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§1. Introduction

Let X be a countable set of nodes, Y be a countable set of arcs, K be the
node-arc incidence function and r be a strictly positive real function on Y. The
quartet N={X, Y, K, r} is called an infinite network if the graph {X, Y, K} is
connected, locally finite and has no self-loop. For notation and terminology,
we mainly follow [4], [6] and [7].

Let L(X) be the set of all real functions on X and Ly(X) be the set of all
u € L(X) with finite support. For u € L(X), its Dirichlet integral D,(u) of order
p (1<p< o) is defined by

Dyu) = Xyey M) 7P| Zsex K(x, yJu(x)lF (1 < p < ),
Doo(u) = Supye}' r(y)-lleeX K(x’ .V)u(x)l .

Denote by D®)(N) the set of all u € L(X) with finite Dirichlet integral of order p.
It is easily seen that D®)(N) is a Banach space with the norm |u|,=[D,(u)+
[u(B)IP]1M/P (1< p< o) and |ul, =D y(u)+|u(b)|(b e X).

Denote by D{P)(N) the closure of Lo(X) in D®@(N) with respect to the norm
llull,. This D{P(N) is determined independently of the choice of b. As in the
continuous potential theory, we may call an element of D{P(N) a (discrete)
Dirichlet potential of order p.

A typical Dirichlet potential of order 2 is the Green function g, of N with pole
at a (cf. [1]). This is defined by the conditions: g, e D{(N) and Ag,(x)= —&,(x)
on X, where 4 is the discrete Laplace operator and &, is the characteristic function
of the set {a}. It was shown in [7] that the Green function g, exists if and only if
N is of hyperbolic type of order 2, or equivalently D (N)# D{(N).

In the case where {X, Y, K} is the lattice domain in the 3-dimensional Eu-
clidean space and r=1, Duffin [2] showed by means of Fourier analysis that g,
vanishes at the ideal boundary co of N. In the general case, g,(x) does not
always have limit 0 as x tends to the ideal boundary oo of N along a path from a
to co.

In this paper, we are concerned with the boundary behavior of Dirichlet
potentials of order p. Namely, we aim to show that for every u € D(N) the set
of all paths along which u(x) does not have limit 0 as x tends to the ideal boundary
oo of N is a small set in some sense. As in the continuous case (cf. [5]), we use
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the notion of extremal length of order p. We say that a property holds for
p-almost every path of a family I' of paths if it does for the member of I" except
for those belonging to a subfamily with infinite extremal length of order p. Some
elementary properties of the extremal length of a family of paths will be discussed
in §2. We shall prove in §3 that every Dirichlet potential u(x) of order p has
limit O as x tends to the ideal boundary oo of N along p-almost every infinite path.

§2. Extremal length of a family of paths

Let L(Y) be the set of all real functions on Y and L*(Y) be the subset of
L(Y) that consists of non-negative functions. For we L(Y), its energy H,(w)
of order p (1<p< o0) is defined by

Hp(w) = Zer r(y)]w(y)lP (1 < p < w)9
Hco(w) = Super |W(_V)| .

Let us recall the notion of paths. A path P from. a to the ideal boundary
oo of N is the triple {Cx(P), Cy(P), p} of an infinite ordered set Cx(P)={x,; n=>0}
of nodes, an infinite ordered set Cy(P)={y,; n>1} of arcs and a function p on Y
called the path index of P which satisfy the conditions: xo=a, x;#x; if i#j,
{xe X; K(x, y)#0} ={x;_y, x;}, p(y)=—K(x;-1, yy) if y;€ Cy(P) and p(y)=0
if y& Cy(P). Denote by P, , the set of all paths from a to the ideal boundary co
of N and by P, the union of P, , for all xe X. We call an element of P, an
infinite path.

The extremal length 4,(I') of order p of a set I of paths in N is defined by

AD)~! =inf {H(W); We E(I')},

where E(I') is the set of all We L*(Y) such that 3 p r(y)W(¥)= X ccppy VW (Y)
>1forall Pel. In case I is empty, we set A,(I')= o0.

The following fundamental properties of the extremal length can be proved
‘analogously to the continuous case (cf. [5]):

LEMMA 2.1. LetI'y and I'; be sets of paths. IfI'y<T,, then A,(I')) > A, (I>).

LEMMA 2.2. Let {I',; n=1, 2,...} be a family of sets of paths in N. Then
:°=1 }'p(rn)-lzlp(ufl‘;l Fn)_l'

PrOOF. We may assume that 4,(I',)>0 for all n. For any £>0, there exist
W,e E(I')(n=1,2,...) such that H,(W,)<A(l,)"'+27". Let W(y)=
sup {W(y); n=1,2,...}. Then X pr(y)W(y)=>1 for all Pe \UZ, I, and

A(\Unea T)™P < H (W) < X0, H(W,)
< Z;;l /1,,(1",,)" + &.
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Since ¢ is arbitrary, we obtain our inequality.

LEMMA 2.3. Let I' be a set of paths. Then A (I')=co if and only if there
exists We L*(Y) such that H (W)<oo and 3 pr(y)W(y)=co for all PeT.

PROOF. Assume that there exists WeL*(Y) such that H, (W)<oc and
Ser(y)W(y)=ow for all PeI'. For any ¢>0, we have ¢éWeE(I'), so that
AN 1< H(eW)=ePH (W) (1<p<oo) and A,(I")"1<H (eW)=eH(W). Let-
ting e—0, we obtain A,(I)=oco. Assume that A,(I')=co. Then there exists a
sequence {W,} in E(I') such that H,(W,)<4~"? in case 1<p<oo and H,(W,)<2~"
in case p=o0. Put W(y)=[2>2%; Q"W,(¥))’]V/? in case 1<p<oo and W(y)=
sup {2"W,(y); n=1,2,...} in case p=oo. Then it is easily seen that W satisfies
our requirement.

LEMMA 2.4. Let I' be a set of paths. Then A (I')<oo if and only if there
exists a path PeI such that ¥ pr(y)<co.

Proor. The “only if’’ part is clear by Lemma 2.3. Assume that there exists
a path PeI such that 3 pr(y)<oo. For any We E(I'), we have

1< Xpr(MW(y) < H (W) Zpr(y),
so that A (1N Y pr(y).

§3. Main results
For each u € L(X), let us define du € L(Y) by

(du)(y) = — r(y)™! Zrex K(x, p)u(x).
Then we have H,(du)= D (u).

~ LemMa 3.1. Let ue D§®(N) and {N,}(N,=<(X,, Y,») be an exhaustion of
N. Then sup,.y_y, [(du)(y)| -0 as n—oo.

ProoF. For any &>0, there exists fe Lo(X) such that D (u—f)<e. We
can find n, such that f(x)=0 on X —X, for all n>n,. Thus we have sup,y_y,
[(du) ()| <D (u—f)<e for all n>n,.

LemMA 3.2. Let PeP, , and p be the path index of P. If fe Ly(X), then
2P [ ) (N]I=f(a).

PrOOF. Let us put Cx(P)={x,; n>0} and Cy(P)={y,; n>1}. There exists
m such that f(x,)=0 for all n>m, since fe Ly(X). We have (df)(y,)=0 for all
n>m and
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2ZerMpM @) )] = X5y r(y)p(ya) [(@df) (v4)]
= — 20=1 P(Vn) [K(xy— 15 Ya)f (Xu-1) + K(Xps yu) f(x4)]
=201 G- ) —f(x)] = f(a) — f(xn) = f(a).
Similarly we can prove

LemMa 3.3. 'Let PeP,, and Cx(P)={x,; n>0}. If ueL(X) and X p-
r(»I(du) (p)l < oo, then 3 p r(y)p(y) [(duw) ()] =lim, ., [u(a) —u(x,)].

We have

THEOREM 3.1. Let ue D®(N). Then u(x) has a limit as x tends to the ideal
boundary o of N along p-almost every Pe P, .

PrROOF. Let us put '={PeP, ,; > pr(y)(du)(y)|=c}. Then u(x) has a
limit as x tends to the ideal boundary oo of N along any path Pe P, ,—1I by
Lemma 3.3. We see by Lemma 2.3 that 1,(I') = o0, since W(y)=|(du)(y)| satisfies
H, (W)=D,(u)<co and 3 pr(y)W(y)=oo for all PerI.

This is a discrete analogue to Theorem 2.28 in [5].

For Dirichlet potentials of order p, we have

THEOREM 3.2. Let ue DP)(N). Then, for p-almost every PeP, ., >p-
r(»)p(y) [(du) (¥)] exists and is equal to u(a).

ProOF. There exists a sequence {f;} in Lo(X) such that |u—f|,—0 as
k—oo. Let us put w(y)=(du)(y) and w,(y)=(df,)(y). Then we see that w,(y)—
w(y) as k— oo for each ye Yand H,(w—w,)—0as k—co. Let I'; be the set of all
PeP,, such that 3, r(y)w(y)|<oo. Then A, (P, ,—TIo)=c0 (cf. the proof of
Theorem 3.1) and w(P)=3p r(y)p(y)w(y) exists for any PeI',. Let {N,}(N,=
{X,, Y,>) be an exhaustion of N with ae X,. For any £>0, let us put

I(e) = {PeT; |u(@)—w(P)| = ¢},
I(e) ={Pel(e); IW(P)— X \ecyprny., T(MPY)W(Y)| <e/4 forall m>n}.
Let n<m and PeT,(¢). Since Y, is a finite set, there exists k, such that
2yetn INIW) —wi(¥)| < &/4

for all k>k,. Since fi(a)—u(a) as k— oo, there exists k, such that |u(a)—fi(a)| <
¢/4 for all k>k,. Note that k, and k, are independent of P. For each k>

max {k,, k,}, we have
ZyeCy(P)n(Y—Ym) rMIw(»| = |2yeCy(P)n(Y—Ym) r(p(y)wi(y)l
= |2 p rMp)W(y) — ZyeCy(P)nYm r(Mp()wy)l
= /@) — Zyecy@nr. TMPPIWY)|  (by Lemma 3.2)
> |[u(a) — Zyecy@yntm TWPOIWD)| — /2
> |u(a) — w(P)| — 3¢/4 > ¢/4,
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since PeTI',(¢). Define W,e L*(Y) by W,(y)=4|w(y)|/eif ye Y—Y,, and W(y)=0
if yeY,. Then 3 ,r(y)W(y)>1 for all PeT,(¢) by the above observation, so
that

AT (€)™ < Hy(W) = (4/e) Lyey -y, IMIWIF (1 < p < 0)
Ao(T())™! < H (W) = (4/6) sup,ey -y, [wi(W)I -
Letting k— oo, we have
A& < (4/8) Zyey-v,, iMIWMIP (1 < p < 0),
Ao(T()) ™1 < (4/8) sUp,ey -y, WOV,

since H(w—w,)—0 as k—o. By letting m—oo, we obtain A(I,(e)=
o (l<p<w) and A ([(g))=cw by Lemma 3.1. From the relation I'(e)=
U= I'(e) and Lemma 2.2, it follows that A, (I'(e))=oco0. Let I'*={Pel;
u(a)#w(P)}. Since TI'*=\Uy.,I'(l/n), we have A(I'*)=oc and hence
Ap((Pgos—To)UT*)=00 by Lemma 2.2. Thus w(P)=u(a) for p-almost every
PeP, . »

REMARK 3.1. An essential idea of the proof of Theorem 3.2 can be found in
the proof of Theorem 2.10 in [5].
By Lemma 3.3 and Theorem 3.2, we have

THEOREM 3.3. Let ue DP(N). Then u(x) has limit O as x tends to the
ideal boundary « of N along p-almost every path from a to .

COROLLARY 1. Let ue DYP)(N). Then u(x) has limit 0 as x tends to the
ideal boundary o along p-almost every infinite path.

Proor. For each x e X, let I', be the set of all Pe P, ., such that u(x) does
not have limit 0 as x tends to the ideal boundary co of N along P. Then A,(I',)=
co by Theorem 3.3. By Lemma 2.2, we have A,(U {I',; xe X})=oc0. Thus u(x)
has limit 0 as x tends to the ideal boundary oo of N along p-almost every infinite
path.

COROLLARY 2. Let N be of hyperbolic type of order 2. Then the Green
Sfunction g, (x) of N with pole at a has limit O as x tends to the ideal boundary
oo of N along 2-almost every infinite path.

Proor. Since N is of hyperbolic type of order 2, the Green function g,
of N with pole at a exists and g, € D@(N) (cf. [7]). Thus our assertion follows

from Corollary 1 of Theorem 3.3.

REMARK 3.2. In case N is of parabolic type of order p, i.e., DFP(N)=
DP(N), 1 e DP(N) does not have limit 0 as x tends to the ideal boundary co
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of N along any infinite path. However we have A,(P, ,)=co for any ae X in
this case (cf. [6]), so that A,(P,)=c0.

We show by an example that g,(x) does not always have limit 0 as x tends to
the ideal boundary co of N along an infinite path.

ExampLE 3.1. Let Z be the set of all integers and let X={x,; neZ} and
Y={y,; neZ}. Define K by

K(x,-1, yp)=—1 and K(x,, y,) =1 forall neZ,
K(x,y)=0 for any other pair.

Then {X, Y, K} may be considered as the lattice domain of the real line. Let us
define r by r(y,)=1 if n<0 and r(y,)=2"" if n>0. Then N={X, Y, K, r}
is an infinite network. Leta=x,. Since 1,(P, )=, r(y,)=1, N is of hyper-
bolic type of order 2. We see that g,(x,)=1if n<0 and g, (x,)=2%n+1 "=
2 "if n>0. Let P be the path defined by Cx(P)={x,; n<0}, Cy(P)={y,; n<0},
p(y,)=—1if n<0 and p(y,)=0if n>0. Then PeP, , and g,(x) has limit 1 as
x tends to the ideal boundary oo of N along P. Note that 1,({P})=co0.

Finally we show that the converse of Theorem 3.3 does not hold in general
for p=oco.

ExaMpPLE 3.2. Let N be the same as in Example 3.1. Consider u e L(X)
defined by u(x,)=n for n<0 and u(x,)=2"" for n>0. Then (du)(y,)=—
r(y,) " [u(x,)—u(x,-)]=—1 for n<1 and (du)(y,)=1 for n>2, so that
ueD®™)(N). We see by Lemma 2.4 that u(x) has limit 0 as x tends to the ideal
boundary oo along oo-almost every path from a=x, to co. On the other hand,
it follows from Lemma 3.1 that u¢ D{(N).
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