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1. Introduction and preliminaries

In the classical potential theory, it is well known that polar sets (or the sets
with null capacity) are removable for bounded, as well as Dirichlet-flnite, harmonic
functions (see., e.g., [1; §VΠ, Theorem 1]). The purpose of the present paper
is to extend this result to solutions of semi-linear equations on harmonic spaces.

Let (X, °U) be a harmonic space in the sense of [2] and let ̂  be the sheaf of
functions which are locally expressible as differences of continuous superharmonic
functions. We assume that X has a countable base and 1 e &(X). An open
set in X possessing a positive potential is called a P-set (cf. [2]) and a relatively
compact open set whose closure is contained in a P-set is called a PC-set (cf. [7],
[8]). Let JC be the sheaf of (signed) Randon measures on X and σ: ̂ ->« f̂ be a
measure representation (see, [6], [7], [9]). Let Jίa be the image sheaf of σ and
consider a sheaf morphism F: ^ - > ^ σ which satisfies the following two conditions
(cf. [8]):

(F.I) (Monotonicity): For any open set U, if/i,/2 e &(U) and/ t <£/2 on U,
then F<JX)<>F(J2) on U.

(F.2) (Local Lipschitz condition): For any PC-set U and for any M > 0,
there is a non-negative measure πM)U on U such that σ{pMiv)~πM,υ f° r some
bounded continuous potential pMU on U and

Πfi)~F(f2)^(f^f2)πM9V on U,

whenever/l5/2 e @(U) and - M ^ / 2 ^ / ^ M o n U.

We are concerned with the semi-linear equation

(1) σ(w) + F(u) = 0.

For each open set U, let

= {we @(U)I u satisfies (1) and is bounded on U},

= {ue@(U)\u satisfies (1) and δu(U) < + oo}.

Here δu is the gradient measure of u as defined in [6], [7]. The value δu(U) is
regarded as the Dirichlet integral of u over U. Thus 3^^{JJ) is the space
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of bounded solutions of (1) and J^D(U) that of Dirichlet-finite solutions of (1).

A set e in X is called polar if for any P-set U there is a potential p on U such

that p(x)= + oo for all x e e n U.

As to the ^^-removability of polar sets, we obtain the following general

theorem:

THEOREM 1. Any closed polar set e in X is Jί?B-removable, i.e., for any

open set U and for any ue J>fF

B{Ό\e), there is UE3tF

B{U) such that ύ\uχe — u.

This result is quite as expected in view of similar results for solutions of

elliptic and parabolic equations on euclidean domains (see e.g., [3; Theorem 3.1],

[10; IX, §8, Satz 21] for elliptic equations and [4] for parabolic equations).

In order to discuss ^f ^-removability, we restrict ourselves to the self-adjoint

case (cf. Remark 3 in section 6). By definition (cf. [6], [7]), a self-adjoint

harmonic space is a Brelot space having a consistent system of symmetric Green

functions. To such a system there corresponds a canonical measure represen-

tation σ (see [6], [7]). We shall prove

THEOREM 2. Let X be a self-adjoint harmonic space and consider the

equation (1) with respect to a canonical measure representation σ. Let e be a

compact polar set contained in a P-set. Then, for any open set U containing e

and for any ueJfF

D{Ό\e), there is ueje^U) such that ι7| t / w = w.

With respect to linear elliptic equations on euclidean domains, we may

regard [10; IX, §8, Satz 20] as giving removability of polar sets for Dirichlet-

finite solutions; but it seems that no results are known for non-linear equations.

2. Lemmas on polar sets

In this section, let (X, <%) be a general harmonic space. For an open set U

let Ru denote the reducing operator on (/, i.e.,

Ruf = inf {u I hyperharmonic on U, u ^ / on U].

LEMMA 1. Let e be a compact polar set contained in a P-set U and let p be

a potential on U such that p(x)= -f oo for all xee. Then, for any ε > 0 there is

a continuous potential pε on U such that pε^i on a neighborhood of e and pε^

εp on U.

PROOF. Let Fε = {λ'eί/| jp(x)>l/δ}. Then Vε is an open set containing e.

Choose a continuous function φε on U such that φ ε = l on a neighborhood of e,

Ogς> ε ^l on U and φ ε = 0 on U\Vε. Put pε^Ruφε. Then, by [2; Proposition

2.3.1] (or [7; Propositions 2.6 and 2.7]), we see that pε is the required potential.
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LEMMA 2. Let e be a compact polar set contained in a P-set U. Then there

exists a potential p on U such that p(x)= + co if xee9 p(x)< H-oo if xeU\e

and p is harmonic outside a compact set in U.

PROOF. By [2; Exercise 6.2.1], we can find a potential p on U such that

p(x)=-\-co if xee and p(x)<+co if xeU\e. Then p = Rυ(φp) serves our

purpose, where φ is a non-negative continuous function on U such that φ = 1

on e and has a compact support in U.

3. Proof of THEOREM l.

Given u e J^B(U \ e)> let w* and w* be functions on U which are equal to u

on U\e and

u*(y) = lim sup^ > s ; c e ( / w u(x), ι/*(j) = lim infx_^)Xe[

for jet?. Let V be any PC-set such that VaU. We know that V is resolutive,

so that Hv

u+ and i f£ are defined ([2; Theorem 2.4.2]). Since u* and u* differ

only on a polar set, we see that HV

U* = HV

U^ on F(cf. [2; Corollary 6.2.4]). Then

HF

U>V e 3fF

B(V) is defined from H^ = HV

UΦ as in [8; p. 476]. By [8; Theorem 4.2]

and its proof, we see that Hζ>v is also given by

where

# £ F = {v e @{V) I σ(v) + F(ϋ) ̂  0 on K, lim inf^ ϊ J C 6 K i<x) ^ u*(ξ)

for all

^u*'F = {w e ^(K) I σ(w) + F(w) ̂  0 on F, lim s u p ^ ^ , ^ vv(x) ^ M

for all

We shall show that u = Hζ>v on V \ e.

By (F.2), there is a bounded continuous potential g on V such that σ(g) =

F(M)"+Mσ(l)~, where M = supF W |w|. Put f=M + g and M/ = 2M + sup κ ^.

Let C/; be a P-set such that F c ί/'cz (7. By Lemmas 1 and 2, we can find a non-

increasing sequence {pn} of continuous potentials on Uf such that pn^i on a

neighborhood Wn of e Π F and pw | 0 («->oo) on (7' \ (e Π F). Set

{ min(u + M'pn,f) on

/ on F n e .

Since u + M'pn^u + M'}>f on P^,n F\e, we see that ι ; M e^(F). Furthermore,

since
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σ(f) = Mσ(l) + σ(g) ̂  - Mσ(l)" + F(M)~

^ - F(M) ̂  - F(f) on V

and

( + M>) ^ ( ) F() ^ Fί M',,) on

[8; Corollary to Theorem 3.3] implies that σ(υn) + F(vn) ^ 0 on F. It is easy to

see that

lim Mx^xeV υn(ξ) ^ u*(ξ) for all ξ e dV.

Thus, vne^F

ui
v, so that vn^Hζ>v. Letting n-»oo, we conclude that u^Hζ'v

on V \ e.

Similarly, letting g be the bounded continous potential on V such that

F( — M)+ +Mσ(l)~, / = —M — g, M = 2M + supF g and considering

{ max (u — iCf JPH, /) on V\e

f on V n e,

we can prove that u^Hζ'v on V\e. Thus u = HF>v on V\e. Since # £ ' F is

continuous on F, it follows that u* = u* = Hζ>v on F. Since PC-sets F with F c ( /

cover I/, u* = u* on ζ/ and it belongs to 3^F

B{JJ).

4. Auxiliary properties of gradient measures

As preparations for the proof of Theorem 2, we give in this section some

properties of gradient measures. Thus, in what follows, we assume that (X, ̂ f)

is a self-adjoint harmonic space, {Gv}U:p^sct is a consistent system of symmetric

Green functions, σ is the associated canonical measure representation and δf, fe

&(U), are considered with respect to this σ. For a P-set U and a signed measure

μ on U such that XH-> \ Gv(x, y)d\μ\(y) is continuous, let Guμ(x) =
r JU

\ Gv(x9 y)dμ(y). Then σ{Gυμ) — μ by definition.
JU

First we prove

LEMMA 3. Let U be a PC-set and e be a compact polar set in U. Then

there exists a sequence {/„} of functions in &(U) satisfying the following con-

ditions:

(a) / r t = l on a neighborhood of e for each n,

(b) 0 ^ / n ^ l on U for each n,

(c) Mx)->O(n-+'ab)ifxeU\e,
(d) δf(U)->0(n-+oo).

PRCK)F. For the given U and e, choose a potential p on U as in Lemma 2.
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By Lemma 1, we can find continuous potentials pM, n = l, 2,..., on.U such that

pn^\ on a neighborhood of e and pn<mm(p/n, px) on U for each n. Put/ n =

min(l, pn). Then fne@(U) and satisfies (a), (b) and (c). Furthermore, by

[7; Corollary 4.7],

with a constant βt/^1 (see [7; p. 72]). Since σ(p) has a compact support in

U, \ Pιdσ(p)< 4- oo and (d) is satisfied.

Given an open set U and a function he &(U) which is positive everywhere

on I/, the harmonic space (I/, ^.ft) given by

is a self-adjoint harmonic space with a canonical measure representation

for fe&{V), and the corresponding gradient measure

The rest of this section is devoted to the proof of the next proposition, which

will be used to reduce the proof of Theorem 2 to the case 1 e

PROPOSITION 1. Let V be a P-set, U a PC-set such that UczU' and e a

compact polar set in U. Let he&(U') be positive everywhere on Uf. Then for

any ue@(U'\e) such that δu(U\e)< +oo, we have <5(

M^(L7\e)< + oo.

For the proof of this proposition, we need a few more lemmas. The first

one is valid on a general harmonic space:

LEMMA 4. For any f,ge

δfg^2(f2δg + g2δf) on ύ.

PROOF. By [7; Theorem 3.2], it is enough to show

which can be easily proved by using [7; Proposition 3.3] and the continuity of

LEMMA 5. Let U be a P-set and suppose there exists heJί?(U) such that

m = 'mfvh>0 and M^supvh< -foo. Let μbe a non-negative measure such that

Gυμ is bounded continuous on U, Then, for any
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fe£>IC(U) = {GTJV I Gτj\v\ is continuous and \ Gr/|v|d|v|< + 0 0 } ,
Ju

ι/ Guμ) δf(U).

PROOF. Since σ ( Λ ) ( l ) = 0, by [7 ; Lemma 4.12 and Theorem 4.3], we have

where G{jh)(x, y) = h(x)-ίh(y)-1Gu(x, y). Since G^μ^m-^μ and <5(/)(C/) =

\ h2dδf^M2δf(U), we obtain the required inequality.

LEMMA 6. Lei U be a PC-set and e be a compact polar set in U. Suppose

ue&(U\e) and δu(U\e)< + 00. Then, for any compact set K in U and for

any non-negative measure μ on U such that Gυμ is bounded continuous, we have

\ u2dμ < + 00.
JK\e

PROOF. Choose φe@(U) such that φ = 1 on a neighborhood W of K U e,

has a compact support in U and O ^ φ ^ l on U (cf. [7; Proposition 2.17]). Let

{/Λ} be a sequence as is given in Lemrrίa 3. For each />0, we consider the

function

ur= max( — /, min(u, /)) on U\e.

Then, φ(l —f»)uι e @(U) if it is extended by 0 on e. Since φ(l —fn)uι has a compact

support in I/, it follows that φ(l —fn)uι e £IC(U) ([7; Lemma 6.4]). Since U is a

PC-set, there is h e34?(U) such that m = inf^ h > 0 and M = supLχ h < 4- 00. Hence,

by the previous lemma,

(2) ( / π ? ^ g

where j5 = sup ι / Gυμ. By Lemma 4,

3 φ ( 1 -fn)uι S 2[(1

£;2lδφuι + l2δfJ on L/\e.

Since (5/n( C/) -> 0. (n -^ 00), it follows that

lim sup δφ(ί -fn)uι(U) =lim sup <5 ( 1 _/ n ) U ι(Supp φ \

Hence, by (2), we obtain



Removability of polar sets 543

(3) \ ujdμί 2/?(^)V,(Supp φ\e).
JK\e \ ifl /

Let W be a relatively compact open set such that

Supp φ \ W c W' c W' c 1/ \ e.

Since w is bounded on W,

for large /. On W \ e, φuΛ — uh so that δφuι =δuι^δu. Hence

δφuι(W\e)^δu(W\e).

Thus, letting /->oo in (3), we obtain

u2dμ ^ 2^(^)2{^M(Supp φ\W) + δu(W \ e)} < + oo.

PROOF of PROPOSITION 1. By Lemma 4 and [7; Theorem 3.3],

on U\e.

Let F be a relatively compact open set such that eczVczVaU. Since u/h is

bounded on U \ V and δh(U \ V)< + oo, we have

l/\F

On the other hand, μ=.h~2δh\v is a non-negative measure such that G /̂i is bounded

continuous. Hence, by Lemma 6,

Therefore, f (ιι2lh2)dδh< + oo, and hence <$(*/l(£/ \ e)< + oo.

5. Proof of THEOREM 2

By assumption, given an open set U containing e, we can find a P-set V

such that eaV'czU. Therefore we may assume from the beginning that U is a

PC-set containing e and U is contained in a P-set I/' on which there exists he

je{V) such that /i>0 everywhere on I/'.

First, we reduce our problem to the case σ(l) = 0 on £/'. Consider the

harmonic space (U\ #fυ>^ and the sheaf morphism F1: 0t\Ό.-+Jt\Ό, defined by

Ft(f) = hF(hf) on W
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for fe£(W), W^W. Then F1 satisfies conditions (F.I) and (F.2) for the har-

monic space ([/', «#VΛ) If u e JfUU \ e\ then

σ(*)(tι/h) = h(j(iι) = - hF(u) = - F^w/Zi) on U\e

and δ^i(l/ \ e)< + oo by Proposition 1. Hence u/h e Jίr(j})Fί(U \ e). Obviously,

e is also polar for the structure 3^υ>M. Thus, if the theorem is true for the harmonic

space (I/', Jfu>fh)9 then there is ΰejf#)Fl(U) such that t?|ϋ\β = u/Λ. Then, we

see that ύ^hveJ^^iU) and w|[/\e = w, and hence the theorem is proved. Since

0-(Ό(l) = O on Uf, this means that it is enough to prove the theorem in case σ(l) = 0

on U'.

Thus, assume σ(l) = 0 on Uf. By considering each component of U, we may

further assume that U is connected. Then there exists a regular domain V such

that e^VczVczU (cf. [5; Corollary 4.2]). By [8; Theorem 2.1], v = JίTF>v is

defined. Put w = u —i; on V\e. We shall show that w = 0; then it suffices to let

u =v on e.

Suppose w 7*0 on V\e. Since V \ e is connected (cf. [2; Proposition 6.2.5]),

[7; Theorem 5.4] implies that δw^0 on F \ β. Then there is α > 0 such that

(4) δw({xs V\e I α<|w(x)|<α + l}) > 0.

Choose a continuous function χon i? such that χ(i)>0ifα<|ί|<α + l and χ{t) = 0

otherwise. Put ^(ί)=\ (t-s)χ(s)ds. Then \j/e^2(R\ ψ = 0 on Γ-α, α], ψ^>0
Jo

everywhere, ψ' is bounded on R9 ψ'(t)sgnί^O for all teR and ψ" = χ. Since
w(x)-^0 as x-»ξ for all ξ e dF(cf. [8; Proposition 3.3]), there is a compact set K in

Fcontaining e such that |w(x)|<α for all xeV\K. Choose φoe&(V) such that

φ o = l on X, 0 ^ φ o ^ l on V and φ o has a compact support in F ; let {/„} be a

sequence as is given in Lemma 3 for Fand e. For each n, φo(l—fn)e&(V) and

has a compact support in V\e. Since ψowe &(V\e) by [7; Theorem 3.3],

by Green's formula [7; Theorem 5.3], we have

(5) <^ow,oo(i -f

By [7; Theorem 3.3],

σ(ι̂ ow) = — (ψ'Όw)δw + (fow)σ(w) on F \ e .

Since M and i; satisfy (1) on V\e,

σ(w) = σ(u) - σ(v) = - F(u) + F(v) = F(u - w) - F(u).

By (F.I), we see that (\l/Όw){F(u-w)-F(u)}^0. Hence

σ(^ow) g — (ψ'Όw)δw = — (χovv)̂ w.

Thus, by (5)
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(6) δlφo
JV\e

Since χow = 0 on V\K and φo = l on K9 the right hand side of (6) is equal to

— \ (1— fn)(χ°w)dδw, which tends to — \ (χow)dδw as n->oo. Note that

δw(K\e)< + oo and χ°w is bounded on K\e. On the other hand,

where we used the fact that δώoJK\e)=\ (\I/Όw)2dδw (cf. [7; Theorem 3.31)

which is finite since ψ' is bounded and δw(K\e)< +oo. Hence (6) implies that

{ (/ow)d(5 <0. Since χ^>0 and <5 >0, it follows that \ (χoW)dδw = 0.
JK\e " JK\e

This is impossible in view of (4) and the choice of χ. Hence w = 0 and the proof
is completed.

6. Remarks

REMARK 1. Theorem 1 remains valid without the monotonicity condition
(F.I) for F; more precisely, if F satisfies only the condition (F.2) in which (Hi)
is replaced by

(iiiy WJ-FiMSifi-fi^iw on 17, whenever fuf2e@(U) and -Mg

This is seen as follows. Let U be any PC-set and ueJί?%(U\e) be given.
For M = supu w |w|, we consider a linear perturbation of the original harmonic
structure on U so that the perturbed space ((/, $) has a measure representation
σ such that σ(f) = σ(f)-fπMV (cf., e.g., [11]). Then e is also polar for $. Con-
sider the sheaf morphism F: <%\υ-+Jί\υ defined by

F(f) = F(max ( - M, min (/, M))) + /π M j t / .

Then F satisfies (F.I) and (F.2) for the space ([/, ^ ) . Since wejtr%(U\e) =
{υ I y is bounded and σ(υ) + F(v) = 0 on ί/\e}, Theorem 1 implies that u has
an extension ue3f$(U). Since \u\^M, it follows that M eJf%(U). Then it is
easy to see that the assertion of Theorem 1 holds for any open set U.

REMARK 2. The following simple example shows that the monotonicity
condition (F.I) cannot be suppressed for the validity of Theorem 2.

Let X be the unit ball in Rn (n^3) with center at 0 and consider the classical
harmonic structure on X, so that σ(/)=— Λf (in the distribution sense). Let

e = {0}, which is a polar set. For α>(n-f 2)/(n-2), let F(/)= - | / | α m , where
m is the Lebesgue measure on X. Then F satisfies (i), (ii) of (F.2) and (iii)' in
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the above Remark with π Λ f ( / = αMα~1m. Let

2(OLΠ — n — 2α)

Then Jw(x) + |u(x)|α=0 for xeX\{0}, so that σ(w) + F(w) = 0 on X\{0}. Fur-
thermore, by direct computation, we see

\ \Vu\2dx < + oo,
Jx\{0}

i.e., M e ̂ £ ( J ί \ {0}). Since w(x)-» + oo (x->()), w has no extension to a function
in

REMARK 3. The self-adjointness condition in Theorem 2 may appear to be
too stringent. In fact, [10; IX, §8, Satz 20] suggests that Theorem 2 would
remain valid for non self-adjoint elliptic harmonic space. In non-elliptic case,
e.g., for parabolic equations on euclidean domains (even for heat equations),
there seems to be no known result on the removability of polar sets for Dirichlet-
finite solutions.
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