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1. Introduction

Consider the Cauchy problem for a semilinear parabolic equation of the

following form:

(P) ut + Σ?-i A\u)xt = vAu (xeRn

9 ί>0),

u(x, 0) = uo(x)

where A denotes the Laplacian; v is any fixed positive number; and A\ i = 1,..., n,

are C1 functions of a single real variable. As is well known (see [8]) the solution

u of the problem (P) with bounded measurable initial value UQ converges, as v^*0,

to a global weak solution satisfying the entropy condition of the following hyper-

bolic problem:

(H) ut+ΣUiA'(μ)Xi = 0 {xe.R", f>0),

u(x, 0) = uo(x).

On the other hand, Kobayashi [7] has recently proposed an approximation scheme

to the problem (H), using the solutions of the linear Boltzmann equation:

(B) ft + Σ?=i ξ(fXi = 0 ( ceΛ , { = (^,..., p ) e « - , ί>0),

f(x,ξ,0)=fo(x9ξ).

He used the function v(x, t) = \f(x, ξ, i)dξ under a suitable choice of the initial

function/o in order to construct approximate solutions of (H), arid this procedure

is an analogy of getting macroscopic quantities in fluid mechanics by integrating

the correspσnding microscopic ones with respect to the velocity argument. In

this paper we modify the method in [7] so as to obtain approximate solutions of

the parabolic problem (P).

The relationship between the initial values of (P) (or (H)) and (B). is given in

the following way (compare with [7J). Take any function χ{ξ) with the following

properties;
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(1.1) χ(ξ)^O on Λ χ e Q f t Λ " ) and suppχ <= {ξeR-, \ξ\£l}.

(1.2) χ(ξ) = χ(\ξ\) and

Put χe(ξ)=ε"χ(εξ) for any fixed ε > 0 and

(1.3) Fe(w,ξ
Jo

a(s) = (a\s),..., a»(s)\ a*(s) = dA\s)lds.

The following are easily verified.

(D) w = ( Fε(w9 ξ)dξ for w e Λ1

(C) i4«(w) - ^ ( 0 ) = [ ξ*Fε(w, £)d£ for weRK

Now let {1/^(0; ί^O} be the family of solution operators of the problem (B) and
set, for any fixed ε>0,

(1.4) (Sfl)(x> = J lUjfifol(x, ξ)dξ with fo(x9 ξ) = FM*)> ί ) -

Then conditions (C) and (D) together imply that the function Stu0 satisfies (at

least formally) the problem (H) at f=0. This suggests that the function Sι

h

t/hluθ9

h>09 approximates in some sense a solution of the problem (H), where [α]

denotes the greatest integer in a e Rι. Also, note that if v e L°°(JRW) and if ε t oo,

then Stv tends to the function

ί
l if 0 < 5 ̂  w,

- 1 if w ^ s < 0,

0 otherwise,

in the sense of distributions on £". This function was used in the previous paper

[4] to construct approximate solutions of the problem (H) by the method illus-

trated above. See also [5].

The same argument as in [4] shows that if w0 6L°°(Kn) ΠL^R") and if ε > 0

is fixed, then 5^ί/Λ]M0 converges, as h | 0, to the solution of (H) satisfying the

entropy condition. Kobayashi [7] proved this for ε = l by using nonlinear semi-

group theory. In this paper we will show that the same function converges to the

solution of the problem (P) if we let h I 0 and ε I 0 under the condition that h/ε2

is some fixed constant. To state our result we recall a notion of weak solution of

the Cauchy problem (P). Let u0 be in L°°CRW) n L^R"). Then a function u(x, t)
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lying in L^i^xφ, oo))nC([0, oo); L 1^")) is called a weak solution of the
problem (P) if u( , 0)=u0 and

t + vΔφ)+ΣiAi(u)φXi']dx = 0 for all 0.6€?(!?" x(0, oo)).

In Section 3 we shall show the uniqueness of the weak solution in the sense stated
above. We can now state our main result in this paper.

CONVERGENCE THEOREM. Let χ be any function satisfying (1.1), (1.2), and
let h>0, ε>0 satisfy the relation

(1.5)

where v is the number specified in (P). Then, if uoeLί(Rn) Π Lco(Rn), the func-
tion S[t/h^u0 tends in L1(Rn) as h I 0 to the unique weak solution of the Cauchy
problem (P) and the convergence is uniform for bounded ίĵ O.

In proving this result it seems impossible to apply the argument in [4] which
is based on the compactness theorem for functions of bounded variation. Indeed,
it would be difficult to obtain necessary estimates for time-derivatives of 5^ί/Λ3M0

which are uniform in h>0, because the propagation speed of their supports be-
comes arbitrarily large as h I 0 under the condition (1.5). So we shall prove our
result by applying the approximation theorem for nonlinear semigroups which
was first established by Brezis and Pazy [1] and then generalized by Oharu and
Takahashi [10] to the form convenient for our use. We note that a similar (but
more complicated) idea was employed by Douglis [3] to obtain solutions of (P)
by using approximate solutions of (H).

The author is grateful to Professors Y. Kobayashi and S. Oharu for valuable
conversations and constant encouragement.

2. Estimates for Stv

First we recall the approximation theorem for nonlinear semigroups due to
Oharu and Takahashi [10]. Let X be a real Banach space with norm | |, and
{Xm; m = l, 2,...} an increasing sequence of closed convex subsets in X. We set
χo o = \^«=1 χm. Suppose given a family {Ch\ h>0} of (nonlinear) operators Ch

on X^ such that each Ch defines a contraction map:Xm-*.Xm for all m, and set
Bh = h~x(Ch—i). Now let λ>0 and veXm. Then applying the contraction
mapping principle to the equation

w =

we easily see that
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(2.1).. R(l-λBh)z> Xm for all λ>0 a n d m

a n d

(2.2) " \Ό-W\ g \(l-λBh)Ό-* (l-λBJw\ for all A> 0 and v,

Here /?(1 — λBh) denotes the range of the operator \—λBh. The estimate (2.2)

means that the operators Bh are dissipative in X; see [10]. From (2.1) and (2.2)

we see that the equation (1 — λBh)w = v with veX^ and λ>0 has a unique solution

w e X^, which we denote by (1 — λBh)~ 1v.

THEOREM 2.1 ([10]). Suppose that the limit

exists for all veX^ and λ>0. Then we have:

( i ) There exists a dissipative operator B in X such that

R(l -λB) = X^ 3 D(B) and J(λ) = (1-/U5)"1 for all λ>0

where D(B) is the domain of the operator B.

(iί) B generates a Co semigroup {T(t); t^Q} of nonlinear contractions on

the closure Ό(B) of D(B) such that T(t) [ Z m Π D(S)] <= Xm 0J)(B) for all m and

t>0.

(iii) \imhi0C[t/hh=T(i)v for veX^ΠDiB) uniformly for bounded t^£θ.

For the proof we refer to [10, §2]. We wish to apply this theorem to the case

where CΛ = 5Λ, X

(2.3)

and B is an appropriate operator associated to the problem (P). (Here and

hereafter | \p denotes the norm of the Banach space Lp(Rn), l^p^co.) To this

end we prepare some basic estimates for the operators Sh9 h>0. First we note

that, by definition,

(2.4) (Shv) (x) = J FMx ~ ξh), ξ)dξ

whenever the right-hand side makes sense.

LEMMA 2.2. The following are valid:

( i ) τj,£Λ = S Λ v for ye Rn, where (τyv)(x) = v

(ii) \SHΌ\P£\Ό\P for veL?(Rn)(p = hoo) and hZQ.

(iii) \Shv-Shw\i ^ \v—w\ϊ for vrweLl{Rn) and h^O.

PROOF. Assertion (i) is obvious from (2.4). By (1.1)—(1.3), the function
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Fε(w, ξ) is nondecreasing in w hence

Fε(-r, ξ) :g F£v(x-ξh), ξ) ^ Fε(r, ξ)

if υeLcc{Rn) and \υ\00 = r. Integrating this with respect to ξ and then using

condition (D), we obtain assertion (ii) with p = oo. We next consider the case:

p = l. By (2.4) and Fubini's theorem we have

\Shv\t ύ\dx^ \Fε(υ(x-ξh), ξ)\dξ = ^dξ^ \Fε(v(x-ξh\ ξ)\dx

\FJMx), ξ)\dx = ^dx J |F/ι<x), ξ)\dξ.

Since |w| = \ |Fε(w, ξ ) l ^ f°Γ wejR1, the last term equals \v\t. This shows (ii)

with p = l . Assertion (iii) is similarly proved by using the identity:

\v-M = J |F^ι;, ξ)-Fε(w, ξ)\dξ for ι;, wel l 1 .

This completes the proof.

Lemma 2.2 above shows that the operators Sh, h>0, satisfy all the conditions

imposed on Ch in Theorem 2.1. Thus the operators

(2.5) BΛ = A-i(S Λ - l) , h>0

satisfy (2.1) and (2.2) with | | = | \ί. Moreover, Lemma 2.2 (ii) implies

(2.6) \v\p ^ \(l-λBh)v\P (P = U oo) for λ > 0 and veL^R") n L°°(RM).

In the next section we discuss the behavior of the functions (1— λBh)~1v, with

veXO0=Lί(Rn)C\Lco(Rn)9 as h tends to 0 and prove our result (Convergence

Theorem stated in the Introduction) by applying Theorem 2.1.

3. Proof of Convergence Theorem

We begin by proving the following lemma, which is important in the subse-

quent argument. Let Bh be defined by (2.5).

LEMMA 3.1. Let υeL^R"), keR1 andφe C$(Rn) with φ^O. Then

(3.1) ^sgi(Ό-k)φBhυdx

fc)[F£(ι;, ξ)-Fε(/c, ξmφ(x + ξh)-φ(x))dxdξ

where sgn (y)=yj\y\ if ye Rι, yΦb, and sgn (0) = 0.
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PROOF. We note that Bhk=0 by (2.4). Thus direct calculation gives

\ sgn (v - k)φBhvdx = \ sgn (v - k)φ(Bhv - Bhk)dx

x), ξ)-Fε(k9 ξftdxdξ

), ξ)~Fε(k9 ξy\dxdξ

), ξ)~F£K ί)](Φ(x + ξh)-φ(x))dxdξ

[sgn (t<χ + ζft) - jk) - sgn (i<χ) - k)]φ(x + ξh)dxdξ.

Since [Fε(t;, ξ) — Fε(k, ξ)~] sgn(t; — fe)^0 and 0 ^ 0 , the last term is nonpositive;

so we obtain the inequality (3.1). This completes the proof.

We now define an operator B in L\Rn) by

(3.2) Bv = vAv - Σ?=i A\v)Xi for v eD(B);

D(B) = {veXn f)H2(R»); BveXJ

where H2(Rn) is the usual Sobolev space. (Recall that XO0=L1(Rn)nLco(Rn).)

The following can be shown in the same way as in [2, Proposition 2.3].

PROPOSITION 3.2. The operator B defined by (3.2) is dissipative in L1^").

In view of Theorem 2.1 and Proposition 3.2, the following result ensures the

convergence of S^ί/Λ]M0, u0 e I w , as h | 0.

PROPOSITION 3.3. Let υeX^ and λ>0. Then R(l-λB)=XOD and

(l-λBt,)-^ >(l-λB)-1v in L^R") as ft 10

provided that h and ε satisfy the relation (1.5).

We prove this result in two steps. Set v^ = (l — λBh)~ιυ for v eX^.

LEMMA 3.4. Ifh and ε satisfy (1.5), then the set {v%; he(0, <5)} is precompact

in L\Rn)for any fixed λ>0, υeX^ and δ>0.

PROOF. First we note that (2.2), (2.6) and Lemma 2.2 (i) together imply

(3.3) M\p£\Ό\p(p=l9co)9

(3.4) J \υKx + y)-Ό&x)\dx ̂ . J \v(x+y)-υ(x)\dx
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for all h > 0 and y e Rn. We next show that

(3.5) l im p ί αΛ |i#x)|dx = 0
J\χ\>P

uniformly in h e(0, <5) if /t and ε satisfy (1.5). Lemma 3.4 then follows from the

Frechet-Kolmogorov theorem ([12, p. 275]). To show (3.5) we first note that

if v e X^, the estimate (3.1) with fc = 0 holds for any bounded continuous function

φ^O with bounded and continuous derivatives up to and including order 2.

Fixing any such φ9 we use (3.1) with v = υfc and fc=0. Since Bhυ^λ~x{υ^ — v\

we have

(3.6) [J

JJ sgn (i β f ^ , ξ) ίφ(x + ξh)- φ{x)]dxdξ

= /i + / 2 .

By condition (C) we obtain

h =

where b'(x) = Γ o'(θt;^x))ίίθ. Thus (3.3) implies
Jo

(3.7) UJ ^ (sup | s |^M IflWDIi ίl! sup |Dφ| ^ (sup | s |^m \a(s)\)\Ό\t sup

where Dφ=(φXι,...9 φXn) and m = |t;|00. On the other hand, by the change of

variables: εξ=η,

h = h Σt

x (1 - θ)φXiXJ(x+θ{ξ + a(s))h)dsj dxdξ

dθ ^ (

x (ί-θ)φXiXJ(x+θ(η+εa(s))hε-1)ds^dxdη.

In what follows, we assume that the number <5>0 is so chosen that 0 < ε < l
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whenever h e (0, δ). Since \η\£l for η e supp χ, we obtain

(3.8) |/ 2 | ^ n2fcε-2(l + s u p , ^ m I Φ ) ! ) 2 ! ^ sup |

where D2φ = (φXiXj)l=ί. From (3.6)-(3.8) we have

(3.9) A"1 J |i;i|φdx £ A"1 j | i#ώc + (sup | s |^m \a(s)\)\vU sup |/ty|

+ w2/zε-2(l + sup | s | ^ m |«(s) |) 2 |p | 1 sup \D2φ\.

Now choose a function # e C 0 0 ^ 1 ) such that

g(s) = 1 if s ^ l ; # ( s ) = O if s g O and 0 ^ f̂(s) g 1 for sef l 1

and define for p > τ > 0 the function #,,ft(s) as the even function so that

0,,τ(s) = 0 [ ( s - τ ) ( p - τ ) - i ] for 5 ^ 0 .

By definition we easily see that 0^gpτ(s)^l for s e JR1 and

gp,τ(s) = 1 if |s| ^ p; gp,τ(s) = 0 if |s| ^ τ;

sup \g'pJ > 0 and sup \g"pJ > 0 as p t oo.

So if we set φP)τ(x)=Σi9P,τ(Xi)> t nen>

(3.10) 0 g 0PfT ^ n; φPft(x) ^ 1 if |x| ^ pn 1/ 2; and φp,τ(x) = 0 if |x| ^ τ,

(3.11) sup \DφpJ > 0 and sup \D2φpJ > 0 as p ΐ oo.

Substituting φ = φPtX into (3.9) and then using (3.10)—(3.11), we obtain

l imsup p t 0 0 \ l»2(*)|rf* ^ n \ \υ(x)\dx,

since hε'2 = const.. Since τ > 0 is arbitrary, this proves (3.5).

The proof of Proposition 3.3 will be complete if we show the following

LEMMA 3.5. Suppose that h and ε satisfy (1.5) and let vλ be any cluster point

of the set {υ$ ash | 0. Then

vλ e D(B) and vλ = (l-λB)~ H

where B is the operator defined by (3.2). Consequently, v%-+vλ in Lι(Rn) as h I 0.

PROOF. We may assume, without loss of generality, that v%-+vλ in

and υk-*vλ a.e. in Rn as h I 0. First we show that the function vλ satisfies the

equation
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(3.12) λ-1(v*-v) = vΔvλ-ΣιAi(vλ)xt

in the sense of distributions. Since λ~ x(p^ — v)—Bhv\, we have, for φ e Cξ,

(3.13) A-i j (vj;-v)φdx - Λ"

= Σi J5 «'Λ(»i. t)Φ,,dxdξ + (A/2) Σ u ^ ξψFM, ξ)φxιxjdxdξ

x [ £ (1 - 0)(φXiIJ(x + 0ξA) - φXiXj(x))dθj dxdξ

- Ji + J2 + J3.

By condition (C) and (3.3) we have

(3.14) Ji-Σt^A'ivDΦndx >Σι\ΛW)φxtdx as h I 0.

J 2 is rewritten as

Since χ is assumed to be a radial function (see (1.2)), we have

ηιX(.η)dη = 0; J IJVχOOAj = 0 if i Φ j ; J (f/')2/^// = n"1

Hence,

(3.15) ^2

and, by (1.5),

(3.16) J2! = v ( vi{x)Δ φ(x)dx • v ί v\x)A φ{x)dx as h I 0

(3.17) |J 2 2 | g const. h|»|β sup | s | g m |α(s)|2 — » 0 as H O

where m = M,*,. On the other hand, since \η\ ^ 1 for η e supp χ, we obtain after a
change of variables,
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ε-2[sup {|*7+ εα(s)|; \η\£l9 | s | ^ m } ] 2 x (supχ) x

+ θηε-^ + θaisW-Dϊφixydx; \s\£m9 \η\£l, 0^0^l l ,

where c(n) is a constant depending only on n. From this and (1.5) it follows that

(3.18) J3—>0 as hiO.

Combining (3.13)-(3.17) and (3.18) we conclude that (3.12) is valid. In view of

the definition (3.2) of the operator B, it remains to show that vλ e D(B). Since

vλ e X^ by (3.3), it suffices to show that vλ e H2(Rn). We write the equation (3.12)

as

(3.19) vAvλ = λ-\υλ-v) +

Since vλ and v are in X^, λ~~\υλ — v) is in L2(Rn). Also, the functions

i = 1,..., n,

belong to L2(Rn) because bi = \ a^θv^dθ are bounded functions. Hence,
Jo

This, together with the equation (3.19), implies that vλ is in Hί(Rn); so as in the

proof of the chain rule ([6, Lemma 7.5]), we obtain

Consequently, the right-hand side of (3.19) is in L2(Rn). Hence vλeH2(Rn),

which completes the proof of Lemma 3.5; and so Proposition 3.3 is proved.

We are now in a position to prove our main result. By Proposition 3.3 and

Theorem 2.1 there exists a function u in C([0, oo); Lι(Rn)) Π L°°(Rn x(0, oo))

such that w( , 0) = w0 and, as h | 0,

S[t/hlu0 > u{ , t) in L\Rn) uniformly for bounded t ^ 0.

Hence we have only to show that the limit function u is the desired weak solution

of the problem (P). Since (Shuh)(x9 t) = uh(x9 t + h) for MΛ = 5^ / Λ ]W0, we have

, t + h)-uh(x, 0 ] = (Bhuh)(x, 0 ,

so that, for φ e C%(Rn x (0, oo)) and small h > 0,

x, t)(φ(x, t-h)-φ(x9 t))dx

, t\ ξ)(φ(x + ζh, t)-φ(x, t))dxdξ.
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Hence the same argument as in the proof of (3.12) yields

ΣiΛKu)φxJdx = 0

which shows that u is a weak solution of (P). Finally, we prove the uniqueness of
weak solutions. Suppose that there is another weak solution υ with v(-9 0) = u0

lying in C([0, oo); L^K")) n L°°CRΛ x (0, oo)) and set w = u-v. After the sub-
stitution: w^evtw, we see that w( , 0)=0 and

(3.20) wt + v(l-A)w + e~vί Σι [^(^ ' tO-^e"©)] , , = 0

in the sense of distributions. Since

(3.21) ^ V i O - Λ ' V i ? ) = e

and since w( , Os-Y^cL^l*11) for a.e. ί^O, (3.20) implies that wt is in L°°(0, T;
H~2(Rn)) for every Γ>0. So, as in [9, p. 71], we obtain

(3.22) (d/dt)\w(t)\llt2 = 2((l-Λ)-1wf(0

Here and in the following | |s>2 denotes the norm of the Sobolev space HS(R") and
( , ) the inner product of L2(Rn) the operator (1 — Δ)~ί is defined via the Fourier
transform (see [11]). From (3.20)-(3.22) we have

(d/dt)\w(t)\lU2 + 2v|w(ί)ia,2 = ~2 Σ i ί α - ^ ) - 1 ^ ^ ) , ^ ) , w(0)

= 2 Σiίί&'wXO, {l-A)-iwXt(t)) ^ const. |w(0lo,2|w(0Ui,2

ύ v\w(t)\l2 + CMt)\2-i,2

with a constant C v>0 independent of w. Hence w=0 by GronwalΓs lemma.
This proves Convergence Theorem.
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