Removability of polar sets for solutions of semi-linear equations on a harmonic space

Fumi-Yuki Maeda
(Received March 12, 1984)

1. Introduction and preliminaries

In the classical potential theory, it is well known that polar sets (or the sets with null capacity) are removable for bounded, as well as Dirichlet-finite, harmonic functions (see., e.g., [1; §VII, Theorem 1]). The purpose of the present paper is to extend this result to solutions of semi-linear equations on harmonic spaces.

Let (X, \mathscr{U}) be a harmonic space in the sense of [2] and let \mathscr{R} be the sheaf of functions which are locally expressible as differences of continuous superharmonic functions. We assume that X has a countable base and $1 \in \mathscr{R}(X)$. An open set in X possessing a positive potential is called a P -set (cf. [2]) and a relatively compact open set whose closure is contained in a P-set is called a PC-set (cf. [7], [8]). Let \mathscr{M} be the sheaf of (signed) Randon measures on X and $\sigma: \mathscr{R} \rightarrow \mathscr{M}$ be a measure representation (see, [6], [7], [9]). Let \mathscr{M}_{σ} be the image sheaf of σ and consider a sheaf morphism $F: \mathscr{R} \rightarrow \mathscr{M}_{\sigma}$ which satisfies the following two conditions (cf. [8]):
(F.1) (Monotonicity): For any open set U, if $f_{1}, f_{2} \in \mathscr{R}(U)$ and $f_{1} \leqq f_{2}$ on U, then $F\left(f_{1}\right) \leqq F\left(f_{2}\right)$ on U.
(F.2) (Local Lipschitz condition): For any PC-set U and for any $M>0$, there is a non-negative measure $\pi_{M, U}$ on U such that $\sigma\left(p_{M, U}\right)=\pi_{M, U}$ for some bounded continuous potential $p_{M, U}$ on U and

$$
F\left(f_{1}\right)-F\left(f_{2}\right) \leqq\left(f_{1}-f_{2}\right) \pi_{M, U} \quad \text { on } \quad U,
$$

whenever $f_{1}, f_{2} \in \mathscr{R}(U)$ and $-M \leqq f_{2} \leqq f_{1} \leqq M$ on U.
We are concerned with the semi-linear equation

$$
\begin{equation*}
\sigma(u)+F(u)=0 . \tag{1}
\end{equation*}
$$

For each open set U, let

$$
\begin{aligned}
\mathscr{H}_{B}^{F}(U) & =\{u \in \mathscr{R}(U) \mid u \text { satisfies (1) and is bounded on } U\}, \\
\mathscr{H}_{D}^{F}(U) & =\left\{u \in \mathscr{R}(U) \mid u \text { satisfies (1) and } \delta_{u}(U)<+\infty\right\} .
\end{aligned}
$$

Here δ_{u} is the gradient measure of u as defined in [6], [7]. The value $\delta_{u}(U)$ is regarded as the Dirichlet integral of u over U. Thus $\mathscr{H}_{B}^{F}(U)$ is the space
of bounded solutions of (1) and $\mathscr{H}_{D}^{F}(U)$ that of Dirichlet-finite solutions of (1).
A set e in X is called polar if for any P-set U there is a potential p on U such that $p(x)=+\infty$ for all $x \in e \cap U$.

As to the \mathscr{H}_{B}^{F}-removability of polar sets, we obtain the following general theorem:

Theorem 1. Any closed polar set e in X is \mathscr{H}_{B}^{F}-removable, i.e., for any open set U and for any $u \in \mathscr{H}_{B}^{F}(U \backslash e)$, there is $\tilde{u} \in \mathscr{H}_{B}^{F}(U)$ such that $\left.\tilde{u}\right|_{U \backslash e}=u$.

This result is quite as expected in view of similar results for solutions of elliptic and parabolic equations on euclidean domains (see e.g., [3; Theorem 3.1], [10; IX, §8, Satz 21] for elliptic equations and [4] for parabolic equations).

In order to discuss \mathscr{H}_{D}^{F}-removability, we restrict ourselves to the self-adjoint case (cf. Remark 3 in section 6). By definition (cf. [6], [7]), a self-adjoint harmonic space is a Brelot space having a consistent system of symmetric Green functions. To such a system there corresponds a canonical measure representation σ (see [6], [7]). We shall prove

Theorem 2. Let X be a self-adjoint harmonic space and consider the equation (1) with respect to a canonical measure representation σ. Let e be a compact polar set contained in a P-set. Then, for any open set U containing e and for any $u \in \mathscr{H}_{D}^{F}(U \backslash e)$, there is $\tilde{u} \in \mathscr{H}_{D}^{F}(U)$ such that $\left.\tilde{u}\right|_{U l e}=u$.

With respect to linear elliptic equations on euclidean domains, we may regard [10; IX, §8, Satz 20] as giving removability of polar sets for Dirichletfinite solutions; but it seems that no results are known for non-linear equations.

2. Lemmas on polar sets

In this section, let (X, \mathscr{U}) be a general harmonic space. For an open set U let R^{U} denote the reducing operator on U, i.e.,

$$
R^{U} f=\inf \{u \mid \text { hyperharmonic on } U, u \geqq f \text { on } U\} .
$$

Lemma 1. Let e be a compact polar set contained in a P-set U and let p be a potential on U such that $p(x)=+\infty$ for all $x \in e$. Then, for any $\varepsilon>0$ there is a continuous potential p_{ε} on U such that $p_{\varepsilon} \geqq 1$ on a neighborhood of e and $p_{\varepsilon} \leqq$ εp on U.

Proof. Let $V_{\varepsilon}=\{x \in U \mid p(x)>1 / \varepsilon\}$. Then V_{ε} is an open set containing e. Choose a continuous function φ_{ε} on U such that $\varphi_{\varepsilon}=1$ on a neighborhood of e, $0 \leqq \varphi_{\varepsilon} \leqq 1$ on U and $\varphi_{\varepsilon}=0$ on $U \backslash V_{\varepsilon}$. Put $p_{\varepsilon}=R^{U} \varphi_{\varepsilon}$. Then, by [2; Proposition 2.3.1] (or [7; Propositions 2.6 and 2.7]), we see that p_{ε} is the required potential.

Lemma 2. Let e be a compact polar set contained in a P-set U. Then there exists a potential p on U such that $p(x)=+\infty$ if $x \in e, p(x)<+\infty$ if $x \in U \backslash e$ and p is harmonic outside a compact set in U.

Proof. By [2; Exercise 6.2.1], we can find a potential \tilde{p} on U such that $\tilde{p}(x)=+\infty$ if $x \in e$ and $\tilde{p}(x)<+\infty$ if $x \in U \backslash e$. Then $p=R^{U}(\psi \tilde{p})$ serves our purpose, where ψ is a non-negative continuous function on U such that $\psi=1$ on e and has a compact support in U.

3. Proof of THEOREM 1.

Given $u \in \mathscr{H}_{B}^{F}(U \backslash e)$, let u^{*} and u_{*} be functions on U which are equal to u on $U \backslash e$ and

$$
u^{*}(y)=\lim \sup _{x \rightarrow y, x \in U \backslash e} u(x), \quad u_{*}(y)=\liminf _{x \rightarrow y, x \in U \backslash e} u(x)
$$

for $y \in e$. Let V be any PC-set such that $\bar{V} \subset U$. We know that V is resolutive, so that $H_{u^{*}}^{V}$ and $H_{u_{*}}^{V}$ are defined ([2; Theorem 2.4.2]). Since u^{*} and u_{*} differ only on a polar set, we see that $H_{u^{*}}^{V}=H_{u_{*}}^{V}$ on V (cf. [2; Corollary 6.2.4]). Then $H_{u}^{F, V} \in \mathscr{H}_{B}^{F}(V)$ is defined from $H_{u^{*}}^{V}=H_{u_{*}}^{V}$ as in [8; p. 476]. By [8; Theorem 4.2] and its proof, we see that $H_{u}^{F, V}$ is also given by

$$
H_{u}^{F, V}=\inf \overline{\mathscr{F}}_{u^{*}}^{F, V}=\sup \mathscr{F}_{u *}^{F, V},
$$

where

$$
\begin{array}{r}
\overline{\mathscr{F}}_{u^{*}}^{F, V}=\left\{v \in \mathscr{R}(V) \mid \sigma(v)+F(v) \geqq 0 \text { on } V,{\lim \inf _{x \rightarrow \xi, x \in V} v(x) \geqq u^{*}(\xi)}^{\text {for all } \xi \in \partial V\},}\right. \\
\underbrace{\mathscr{F}^{F, V}}_{u_{*}}=\left\{w \in \mathscr{R}(V) \mid \sigma(w)+F(w) \leqq 0 \text { on } V, \lim \sup _{x \rightarrow \xi, x \in V} w(x) \leqq u_{*}(\xi)\right. \\
\text { for all } \xi \in \partial V\} .
\end{array}
$$

We shall show that $u=H_{u}^{F, V}$ on $V \backslash e$.
By (F.2), there is a bounded continuous potential g on V such that $\sigma(g)=$ $F(M)^{-}+M \sigma(1)^{-}$, where $M=\sup _{V \backslash e}|u|$. Put $f=M+g$ and $M^{\prime}=2 M+\sup _{v} g$. Let U^{\prime} be a P-set such that $\bar{V} \subset U^{\prime} \subset U$. By Lemmas 1 and 2 , we can find a nonincreasing sequence $\left\{p_{n}\right\}$ of continuous potentials on U^{\prime} such that $p_{n} \geqq 1$ on a neighborhood W_{n} of $e \cap \bar{V}$ and $p_{n} \downarrow 0(n \rightarrow \infty)$ on $U^{\prime} \backslash(e \cap \bar{V})$. Set

$$
v_{n}= \begin{cases}\min \left(u+M^{\prime} p_{n}, f\right) & \text { on } V \backslash e \\ f & \text { on } V \notin e\end{cases}
$$

Since $u+M^{\prime} p_{n} \geqq u+M^{\prime} \geqq f$ on $W_{n} \cap V \backslash e$, we see that $v_{n} \in \mathscr{R}(V)$. Furthermore, since

$$
\begin{aligned}
\sigma(f)=M \sigma(1)+\sigma(g) & \geqq-M \sigma(1)^{-}+F(M)^{-}+M \sigma(1)^{-} \\
& \geqq-F(M) \geqq-F(f) \quad \text { on } \quad V
\end{aligned}
$$

and

$$
\sigma\left(u+M^{\prime} p_{n}\right) \geqq \sigma(u)=-F(u) \geqq-F\left(u+M^{\prime} p_{n}\right) \quad \text { on } V \backslash e \text {, }
$$

[8; Corollary to Theorem 3.3] implies that $\sigma\left(v_{n}\right)+F\left(v_{n}\right) \geqq 0$ on V. It is easy to see that

$$
\lim _{\inf _{x \rightarrow \xi, x \in V}} v_{n}(\xi) \geqq u^{*}(\xi) \quad \text { for all } \quad \xi \in \partial V
$$

Thus, $v_{n} \in \mathscr{F}_{u^{*}}^{F, V}$, so that $v_{n} \geqq H_{u}^{F, V}$. Letting $n \rightarrow \infty$, we conclude that $u \geqq H_{u}^{F, V}$ on $V \backslash e$.

Similarly, letting \tilde{g} be the bounded continous potential on V such that $\sigma(\tilde{g})=F(-M)^{+}+M \sigma(1)^{-}, \tilde{f}=-M-\tilde{g}, \tilde{M}=2 M+\sup _{V} \tilde{g}$ and considering

$$
\tilde{v}_{n}= \begin{cases}\max \left(u-\tilde{M} p_{n}, \tilde{f}\right) & \text { on } \quad V \backslash e \\ \tilde{f} & \text { on } V \cap e,\end{cases}
$$

we can prove that $u \leqq H_{u}^{F, V}$ on $V \backslash e$. Thus $u=H_{u}^{F, V}$ on $V \backslash e$. Since $H_{u}^{F, V}$ is continuous on V, it follows that $u^{*}=u_{*}=H_{u}^{F, V}$ on V. Since PC-sets V with $\bar{V} \subset U$ cover $U, u^{*}=u_{*}$ on U and it belongs to $\mathscr{H}_{B}^{F}(U)$.

4. Auxiliary properties of gradient measures

As preparations for the proof of Theorem 2, we give in this section some properties of gradient measures. Thus, in what follows, we assume that (X, \mathscr{H}) is a self-adjoint harmonic space, $\left\{G_{U}\right\}_{U: \mathrm{P}-\text { set }}$ is a consistent system of symmetric Green functions, σ is the associated canonical measure representation and $\delta_{f}, f \in$ $\mathscr{R}(U)$, are considered with respect to this σ. For a P-set U and a signed measure μ on U such that $x \mapsto \int_{U} G_{U}(x, y) d|\mu|(y)$ is continuous, let $G_{U} \mu(x)=$ $\int_{U} G_{U}(x, y) d \mu(y)$. Then $\sigma\left(G_{U} \mu\right)=\mu$ by definition.

First we prove
Lemma 3. Let U be a PC-set and e be a compact polar set in U. Then there exists a sequence $\left\{f_{n}\right\}$ of functions in $\mathscr{R}(U)$ satisfying the following conditions:
(a) $f_{n}=1$ on a neighborhood of e for each n,
(b) $0 \leqq f_{n} \leqq 1$ on U for each n,
(c) $f_{n}(x) \rightarrow 0(n \rightarrow \infty)$ if $x \in U \backslash e$,
(d) $\delta_{f_{n}}(U) \rightarrow 0(n \rightarrow \infty)$.

Proof. For the given U and e, choose a potential p on U as in Lemma 2.

By Lemma 1, we can find continuous potentials $p_{n}, n=1,2, \ldots$, on U such that $p_{n} \geqq 1$ on a neighborhood of e and $p_{n} \leqq \min \left(p / n, p_{1}\right)$ on U for each n. Put $f_{n}=$ $\min \left(1, p_{n}\right)$. Then $f_{n} \in \mathscr{R}(U)$ and satisfies (a), (b) and (c). Furthermore, by [7; Corollary 4.7],

$$
\begin{aligned}
\delta_{f_{n}}(U) & \leqq \delta_{p_{n}}(U) \leqq \beta_{U} \int_{U} p_{n} d \sigma\left(p_{n}\right) \\
& \leqq \frac{\beta_{U}}{n} \int_{U} p d \sigma\left(p_{n}\right)=\frac{\beta_{U}}{n} \int p_{n} d \sigma(p) \leqq \frac{\beta_{U}}{n} \int p_{1} d \sigma(p)
\end{aligned}
$$

with a constant $\beta_{U} \geqq 1$ (see [7; p. 72]). Since $\sigma(p)$ has a compact support in $U, \int p_{1} d \sigma(p)<+\infty$ and (d) is satisfied.

Given an open set U and a function $h \in \mathscr{R}(U)$ which is positive everywhere on U, the harmonic space $\left(U, \mathscr{H}_{U, h}\right)$ given by

$$
\mathscr{H}_{U, h}=\left\{\mathscr{H}^{(h)}(V)\right\}_{V: \text { opencU }}, \quad \mathscr{H}^{(h)}(V)=\left\{u|h| u \in \mathscr{H}^{(V)}\right\}
$$

is a self-adjoint harmonic space with a canonical measure representation $\sigma^{(h)}: \sigma^{(h)}(f)=h \sigma(f h)$ for $f \in \mathscr{R}(V)$, and the corresponding gradient measure $\delta_{f}^{(h)}=h^{2} \delta_{f}$ for $f \in \mathscr{R}(V)$.

The rest of this section is devoted to the proof of the next proposition, which will be used to reduce the proof of Theorem 2 to the case $1 \in \mathscr{H}(X)$.

Proposition 1. Let U^{\prime} be a P-set, U a $P C$-set such that $\bar{U} \subset U^{\prime}$ and e a compact polar set in U. Let $h \in \mathscr{R}\left(U^{\prime}\right)$ be positive everywhere on U^{\prime}. Then for any $u \in \mathscr{R}\left(U^{\prime} \backslash e\right)$ such that $\delta_{u}(U \backslash e)<+\infty$, we have $\delta_{u / h}^{(h)}(U \backslash e)<+\infty$.

For the proof of this proposition, we need a few more lemmas. The first one is valid on a general harmonic space:

Lemma 4. For any $f, g \in \mathscr{R}(U)$,

$$
\delta_{f g} \leqq 2\left(f^{2} \delta_{g}+g^{2} \delta_{f}\right) \quad \text { on } \quad U .
$$

Proof. By [7; Theorem 3.2], it is enough to show

$$
2 f g \delta_{[f, g]} \leqq f^{2} \delta_{g}+g^{2} \delta_{f},
$$

which can be easily proved by using [7; Proposition 3.3] and the continuity of f, g.

Lemma 5. Let U be a P-set and suppose there exists $h \in \mathscr{H}(U)$ such that $m \equiv \inf _{U} h>0$ and $M \equiv \sup _{U} h<+\infty$. Let μ be a non-negative measure such that $G_{U} \mu$ is bounded continuous on U. Then, for any

$$
\begin{aligned}
f \in \mathscr{Q}_{I C}(U)= & \left\{G_{U} v\left|G_{U}\right| v \mid \text { is continuous and } \int_{U} G_{U}|v| d|v|<+\infty\right\}, \\
& \int_{U} f^{2} d \mu \leqq\left(\frac{M}{m}\right)^{2}\left(\sup _{U} G_{U} \mu\right) \delta_{f}(U) .
\end{aligned}
$$

Proof. Since $\sigma^{(h)}(1)=0$, by [7; Lemma 4.12 and Theorem 4.3], we have

$$
\int_{U} f^{2} d \mu \leqq\left(\sup _{U} G_{U}^{(h)} \mu\right) \delta_{f}^{(h)}(U)
$$

where $G_{U}^{(h)}(x, y)=h(x)^{-1} h(y)^{-1} G_{U}(x, y)$. Since $G_{U}^{(h)} \mu \leqq m^{-2} G_{U} \mu$ and $\delta_{f}^{(h)}(U)=$ $\int_{U} h^{2} d \delta_{f} \leqq M^{2} \delta_{f}(U)$, we obtain the required inequality.

Lemma 6. Let U be a PC-set and e be a compact polar set in U. Suppose $u \in \mathscr{R}(U \backslash e)$ and $\delta_{u}(U \backslash e)<+\infty$. Then, for any compact set K in U and for any non-negative measure μ on U such that $G_{U} \mu$ is bounded continuous, we have

$$
\int_{K \backslash e} u^{2} d \mu<+\infty .
$$

Proof. Choose $\varphi \in \mathscr{R}(U)$ such that $\varphi=1$ on a neighborhood W of $K \cup e$, has a compact support in U and $0 \leqq \varphi \leqq 1$ on U (cf. [7; Proposition 2.17]). Let $\left\{f_{n}\right\}$ be a sequence as is given in Lemma 3. For each $l>0$, we consider the function

$$
u_{l}=\max (-l, \min (u, l)) \quad \text { on } \quad U \backslash e .
$$

Then, $\varphi\left(1-f_{n}\right) u_{l} \in \mathscr{R}(U)$ if it is extended by 0 on e. Since $\varphi\left(1-f_{n}\right) u_{l}$ has a compact support in U, it follows that $\varphi\left(1-f_{n}\right) u_{l} \in \mathscr{V}_{I C}(U)$ ([7; Lemma 6.4]). Since U is a PC-set, there is $h \in \mathscr{H}(U)$ such that $m \equiv \inf _{U} h>0$ and $M \equiv \sup _{U} h<+\infty$. Hence, by the previous lemma,

$$
\begin{equation*}
\int_{K l e}\left(1-f_{n}\right)^{2} u_{l}^{2} d \mu \leqq \int_{U}\left[\varphi\left(1-f_{n}\right) u_{l}\right]^{2} d \mu \leqq \beta\left(\frac{M}{m}\right)^{2} \delta_{\varphi\left(1-f_{n}\right) u_{l}}(U), \tag{2}
\end{equation*}
$$

where $\beta=\sup _{U} G_{U} \mu$. By Lemma 4,

$$
\begin{aligned}
\delta_{\varphi\left(1-f_{n}\right) u_{l}} & \leqq 2\left[\left(1-f_{n}\right)^{2} \delta_{\varphi u_{l}}+\left(\varphi u_{l}\right)^{2} \delta_{f_{n}}\right] \\
& \leqq 2\left[\delta_{\varphi u_{l}}+l^{2} \delta_{f_{n}}\right] \quad \text { on } \quad U \backslash e .
\end{aligned}
$$

Since $\delta_{f_{n}}(U) \rightarrow 0(n \rightarrow \infty)$, it follows that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} \delta_{\varphi\left(1-f_{n}\right) u_{l}}(U) & =\limsup _{n \rightarrow \infty} \delta_{\varphi\left(1-f_{n}\right) u_{l}}(\operatorname{Supp} \varphi \backslash e) \\
& \leqq 2 \delta_{\varphi u_{l}}(\operatorname{Supp} \varphi \backslash e)
\end{aligned}
$$

Hence, by (2), we obtain

$$
\begin{equation*}
\int_{K \backslash e} u_{l}^{2} d \mu \leqq 2 \beta\left(\frac{M}{m}\right)^{2} \delta_{\varphi u_{1}}(\operatorname{Supp} \varphi \backslash e) . \tag{3}
\end{equation*}
$$

Let W^{\prime} be a relatively compact open set such that

$$
\operatorname{Supp} \varphi \backslash W \subset W^{\prime} \subset \bar{W}^{\prime} \subset U \backslash e
$$

Since u is bounded on \bar{W}^{\prime},

$$
\delta_{\varphi u_{l}}(\operatorname{Supp} \varphi \backslash W)=\delta_{\varphi u}(\operatorname{Supp} \varphi \backslash W)
$$

for large l. On $W \backslash e, \varphi u_{l}=u_{l}$, so that $\delta_{\varphi u_{l}}=\delta_{u_{l}} \leqq \delta_{u}$. Hence

$$
\delta_{\varphi u_{l}}(W \backslash e) \leqq \delta_{u}(W \backslash e)
$$

Thus, letting $l \rightarrow \infty$ in (3), we obtain

$$
\int_{K \backslash e} u^{2} d \mu \leqq 2 \beta\left(\frac{M}{m}\right)^{2}\left\{\delta_{\varphi u}(\operatorname{Supp} \varphi \backslash W)+\delta_{u}(W \backslash e)\right\}<+\infty .
$$

Proof of Proposition 1. By Lemma 4 and [7; Theorem 3.3],

$$
\delta_{u / h}^{(h)}=h^{2} \delta_{u / h} \leqq 2\left(\delta_{u}+\frac{u^{2}}{h^{2}} \delta_{h}\right) \quad \text { on } \quad U \backslash e .
$$

Let V be a relatively compact open set such that $e \subset V \subset \bar{V} \subset U$. Since u / h is bounded on $U \backslash \bar{V}$ and $\delta_{h}(U \backslash \bar{V})<+\infty$, we have

$$
\int_{U \backslash V} \frac{u^{2}}{h^{2}} d \delta_{h}<+\infty .
$$

On the other hand, $\mu=\left.h^{-2} \delta_{h}\right|_{V}$ is a non-negative measure such that $G_{U} \mu$ is bounded continuous. Hence, by Lemma 6,

$$
\int_{V \backslash e} \frac{u^{2}}{h^{2}} d \delta_{h}<+\infty
$$

Therefore, $\int_{U \backslash e}\left(u^{2} / h^{2}\right) d \delta_{h}<+\infty$, and hence $\delta_{u / h}^{(h)}(U \backslash e)<+\infty$.

5. Proof of THEOREM 2

By assumption, given an open set U containing e, we can find a P-set V^{\prime} such that $e \subset V^{\prime} \subset U$. Therefore we may assume from the beginning that U is a PC-set containing e and \bar{U} is contained in a P-set U^{\prime} on which there exists $h \in$ $\mathscr{H}\left(U^{\prime}\right)$ such that $h>0$ everywhere on U^{\prime}.

First, we reduce our problem to the case $\sigma(1)=0$ on U^{\prime}. Consider the harmonic space $\left(U^{\prime}, \mathscr{H}_{U^{\prime}, h}\right)$ and the sheaf morphism $F_{1}:\left.\left.\mathscr{R}\right|_{U^{\prime}} \rightarrow \mathscr{M}\right|_{U^{\prime}}$ defined by

$$
F_{1}(f)=h F(h f) \quad \text { on } \quad W
$$

for $f \in \mathscr{R}(W), W \subset U^{\prime}$. Then F_{1} satisfies conditions (F.1) and (F.2) for the harmonic space $\left(U^{\prime}, \mathscr{H}_{U^{\prime}, h}\right)$. If $u \in \mathscr{H}_{D}^{F}(U \backslash e)$, then

$$
\sigma^{(h)}(u / h)=h \sigma(u)=-h F(u)=-F_{1}(u / h) \quad \text { on } \quad U \backslash e
$$

and $\delta_{u / h}^{(h)}(U \backslash e)<+\infty$ by Proposition 1. Hence $u / h \in \mathscr{H}_{D}^{(h) F_{1}}(U \backslash e)$. Obviously, e is also polar for the structure $\mathscr{H}_{U^{\prime}, h}$. Thus, if the theorem is true for the harmonic space $\left(U^{\prime}, \mathscr{H}_{U^{\prime}, h}\right)$, then there is $\tilde{v} \in \mathscr{H}_{D}^{(h) F_{1}}(U)$ such that $\left.\tilde{v}\right|_{U \backslash e}=u / h$. Then, we see that $\tilde{u} \equiv h \tilde{v} \in \mathscr{H}_{D}^{F}(U)$ and $\left.\tilde{u}\right|_{U l e}=u$, and hence the theorem is proved. Since $\sigma^{(h)}(1)=0$ on U^{\prime}, this means that it is enough to prove the theorem in case $\sigma(1)=0$ on U^{\prime}.

Thus, assume $\sigma(1)=0$ on U^{\prime}. By considering each component of U, we may further assume that U is connected. Then there exists a regular domain V such that $e \subset V \subset \bar{V} \subset U$ (cf. [5; Corollary 4.2]). By [8; Theorem 2.1], $v=\mathscr{H}_{u}^{F}, V$ is defined. Put $w=u-v$ on $V \backslash e$. We shall show that $w=0$; then it suffices to let $\tilde{u}=v$ on e.

Suppose $w \neq 0$ on $V \backslash e . \quad$ Since $V \backslash e$ is connected (cf. [2; Proposition 6.2.5]), [7; Theorem 5.4] implies that $\delta_{w} \neq 0$ on $V \backslash e$. Then there is $\alpha>0$ such that

$$
\begin{equation*}
\delta_{w}(\{x \in V \backslash e|\alpha<|w(x)|<\alpha+1\})>0 . \tag{4}
\end{equation*}
$$

Choose a continuous function χ on \boldsymbol{R} such that $\chi(t)>0$ if $\alpha<|t|<\alpha+1$ and $\chi(t)=0$ otherwise. Put $\psi(t)=\int_{0}^{t}(t-s) \chi(s) d s$. Then $\psi \in \mathscr{C}^{2}(\boldsymbol{R}), \psi \equiv 0$ on $[-\alpha, \alpha], \psi \geqq 0$ everywhere, ψ^{\prime} is bounded on $\boldsymbol{R}, \psi^{\prime}(t) \operatorname{sgn} t \geqq 0$ for all $t \in \boldsymbol{R}$ and $\psi^{\prime \prime}=\chi$. Since $w(x) \rightarrow 0$ as $x \rightarrow \xi$ for all $\xi \in \partial V$ (cf. [8; Proposition 3.3]), there is a compact set K in V containing e such that $|w(x)|<\alpha$ for all $x \in V \backslash K$. Choose $\varphi_{0} \in \mathscr{R}(V)$ such that $\varphi_{0}=1$ on $K, 0 \leqq \varphi_{0} \leqq 1$ on V and φ_{0} has a compact support in V; let $\left\{f_{n}\right\}$ be a sequence as is given in Lemma 3 for V and e. For each $n, \varphi_{0}\left(1-f_{n}\right) \in \mathscr{R}(V)$ and has a compact support in $V \backslash e$. Since $\psi \circ w \in \mathscr{R}(V \backslash e)$ by [7; Theorem 3.3], by Green's formula [7; Theorem 5.3], we have

$$
\begin{equation*}
\delta_{\left[\psi \circ w, \varphi_{0}\left(1-f_{n}\right)\right]}(V \backslash e)=\int_{V \backslash e} \varphi_{0}\left(1-f_{n}\right) d \sigma(\psi \circ w) . \tag{5}
\end{equation*}
$$

By [7; Theorem 3.3],

$$
\sigma(\psi \circ w)=-\left(\psi^{\prime \prime} \circ w\right) \delta_{w}+\left(\psi^{\prime} \circ w\right) \sigma(w) \quad \text { on } \quad V \backslash e .
$$

Since u and v satisfy (1) on $V \backslash e$,

$$
\sigma(w)=\sigma(u)-\sigma(v)=-F(u)+F(v)=F(u-w)-F(u) .
$$

By (F.1), we see that $\left(\psi^{\prime} \circ w\right)\{F(u-w)-F(u)\} \leqq 0$. Hence

$$
\sigma(\psi \circ w) \leqq-\left(\psi^{\prime \prime} \circ w\right) \delta_{w}=-(\chi \circ w) \delta_{w}
$$

Thus, by (5)

$$
\begin{equation*}
\delta_{\left[\psi \circ w, \varphi_{0}\left(1-f_{n}\right)\right]}(V \backslash e) \leqq-\int_{V \backslash e} \varphi_{0}\left(1-f_{n}\right)(\chi \circ w) d \delta_{w} . \tag{6}
\end{equation*}
$$

Since $\chi \circ w=0$ on $V \backslash K$ and $\varphi_{0}=1$ on K, the right hand side of (6) is equal to $-\int_{K \backslash e}\left(1-f_{n}\right)(\chi \circ w) d \delta_{w}$, which tends to $-\int_{K \backslash e}(\chi \circ w) d \delta_{w}$ as $n \rightarrow \infty$. Note that $\delta_{w}(K \backslash e)<+\infty$ and $\chi \circ w$ is bounded on $K \backslash e$. On the other hand,

$$
\begin{aligned}
\left|\delta_{\left[\psi \circ w, \varphi_{0}\left(1-f_{n}\right)\right]}(V \backslash e)\right| & =\left|\delta_{\left[\psi \circ w, 1-f_{n}\right]}(K \backslash e)\right| \\
& \leqq \delta_{\psi \circ w}(K \backslash e)^{1 / 2} \cdot \delta_{f_{n}}(K \backslash e)^{1 / 2} \\
& \rightarrow 0 \quad(n \rightarrow \infty),
\end{aligned}
$$

where we used the fact that $\delta_{\psi \circ w}(K \backslash e)=\int_{K \backslash e}\left(\psi^{\prime} \circ w\right)^{2} d \delta_{w}$ (cf. [7; Theorem 3.3]) which is finite since ψ^{\prime} is bounded and $\delta_{w}(K \backslash e)<+\infty$. Hence (6) implies that $\int_{K \backslash e}(\chi \circ w) d \delta_{w} \leqq 0$. Since $\chi \geqq 0$ and $\delta_{w} \geqq 0$, it follows that $\int_{K \backslash e}(\chi \circ w) d \delta_{w}=0$. This is impossible in view of (4) and the choice of χ. Hence $w=0$ and the proof is completed.

6. Remarks

Remark 1. Theorem 1 remains valid without the monotonicity condition (F.1) for F; more precisely, if F satisfies only the condition (F.2) in which (iii) is replaced by
(iii)' $\left|F\left(f_{1}\right)-F\left(f_{2}\right)\right| \leqq\left(f_{1}-f_{2}\right) \pi_{M, U}$ on U, whenever $f_{1}, f_{2} \in \mathscr{R}(U)$ and $-M \leqq$ $f_{2} \leqq f_{1} \leqq M$ on U.

This is seen as follows. Let U be any PC-set and $u \in \mathscr{H}_{B}^{F}(U \backslash e)$ be given. For $M=\sup _{U l e}|u|$, we consider a linear perturbation of the original harmonic structure on U so that the perturbed space $(U, \tilde{\mathscr{U}})$ has a measure representation $\tilde{\sigma}$ such that $\tilde{\sigma}(f)=\sigma(f)-f \pi_{M, U}$ (cf., e.g., [11]). Then e is also polar for $\tilde{\mathscr{U}}$. Consider the sheaf morphism $\tilde{F}:\left.\left.\mathscr{R}\right|_{U} \rightarrow \mathscr{M}\right|_{U}$ defined by

$$
\tilde{F}(f)=F(\max (-M, \min (f, M)))+f \pi_{M, U} .
$$

Then \widetilde{F} satisfies (F.1) and (F.2) for the space ($U, \tilde{\mathscr{U}}$). Since $u \in \widetilde{\mathscr{H}}_{B}^{F}(U \backslash e)=$ $\{v \mid v$ is bounded and $\tilde{\sigma}(v)+\tilde{F}(v)=0$ on $U \backslash e\}$, Theorem 1 implies that u has an extension $\tilde{u} \in \widetilde{\mathscr{H}}_{B}^{F}(U)$. Since $|\tilde{u}| \leqq M$, it follows that $\tilde{u} \in \mathscr{H}_{B}^{F}(U)$. Then it is easy to see that the assertion of Theorem 1 holds for any open set U.

Remark 2. The following simple example shows that the monotonicity condition (F.1) cannot be suppressed for the validity of Theorem 2.

Let X be the unit ball in $\boldsymbol{R}^{n}(n \geqq 3)$ with center at 0 and consider the classical harmonic structure on X, so that $\sigma(f)=-\Delta f$ (in the distribution sense). Let $e=\{0\}$, which is a polar set. For $\alpha>(n+2) /(n-2)$, let $F(f)=-|f|^{\alpha} m$, where m is the Lebesgue measure on X. Then F satisfies (i), (ii) of (F.2) and (iii)' in
the above Remark with $\pi_{M, U}=\alpha M^{\alpha-1} m$. Let

$$
u(x)=\frac{(\alpha-1)^{2}}{2(\alpha n-n-2 \alpha)}|x|^{2 /(1-\alpha)} .
$$

Then $\Delta u(x)+|u(x)|^{\alpha}=0$ for $x \in X \backslash\{0\}$, so that $\sigma(u)+F(u)=0$ on $X \backslash\{0\}$. Furthermore, by direct computation, we see

$$
\int_{X \backslash\{0\}}|\nabla u|^{2} d x<+\infty,
$$

i.e., $u \in \mathscr{H}_{D}^{F}(X \backslash\{0\})$. Since $u(x) \rightarrow+\infty(x \rightarrow 0)$, u has no extension to a function in $\mathscr{H}_{D}^{F}(X)$.

Remark 3. The self-adjointness condition in Theorem 2 may appear to be too stringent. In fact, [10; IX, §8, Satz 20] suggests that Theorem 2 would remain valid for non self-adjoint elliptic harmonic space. In non-elliptic case, e.g., for parabolic equations on euclidean domains (even for heat equations), there seems to be no known result on the removability of polar sets for Dirichletfinite solutions.

References

[1] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
[2] C. Constantinescu and A. Cornea, Potential theory on harmonic spaces, Springer-Verlag, Berlin•Heidelberg•New York, 1972.
[3] J. Frehse, Capacity methods in the theory of partial differential equations, Jber. Deutsch. Math. -Verein. 84 (1982), 1-44.
[4] R. Gariepy and W. P. Ziemer, Removable sets for quasilinear parabolic equations, J. London Math. Soc. (2), 21 (1980), 311-318.
[5] P. A. Loeb, An axiomatic treatment of pairs of elliptic differential equations, Ann. Inst. Fourier, 16-2 (1966), 167-208.
[6] F-Y. Maeda, Dirichlet integrals of functions on a self-adjoint harmonic space, Hiroshima Math. J. 4 (1974), 685-742.
[7] F-Y. Maeda, Dirichlet integrals on harmonic spaces, Lecture Notes Math. 803, Spring-er-Verlag, Berlin•Heidelberg•New York, 1980.
[8] F-Y. Maeda, Semi-linear perturbation of harmonic spaces, Hokkaido Math. J. 10 (1981), Sp. iss., 464-493.
[9] U. Schirmeier, Continuous measure representations on harmonic spaces, Hiroshima Math. J. 13 (1983), 327-337.
[10] B. -W. Schulze and G. Wilderhein, Methoden der Potentialtheorie für elliptische Differentialgleichungen beliebiger Ordnung, Birkhäuser, Basel-Stuttgart, 1977.
[11] B. Walsh, Perturbation of harmonic structures and an index-zero theorem, Ann. Inst. Fourier 20, 1 (1970), 317-359.

> Department of Mathematics,
> Faculty of Science, Hiroshima University

