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Introduction

Riemann proved, in 1851, the famous mapping theorem which is now named
after him. It is the fountainhead of the study of conformal mapping. As its
generalization, Schottky [32] suggested in his thesis that every finitely connected
plane domain is mapped conformally onto a parallel slit plane. The first complete
proof of this fact was due to Cecioni [4] and Hubert [12]. Hubert also outlined
a proof for the case of infinite connectivity. Courant and Koebe carried out
Hubert's plan and, in fact, they finally showed that an arbitrary planar
(=schlichtartig) Riemann surface can be mapped conformally onto a parallel slit
plane. The mapping function is furnished by a "Strδmungsfunktion" which
is derived from a dipole "Strόmungspotential" (see [14], p. 454 and p. 484).

In 1950, Nehari [23] first succeeded in generalizing the above result to (the
interior of) compact bordered Riemann surfaces. Later Kusunoki [18] proved
the same theorem again as an application of his theory of Abelian integrals on
open Riemann surfaces. Mori [21] and Mizumoto [20] dealt with the general
case — surfaces of finite genus but with infinitely many ideal boundary com-
ponents.

Every author mentioned above at first constructed a single-valued meromor-
phic function on the surface which gives rise to a parallel slit (covering) mapping.
Such a function is immediately recognized as a natural generalization of a
"Strδmungsfunktion". For this reason, we shall refer to it as an S-function.
The existence of a non-constant S-function on an arbitrary surface of finite genus
is assured by e.g., the Riemann-Roch theorem (on open surfaces). It is known
that every non-constant S-function defines a finite-sheeted covering surface of the
extended complex plane C.

Mizumoto's work as well as Mori's concerning the general case left some
important problems open, however. The geometric structure of the covering
determined by an S-function has not been fully analyzed. For instance, they
asserted nothing about the branch points. In the beginning of this paper we
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shall show that the total number of branch points is finite. (The finiteness of the
number of sheets does not always imply the finiteness of the number of branch
points!)

Another problem to be discussed in detail is, as Mizumoto himself noticed,
how each ideal boundary component of the given surface is realized by means of
an S-function. To deal with this problem, we first establish a formula (see The-
orem 1) which yields a relationship among the genus of the surface, the number of
sheets, the total order of (interior) branch points, and another quantity which
represents how many of the ideal boundary components are, by the mapping in
question, not univalently realized (see Theorem 6). Thus, the formula can be
recognized as a generalization of the classical Riemann-Hurwitz relation to a
(special) case of open surfaces, and seems to be interesting in its own right. It
follows from this formula, via a differential-geometric approach similar to
Riemann's, that ideal boundary components which are not univalently realized
are finite in number (see Theorem 3). In particular, this fact gives an answer to
Mizumoto's conjecture in [20] (see Theorem 5). (In this connection we shall
refer to Francis [10] and Quine [27], which also study the branching structure of
covering surfaces. For the detail see the end of section 7.

Next to these somewhat preliminary considerations comes our main theorem
(Theorem 4): An arbitrary open Riemann surface of finite genus is, by means
of a (non-constant) S-function on it, conformally mapped onto a finite-sheeted
vertical slit covering surface of the extended plane. All but finitely many
exceptional ideal boundary components are realized as univalent vertical slits;
the exceptional boundary components are also realized as vertical slits but they
are not univalent. What is more, the total area of these slits vanishes.

Note that the above theorem is a direct generalization of the classical result
due to Koebe and Courant. Also note that the theorem is used to obtain a
compact continuation of the given open surface, onto which the preassigned S-
function extends holomorphically. [This result will be proved elsewhere (see
[33]). It reveals a notable, so far unknown property of S-functions: Every
S-function is an algebraic function.'] The continuation above is of measure
zero (hence "dense" or "inessential") and is of the same genus. The ideal
boundary of the original surface is realized, on the new compact covering surface,
as a set of vertical slit with a vanishing total area. The relationship between this
result and Open Question 3 in [31] will be also discussed. See section 25.

The author would like to express his sincere thanks to Prof. H. Mizumoto
who pointed out an incomplete argument in the first draft and gave him a number
of continual advices. He also thanks Prof. F-Y. Maeda who kindly gave him a
lot of useful remarks including the simplification of the first round-about proof of
Proposition 8. Prof. K. Oikawa also read the manuscript and made considerable
improvements, to whom the author is very much indebted.
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I. Preliminaries

1. Let R be an open Riemann surface of finite genus g and dR the

Kerekjartό-Stoϊlow ideal boundary of R. Denote by {Rn}™=ι a regular exhaus-

tion of jR. We may assume, without loss of generality, that Rt is of genus g.

Let dRn be the border of Rn, the closure of Rn9 and θR π =Σ?=i β^ the decom-

position of dRn into contours. We are particularly interested in the case where

/zn->oo as n->oo.

In the present study we shall be concerned with a single-valued non-constant

meromorphic function f on R which satisfies any one of the following three con-

ditions:

(A) Re(d/) is a real distinguished harmonic differential in the sense of

Ahlfors ([2], [30]); in other words, Re(d/) has ΓΛm-behavior in Yoshida's sense

([36]).

(K) df is a canonical semiexact differential in the sense of Kusunoki ([18]).

(S) Re/ is a (Q^L^principal function on R in the sense of Sario ([2], [29],

and [31]), Q being the canonical partition of dR.

That these conditions are equivalent to each other can be found in, for

example, Rodin-Sario [29], Mori [22] and Yoshida [36], We could therefore

start with any one of conditions (A), (K) and (S). However, it seems more or less

convenient for us to use (A).

We generally use the notation of Ahlfors (see [2], Chap. V). The only

exception is that we consider mainly real differentials instead of complex ones.

Thus Γ = Γ(R) stands for the real Hubert space of square integrable real differ-

entials on R. Similarly Γh = Γh(R) stands for the class of square integrable real

harmonic differentials on R, and Γ*0=Γ*0CR) is the space of exact differentials

dh on R such that h is a real C2-function with compact support. The closure of

Γ\Q in Γ is denoted by Γe0. The intersection of Γe0 with the class Γ 1 of all smooth

differentials in Γ does not coincide with Γl0: Te0 Π Γι^Γl0. Denote by Γ\

(resp. Γl) the subspace of closed (resp. exact) C^-differentials, and let Γc (resp. Γe)

be the closure of ΓJ (resp. Γl).

Among many important subclasses of Γh we shall later need only the following

three:

Γhm: the space of harmonic measures,

Γhe: the space of harmonic exact differentials,

Γhse: the space of harmonic semiexact differentials.

It is well known that ΓhmczΓheczΓhse and that Γ Λ = Γ A m φ Γ J s e . Here ® means

the direct sum and the asterisk stands for the conjugation.

The following decompositions are of particular importance:
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de Rham's decomposition

"~ i h Φ -* eθ Φ 1 έ?0>

Dirichlefs principle

Γc = Γh®Γe09 Πc = Γh®(ΓeOf\n), Γe = Γhe®Γe0.

A harmonic differential ω on R whose only singularities are harmonic poles

is called distinguished if it has the representation

ω = ωhm + ω;0, ω* = ωhse + α>';0

outside a compact subset of R, where ωhm e Γhm, ωhse e Γhse and ωf

e0, ω"e0 e Γe0 Π Γ1

(see [2], p. 313). Note that the representation for ω* trivially holds whenever ω*

is semiexact.

DEFINITION. A single-valued meromorphic function / on R is called an S-

function if Re(d/) is distinguished.

The order (i.e., the number of poles counted with their multiplicities) of an

S-function / is necessarily finite, which we denote by μ=μ(f). We may assume

that these μ poles of/are entirely contained in Rx. If this is the case, the above

representation holds on R \ Rt (cf. [36]). The Riemann-Roch theorem (on open

Riemann surfaces) tells us that there exists certainly a non-constant S-function,

provided we let μ large enough (see section 28).

It turns out that an S-function/on a planar surface with μ(f) = l is precisely

a Strδmungsfunktion of Hubert, Courant and Koebe. This is the reason why we

call it an S-function. See section 29 and [33].

2. We summarize here some important properties of S-functions on R,

which we shall need later on. Suppose that a non-constant S-function / is fixed

once and for all, unless otherwise stated.

PROPOSITION 1 ([18], [21]). The covering / : R-+C is at most μ-sheeted.

More precisely, over any point weC, at most μ points of R He.

Let v(w) denote the number of w-points of/. Here a w-point is supposed to

be counted as many times as its multiplicity. The above proposition asserts

for all we C. What is more, we have

PROPOSITION 2 ([19], [21]). The two-dimensional Lebesgue measure of

the set {we C\ v(w)<μ} is zero.

For each n = l, 2,... we can construct a meromorphic semiexact differential

dfn on Rn which has the same singularities as df and has the corresponding repre-

sentation
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ω i ί + ω f t , ω^eΓhm(Rn\ ω$ eΓe0(Rn) ϊ) Π(Rn)

on a neighborhood of dRn (see [2]). In general, fn is not single-valued on KΛ.
But it is possible to find a single-valued branch of fn on Rn \ Ru since Rn \ Rx is of
planar character and dfn is semiexact. Hence it makes sense to speak of the
boundary values of /„ modulo additive constants — the image fn(βiι)) is deter-
mined modulo euclidean translations. The following proposition is easily shown.

PROPOSITION 3. Re/π is constant on each contour β(

n° of dRn, while Imfn

is not constant on jSj,0 (1 ̂  i ̂  hn). In other words, (every branch of) fn maps β(

n

ύ

onto a vertical segment of positive length.

Another property of dfn which we shall need is:

PROPOSITION 4 ([18], [21]). // we appropriately normalize the periods of
dfn along non-dividing cycles, then

(i) dfn converges to df locally uniformly on R, and
(ii) /„ (with appropriate additive constant) converges to f locally uniformly

on R\RV

In the sequel we shall always assume that dfn and /„ are normalized as in this
proposition.

Π. An extension of the Riemann-Hurwitz relation

3. We attempt to generalize the classical Riemann-Hurwitz relation to our
case/: JR->C, the covering which is determined by the (non-constant) 5-function
/. Since the interior branch points of the covering correspond to the zeros (and
poles) of df and df is locally uniformly approximated by dfn (see Proposition 4),
we shall first study the zeros of dfn.

Let V°n be the number of zeros in Rn of dfn counted with multiplicities. As
is well known, dfn is holomorphic on dRm and it is customary to count the zeros of
dfn on dRn as half as the actual number. See Nevanlinna [24]. For our aim
this convention is still useful and furthermore, due to Proposition 3, it turns out
to be more convenient to consider the quantity

wn = Σ { y (actual number of zeros of dfn on 0<°) - 1 1 .

Indeed, on each contour β(

n°, there are at least two points at which dfn vanishes
(cf. Proposition 3). These two zeros on the contour should be accepted as
indispensable ones, and in Wn these zeros are not counted. We can easily see that
Wn is a non-negative integer. When Wn > 0, dfv has more zerό(s) than the minimum
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number. In such a case, we shall say that dfn has Wn surplus zeros on the border

dRn.

Suppose/has poles of order μf at ph i = ί9 2,..., r, where μ = μ(/) = μi 4-μ2 +

— h μΓ. Since/M has the same singularities as/, the number of poles of dfn is exactly

We shall first recall the following well known facts:

LEMMA 1. The degree of a canonical divisor on a closed Riemann surface is

equal to the Euler characteristic of the surface.

LEMMA Γ. Let Ω be the interior of a compact bordered Riemann surface

Ω and ω an analytic differential on Ω whose real part is distinguished. The

divisor of ω on Ω, denoted by (ω)β, shall be the formal symbol p^pψ -p™*]

g«igW2...g«s) where Pj-eΩ (resp. qke Ω) is a zero (resp. pole) of ω of order mj

(resp. nk). (Note that mj or nk may be a half-integer if pj or qk lies on the border

dΩ.) Set d e g ( ω ) β = Σ ^ 1 wi/—.Σt=i nk as in the classical case, and let χ(Ω)

denote the Euler characteristic of Ω. Then

The proof of Lemma 1 can be found in any standard textbook on Riemann

surfaces, e.g., [24] and [34]. Lemma Γ can be easily proved if we extend ω

meromorphically across dΩ onto the Schottky double of Ω and apply Lemma 1.

For the details, see Nevanlinna [24], p. 133.

From Lemma Γ and the definition of Wn immediately follows the next lemma.

LEMMA Γ. For the Abelian differential dfn on Rn

4, Though a very natural generalization of the classical result (Lemma 1),

the formula in Lemma Γ is meaningless for certain open surfaces. The next

proposition (see also Propositions' below) is, on the contrary, valid for an

arbitrary Riemann surface.

PROPOSITION 5. The total number V° of the zeros of df on R does not exceed

PROOF. Set μ o = 2 # —2 + (μ + r) and suppose, contrary to the assertion,

that V° were greater than μ0. Take arbitrary μ' ( > μ 0 ) of these zeros and choose

m so large that jRm contains all of these μ' zeros. Then by a theorem of Hurwitz,

there exists an integer nί('^.m) such that dfn (n>nx) would have the same number

μ! of zeros in Rm. This contradicts, however, the fact that the zeros of dfn in JRM is

exactly F ° = 2 0 - 2 + ( μ + r ) - WnSμ0. q.e.d,
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REMARK. AS a matter of fact, we have proved a stronger inequality: V° £Ξ V°

for every sufficiently large n.

Proposition 5 generalizes the classical Lemma 1 as follows:

PROPOSITION 5 ;. // ω is an Abelian differential on R whose real part is

distinguished, then deg(ω)^2# — 2.

We cannot generally assert the equality in the above proposition; see Propo-

sition 15 in section 21. Roughly speaking, a strict inequality is brought about

by ghost branch points on the ideal boundary. We shall later analyze these ghost

branch points in greater detail. See Theorems 1 and 6.

5. In order to continue the study of the relationship of the number of zeros

of df with the genus g of R, we prepare several lemmas.

The next lemma is known as Riemann's Umlaufsatz or the theorem of turning

tangents.

LEMMA 2. // C is a positively oriented smooth Jordan curve in the plane,

then

For the proof see Riemann [28], pp. 128-129 (Werke, pp. 113-114) or Osgood

[25], pp. 369-372. Cf. also [5] and [13]. (Riemann himself used Lemma 2 to

prove the classical Riemann-Hurwitz relation.)

Now let Ω be a planar Riemann surface bounded by N analytic Jordan curves

Co, C l v . . , C N - i ( l^iV<oo), which are positively oriented with respect to Ω;

namely, dΩ = C0 + C1-\ t CN-t. Let ψ be a holomorphic function on the

bordered surface Ω = Ω[)δΩ. Denote by Z(dψ, Ω) the number of zeros on Ω

of dψ counted with multiplicities. As usual, we count the zeros on the boundary

as half as the actual number. We shall also use the notation Z(dφ, Ω) and Z(dφ,

δΩ) whose meaning will be self-explanatory. Obviously, Z(dφ, Ω) is finite and

Z(#, Ω) = Z(dφ, β) + Z(#, dΩ).

Let qj ( 0 ^ / ^ n , 0 ^ n ^ 2 Z ( # , δΩ)) be the points on δΩ at which # = 0.

Suppose that δΩ\ {ql9 q2,..., qn}=*x U α2 U ••• U αm U α* + 1 U α* + 2 U ••• U cc% is the

decomposition of δΩ\ {qί9 q2i..., qn} into connected components, where α l 5

α 2 , . . . ,α m are open arcs and α * + 1 , α* + 2 , . . . , αjk are Jordan curves. To each αf

( l g i ^ m ) we add its two endpoints qh and qJ2 (0Sjί,j2ύn,Jι^J2) to form a

1-simplex, which we denote by αf. Of course, we orient these oζ just as C8.

We consider a (singular) 1-chain (in smooth category)
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and define

=-±-Σ\ * daxgdw.

LEMMA 3. Let Ω, C, (O^i^iV-1) and ψ be as above. Then

Z(dψ, Ω) = κ%(dΩ) + ( N - 2 ) .

For the proof Ω may be assumed to be a plane domain, since the conclusion
of the lemma is invariant under any conformal mapping of Ω. Then use Lemma
2 and modify the classical proof of the Riemann-Hurwitz relation (cf. [25] or [28]).
Details are omitted.

REMARKS. (1) The image curve ψ(dΩ) has corners at φ(qj), l^jύn. The
integral

does not take account of the change of tangent at these corners. Thus it does not
coincide with the (ordinary) rotation index (see Chern [5], p. 21 or Hopf [13],
p. 61) of the piecewise smooth chain ψ(dΩ). Compare Nevanlinna [24], p. 123,
too.

(2) It is also possible to have a similar formula for meromorphic functions
on D. Cf. [25], p. 372.

The following lemma is a simple corollary of Lemma 3.

LEMMA 4. Let Ω9 Ct (0^ i^N — 1) be as before and suppose φ is a holomor-
phic function on Ω such that (i) dφΦO on Co, and (ii) <p(Q) w a straight line
segment {of positive length) for each i = l , 2,..., N — 1. Then

Z(dφ, Ω) = -~— \ d arg dφ + (N — 2).

6. We continue studying the zeros of df To this end, take an integer k
such that Rk contains all the zeros of df (see Proposition 5). Let n (> k) be large
enough so that dfn^0 on θ,RΛ. Rn \ Rk consists of hk planar surfaces
ί = 1, 2,..., hk. Let N[% be the connectivity of R(

n%. It is easy to see that

To each Rfy and the restriction fn \ JRJ,^, 1 ̂  i^hki we apply Lemma 4, and obtain

Z(df, R(

n% U dRft) = ~ -jjf J ^ o daτgdfn + (Λ^>fc - 2 ) , i = 1, 2,.., hk.
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Summing up these hk identities, we have

Z(dfn, Rn\Rk) = - -±-\ dargdfn + hn - hk.

Since, on the other hand,

Z(dfn, Rn \ Rk) = Z(dfn, Rn \ Rk) +Wn + hn,

we have proved the following

LEMMA 5. For every sufficiently large n and k (n>k),

•^ ^ d arg dfn = - Z(dfn, Rn \ Rk) - Wn - hk.

Next, we consider the single-valued meromorphic function

Fn:=dfjdf

on £ π , which is holomorphic at the poles of/. We shall compute ̂ — \ d arg Fn

in two different ways. First, applying the argument principle to Fn \ Rk, we have

(Observe that Fn has neither poles nor zeros on dRk.) On the other hand, we

have by Lemma 5

-±-\ rfargFn = - Z(dfui Rn\Rk) - Wn -hk--±-[ rfargdf.
^π JdR Z π JdR

We have thus proved:

LEMMA 6. For every sufficiently large n and k(n>k)

v° - ( i r \eRh

d ar^df+ hk)= v°»+ wr

Lemma 6, together with Lemma Γ, yields

COROLLARY L

W=\\m(--$--{ daτgdf-hk)

exists and is a non-negative integer.

It can be easily seen that W is defined independently of the particular choice

of exhaustion
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COROLLARY 2.

W + V° = Wn + V°n

for every sufficiently large n.

7. Set F=F° + (μ-r). Then Kis exactly the total order of the (interior)
branch points of the covering/: R^C. It will be seen later that FT is exactly
equal to the total order of the boundary branch points. For the present, however,
we shall content ourselves with the following weaker form of the Riemann-
Hurwitz relation, which immediately follows from Lemma 1" and Corollaries to
Lemma 6.

THEOREM 1. Let f be a non-constant S-functίon on the open Rίemann surface
R of genus g, μ the order off, and V the total order of the (interior) branch points
of the covering f:R^C. Then

with

W=lim(--±-\ dargdf- h\

where {Rk}ΐ=ι is a regular exhaustion of R and hk is the number of boundary
contours of Rk.

REMARKS. (1) As for the classical Riemann-Hurwitz relation, see, for
example, [3] and [25]. In [25] one can find the proof due to Riemanή himself,
which uses Lemma 2.

(2) We shall later see that PFand V faithfully describe the branching feature
of the covering/: R-+C. That W can be interpreted as the total order of the
boundary branch points will be shown in a forthcoming paper [33]. See the end
of section 10 and also Theorem 6.

In connection with Theorem 1 we refer to some recent relevant works. In
[10] Francis studies a combinatorial covering properties of (compact) bordered
surfaces which is analogous to a classical result of Hurwitz. Quine [27] is con-
cerned with a generalization of the classical Riemann-Hurwitz relation to compact
bordered surfaces. Ezell and Marx [9] is a further generalization of [10]. As
for other related works, see the references of tίiese papers.

Their methods are, like Titus' discussion about Loewner's problem, more
topological than ours, but they also investigate the branching structure in detail.
It should be noted, however, that they always confine themselves to compact
bordered surfaces. Also they do not consider any branch points on the boundary.
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We are concerned here with an arbitrary open surfaces (of finite genus) and also

permit boundary branch points. We have succeeded in dealing with these general

cases because of the very favorable boundary behavior of S-functions. Compare

Ahlfors'theory of covering surfaces [1], too.

III. Univalence of the ̂ -function near the ideal boundary

We shall now study the valence of/near dR. Our aim here is to show that/

is univalent near almost all ( = except for finitely many) ideal boundary components

of R. See Theorems 2 and 3 below.

8. Let C be an oriented analytic Jordan curve on R and ψ a single-valued

holomorphic function on (a neighborhood of) C such that dψ has no zeros on C.

Then we set

(The integral -4— \ d arg dφ is known as the rotation index, the rotation number,

the tangent winding number or the circulation of the image curve ψ(C) (see Chern

[5], Hopf [13], Whitney [35]; cf, Francis [10] and Quine [27], too). We extend

by linearity the definition of JV to an arbitrary cycle on which ψ is single-valued

holomorphic and dψΦO. Namely, if Cl9...9Cs are such curves as above and

C = miCi-\ \-m5Cs with integers m l 9 . . . , m5, then we define

, ψ) = Σf=i

The following lemma is an easy consequence of Lemma 4.

LEMMA 7. Let n, k be two integers with n > f c ^ l and suppose that dfn^O

on dRk = βί1> + βί2) + >»+βίk'<\ Then

N(ft\fn)Z0 for ; = 1,2,...,Λ

Equality holds for some j (l^j^hk) if and only if dfn has no surplus zeros on

dR(

n

Jl and dfnΦ0 on Rfy. (Recall that Kj$ is the connected component of

Rn \ Rk, which has —βiJ) as one of its boundary contours. Cf section 6.)

9. Let y be an ideal boundary component of R and n a fixed integer ̂ 1 .

Then there exists a unique boundary contour γn of Rn such that -yn, together with

y and possibly with some other ideal boundary components of JR, bounds a com-

ponent of R \ Rn. According to Marden-Rodin's terminology (cf. [20], p. 4),

y is a derivation of yn. We shall call yn the n-th antiderivatίon of y.
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PROPOSITION 6. For each ideal boundary component y of R,

N(yΛ9f)£N(ym9f)

so long as n, m are large enough and n^m.

PROOF. Let γ'n be the 1-cycle on dRn such that ynΛ y'n—ym = dR{^m for some

i (l^ί<;Λm) and assume that dfΦO on dRn U dRm. Then, by Lemma 3 and the

definition of N(γn9 /), we have

N(ymJ) - N(ynJ) = Z(df, *<<>m U dR<»J + N(y'm9f).

Since Z(d/, R(

tt% U ̂ .R^ )̂ is non-negative and N(y'n9f) is, by Lemma 7, also non-

negative, we conclude that N(γm9 f) ^ N(yn9 /). q. e. d.

COROLLARY. With each ideal boundary component γ of R we can associate

a non-negative integer

N{γ9f):=]imN(ymf).
n-+oo

N(γff) is determined by γ and f, and does not depend on the exhaustion

The following proposition is an immediate consequence of Corollary 1 to

Lemma 6.

PROPOSITION 7. For each k large enough,

W=N(dRkJ).

This proposition, together with Lemma 7, again yields that W is a non-nega-

tive integer (cf. section 6).

10. Now we can prove

PROPOSITION 8. Only finitely many (and actually at most W) ideal bound-

ary components γ satisfy

PROOF. Suppose the contrary and take W+l (distinct) ideal boundary

components y(1), y(2),..., y(w+v of R, each of which satisfies condition (*). We

can take a number fe sufficiently terge so that (i) the fc-th antiderivation y(

k

u of y(i)

are different from each other, (ii) N(y(

k

i\f) = N(y«\f)9i = li2,...,W+l, and

(iii) all the zeros of d/are contained in Rk. It follows immediately that

N(dRk,f) ^ ΣTΆ1 N(yί'\f) *

This contradicts Proposition 7, however. q. e. d.
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The following lemma is easy to prove:

LEMMA 8. Let Rk be as above and β a boundary contour of Rk with N(β,

. Then there is an ideal boundary component y of R such that

(i) N{j,f)ΦQ,and

(ii) y is a derivation of β.

Using this lemma we can prove the next refinement of Proposition 8 without

difficulty.

PROPOSITION 9.

where the right hand side is the sum ofN(γ, f) over all ideal boundary components

JofR.

Note that if γ is an isolated point-like boundary component, N(γf f) is exactly

the branch order of / at that point. In particular, Theorem 1 reduces to the

classical Riemann-Hurwitz formula if the given R is what we call a Riemann

surface of finite type.

11. As we have shown above, for almost all ideal boundary components γ

of R, condition

(**) N(y,/) = 0

is satisfied. Let γ be an ideal boundary component satisfying (**) and m an

integer such that Rm contains all the zeros of d/and iV(yOT,/)=0.

Let Ω(ym) be the component of R \ Rm whose relative boundary is precisely

- y m and set

Ωn(ym) = Ω(yw) n i? n ) n > m.

(If i is the index for which ym = βm\ then Ωn(ym) is identical with R[^m in section 6.)

If n is large enough, dfnΦ0 on dRm and N(ym,fn) = 09 since dfn converges to df

locally uniformly on R\RX. Then by Lemma 7 dfn has no surplus zeros on

dΩn(ym) and dfn#0 on Ωn(γm). It is now obvious that fn maps each contour of

dΩn(ym) Π dRn onto (the two edges of) a vertical slit in a one-to-one manner. Two

edges of the slit are still distinguished.

Now, by identifying a pair of points on each contour at which fn assumes the

same value, we get a simply connected surface Ωn(ym) with δΩn(ym)— —ym such that

the function fn \ Ωn(γm) can be extended holomorphically onto &n(ym). If we denote

the extended function by/n, then d/Λ#0 on A,(ym).

REMARKS. (1) If N(y9 f)=0, then N(yn9 fn)=0 for every sufficiently large n
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(cf. Proposition 6). This again proves the last half of Lemma 7.

(2) If γ satisfies N(γ,f) = 0, then for every n large enough γn has a neighbor-

hood U(yn) on which fn is univalent. (U(γn) is an annular domain on Rn with

the boundary yn — <5Π, δn being a simple closed curve on Rn homologous to yn.)

To show this, choose m and n (>m) so large that N(ym,fn) = 0 holds. Since

the holomorphic function /„ on Ωn(ym) maps the compact set yn ( c Ωn(ym)) onto

a vertical segment (of positive length), the local univalence of /„ on yn yields the

univalence of/„ on some neighborhood of yn, and hence the univalence of fn on

some U(γn).

(2') The univalence of fn on yn does not always imply the univalence of /„

near γn9 as a simple example | y ( * + y ) [ " on { |z |<l} shows. Cf. [33].

12. In general, f(ym) is a closed analytic curve with some multiple points.

Unless f(ym) traces the same curve more than once, the number of self-intersections

of the curve f(ym) is finite. In any case, f(ym) divides C into finitely many simply

connected domains. To be more precise, let |ym| be the set of points which lie

on the curve ym and/( |y j ) its image. Then the set C\f(\γm\) consists of a finite

number of connected components which are all simply connected. Let K be any

one of them.

For ε > 0 we set Kε = {weK\dist (w, δK)>ε}, where dist(w, dK) stands for

the distance between w and dK. We can choose ε so small that Kε is a connected,

simply connected non-void set. Let v(X) be the winding number of / ( — γm) with

respect to K.

13. Now we shall go back to the consideration of /„. If n is large enough,

Kε has the index v(K) with respect to /„( - ym) (cf. Proposition 4). Then/π l / " 1 ^ )

covers Kε exactly v(K) times; to each weKε there correspond v(K) (distinct)

points on Ωn(ym) which are mapped to w and no other points are mapped to w.

Let

h\KE)^x, u x2 u . u xs

be the decomposition o f / " 1 ^ ) into the connected components (with respect to

A(ym)) (Precisely speaking, Xt and s depend on ε and n, and hence we should

have written as Xi(ε9 ή) and s(ε, n) instead of Xt and s, respectively.)

Denote by vf(w) the cardinal number of XiOf^ζw), weKε. Each vf(w) is

obviously a lower semicontinuous function of w. It is also clear that

vi(w) + v2(w) + . - + vs(w) = v(K)

for all w e Kε. It follows that vf(w) is continuous in w. Hence

vf(w) = const, on Kε9 i — 1, 2,..., 5,
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for each vf(w) is integer-valued. (Similar argument can be found in a paper by

Gulliver, Osserman and Royden [11].) Thus the covering Jn\Xi'. X^Kε is

unlimited; no relative boundary point appears.

On the other hand, the covering /„ | Xt: Xι-*Kε is unbranched, because djn

does not vanish on the closure of Ωn(ym). Since Kε is simply connected, the

monodromy theorem now implies that each covering map /„ | Xt is a homeomor-

phism. We have therefore proved that

v i = V2 =•••= vs = 1 and s = v(K)

This means that each XΛ covers Kε exactly once. Namely:

PROPOSITION 10. Let y be an ideal boundary component of R satisfying

condition (**). Then for sufficiently large m and n(>m) and for any sufficiently

small ε>0, J~\Kε) consists ofv(K) components XΛ (ΐ = l, 2,..., v(K)) with respect

to Ωn(γm) and the covering fn: XidΩn(γm)^Kε is (at most) one-sheeted, i = l,

2,..., v(K). (Xf Π Ωn(ym) may not be connected.)

14. We shall now show

PROPOSITION 11. Let γ be an ideal boundary component ofR with N(y,f) =

0. Then for every sufficiently large m and for every component K of C\/(|ym |),

each connected component off~\K) in Ω(ym) covers K at most once.

PROOF. Suppose that there is a connected component K of C\f(\ym\), a

connected component Y of f~\K), and a point w0 in K for which we can find two

distinct points p and q on Y with f(p)=f(q) = w0. We choose ε > 0 so small that

vv0 belongs to ^ ε . Take a neighborhood U of w0 such that Ό aKε. We can then

find a neighborhood Up (resp. Uq) of p (resp. q) such that Up (resp. Uq) is contained

in Ω(ym) and / gives a homeomorphism from Up (resp. Uq) onto U. We may

assume that Up (]Uq = 0. Then an elementary argument yields that Up and Uq

are contained in the same component Xj = Xj(Etn) provided n is large enough.

By Proposition 4 (ii) and a theorem of Hurwitz/Λ must have a w0-ρoint pn in

Up for every large n. Similarly/„ must have a w0-point qn in Uq. We have thus

found two distinct points pn and qn on Xj such that fn(pn) =fn(qn) = w0, which

contradicts Proposition 10. q. e. d.

For convenience' sake, we collect the above results (in sections 10-14) together

in the following

THEOREM 2. Let f be a non-constant S-function on R. Then for almost

every ( = except for finitely many) ideal boundary component γ of R there is a

regularly embedded connected neighborhood Ω of y such that each complement
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tary component K off(\dΩ\) is covered by any connected component of f~\K)
in Ω at most once.

The number of exceptional ideal boundary components does not exceed W.
An ideal boundary component γ is exceptional if and only

REMARKS. (1) If some f(ym) is simple for every y, then by Lemma 2 we
have W=0, so that there is no exceptional ideal boundary component. This fact
is also proved directly by using the argument principle.

(2) We shall later give an example of an open Riemann surface of genus
g > 0 such that every non-constant S-function/on it with μ(f) ^ # is never univalejit
on any neighborhood of the ideal boundary. This shows, in particular, that
exceptional ideal boundary components can actually appear. See Proposition 16.

IV. Realization of the ideal boundary as vertical slits

Now we shall realize dR in a larger surface R. Specifically, we shall construct
a continuation R of R and a holomorphic extension/of/to R such that
(1) R is either a closed surface or the interior of a compact bordered surface,
(2) /is an S-function on R9

(3) f:R-+C realizes most part of dR as a nice subset of R and the rest of dR as
the border of R each ideal boundary component of R realized in R is an
analytic curve (or a single point) whose projection by / is a vertical segment.

15. We shall need the following proposition later.

PROPOSITION 12. Let ωeΓe(R). Suppose, furthermore, that ω vanishes
identically near the poles off Then

PROOF. Let U be an open set on R such that U contains all the poles of/
and COΞO on Ό. We may assume that w:=Re/has the representation

du = ωhm + ω'e0

on R\U (cf. [36]), where ωhmeΓhm(R) and ω'eOeΓeO(R) n ΓX(R). On the other
hand, Dirichlet principle yields that there are two differentials ωheeΓhe(R) and
ω"eQ e Γe0(R) such that

ω = ωhe + ω"e0

onR.

Since ω=0 on (7, the inner product {du, ω*)R exists and
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(du, ω*)R = (du9 ω*)RW = (ω Λ m + ω;0, ωfe + ω'$)RW

= (ωhm + ω'e09 ω\e + ω'$)R.

The last term is equal to zero, since ωΛm, ωje, ω'e0 and ω"e% are pairwise orthogo-

nal, q. e. d.

REMARKS. (1) The above proposition can be used to give an alternate

proof of Proposition 2.

(2) As for the classical version of Proposition 12, see [3], p. 405 or [8],

p. 48.

16. Suppose JV(y,/)=O and take m and n (>m) so large that iV(ym,/π)=0.

Let K be, as before, any connected component of C\/(|yJ), and v(K) the index

of K with respect to/( —γm). Although/" 1^) does not always consist of finitely

many connected components, each of them covers (part of) K at most once (see

Theorem 2).

As a refinement of Proposition 2, we have

LEMMA 9. f\Ω(ym): Ω(γm)-+K is v(K)-valent almost everywhere.

PROOF. Let v(w, Ω(ym)) be the number (counted with the multiplicity) of

w-points on Ω(γm). We must prove that v(w, Ω(γm))^v(K) and meas{weK|

v(w, Ω(ym))<v(K)}=0. To do this, we first show that for any woeK there are

at most v(K) points on Ω(ym) which are mapped to w0. If p l5..., pv are all the

w0-points (repeated as ofen as their multiplicities) and n is large enough, there are

v points p(!n),..., p[n) such that/n(^.n)) = w0 and each p(jn) is located near ppj~l,

2,..., v. This shows that vgv*(w0), the index of w0 with respect to / ( - y m ) .

Since v*(w0) is clearly equal to v(K), we have proved v^v(X).

Let 3RM~ym=Σf=2ym ) ^ e the decomposition into contours, s = ftm. For
simplicity we set ym=yL1} Let V^WQ) denote the number of w0-points on Ω(y^)9

and vf(w0) denote the index of w0 with respect to/X-yip), ί = l, 2,..., 5. Then,
as we have shown above,

vf(w0) ^ v?(w0) = - -%jr ^ ( f ) d arg(/-w0), i = 1, 2,..., s.

Summing these equations up, we have

VI(H>O)•+ v2(w0) +•••+ vs(w0) S - 4zr \ darg(/-w 0 ) = μ - vo(wo)9
Δ π JdRm

where vo(wo) is the number of w0-points on Rm. Hence we have
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Since, on the other hand, μ=vo(wo) + v γ(wQ)H h vs(w0) for almost every w0 e K
(see Proposition 2), we finally have

Vi(w0) = v?(w0) a.e. woeK9 i = 1, 2,..., s;

in particular, we have proved that v(w, Ω(γm)) = v(K) for almost all weK.

q. e. d.

17. In this and the next section we shall give a precise definition of "sheets"

onK.

First of all, set

Then, by Lemma 9, meas(K\/(β*(ym)))=0. We shall prove that Ωκ(γm) is
divided into v(£) mutually disjoint open sets, each of which covers K'at most once.
To this end, we begin with

DEFINITION. TWO points p, q on Ωκ(ym) are said to be f^equivalent modulo

K if

(1) p, q e Ωn(γJ, and

(2) there is an arc α in Ωn(γm) joining p to q such that Jn($)czK.

(Note that (2) implies that n is so large for which fn(p) and/π(g) shall belong to K.)

The following lemma is easily proved by using a theorem of Hurwitz:

LEMMA 10. Given p e Ωκ(γm) there exists a neighborhood U of p and an

integer n0 such that every point q in U is fn-eφiivalent to p modulo K for all

We can prove the following lemma without difficulty:

LEMMA 11. inequivalence modulo K is an equivalence relation.

The next lemma follows immediately from Proposition 10.

LEMMA 12. Let p, q be distinct points on Ωκ(γm) with f(p)=f(q) Then

there exists an n0 such that, for all n^n0, p, q are not fn-equivalent modulo K.

18. We shall now pass to the mapping function /.

DEFINITION. TWO points p, q on Ωκ(ym) are called f-equivalent modulo K

if there is an integer n0 such that p, q are/rt-equivalent modulo K for every n^n0.

Corresponding Lemmas 11 and 12, we have:

LEMMA 1Γ. f-equivalence modulo K is an equivalence relation.
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LEMMA 12'. If p, q are distinct points on Ωκ(ym) with f(p)=f(q), then p is
not f-equivalent to q modulo K.

We also have

LEMMA 13. Let pί9 p2,..., pV(Ky be the set of v(K) distinct points on Ωκ(γm)

f(px) =/(p2) = =f(pv(K)) Then, for every q e Ωκ(γm), there is a (unique)

such that q is J^equivalent to px modulo K.

PROOF. Set wo=f(q) and w^f(px) ( = / ( ^ ) for all j = 2 , 3,..., v(K)). By

Lemma 10 we can find, for each ; = 1, 2,;.., v(X), a neighborhood Uj of p} such

that every point in Uj is/^-equivalent to pj modulo K if n is large enough, say,

n^n,-. Similarly we can find a neighborhood Uo of q such that every point in

Uo is /^equivalent to q if n is large enough, say, n^n0. We may assume that

nΌ^nj9 7 = 1, 2,..., v(£), and that Ό) are mutually disjoint.

We let n0 larger again (if necessary). Then for every n^n0 there is a q(n) e

UQ with fn(qin)) = w0. Similarly, there are p^eUj such that fn(p(jn)) = wί,

For each n (^n 0 ) we can find a number 7=;(n), l^j(n)^v(K), such that

q{n) is/n-equivalent to p^w), which we shall write, for typographical reason, as

pΛny Indeed, the existence of such a point is easily follows from Proposition 10.

Let απ be an arc joining g(Λ) and pKn) in Un(ym) such that /Λ(απ)c:K. We may

assume that/π(αn) is the same arc Ά, independent of n^n 0 . The arc Λ joins w0

with wt in K. Observe that pjin) is obtained from # ( n ) by the analytic continuation

along the arc Ά, In other words, pj{β) is the terminal point of the lift αn of Ά by

the covering / n: Ωn(ym)-+C.

Now abbreviate pm and q(n) for n — n0 as p# and q*9 respectively. Then,

there is another arc αΠo joining p* with q* in Ωno(ym). Let A be the arc /Wo(αno),

which joins w0 with wx. (A is not always contained in K.) For each n^n 0,

there is an arc απ, the lift of A from the initial point g ( n ) for the covering fn:

Ωn(γm)-+C9 which joins q(n) with some point r(n) eΩn(γm). Since /„ converges to

/ locally uniformly, r(w) belongs to the same Up provided that we let n0 larger

again. (Cf. the parmanence of functional relations.)

Since Ωn(ym) is a simply connected domain, αn and αΛ are homotopic to each

other and every inverse function element of }~ι at w0 is analytically continued

along all the arcs which define the homotopy equivalence of A to A. Hence, for

each/Λ: δrt(yw)->C, the terminal points, pKn) and r<n), of the lifts of A and A must

coincide. Therefore, j(ή) is the same j for all n^nθ9 so that q^ is /n-equivalent

to jp# for all n^n o Since qin) is/Λ-equivalent to q, we have proved that q is

/Λ-equivalent to β* modulo K (cf. Lemma 11), n^n0. Hence q is /-equivalent

to p* modulo K. q. e. d.
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Combining these lemmas, we have the following refinement of Theorem 2.

PROPOSITION 13. Ωκ(γm) consists of v(K) disjoint open sets Yt9 Y2,..., YV(JO>

each of which is mapped by f onto an open dense subset of K univalently.

Intuitively, the open set K is covered by v(K) distinct jig-saw puzzles Yί9

y2,..., YV(Ky There are neither missing pieces nor extra ones.

19. We begin this section with the following

DEFINITION. An ideal boundary component y of R is said to be realized,

by the covering /: R-+ C, as a univalent vertical slit, if there exists a neighborhood

U of γ such that/is univalent on JJ and y corresponds to a vertical segment in the

closure of the plane domain/(I/). As usual, we do not exclude the case where the

segment reduces to a single point.

For example, if N(y9f) = 0 and n is large enough, the contour yn of Rn is

realized, by the covering fn: Rn\ Λj-^C, as a univalent vertical segment. Cf.

Remark (2) in section 11.

Now, we are ready to prove

THEOREM 3. Each non-exceptional ideal boundary component of R is, by

means of the covering f: R->C, realized as a univalent vertical slit (which may

reduce to a point).

PROOF. Let γ be an ideal boundary component with N(y,f)=0, and ym the

m-th antiderivation of y such that N(γm, f)=0. As before, let K be any connected

component of C\f(\ym\) and let v(K) denote the winding number of / ( — γm)

with respect to K. Then, by Proposition 13, there are v(K) mutually disjoint

open subsets Yl9 Y2,..., Yv(K) of Ω(yJ such that Ωκ(γm)=Yί U Y2 U — U YV(K) and

f\Yji Yj-*K is univalent for each 7 = 1, 2,..., v(K).

We claim that, for each j (l^j^ v(K)), K\f( Yj) consists of vertical segments

(including the case of single points). To verify this, suppose there is a component

y0 of K \f(Yj) which is neither a vertical segment nor a point. Then, choose real

numbers ul9 u2(uί<u2) and v0 suitably and construct a rectangular open set G on

K whose boundary consists of part of y0 and three segments on the lines w = u l 5

u = u2 and v=v0. dG may intersect some other components of K\f(Yj); fur-

thermore, Gnf(Yj) may be disconnected. (Recall the classical case. See, e.g.,

[34], pp. 223-224.)

Define a C2-function Ψ(u, v) on K by

f (u-Wi)2(w-u2)
2(t;--ι?0)

2

 o n G
Ψ(u, v) =

I 0 on K \ G.
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Because of the univalence off on Y},/pulls Ψ(u, v) back to a C2-function Φ(p) =
Ψ(u(p), v(p)) on Gj =f~KG) n Yj. If we set Ψ(p)=0 for all p e R \ Gp Ψ(p) is a
C2-function on R and ω = dΨ clearly satisfies the assumption of Proposition 12.
Neverthless,

ωΛίί(Re/)=-2(( (u-uί)
2(u-u2)

2(v-vo)dudv*0,

which violates the conclusion of the proposition.
Using Theorem 2 (deform ym a little, if necessary), we can now conclude that

every ideal boundary component y' whose m-th antiderivation is the same γm is
realized by / as a univalent vertical slit. q. e. d.

20. By "welding" non-exceptional ideal boundary components in an obvious
manner, we obtain a new surface R of genus g. To be more precise, we only
need to identify the two edges of the realized slits and go back to the initial surface
R. Since there exist only finitely many exceptional ideal boundary components,
the resulting surface R is finitely connected. In fact, the number of the boundary
components of R is at most W(cf. Theorem 2). The set R \ R has a vanishing area
(see Proposition 2).

It should be noted that the function / can be naturally extended onto R as a
meromorphic function / which is holomorphic on R \ R. This follows imme-
diately from the construction of R.

The surface R is either a closed surface or (is conformally equivalent to) a
closed surface with finitely many mutually disjoint closed disks and/or points
removed. If it is a closed surface, we are through; R is a maximal continuation
of R. If R has punctures, the punctured points are easily recovered, so that we
obtain a new surface without punctures, which we continue to denote by the same
latter R. It is evident that / again extends holomorphically to the punctures.
The extended function which is also denoted by/has the vanishing first derivative
at each puncture. In other words, punctures are branch points of the (new)
covering/: R-+C. If γ is the ideal boundary component of R which corresponds
to a puncture of R, it is evident that the branch order at that point is N(y9f).

21. After all the punctures have been recovered, R can be assumed to be
the interior of a compact bordered surface. We shall first prove

PROPOSITION 14. The function J is an S-function on R.

PROOF. Since Re (df) is distinguished, we can find a relatively compact open
subset U of R and differentials ωhmeΓhm(R), ωe0eΓe0(R) n ΓX(R) such that U
contains all the singularities of/, and Re(d/) = ω Λ m +ω e 0 on R.\ 17. (See the
end of section 1; cf. also [36];)
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We set

ί Re(d/) on R\U
ώ = I _

1 ωhm + ωe0 on 17.

Then ώ is a closed ^-differential on R. Since ώ is clearly square integrable on
R (cf. Proposition 2), it belongs to Γl(R). (ώ is in fact harmonic on R \ U.)

By the Dirichlet principle on R (see section 1) we can find ώheΓh(R) and
ώeOeΓeO(R)f]Γ1(R) such thsit

ώ = ώh + ώ 6 θ

on 5. We claim that ώh belongs to Γhm(R). To verify this, let cbhseeΓhse(R).
Since the restriction of any element of Γhse(R) onto R obviously belongs to Γhse(R)
and R\R has a vanishing measure, we have

(ωΛ, ώJ s e)Λ = (ώ - ώe09 ώtse)R = (ώ, ώ%se)R

= (ώ, ώf s J Λ = (ωhm + ω e 0, ώJ s e |Λ)Λ = 0.

Hence ωA is orthogonal to Γjfse(.R), so that ώheΓhm(R).
Since Re (df) is equal to ώ on R \ U, we have obtained the representation

Re (df) = ώhm + ώ β 0

on £ \ E7 with ώhm e Γhm(R) and ώ e 0 e Γβ0(£) Π Γ 1 ^ ) . this shows that Re (df)
is distinguished on R, so that/is an S-function on R. q.e.d.

We are now in a position to use the following well known

PROPOSITION 15. Let Ro be the interior of a compact bordered Riemann
surface and f0 an S-function on Ro. Then, Re/0 assumes a constant value on
each boundary contour of Ro.

For the proof of this proposition, see [2] and [18], for instance. Cf. Propo-
sition 3, too.

It follows now from the above proposition that/is a vertical slit mapping in
the sense of Nehari (cf. [23] and [18]) and R is realized, via/, as an (at most)
μ-sheeted vertical slit covering surface of C. Cf. [33], too.

22. In this section we shall use, by abuse of language, the term "compact"
surfaces for the interior of compact bordered surfaces as well as closed surfaces.
Then we have almost proved the following theorem:

THEOREM 4. Let R be an open Riemann surface of finite genus g, and f a
(non-constant) S-function on R.

Then there exist a "compact" Riemann surface R of genus g> a single-valued
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meromorphicfunction fon R, and a conformal injection c: R-+R which have the
following properties:

(1) The set R\ c(R) is of measure zero.
(2) / is holomorphic on R\ c(R).
(3) f°c=fonR.
(4) Each component of R\c(R) is mapped by/onto a univalent vartical

line segment, which may reduce to a point; in particular, dj vanishes
nowhere on R\ c(R).

(5) Re/ is constant on each boundary contour of R (if any exists).
(6) f is (N(γ9f) + l)-valent on a neighborhood of the boundary contour of

R which corresponds to the ideal boundary component γ of R.

REMARK. The set R \ c(R) is a Lebesgue null set of arcs on the trajectories
of the meromorphic quadratic differential —(dj)1 on R. See Figure 1.

The rest of the proof is easy and therefore omitted. Conditions (5) and (6)
are, of course, superfluous when R is a "compact" surface without boundary
(=closed surface). In any case, the original surface R is obtained from a "com-
pact" surface R by deleting a finite or infinite number of "univalent vertical slits"
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of vanishing total area. The given S-function / on R is naturally extended to an
S-function on a larger "compact" surface R of the same genus.

The above theorem gives a generalization of the classical result due to Koebe,
known as the generalized uniformization theorem or the fundamental theorem
in the theory of conformal mapping. Cf. e.g., [15], [16], and [8].

V. Remarks and supplements

23. We shall here give a simple example which shows that exceptional ideal
boundary components in Theorems 3 and 4 can actually appear.

Let Ro be the hyperelliptic Riemann surface of genus g which is defined by

w2 = (z-aί)(z-a2) ••• (z-a2g+2),

where at are real numbers with 0<aί<a2< "<a2g+2. Denote by Jo the
hyperelliptic involution of Ro. Note that we can realize Ro as the two sheeted
covering surface of C.

Take a real number a0 with ao<aί and consider the set

σ = {(z, w)GjRo|Imz=0, αo^

which is obviously J0-invariant. Finally we set

R =

Then R is an open Riemann surface of genus g with a single (ideal) boundary
component. Note that no interior point of R lies over at.

It is easy to see that R admits an automorphism J of order two which is
induced by Jo. It fixes the 2# + l points ά2, d3,..., d2g+2 on R which lie over
a2, α3,..., a2g+29 respectively.

24. Let /be a non-constant S-function on JR. If we set

F =/-/<>/,

then F is also an S-function on JR, since ReF assumes a constant value on the
boundary. (The constant is, in fact, zero; but we do not need this property.)

Suppose now that / has poles at r0 points of {α2, d^..., d2g+2), Ogjr0g
2# + l, and let μ0 be the total order of the poles off at these points, ro:gμo<iμ=
μ(/). Then the degree of the polar divisor (F)oo of F does not exceed

2(μ-μ0) -f μ0 = 2μ - μ0.

On the other hand, at the remaining (2g + ϊ)-r0 points of {d2, dy,...>d2g+2}, F
clearly vanishes, so that we have unless
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2μ - μ0 ^ 2g + 1 - r0,

since the number of zeros of F is not greater than the number of poles of F (see
Proposition 1). It follows immediately that F = 0 whenever g^μ (^1).

We have proved: if μ^g, then/takes the same value at two points p and J(p).
Therefore/is the lift of a function/, on the quotient surface K/<J>. Since/, is
an S-function on JR/</>, we can conclude that there are (at least) four points on σ
at which/assumes the same value.

We have hence proved:

PROPOSITION 16. There exists an open Riemann surface of genus g> whose
ideal boundary cannot be unίvalently realized by any S-function of order less
thang + 1.

25. Our method of proof for Theorem 4 can be used to give an affirmative
answer to Mizumoto's conjecture (see [20], p. 47). Namely we have

THEOREM 5. Only finitely many ideal boundary components of an open
Riemann surface of finite genus are realized as non-uniυalent (and all others as
univalent) slits under any mapping which Mizumoto studies in his paper [20].

To show this it suffices to repeat our discussion mutatis mutandis. Some
modification will be necessary, of course. For instance, the proof of Proposition
5 should be somewhat changed. Note that Propositions 1, 2, 3 and 4 hold for
vertical-horizontal slit mappings. See [20].

Theorem 4 also gives a new viewpoint to Open Question 3 in Sario-Oikawa
[31]. We can characterize principal functions on an open Riemann surface R of
finite genus by means of compact (bordered) continuation of JR instead of com-
pactification as in [31]. For example, every (β^-principal function on R can
be extended harmonically onto a "compact" surface R and the extended function
assumes a constant value on each component of (R U dR) \ R.

26. As was pointed out earlier (see Proposition 16), the resulting surface R
in Theorem 4 is generally not closed, but it may well have a non-void boundary.
In such a case, it would be possible to give a compact continuation R* of R onto
which / extends holomorphically. JR* is then a compact continuation of the
initial JR onto which the given S-function / extends naturally. In particular, /
will be considered as an algebraic function; this seems to be a notable, So far
unknown, property of S-functions. Details will appear in [33].

It should be noted, however, that R* is not uniquely determined by the given
pair, R and/. There are infinitely many distinct ways of obtaining R* from R9

hence from the pair (R,f)< For example, let R, Ro be the surfaces in the preced-
ing example (see section 23) and f0 the projection mapping / 0 : Λ0-»C. Clearly
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yj(—1)/01R is a (non-constant) S-function on R. The pair (R, *J(—l)f0 \ R) can

be obtained from the closed surface 0Ro, >/( —1)/0). However, (R, yJ( — i)fo\R)

can be also obtained from another surface R'o which is defined by the equation

w2 = (z-a'1)(z-a2)-~(z-a2g+2).

with I m α i = 0 and ao<a[<aί. If aQ<a'1<a'[<au then the corresponding

closed surfaces R'o and R'Q are conformally inequivalent, in general.

27. In this section we shall again discuss the Riemann-Hurwitz relation for

S-functions.

As before, let R be an open Riemann surface of genus g and/a non-constant

S-function on R. Let γ be any ideal boundary component of R. By Theorem 4

we can find a neighborhood ΰ(y) of γ in R on which

(i) / i s (N(γ9 f) + l)-valent, and

(ϋ) dfΦQ.

It will be convenient to say that/has boundary branch points on γ whose total

order is N(y,f). Using Proposition 9, we can rewrite Theorem 1 as follows:

THEOREM 6 (Riemann-Hurwitz relation). Let f be a non-constant S-functίon

on an open Riemann surface of genus g and μ the number of poles of f (counted

with multiplicities). Let V(resp. W) be the total order of interior (resp. bound-

ary) branch points. Then

As was noted before (see section 26; cf. [33], too), there is a compact con-

tinuation R* of R and a holomorphic extension/* of/onto R*. Each boundary

component γ of R with ΛΓ(y,/)#O is then realized as a slit (or a point) on which

/ * has branch points in the classical sense. Furthermore, the total order of the

branch points on γ ( c R*) is exactly N(y9 /). This shows that the above definition

of the total order of boundary branch points on γ is reasonable.

28. For the completeness we remark here that there is certainly a non-

constant S-function on R. Indeed, this is a simple consequence of the Riemann-

Roch theorem for open Riemann surfaces. For any g + \ prescribed points pi9

P2>~ > Pg+ι o n ^ there is a non-constant S-function which is a multiple of the

divisor l/Pi/Vi^+i For the details, see [18] and [30], for instance.

Another way to obtain a non-constant S-function is to consider a suitable

linear combination of elementary differentials. This method is simpler than the

first, but gives no good information on the dimension of the space of S-furictions.
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29. Since the S-function / on JR is a single-valued meromorphic function
whose real part is (Q)L1 -principal, its imaginary part is an L0-principal function.
(See [22], [29] and [36].) The function ^J(-1)/gives a horizontal slit covering
map of R.

If R is of planar character and μ is equal to one, then ^J(—1)/ is precisely a
"Strδmungsfunktion" considered by Hubert, Courant and Koebe (cf. [6], [12]
and [16]). The function /̂( —l)/has, as its name shows, a significant physical
meaning: y/( — l)f describes a two-dimensional, irrotational, incompressible,
perfect fluid flow. See, e.g., [8], It is not the S-function / itself but yj(-ί)f
that is attached to such a flow. The function / describes the conjugate flow.

30, "Branch points" play an important role in the theory of minimal sur-
faces, too. See, for instance, Gulliver-Osserman-Royden [11] and Osserman
[26]. An inequality due to Fenchel, Sasaki and Nitsche (see [26]) admits, as in
the present study, the existence of boundary "branch points". This inequality
also includes a quantity which is essentially the same as our N(y, / ) . See formula
(7) in [26]. Though there is a substantial difference between immersions and
covering surfaces — which Francis [10] called polymersions —, the total number
of "branch points" is analogously estimated.
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