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1. Introduction

In this paper we are concerned with nonlinear evolution equations of the
form

(E) (dldt}u(t)e-dφ<(u(t))9 f > 0 ,

where φ\ O^ί^oo, are proper, l.s.c. (lower semi-continuous), convex functional
on a Hubert space H, dφ* is the subdifferential of φ* for ί^O and u stands for an
H-valued unknown function on [0, oo). By a (strong) solution o/(E) we mean a
function u in W\6l([09 oo); H) such that

and

for a.e. t ^ 0.

So far the existence and uniqueness of solutions to (E) have been discussed under
various smoothness assumptions on the mapping *-><£'(•). For instance, see
[7] and [11]. Our objective here is to discuss the asymptotic behavior of solutions
to (E). In fact we shall show the strong limit

(1.1) s - l i m ^ t t ί ί ) in H

exists for each solution u of (E) under suitable assumptions and investigate
geometric properties of the limits. The assumptions which will be imposed on the
family {φ*} are stated as follows:

(i) Fffl)(—{xeHi φt(x)=minφ ί}) is non-empty and independent of

(ii) For each ε>0 there exists a number <5(ε)>0 such that dist (x, F)^ε
whenever φχx)^δ(ε) for ί^O, where F=F(φ°); or else

(ii)' there exist a number cΞ>l and a proper, l.s.c, even, convex functional
φ on H such that ψ(x)^ΦKx)^cψ(x) for xeH and ί^O.

Suppose for the moment that a family {Ψt}^={Ψt;0^t^co} of proper l.s.c.
convex functionfils on H is given, and that the associated evolution equation
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(1.2) (dldt)v(t)e-dΨ*{υ{i)\ t > 0,

has at least one solution on [0, oo). Taking any but a fixed solution ω of (1.2)

we may define a new family {φf} of proper l.s.c. conves functional on H by

(1.3) φt(x)=Ψt(x + ω(t)) + (ω'(t),x)-Ψt(ω(t)) for xeH and t ^ 0,

where ω'(t) = (d/dt)ω(t) and ( , ) stands for the inner product of H. Then

dφt(x) = dΨt(x + ω(t)) + ω'(t) for ί^O and it is seen that v is a solution of (1.2)

if and only if u = v — ω is a solution of (E). Therefore, if the family {φ1} defined

by (1.3) satisfies our conditions (i), (ii) (or (ii)') then the strong limit (1.1) of

u = v — ω exists, and it will be concluded that υ is asymptotically equal to ω-f

const. This situation is particularly interesting in the case where ω is a periodic

solution of (1.2), and the present work was motivated by this observation.

Our results are applicable to the investigation of the asymptotic stability

of solutions of nonlinear parabolic partial differential equations, and some of the

applications will be discussed in the forthcoming paper [10].

2. Main results

Let H be a real Hubert space with inner product ( , ) and norm || ||. For

a point x in H and a set C in H we denote by dist (x, C) the distance between x

and C.

Let {φί} = {φ ί; 0 < ί < o o } be a family of proper l.s.c. convex functions

φ* on H. We denote by dφt the subdifferential of φι and refer to the book of

Brezis [3] for basic properties of proper l.s.c. convex functional and their sub-

differentials. Also, by F(φ*) is mean the set of all points at which φx attains the

minimum, i.e.

F{φt) = {x e H; φ\x) = min φ'}.

We now consider the evolution equation

(E) u ' ( 0 e - 6 y ( u ( 0 ) , ΐ > 0 ,

where uf(t)=(d/dt)u(t) and the definition of solution of (E) was given in Section 1.

The main results of this paper are then stated as follows:

THEOREM 2.1. Suppose the following conditions hold:

(Al) F(φt) = F^0 (i.e., Fiφ*) is a non-empty set F independent of t) and

minφί = 0 for any ί>0.

(A2) There exists a non-negative measurable function a(-) defined every-

where on [0, oo) such that
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(2.1) \°° β(ί )Λ '= oo

and such that for each ε > 0 there is a number δ = <5(ε)>0 satisfying

(2.2) dist (x, F) < ε for x e \Jt^0 {xeD(φ'); φXx) ^ δa(t)} .

Then, for each solution u of(E), we have

that is, u converges strongly in H to some point of F as t-*ao.

It is well-known (cf. [4]) that any solution of (E) converges strongly in H

as ί->oo if φ* is independent of t in the sense that φι = φ for ί ĵ O and if the set

{xeH; φ(x)<λ} is compact in H for some λ>minφ. The above theorem is a

generalization of this useful result.

REMARK 2.1. Condition (A2) follows from the following simpler condition:

(A2)' There are a non-negative measurable function α( •..).. everywhere

denned on [0, oo) and a continuous function / o n [0, oo) such that

A a(t)dt = oo
Jo

(r)>0 for r>0,

and

a(t)f(dist (x,F)) < φ^x) for x e D{φi) and t > 0.

THEOREM 2.2. Suppose the following conditions hold:

(Bl) D(φs)^D(φt) for s, ί^O with s^t, and there exists a proper l.s.c.

convex functional ψ on H such that

F(y ) = F(ψ) ( = F) Φ 0 and min φx = min φ = 0 for t ^ 0.

(B2) TTjere βxisί Λ number c>\ and a positive and measurable function

b( ) defined everywhere on [0, oo) such that

°° b(t)dt = oo,
o

(2.3) ..—-c-Wφ'ΪGJKφ') for. t>o

and

(2.4) b(t)ψ(x) ^ φ'(x) < b(t)ψ( -ex) for t > 0 and xe D ( φ f ) .

Then, for each solution u of(E), we have
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s - lirn^^ u(t)eF.

REMARK 2.2. If in Theorem 2.2, φ is even (i.e. φ(x)=φ(-x) for xeH) and
satisfies

(2.5) b(t)φ(x) < φ'(x) £ cb(i)φ(x) for ί ^ O and x e % f ) ,

then (2.4) holds. In fact, since min φ = φ(0) =0, it follows that

cφ(x) = cψic-icx + c-^c-1)0) < φ(cx) = φ(-cx),

so that (2.4) follows from (2.5).

In [4] it was proved that if φ is a proer, Z.s.c, even, convex functional on H,
then every solution of u'(t)e -dφ(u(ή), ί>0, converges strongly in H to some
point of F(φ) as ί-»oo. This result is a special case of the following corollary to
Therem 2.2.

COROLLARY to THEOREM 2.2 (cf. [6], [9]). Let φ be a proper l.s.c. convex
functional on H such that there are a number c>\ and a proper hs.c. even
convex functional φ on H satisfying

F(φ) = F(ψ) = F, min φ = min ψ = 0, — c~~ ίD(φ) c D(φ)

and

Φ(x) < φ{x) < cψ(x) for xeD(\j/).

Then, for each solution u ofu'(t)e —dφ(u(t)), t>0, we have

s - limf_ a, w(ί) eF.

REMARK 2.3. We note that a solution u of u'{t)e -dφ(u(t)), t>0, does not
necessarily converges in the strong topology of H as ί->oo under the following
assumption which is more general than that imposed in the above corollary:
There are proper l.s.c. convex even functionals φl9 φ2

 o n H s u c h

F(φ) = FiψJ = F(φ2)

and

Φι(x) < ψ(x) < φ2(x) for any xeH.

In fact we shall give a counterexample in Section 5. Thus the relation φ2( ) =
cιAi( ) with c = 1 is essential for solutions of (E) to converge strongly in H as ί-» oo,
and this fact is also seen from the proofs of Theorem 2.2 and its corollary.
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3. Proof of Theorem 2.1

We first prepare two lemmas which will be used both in the proof of Theorem

2.1 and in that of Theorem 2.2.

LEMMA 3.1. Assume minφ ί = 0 for each ί > 0 and Γ\t^oF(φt)^0. Let u

be a solution of (E). Then ||w(ί) — y\\ is decreasing in t and converges as ί->oo

for each y e Γ\t^0 F{φι\ and φ^iμi )) e L\09 oo).

PROOF. Let y e Γ\t^Q F(<p') Then by the definition of subdifferential

(u'(s), u{s)-y) < φs(y) - φ*(u(s)) = -φs(u(s))

for a.e. s > 0. Hence we see that

holds for each pair t, T with O^t^T, and this completes the proof.

LEMMA 3.2. Let C be a non-empty closed convex subset of Λ f^0 F(φf),

and let Pc be the projection from H onto C. Let u be a solution of (E). Then

v(t)=Pcu(t) converges strongly in H to some point of C as ί->oo, and moreover,

II u(t)-v(t) || is decreasing in ί^O.

PROOF. Let ί > 0 and ft>0. Then by the definition of v and Lemma 3.1

we have

(3.1) \\u{t + h) - i<ί + ft)|| < \\u(t + h) - v(t)\\ < \\u(t) - v(t)\\.

This implies that ||M(0 — ̂ COH is decreasing in t and converges as ί-»oo. On the

other hand, the parallelogram law yields

(3.2) ||t<ί + Λ) - υ(t)\\2 + 4||2-1Wί + 't) + v(t)) - u

Since 2~ KKί+ Λ) + ϋ(0) e C, we have

(3.3) ||i<* + A) -• u(t+Λ)|| < p-Krifί+fc) + t<0> - «

Combining (3.1), (3.2) and (3.3), we obtain

- v(tψ < 2\\v(t) -

Letting ί->oo in this inequality, we can conclude that v(t) converges strongly in

H to a point of C as ί-*oό; Q. E. D.
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PROOF OF THEOREM 2.1. Let u be a solution of (E). First Lemma 3.1

implies that φ(t\u(-))e 0(0, oo). Next, given ε>0, take a positive number

δ = δ(ε) satisfying (2.2) in (A2). Then we see from (2.1) in (A2) that the set

{t > 0; φ'(u(t)) < δa(t)}

is non-empty. Hence inf^0 dist (u(t), F)<ε, and so

(3.4) iπfte

Also, according to Lemma 3.2, v(t) = PFu(t) converges strongly in H to some

ZGF as ί-*oo and ||tι(ί) —KOII *s decreasing in ί. Therefore, noting (cf. Lemma

3.1) that ||w(ί) — z\\ is decreasing in t, we infer from (3.4) that

l i n w ||n(ί)-z|| < linw(||ι/(0 - ι<0ll + WO - 1̂1)

= lim,^ \\u(t) - v(t)\\ = inf̂ olMO - KOII

= infteo dist (u(t), F) = 0.

Thus s—lirn,^ «> u(t) = zeF.

4 Proof of Theorem 2.2

Throughout this section suppose all of the assumptions of Theorem 2.2 hold.

Let u be a solution of (E). Then φ^(u(-))eLι(0, oo) by Lemma 3.1 and
Γ00

\ b(i)dt= oo by assumption. Hence, for each integer n = l, 2,..., the inequality
Jo

h°lds for ί in a subset of [0, oo) with positive measure. Put
ίM = i n f { ί > 0 ; φ ' ( u ( 0 ) < n~lb{t)} for n = 1, 2,... .

Then

0 < ί w < o o and ί π < ί π + 1 for n = 1, 2,... .

With regard to the sequence {/„} there are two cases listed below:

(a) {tn} is bounded, i.e. tn ΐ Tfor some T^O as n->oo

(b) {tn} is unbounded, i.e. tn ΐ oo as n~>oo.

We then show the assertion of Theorem 2.2 in each of the above cases.

Case (a). In this case there is a sequence {s(n)} such that

t^sin), u(s(n))eD(φ^)9 s(n) ί T and φ^>("(Φ0)) < n-*b(s(n)).

From the lower semi-continuity of ψ and (2.4) in (B2) it follows that

ψ(u(T)) <\iminft^τψ(u(t)) < liminf^,, ψ(u(s(ή)))

^ , , b(s(n))~ V 5 ( n ) (Φ(«))) < K m ^ ^ n""1 = 0.
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This shows u(T)eF since min^=0 by (Bl). Hence u(t) = u(T) for all ί > T b y
Lemma 3.1 and s - l i n v ^ u(t) = u(T)eF.

Before proceeding to the second case (b) we prove the following lemma.

LEMMA 4.1. OeF.

PROOF. Let t be any non-negative number. Then from (2.3), (2.4) in (B2)
it follows that

0 = c(l + c)-ι(-r ιx) + (l + c)-1^£(<?<) c D(ψ)

and

for any x e D(φ{). Therefore, for any x e D(φt)9

ψ(0) =

so that the application of (2.4) again gives

φ'(0) = b(t)φ(O) < b(t)φ(x) < φ*(x) for any x e D(<p').

This means that OeF(φt)=F.

We next consider
Case (b). In this case we choose a sequence {s(n)} so that

tn<s(nX u(

and

Iliitt.) - u(s(n))\\2 < 1/n for n = l, 2, 3,....

Let n ^ 1. Then assumption (Bl) implies that

D(φf) ZD D(φsW) ZD - c~ iD(φs(^n)) for 0 < t < s(ή).

Hence it follows from (2.4) in (B2) and the definition of {tn} that

φ<(-c-iu(s(n))) < b(t)φ(u(s(n))) < Kt)b(s(n))-'φ^Ku(s(n)))

< n-^bit) < ψ'iuit)) for a.e. t e [0, tn).

Therefore, by the definition of subdifferential, we have

(-W'(0, - c ^ u ^ - u ί O ) < φ<(-c-iu(s(n))) - φ<(μ(t)) <L 0

for a.e. ίe[0, tn),

so that
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(4.1) (-u'(ί), -«««))) ^c(-u'(ί),«W) for a.e. ίe[0, Q.

It follows from (4.1) that

(4.2) \\u(T) - u(s(n))\\2 = 2^(-u'(t), u(t) - u(s(n)))dt

= 2 Γ" ( - u'(ί), u(ί) - «(s(n)))dί + 2 ίS(Π) (-u'(ί), "(0 - u(s(n)))dt
JT Jtn

g 2(1 + c)•£ (-iι'(ί), u

for 0^T^tn. Since OeF by Lemma 4.1, we see from Lemma 3.1 that \\u(s)\\ is

decreasing in s and converges as s-»oo, and so we can deduce from (4.2) that the

strong limit

z0 = s — limT--^ u(T) exists in /ί.

Finally we show z0 e F. In fact, we have

φ(z0) ^ liminfr^^ φ(u(T)) ^ l i m i n g φ(u(s(n)))

^ lirninf^,, b(s(n))-^s(n\u(s(n))) ^ lim^,, n" 1 = 0.

which implies z0 e F. Thus the proof of Theorem 2.2 is complete.

5. Counterexamples

In this section we give two counterexamples which are related to the as-

sumptions of Theorem 2.2.

The next example says that the restrictions D(φt)iDD(φs) for O^s^t can

not be dropped in Theorem 2.2.

EXAMPLE 5.1. Let H be the space /2. Let {βf; i ^ 1} be an orthonormal base

of H. Then we put

e(t) = cos(ί-2- 1nπ)ew + sin(ί-2~ 1nπ) en+ι

and

= {re(t);reR}

for tell'^n — l)π, 2~1nπ), n = ί, 2, 3,.... Now, given ε>0, we define non-

negative proper l.s.c. convex functional ψ and φt

y 0<t<ao9 by putting

ψ(x) = 2-iΣϊ=iSn(en,xy for xeH,
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and

φ\x) =
φ(x) if xeUt),

oo otherwise.

It is not difficult to verify that

(i) φ and φ'9 0 ^ ί < o o , are even on if, and

F(φ*) = F{φ) = {0} for any t > 0;

(ii) ι/r(x) = φ'ix) for any x e D(φO ( = L(ί)) and t > 0.

Therefore the family {φ*} satisfies all of the assumptions of Theorem 2.2 except

that D^^Dίφ*) for O^s^ί. By virtue of the existence theorem in [7] (or

[11]), there exists a unique solution u of (E) associated with initial condition

u(0) = eί. Also, it is shown after elementary computations that ||tt(ί)||>l— 2επ

for every ί > 0 if 0 < ε < 4 - 1 π , which means that u(t) does not converge strongly

in H to 0 as ί-*oo.

Next we give a counterexample which is related to Remark 2.3.

EXAMPLE 5.2. We take the space H = l2 and consider the functional φ,

φί and ψ2

 o n H which are defined respectively by

and

for x=(Xi)fei el2. Here a sequence

are defined as follows:

in R and functions fh gh h( on R2

if η>0 and ξ2 + ?j2 < 1,

if 17 < 0 and ^ + η2 < 1,

otherwise,

where

?) -

00

00

if ζ2 4- η2

otherwise;

i f ξ2 + η2

otherwise;
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and {αj^ x is a sequence of positive numbers satisfying

(5.1) ΣΓ-i OLάiπβyw + A(0(π/2)A<θ-i} < «>.

First we verify the convexity of f( on Λ2. As was shown in [1], one has

(d/dξ)ffa η) = {Tan-

(d/dη)ffa η) = {Tein-

and

for £>0, */>0 with ξ2 + η2< 1, ί, seft 2 and f> 1. Hence /£ is convex on {£, η);
ζ>O,η>O}. Moreover

grad/f(ξ, 0) = ((π/2)^>, - λ(ί) (π

and

grad/f(0, η) = (0, 0)

for ξ, η e (0, 1). Thus /f is convex on Λ2.
Next, by the definitions of fh gi9 hh we have

rj) = gl - {, - η) £ ftf, η) < hfa η) = hi - ξ, - η) for (£, η) e R2

and

min Qi = 0,(0, ^) = 0 for 0 < η < 1,

min Λ, = Λf(0, 0) = 0.

Hence, noting (5.1), we see that φ, \j/u ψ2

 a r e proper l.s.c. convex functional on
/2, and that

D(φ) = D^x) = D(ψ2) = {(xf)^i € I2 x2 + xf+1 < 1 for i ^ 1},

Ψiix) = Ψi(-x) < Φ) < Ψ2(x) = Ψii-x) for xeί2.

However, it is known (cf. [1 Lemma 6]) that there exists a sequence {αf} of
positive numbers satisfying (5.1) such that the solution u of u'(t)e — dφ(u(t))9

t>0, with initial condition u(0) = (l, 0, 0,...) does not converge strongly in H
as ί->oo.
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6. Further results on the strong convergence

The assumption (A2) of Theorem 2.1 is related to the compactness property

of φ\ while (B2) of Theorem 2.2 is closely related to the evenness property of

φ*. They are quite different from each other. However the asymptotic strong

convergence of solutions of (E) can also be obtained under combination of these

two types of assumtions.

THEOREM 6.1. Suppose that there are a proper l.s.c. convex functional

ψ on H,a closed subspace X ofH, a positive measurable function b(-) everywhere

defined on [0, oo) and a number c ^ l satisfying the following conditions:

(Cl) Diφ^Diφ') for s, t e [0, oo) with s < t, and

F(φ*) = F(ψ) ( = F ) ^ 0 and min φι = min ψ = 0 for t ^ 0.

(C2) \ b{t)dt— oo and for each ε > 0 there is δ = δ(ε)>0 such that
Jo

(6.1) dist (x,FθX)<ε for x e \Jt^0 {x e D(φO n X; (p*(x) ^ δb(t)}.

(C3) For the projection Pxfrom H onto X we have

(6.2) b(t)φ(x) < φ'(x) < b(t)φ( - ex 4- (1 + c)Pxx) for xeH and t > 0.

Then, for each solution u of(E\ we have

s -

In the rest of this section suppose that all the assumptions of Theorem 6.1

hold.

LEMMA 6.1. (1) ψ(Pxx)<ψ(x)for any xeH.

(2) φ'iPxx)<φ'(x) for any xeH and ί^0.

(3) FΠXΦ0 and PFΪ\XX = PFDX(PXX) for any x e H , where PFΐ]χ is the
projection from H onto F f\ X.

PROOF. By (6.2) in (C3) we have

(6.3) Ψ(y)<Ψ(~cy+a + c)Pxy) for yeH.

Let x be any point of H and put

y = c~ί(l + c)Pxx - c~ίx.

Then it is easy to see that Pxy=Pxx.
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Hence we infer from (6.3) that

(6.4) ψ(c~ *(1 + c)Pxx r-c-ix)^ ψ(x).

Moreover, by using (6.4), we have

< c(l+c)-ι\i/(c-\l+c)Pxx - c-χx) 4- (1+c)-

Thus (1) holds. Next, since φ r(j)<b(ήψ(-cy + (l + c)Pxy) for j /e i ί by (6.2)

in (C3), we see by taking Pxx as j ; in this inequality that

(6.5) φ<(Pχx)<KtMPxx).

Also, by (6.2) in (C3) and (1),

(6.6) Kt)ψ(Pχx) < Kt)φ(x) < φ'(x).

The above inequalities (6.5), (6.6) yield (2). Finally we show (3). For this

purpose, we first note that if xeFiφ^^F, then PxxeF by (2). This shows

. Moreover, from the properties of projections we see that

\\PFnxχ - PFnx(Pxχ)\\2

= (Pχ(PFnx* - PF*X(PX*))> x - Pxx) = 0 for any xeH,

which implies PFnx = ^ F n Λ .

Now, let u be any solution of (E). Also, we put

ίπ = in f { ί>0;φ ί (M(0)<n- 1 K0} for n = 1, 2,...

Then, just as in the proof of Theorem 2.2, we see that

0 < ί n < o o and tn<tn+ί,

and that {tn} satisfies

(a) {tn} is bounded,

or else

(b) {tn} is unbounded.

In case (a) holds, we can show in a way similar to the proof of Theorem 2.2

that s-lim,.^ u(t) = u(T)eF, where Γ=limn^0 0 tn.

We then suppose that (b) holds throughout the remainder of this section.

First we need the following lemma.
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LEMMA 6.2. For n ^ 1, y e H and T< tn,

(6.7) \\u(T) - "(Oil2

+ 2(1 + c) (11(0 - u(T), Pχu(tn) - y).

PROOF. By the definition of tn we have

φs(u(s)) > n-^is) for 0 < s < tn.

Hence, using (6.2) in (C3), we get

(Q -c-'uitn)) < Ks)φ(u(tn))

< b(s)n~ι < φs(u(s)) for any s e [0, tn),

that is,

(6.8) φ*(c- i(l + c)Pxu(tn) - c MQ) < <Ps(u(s)) for any s e [0, tn).

From the definition of subdifferential and (6.8) it follows that

( - I|'(S), C- HI + c)Pχu(tn) - C- lu(tn) - 11(5))

< φs(c~ !(1 + c)PxM(ίn) - c- ^ ( ί j ) - φs(w(s)) < 0 for a.e. s e [0, tn),

so that

(_ W ' ( s ) > «.U(Q) <c(-u'(s\ u(s)) + (c +1)(iι'(5), P X M ( O ) for a.e. s e [0, ίM).

This implies

(6.9) (-u'(s), iι(5) - 11(0)

< ( i + c ) ( _ M ' ( s ) ) M ( s ) _ y ) + ( 1 + c ) ( M ' ( s ) ) P χ M ( g β ^

for a.e. s e [0, O a n ^ yeH.

Integrating (6.9) over [Γ, ί J , we obtain (6.7).

LEMMA 6.3. 5-limM^„ Pxu(tn) eFOX.

PROOF First we show that

(6.10) dist. (Pxu(tn\ F n X) >0 as «->oo.

In fact, on account of the definition of {*„}, we can find a sequence {T(ή)} such that

and

Given ε>0, take a number δ = δ(έ)>0 as specified in (6.1). Then, using (2) of

Lemma 6.1, we see that
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φτ<»\Pxu(T(n))) < φτ(»\u(T(n))) < n-*b(T(n)) for n = 1, 2,... .

so that we infer from (6.1) of (C2) that

dίst(Pxu(T(n))9 F Π X)<ε for any n > δ~K

Therefore, by (3) of Lemma 6.1, we have

dist(Pxu(tn)9F OX)

< dist(Pxu(T(n))9 F Π X) + \\Pxu(T(n)) - Pxu(tn)\\

+ \\PFnx(Pχu(T(n))) - PF()X(Pxu(T(n)))\\

< dist{Pxu(T{n% F Π I ) + 2\\u(T(n)) - u(ίrt)||

^ ε + 2 n " 1 for any n > 5" 1 ,

which shows (6.10). Next, we note that P F Π X M ( O converges strongly in H to

some z e f f l l a s n-*oo, which follows from Lemma 3.2. Since

\\Pχu(tn) - z\\ < \\Pxu(t) - PFnxu(tn)\\ + | |PFnx«ω - zll

= d i s t . ( P x u ( t n ) , F 0 X ) + \ \ P F n x u ( t n ) - z\\,

we obtain s — limw_^ Pxu(tn) = zeFill.

In order to complete the proof of Theorem 6.1 we use the inequality (6.7) in

Lemma 6.2. In fact, let T=tm with m<n and y = 8 — 111^.^ Pxu(tn) = z0 in (6.7).

Then Lemma 3.1 implies that

l inv,, .^ | | u ( O - u(tn)\\ = 0,

and so u(tn) converges strongly in H to some u0 as n-»oo. Therefore s — 1 ^ ^ ^

u(T(n))=u0 for the same sequence {T(n)} as in the proof of Lemma 6.3. More-

over, by (6.2) in (C3),

φ(u0) < l i m i n g ψ(u(T(n))) < l iminf^, b(T(n))-

^linv^n-^O,

that is, u0 6 F. Thus the proof of Theorem 6.1 is complete.

7. On the weak convergence

We here give a result on the weak convergence of the solutions of (E).

THEOREM 7.1. Suppose that there exists a proper l.s.c. convex functional

ψ on H satisfying



Asymptotic behavior of solutions 279

(bl) F(φt) = F(ψ)( = F)*0 for t ^ 0,
(b2) min φ% = min ψ = 0 for ί ^ 0

and

(b3) ιK*) <<?'(*) /or xeDiφ*) and t ^ 0.

Then, for each solution u of(E), there exists a measurable set A in [0, oo) such

that

(7.1) l i m ^ meαs (ΛL Π [ί, ί + 1)) = 1,

(7.2) w - l i m ^ ^ u(A)eF

and

(7.3) limλ.o o,λ e / 1^(u(A)) = 0.

PROOF. Let u be a solution of (E). For each integer n > 1, put

(7.4)

Then, since ^ ' ^ ( - ^ e L ^ O , oo) by Lemma 3.1, Λ(n) is a measurable set in

[0, oo) and meas ([0, oo)\yl(n))<oo. Also, we have Λ(ή)zDΛ(n + ϊ) for n = l, 2,...

Hence we can easily find a strictly increasing sequence {Tn} in [0, oo) such that

(7.5) meas (Λ(n) Π [M+1)) > 1 - 1/n for all t ^ Γn.

Now put

A = \j^xA(n) Π [Tπ, Γ n + 1 ) .

Then, it follows immediately from (7.4) and (7.5) that the set A satisfies (7.1) and

(7.3). It remains to prove (7.2). Since u is bounded on [0, oo) by Lemma 3.1,

(7.2) is equivalent to the assertion that the set

{ u(tn)->x weakly in H SLS n-+co for some
xeH;

{tn} c A with ίn->oo as n-»oo

is contained in F and is a singleton. In order to prove this, we first note that

(7.6) lim^oo>λ6ylιA(M(A)) = 0,

which follows from the fact (cf. condition (b3)) that

Ψ(μ(λ)) < φ\u(λ)) < n-1 for λ e Λ(n).

Moreover, by the lower semi-continuity of ψ and (7.6), we have

ψ(x) = 0 for any x e U>

that is
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U c F.

At this point we recall the following fact:

( Given a weakly convergent sequence {xn} in H

with xo 0=w-limπ_> 0 0 xn, it holds that

lim-inf,,^ Hx,, —x^H -• liminf^^ \\xn-y\\ if y * x^.

We now prove that U is a singleton set. Let y, z be any elements of U, and

let {tn}, {sn} be sequences in A such that

w - l i m ^ ^ u(sn) = y and w - limπ_ „ u(tn) = z.

We may assume without loss of generality that

sn<tn<sn+ί for n = 1, 2,....

Then, by Lemma 3.1,

(7.8) | |w(5 π )-y | |> | | W (ί n )-y | | and | | u ( O - z | | > \\u(sn+1)-z\\ for n = l, 2,... .

Moreover, it follows from (7.7) and (7.8) that

l i m i n f ^ \\u(sn+ί) - z\\ < l iminf^^ \\u(tn) - z\\

< l iminf^^ \\u(tn) - y\\ < l iminf^^ ||W(sM) - j ; | | ,

and hence

liminf^^ \\u(sn) - z\\ < l i m i n f ^ \\u(sn) - y\\.

The last inequality together with (7.7) implies that z = y. Thus U is a singleton

set, and the proof of Theorem 7.1 is complete.
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