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§ 1. Introduction

Let X be a countable set of nodes, Y be a countable set of arcs, K be the

node-arc incidence function and r be a strictly positive real function on Y. The

quartet N={X9 Y, K, r} is called an infinite network if the graph {X> 7, K) is

connected, locally finite and has no self-loop. For notation and terminology,

we mainly follow [4], [6] and [7].

Let L(X) be the set of all real functions on X and L0(X) be the set of all

u e L(X) with finite support. For u e L(X), its Dirichlet integral Dp{ύ) of order

p (1 < p <Ξ oo) is defined by

Dp(u) = Σ y e y Kyy-P\ΣxeXK(x, y)u(x)\p (1 < p < oo),

\ΣxeX K(x9 y)u(x)\.

Denote by D<P\N) the set of all u e L(X) with finite Dirichlet integral of order p.

It is easily seen that D(P)(N) is a Banach space with the norm \\u\\p=[Dp(u) +

Denote by D(

O

P)(N) the closure of L0(X) in D(P)(N) with respect to the norm

\\u\\p. This D(

O

P)(N) is determined independently of the choice of b. As in the

continuous potential theory, we may call an element of D(

o

p)(N) a (discrete)

Dirichlet potential of order p.

A typical Dirichlet potential of order 2 is the Green function ga ofN with pole

at a (cf. [1]). This is defined by the conditions: ga e D(

0

2\N) and Aga(x) = - εa(x)

on X, where A is the discrete Laplace operator and εa is the characteristic function

of the set {a}. It was shown in [7] that the Green function ga exists if and only if

N is of hyperbolic type of order 2, or equivalently Di2)(N)^D(

0

2)(N).

In the case where {X, Y, K} is the lattice domain in the 3-dimensional Eu-

clidean space and r = l , Duffin [2] showed by means of Fourier analysis that ga

vanishes at the ideal boundary oo of N. In the general case, ga(x) does not

always have limit 0 as x tends to the ideal boundary oo of N along a path from a

to oo.

In this paper, we are concerned with the boundary behavior of Dirichlet

potentials of order p. Namely, we aim to show that for every u 6 D(

O

P\N) the set

of all paths along which u(x) does not have limit 0 as x tends to the ideal boundary

oo of N is a small set in some sense. As in the continuous case (cf. [5]), we use
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the notion of extremal length of order p. We say that a property holds for
p-almost every path of a family Γ of paths if it does for the member of Γ except
for those belonging to a subfamily with infinite extremal length of order p. Some
elementary properties of the extremal length of a family of paths will be discussed
in §2. We shall prove in §3 that every Dirichlet potential u(x) of order p has
limit 0 as x tends to the ideal boundary oo of N along p-almost every infinite path.

§ 2. Extremal length of a family of paths

Let L(Y) be the set of all real functions on Y and L+(Y) be the subset of
L(Y) that consists of non-negative functions. For weL(Y)9 its energy Hp(w)
of order p (1 <p<oo) is defined by

(1<P<OD)9

Let us recall the notion of paths. A path P from a to the ideal boundary
oo of N is the triple {CX(P\ CY(P), p} of an infinite ordered set CX(P) = {xn; n>0}
of nodes, an infinite ordered set Cγ(P) = {yn; n> 1} of arcs and a function p on Y
called the path index of P which satisfy the conditions: xo — a9 XiΦxj if iφj,
{xeX;K(x9yi)Φ0} = {xi.u xj, .p(yd=-K(xt-».yd if y^CY(P) and pO0=O
if y φ CY(P). Denote by Pα>00 the set of all paths from a to the ideal boundary oo
of N and by P^ the union of Pxoo for all xeX. We call an element of P^ an
infinite path.

The extremal length λp(Γ) of order p of a set Γ of paths in N is defined by

=inf {Hp(W); WeE(Γ)},

where £(Γ) is the set of all We L+(Y) such that Σp r(y)W(y)=ΣyecY(P) Hy)W(y)
> 1 for all P e Γ. In case Γ is empty, we set λp(Γ) = oo.

The following fundamental properties of the extremal length can be proved
analogously to the continuous case (cf. [5]):

LEMMA 2.1. Let Γx and Γ2 be sets of paths. lfΓx<=:Γ29 then

LEMMA 2.2. Let {Γn\ n = 1, 2,...} be a family of sets of paths in N. Then

PROOF. We may assume that λp(Γn)>0 for all n. For any ε>0, there exist
^π6£(ΓM)(n = l,2,...) such that Hp(Wn)<λp(Γn)-i+2~H. Let W(y) =
sup {Wn(y); n = 1, 2,...}. Then ΣP r(y)W(y)> 1 for all PeW? = 1 Γn and

ApCW î Γn)~i < HJJY) < Σ ?
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Since ε is arbitrary, we obtain our inequality.

LEMMA 2.3. Let Γ be a set of paths. Then λp(Γ) = oo if and only if there

exists WeL+(Y)such that Hp(W)<oo and Σp Ay)W{y) =00 for all PeΓ.

PROOF. Assume that there exists WeL+(Y) such that HP(W)<00 and

Σpr(yW(y)= 00 for all PeΓ. For any ε>0, we have εWeE(Γ)9 so that

λp(Γ)-^Hp(εW) = βPHp(W) ( l < p < o o ) and λ o o (Γ)- 1 <H o o (ε^) = εiίoo(PF). Let-

ting ε->0, we obtain λp(Γ) = co. Assume that λp(Γ)=co. Then there exists a

sequence {Wn} in E(Γ) such that Hp(Wn)<4-"P in case 1 <p< 00 and Hp{Wf)<2~n

in case p = oo. Put FFO0 = [Σ?=i (2πJFMϋ0)p]1/p in case l < p < o o and W(y) =

sup{2nWn(y); n = l, 2,...} in case p = oo. Then it is easily seen that W satisfies

our requirement.

LEMMA 2.4. Let Γ be a set of paths. Then A00(Γ)< 00 if and only if there

exists a path PeΓ such that Σ P K > ; ) < 0 0

PROOF. The "only if" part is clear by Lemma 2.3. Assume that there exists

a path PeΓ such that ΣpKJO<°° For any We£(Γ), we have

1 < Σ P Ky)W(y) < H^W) ΣP r(y),

§ 3. Main results

For each u e L(X\ let us define du e L{Y) by

Then we have Hp(du) = Dp(u).

LEMMA 3.1. LetueD\?\N) and {Nn}(Nn = (Xni Yπ» Z><> an exhaustion of
N. Then supy6y_yn \(du)(y)\->Q as n-»oo.

PROOF. For any ε>0, there exists fe L0(X) such that D0 0(w~/)<e. We

can find n0 such that / ( x ) = 0 o n I - I B for all n>n0. Thus we have supyey_yn

\(du) (y)\ < DJu - / ) < ε for all n > n0.

LEMMA 3.2. Let PePatO0 and p be the path index of P. IffeL0(X), then

PROOF. Let us put CX(P) = {xn n> 0} and CY(P) = {yn n > 1}. There exists

m such that/(*„) = 0 for all n>m, s ince/GL O (Z). We have (df)(yn) = 0 for all

n>m and
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ΣP r(y)p(y) [(40 CO] = Σ?-i

= - Σ ϊ - i ήyn)ίK(χn.u yn)Rχn-!> + K(χ., jv)/(χB)]

= ΣΓ-i [/(*„-,)-/(*„)] =/(«) - / ( * J =/(«).

Similarly we can prove

LEMMA 3.3. Let PePa^ and Cx(P) = {xn; n>0}. If ueL(X) and Σ p

r(yWu)(y)\<oo9 then I p K j ) p ( y ) [ ( ^ ) ( y ) ] = lim f l.o o [u(α)-u(x π )].

We have

THEOREM 3.1. Let u e D(P)(N). Then u(x) has a limit as x tends to the ideal

boundary oo of N along p-almost every PePa<X).

PROOF. Let us put Γ = {PePatO0l Σp*iy)\(du)(y)\ = cQ}. Then u(x) has a

limit as x tends to the ideal boundary oo of N along any path PePaoo—Γ by

Lemma 3.3. We see by Lemma 2.3 that λp(Γ) = co, since W(y) = \(du)(y)\ satisfies

Hp(W) = Dp(u)<oo and Σpr(y)W(y) ==oo for all PeΓ.

This is a discrete analogue to Theorem 2.28 in [5].

For Dirichlet potentials of order p, we have

THEOREM 3.2. Let ueD(

o

p)(N). Then, for p-almost every PePao0,Σp-
r(y)p(y)ί(du)(y)l exists and is equal to u(a).

PROOF. There exists a sequence {fk} in L0(X) such that ||u— Λllp-+0 as

/c->oo. Let us put w(y) = (du)(y) and wfc00 = (d/fe)0>). Then we see that wk(y)->

w(y) as /c->oo for each y e Yand Hp(w — wk)->0 as fc->oo. Let Γ o be the set of all

P e P β ) 0 0 such that ΣpKj>)K.y)l<°o. Then 2 p (P β > 0 0 -Γ 0 ) = oo (cf. the proof of

Theorem 3.1) and w(P)=ΣpKy)p(y)Hy) exists for any PeΓ0. Let {Nn}(Nn =

<ZW, yπ» be an exhaustion of N with α e Xt. For any ε>0, let us put

Γw(ε) = {PeΓ(ε); |w(P)-Σ y e c y ( P)ny w K ^ K ^ w W I < e/4 for all m > n}.
Let n < m and P 6 Γn(ε). Since Ym is a finite set, there exists kt such that

for all fc^fei. Since/fc(a)-»M(iz) as /c->oo, there exists fc2

 s u c ^ that |w(α)— fk(a)\ <

ε/4 for all k>k2. Note that fcx and k2 are independent of P. For each k>

max {/cl5 k2}, we have

Σy 6Cy(P)n (y-ym )

= IΛ(α) - Σ.vecy(p)nym Ky)ί(y)wjk(y)| (by Lemma 3.2)

> Ka) - Σ, ec y (p)nym Ky)p(y)wCκ)l - β/2

> |ιι(fl) - w(P)| - 3ε/4 > ε/4,
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since PeΓn(ε). Define WkeL+(Y) by Wk(y) = 4\wk(y)\lε if ye Y-Ym and Wk(y) = 0

if yeYm. Then ΣPr(y)Wk{y)>\ for all PeΓn(έ) by the above observation, so
that

λp(Γn(ε)y* < Hp(Wk) = (4/ε)* Σyeγ-γm Ky)\wk(y)\P (1 < p < αo)

λ^Γ^r1 < H

Letting /c->oo, we have

, w ( 1 < p < oo),

AcoC^e))"1 < (4/e) s u p y e y . y m \w(y)\,

since Hp(w-wk)->0 as /c-*oo. By letting m-»oo, we obtain

oo ( l < p < o o ) and Aoo(Γn(β)) = oo by Lemma 3.1. From the relation Γ(ε) =

W^= 1Γn(ε) and Lemma 2.2, it follows that Ap(Γ(ε))=oo. Let Γ* = { P e Γ 0 ;

ιι(α)#w(P)}. Since Γ* = W*= 1Γ(l/n), we have Ap(Γ*)=oo and hence

A p ((P α > 0 0 -Γ 0 )uΓ*) = oo by Lemma 2.2. Thus w(P) = w(α) for p-almost every

PGP

REMARK 3.1. An essential idea of the proof of Theorem 3.2 can be found in

the proof of Theorem 2.10 in [5].

By Lemma 3.3 and Theorem 3.2, we have

THEOREM 3.3. Let ueD(

o

p)(N). Then u(x) has limit 0 as x tends to the

ideal boundary oo of N along p-almost every path from a to oo.

COROLLARY 1. Let ueD{

o

p\N). Then u(x) has limit 0 as x tends to the

ideal boundary oo along p-almost every infinite path.

PROOF. For each xeX, let Γx be the set of all PePxo0 such that u(x) does

not have limit 0 as x tends to the ideal boundary oo of N along P. Then λp(Γx) =

oo by Theorem 3.3. By Lemma 2.2, we have λp( U {Γx; x e X}) = oo. Thus u(x)

has limit 0 as x tends to the ideal boundary oo of N along p-almost every infinite

path.

COROLLARY 2. Let N be of hyperbolic type of order 2. Then the Green

function ga(x) of N with pole at a has limit 0 as x tends to the ideal boundary

oo of N along 2-almost every infinite path.

PROOF. Since JV is of hyperbolic type of order 2, the Green function ga

of N with pole at a exists and ga e D(

0

2\N) (cf. [7]). Thus our assertion follows

from Corollary 1 of Theorem 3.3.

REMARK 3.2. In case N is of parabolic type of order p9 i.e., D(

o

p)(N) =

D(P\N), 1 e D(P\N) does not have limit 0 as x tends to the ideal boundary oo
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of N along any infinite path. However we have λp(Pao0) = co for any α e l i n
this case (cf. [6]), so that AP(P J = oo.

We show by an example that ga(x) does not always have limit 0 as x tends to
the ideal boundary oo of N along an infinite path.

EXAMPLE 3.1. Let Z be the set of all integers and let X = {xn; neZ} and
Y={yn;neZ}. Define K by

K(*n-u yn) = - 1 and K(xn, yn) = 1 for all neZ,

K(x> 30 = 0 f°Γ a n y other pair.

Then {X, Y, K} may be considered as the lattice domain of the real line. Let us
define r by r(yn) = l if n<0 and r(yn) = 2~n if n>0. Then N = {X, Y, K, r}
is an infinite network. Let α = xo Since A2(Pflf00) = Σ?=i K);«) = l5 iVisof hyper-
bolic type of order 2. We see that ga(xn) = 1 if n < 0 and #α(xπ) = Σ*°=π+1 K^Λ) =
2" n if n >0. Let P be the path defined by CX(P) = {xM n< 0}, Cy(P) = {̂ w n <0},
/?(>;„)= - 1 if n<0 and ^ ^ = 0 if n>0. Then PePα>00 and gfa(x) has limit 1 as
x tends to the ideal boundary oo of N along P. Note that A2({P}) = oo.

Finally we show that the converse of Theorem 3.3 does not hold in general
for p=oo.

EXAMPLE 3.2. Let N be the same as in Example 3.1. Consider ueL(X)
defined by u(xn) = n for n<0 and u(xn) = 2-" for n>0. Then (du)(yn)=-

-w(x«-i)]=-l for n<\ and (du)(yn) = l for n>2, so that
We see by Lemma 2.4 that u{x) has limit 0 as x tends to the ideal

boundary oo along oo-almost every path from a = xQ to oo. On the other hand,
it follows from Lemma 3.1 that
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