda_1^{-1}(1))$$

= $S^{-1}(0) = \{i \circ \nu' \circ S^3 f \circ \eta_{n+2}\}$ by Lemma 1.7. q.e.d.

§ 2. The image of ϕ

In this section we consider the image of $\phi: \mathscr{E}(X) \to \mathscr{E}(K)$ defined in §1, where $X = K \cup_{a} e^{n+3}, g \in \pi_{n+2}(K)$. By [10, Lemma 2.2], we have

(2.1)
$$\operatorname{Im} \phi = \{h \in \mathscr{E}(K) \colon h \circ g = \varepsilon g \ (\varepsilon = \pm 1) \quad \text{in} \quad \pi_{n+2}(K) \}.$$

Let $\ell_2: K = S^3 \cup e^n \to S^3 \cup e^n \lor S^n = K \lor S^n$ be the coaction defined by shrinking the equator $S^{n-1} \times \{1/2\}$ of e^n in $S^3 \cup e^n$ to the base point. Then we can define a homomorphism

$$\lambda_2: i_*\pi_n(S^3) \to \mathscr{E}(K) \text{ by } \lambda_2(\alpha) = \mathcal{V}_2(1 \lor \alpha) \circ \ell_2,$$

where $\alpha \in i_*\pi_n(S^3)$. Furthermore, let τ and ρ be the elements in $\mathscr{E}(K)$ such that the following diagrams are homotopy commutative, respectively:

Mamoru MIMURA and Norichika SAWASHITA

where $S^3 \xrightarrow{i} K \xrightarrow{\pi} S^n$ is the cofibering of $K = S^3 \cup e^n$. Then, we have the following (2.2) by applying [10, Th. 3.15]:

(2.2) For the cell complex $K = S^3 \cup_f e^n$ $(n \ge 5)$, we have the exact sequence

$$0 \to H_1 \to \mathscr{E}(K) \to Z_2 \to 1.$$

Here, by using $H = \pi_n(S^3)/\{f_*\pi_n(S^{n-1}) + (Sf)^*\pi_4(S^3)\}, H_1$ is given by

 $H_1 = H$ if $2f \neq 0$; $H_1 = D(H)$ if 2f = 0,

where D(H) is the split extension

$$0 \rightarrow H \rightarrow D(H) \rightarrow Z_2 \rightarrow 1$$

acting $Z_2 = \{1, -1\}$ on H by $(-1) \cdot a = -a$ for $a \in H$. Furthermore, τ exists always, ρ exists only when 2f = 0 and

(2.3)
$$\mathscr{E}(K) = \begin{cases} \{\lambda_2(\alpha) \circ \tau^{\delta} : \alpha \in i_* \pi_n(S^3), \ \delta = 0 \ or \ 1\} & \text{if } 2f \neq 0, \\ \{\lambda_2(\alpha) \circ \tau^{\delta_1} \circ \rho^{\delta_2} : \alpha \in i_* \pi_n(S^3), \ \delta_k = 0 \ or \ 1 \ (k = 1, \ 2)\} & \text{if } 2f = 0. \end{cases}$$

LEMMA 2.4. The normal subgroup $\{\lambda_2(\alpha): \alpha \in i_*\pi_n(S^3)\}$ of $\mathscr{E}(K)$ is contained in Im ϕ given in (2.1).

PROOF. Since $j_*g = \pm [u_n, \iota_3]$ by [3, Th. 3.2] for the generator u_n of $\pi_n(K, S^3) = Z$, we have $\ell_{2*}g = k_*g \pm [k_n, k_3]$ by [5, Lemma 5.4], where $k: S^3 \cup e^n \to S^3 \cup e^n \vee S^n$ and $k_r: S^r \to S^3 \cup e^n \vee S^n$ (r=3, n) are the inclusions. Therefore, for $\alpha = i_*\alpha' \in i_*\pi_n(S^3)$,

$$\begin{split} \lambda_2(\alpha) \circ g &= \mathcal{P} \circ (1 \lor \alpha) \circ \ell_2 \circ g = \mathcal{P} \circ (1 \lor \alpha) \circ (k \circ g \pm [k_n, k_3]) \\ &= \mathcal{P} \circ (1 \lor \alpha) \circ k \circ g \pm \mathcal{P} \circ (1 \lor \alpha) \circ [k_n, k_3] \\ &= g \pm [\mathcal{P} \circ (1 \lor \alpha) \circ k_n, \mathcal{P} \circ (1 \lor \alpha) \circ k_3] \\ &= g \pm [\alpha, i] = g \pm i_* [\alpha', \ell_3] = g. \end{split}$$

Hence we have $\{\lambda_2(\alpha): \alpha \in i_*\pi_n(S^3)\} \subset \operatorname{Im} \phi$.

q. e. d.

By [3, (3.4)], we may regard X in (1.1) as the push-out

(2.5)
$$S^{n-1} \times S^{3} \longrightarrow CS^{n-1} \times S^{3}$$
$$\downarrow (f \circ p_{1}) \circ p_{2} \qquad \downarrow$$
$$S^{3} \xrightarrow{i} X.$$

Then we have the following

LEMMA 2.6. (i) If 2f=0, then ρ in (2.2) can be taken in Im ϕ of (2.1). (ii) If f satisfies the assumption

(2.7)
$$\omega \circ S^3 f \in f_* \pi_{n+2}(S^{n-1}),$$

then τ in (2.2) can be taken in Im ϕ .

PROOF. (i) Since 2f = 0, the diagram

$$S^{n-1} \times S^3 \xrightarrow{(f \circ p_1) \cdot p_2} S^3$$
$$\downarrow (-\iota_{n-1}) \times \iota_3 \qquad \qquad \downarrow \iota_3$$
$$S^{n-1} \times S^3 \xrightarrow{(f \circ p_1) \cdot p_2} S^3$$

is homotopy commutative. Therefore from (2.5) we have an element $\bar{\rho} \in \mathscr{E}(X)$ such that $\bar{\rho}|K = \phi(\bar{\rho})$ is an element ρ in (2.2).

(ii) Let $\phi: S^3 \times S^3 \rightarrow S^3$ be the commutator defined by $\phi = p_2^{-1} \cdot p_1^{-1} \cdot p_2 \cdot p_1$, where p_i is the projection. Then by [6, p. 176],

(2.8) $\pi_6(S^3) = Z_{12}$ is generated by ω such that $\omega_* \pi = \phi$,

where $\pi: S^3 \times S^3 \to S^3 \times S^3/S^3 \vee S^3 = S^6$ is the collapsing map. By the assumption (2.7), there exists an element

(2.9)
$$\beta \in \pi_{n+2}(S^{n-1})$$
 such that $\omega_* S^3 f = f_* \beta$.

Denote by F the composition of maps:

$$F = \overline{V} \circ \{(-\ell_{n-1}) \circ p_1 \lor \beta\} \circ \ell : S^{n-1} \times S^3 \xrightarrow{\ell} S^{n-1} \times S^3 \lor S^{n+2}$$
$$\xrightarrow{(-\ell_{n-1}) \circ p_1 \lor \beta} S^{n-1} \lor S^{n-1} \xrightarrow{V} S^{n-1},$$

where $\ell: S^{n-1} \times S^3 \to S^{n-1} \times S^3 \vee S^{n+2}$ is the coaction defined by shrinking the equator $S^{n+1} \times \{1/2\}$ of e^{n+2} to the base point and $p_1: S^{n-1} \times S^3 \to S^{n-1}$ is the projection. We see that $f \circ F = ((-\ell_3) \circ f \circ p_1) \cdot (f \circ \beta \circ \pi)$, where $\pi: S^{n-1} \times S^3 \to S^{n-1} \to S^{n-1} \times S^3 \to S^{n-1} \to S^{n$

$$((f \circ p_1) \cdot p_2) \circ (F, (-\iota_3) \circ p_2) = (f \circ F) \cdot ((-\iota_3) \circ p_2)$$

= $((-\iota_3) \circ f \circ p_1) \cdot (f \circ \beta \circ \pi) \cdot ((-\iota_3) \circ p_2)$
= $(f \circ \beta \circ \pi) \cdot ((-\iota_3) \circ f \circ p_1) \cdot ((-\iota_3) \circ p_2)$ by the similar way to [13, Lemma 6.5]
= $(\omega \circ S^3 f \circ \pi) \cdot ((-\iota_3) \circ f \circ p_1) \cdot ((-\iota_3) \circ p_2)$ by (2.9)
= $(\phi \circ (f \times \iota_3)) \cdot ((-\iota_3) \circ f \circ p_1) \cdot ((-\iota_3) \circ p_2)$ by (2.8)

$$= ((-\iota_3) \circ p_2) \cdot ((-\iota_3) \circ f \circ p_1) \cdot p_2 \cdot (f \circ p_1) \cdot ((-\iota_3) \circ f \circ p_1) \cdot ((-\iota_3) \circ p_2)$$

= $(-\iota_3) \circ ((f \circ p_1) \cdot p_2).$

Thus we have the following homotopy commutative diagram:

$$S^{n-1} \times S^3 \xrightarrow{(f \circ p_1) \cdot p_2} S^3$$
$$\downarrow (F, (-\iota_3) \circ p_2) \qquad \downarrow -\iota_2$$
$$S^{n-1} \times S^3 \xrightarrow{(f \circ p_1) \cdot p_2} S^3.$$

This diagram and (2.5) allow us to construct an element $\bar{\tau} \in \mathscr{E}(X)$ such that $\bar{\tau}|_K = \phi(\bar{\tau})$ is an element τ in (2.2). q.e.d.

§3. Main theorem and examples

In this section we prove our main theorem and give some examples of $\mathscr{E}(X)$.

THEOREM 3.1. Let $X = E_f$ be the principal S³-bundle over Sⁿ ($n \ge 5$) with characteristic class $f \in \pi_{n-1}(S^3)$. Assume that $\omega \circ S^3 f \in f_* \pi_{n+2}(S^{n-1})$ in (2.7). Then we have the following exact sequence:

$$(3.2) 0 \to \pi_{n+3}(X) \to \mathscr{E}(X) \to \mathscr{E}(K) \to 1,$$

where $K = S^3 \cup_f e^n$.

PROOF. If $\omega \circ S^3 f \in f_* \pi_{n+2}(S^{n-1})$, then $\omega \circ S^3 f = f \circ \beta$ for some $\beta \in \pi_{n+2}(S^{n-1})$ and we have $i_* \nu' \circ S^3 f \circ \eta_{n+2} = i_* \omega \circ S^3 f \circ \eta_{n+2} = i_* f \circ \beta \circ \eta_{n+2} = 0$, since $i \circ f = 0$. Therefore, by Proposition 1.12, the homomorphism $\lambda : \pi_{n+3}(X) \to \mathscr{E}(X)$ is monomorphic. Furthermore, by (2.3) and Lemmas 2.4 and 2.6, the homomorphism $\phi : \mathscr{E}(X) \to \mathscr{E}(K)$ is epimorphic. Therefore, we have the exact sequence (3.2) by (1.4).

q. e. d.

By using the above theorem and (2.2), we give some examples of $\mathscr{E}(E_f)$. For the calculations, we use several results on the homotopy groups of spheres. The main reference is Toda's book [14].

In case when $f = \eta_3 \in \pi_4(S^3)$, $k\omega \in \pi_6(S^3)$ or $0 \in \pi_{n-1}(S^3)$, we can see that f satisfies the assumption (2.7). Therefore we obtain exact sequences (3.2) for such f, which are already known for $E_{\eta_3} = SU(3)$, $E_{\omega} = Sp(2)$ by [10], for $E_0 = S^3 \times S^n$ by [13], and for $E_{k\omega}$ ($0 \le k \le 6$) by J. W. Rutter [11]. The group structure of $\mathscr{E}(E_f)$ is also given in each case except for $E_{6\omega}$.

EXAMPLE 3.3. Let $v' \circ \eta_6 \in \pi_7(S^3) = Z_2$ be the generator. Then we have the following exact sequence:

$$0 \to Z_{24} \oplus Z_2 \to \mathscr{E}(E_{\mathbf{v}' \circ \mathbf{n}_6}) \to Z_2 \oplus Z_2 \to 1.$$

422

PROOF. Since $\omega \circ S^3(\nu' \circ \eta_6) = \nu' \circ 2\nu_6 \circ \eta_9 = 0$ in $\pi_{10}(S^3)$ by [14, (5.5)], we have an exact sequence (3.2) for $f = \nu' \circ \eta_6$. In general, let $n \ge 6$. Then $\pi_{n+4}(S^n) = 0$ by [14, Table of $\pi_{n+k}(S^n)$, I] and we have the exact sequence of the principal S^3 -bundle X over S^n in (1.1):

$$0 \longrightarrow \pi_{n+3}(S^3) \xrightarrow{i_*} \pi_{n+3}(X) \xrightarrow{p_*} \pi_{n+3}(S^n) \xrightarrow{\partial} \pi_{n+2}(S^3) \longrightarrow \cdots,$$

where $\pi_{n+3}(S^n) = Z_{24}$ generated by ω_n and $\partial(\omega_n) = f \circ \omega_{n-1}$ by [9, (2.2)]. Let n=8 in the above sequence and $f = \nu' \circ \eta_6$. Then we have an exact sequence

$$0 \to Z_2 \to \pi_{11}(E_f) \to Z_{24} \to 0,$$

since $f \circ \omega_7 = v' \circ \eta_6 \circ \omega_7 = 0$, and $\{v' \circ \eta_6, \omega_7, 8\ell_{10}\} \supset v' \circ \{\eta_6, \omega_7, 8\ell_{10}\} \equiv 0$ modulo $(v' \circ \eta_6)_* \pi_{11}(S^7) + 8\pi_{11}(S^3) = 0$. Therefore, by [9, Th. 2.1], $\pi_{11}(E_f) = Z_{24} \oplus Z_2$. For $f = v' \circ \eta_6$, we can easily see that H in (2.2) is 0 and $\mathscr{E}(S^3 \cup_f e^8) = Z_2 \oplus Z_2$ by [10]. Hence we have the required result. q.e.d.

EXAMPLE 3.4. Let $f = v' \circ \eta_6^2 \in \pi_8(S^3) = Z_2$ be the generator. Then we have the following exact sequences:

$$0 \to Z_2 \oplus Z_2 \oplus Z_{24} \to \mathscr{E}(E_f) \to G \to 1,$$

$$0 \to D(Z_3) \to G \to Z_2 \to 1.$$

EXAMPLE 3.5. Let $f = \alpha_1(3) \circ \alpha_1(6) \in \pi_9(S^3) = Z_3$ be the generator. Then we have the following exact sequence:

$$0 \to Z_2 \oplus Z_4 \oplus Z_{72} \to \mathscr{E}(E_f) \to Z_{30} \to 1.$$

These last two examples are obtained by the similar way to Example 3.3.

References

- [1] W. D. Barcus and M. G. Barratt: On the homotopy classification of the extensions of a fixed map, Trans. Amer. Math. Soc. 88 (1958), 57-74.
- [2] A. L. Blakers and W. S. Massey: Products in homotopy theory, Ann. of Math. 58 (1953), 295-324.
- [3] P. Hilton and J. Roitberg: On principal S³-bundles over spheres, Ann. of Math. 90 (1969), 91-107.
- [4] I. M. James: On the homotopy groups of certain pairs and triads, Quart. J. Math. Oxford (2), 5 (1954), 260-270.
- [5] -----: Note on cup-products, Proc. Amer. Math. Soc. 8 (1957), 374-383.
- [7] -----: On sphere-bundles over spheres, Comment. Math. Helv. 35 (1961), 126-135.
- [8] I. M. James and J. H. C. Whitehead: The homotopy theory of sphere bundles over spheres (I), Proc. London Math. Soc. (3), 4 (1954), 196-218.

- [9] M. Mimura and H. Toda: Homotopy groups of SU(3), SU(4) and Sp(2), J. Math. Kyoto Univ. 3 (1964), 217-250.
- [10] S. Oka, N. Sawashita and M. Sugawara: On the group of self-equivalences of a mapping cone, Hiroshima Math. J. 4 (1974), 9-28.
- [11] J. W. Rutter: The group of self-homotopy equivalences of principal three sphere bundles over the seven sphere, Math. Proc. Camb. Phil. Soc. 84 (1978), 303-311.
- [12] S. Sasao: Self-homotopy equivalences of the total space of a sphere bundle over a sphere, (preprint).
- [13] N. Sawashita: On the group of self-equivalences of the product of spheres, Hiroshima Math. J. 5 (1975), 69-86.
- [14] H. Toda: Composition Methods in Homotopy Groups of Spheres, Annals of Math. Studies 49, Princeton Univ. Press, 1962.
- [15] G. W. Whitehead: A generalization of the Hopf invariant, Ann. of Math. 51 (1950), 192-237.

Department of Mathematics, Faculty of Science, Okayama University,

and

Department of Mathematics, Faculty of Engineering, Tokushima University