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§ 1. Introduction

An H-space is a path-connected (based) space admitting a continuous multi-

plication for which the base point is a homotopy unit. An H-space is called

finite if it has the homotopy type of a finite CW-complex. Typical examples of

finite H-spaces are the product spaces of Lie groups, the 7-sphere SΊ or the 7-

projective space RPΊ. The other examples are constructed by Hilton-Roitberg

[6], Curtis-Mislin [4], A. Zabrodsky [17] and so on. These are given actually

by sphere extensions of the classical groups SO(n), SU(n) or Sp(n) which we shall

discuss in this paper. To prove our main results we find a decomposition formula

for cohomology operation in the BP-theory, which would be useful in the further

study of H-spaces.

Let d = l, 2 or 4, and

(1.1) G(n, d) = SO(n\ SU(n) or Sp(n) according to d = 1, 2 or 4.

Consider the commutative diagram

G(n -l,d)-U G(n, d) -*_> G(n, d)/G(n - 1 , d) = Sdn~ι

(1.2) \hλ

G(n -l,d)~^~> M(n, d, λ) ^ > Sdn~'

of the principal bundles for any integers n^.2 and A, where the lower bundle is

induced from the upper one by the map hλ of degree λ. The total space M(n, d, λ)

is called a sphere extension of G(n — 1, d). On the conditions for M(n, d, λ)

to be an H-space, the following are known:

(1.3) ([17; Cor.]) When G(n, l) = SO(n) and n is even #2, 4, 8, M(n, 1, λ)

is an H-space if and only if λ is odd.

(1.4) ([4], [17; Cor.]) When G(n, 2)=Sl/(n), M(n, 2, λ) is an H-space if

and only if n = 2, 4 or λ is odd.

(1.5) ([17; Cor.], [18; Th. 3.10]) When G(n, 4) = Sp(n), M(n, 4, λ) is an

H-space if and only if λ is odd or n = 2 and λφl mod 4.
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The purpose of this paper is to complete (1.3) in case when n = 2, 4, 8 or n is

odd, and furthermore, to give the condition for the iί-space M(n, d, λ) to have the

homotopy type of a loop space. Our main results are stated as follows:

THEOREM A. M(n, 1, λ) in (1.2) for G(n, l) = SO(n) is an H-space if and only

if

n = 2, 4, 8 or λ is odd when n is even, and λ— ± 1 when n is odd.

Furthermore, in these cases, M(n, 1, λ) has the homotopy type of a loop space,

and in fact, it is homotopy equivalent to SO(n).

THEOREM B. M(n, d, λ) in (1.2) for G(n, 2) = SU(n) or G(n, 4) = Sp(n) has

the homotopy type of a loop space if and only if

λ ψ 0 mod/? for any prime p with 2p < dn;

and then M(n, d, λ) is p-equivalent to G(n, d) for any prime p.

We remark that M(n, d, λ) in Theorem B is not homotopy equivalent to

G(w, d) if λψ ± 1 mod(dn/2-l) ! by A. Zabrodsky [19; Th. A].

Theorems A and B follow from Theorems A and B, respectively, which are

presented in §2 by considering the conditions that M(n9 d, λ) is p-equivalent to

an H-space or a loop space for a prime p. In addition to Theorems A and B, we

state in Proposition 2.4 that cλ in (1.2) is a loop map up to homotopy type, which

is proved in §4. Theorem A is proved in §3 assuming Proposition 3.2 which is

proved in §5 by using the unstable secondary operations introduced by A.

Zabrodsky. Theorem B is proved in §3 assuming Proposition 3.11 which is

considered in a little more general situation than M(n, d, λ). We prove (i) of

Proposition 3.11 in §6 by studying the action of the Steenrod algebra, and (ii)

in §8 after performing a decomposition formula (Proposition 7.7) for the

Landweber-Novikov operations in the 2?P-theory in §7.

The author wishes to thank Professor M. Sugawara for his many helpful

suggestions.

§ 2. Restatement of results

Throughout this paper, we assume that all spaces, maps and homotopies

are based, and all spaces are path-connected and have the homotopy type of

C W-complexes.

Let p be a prime. Then, we say simply that a m a p / : X-> Yis a p-equivalence

if/is a mod p (co)homology equivalence, i.e., if

/*: H*(X; Z_) > H*(Y; Z.) (or equivalent^/*: H*(Y; Z.) > H*(X; Z.))
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is an isomorphism. When such a map/exists, we say that X is p-equivalent to

Y and denote by X^pY. We notice that this relation ~p is an equivalence

relation in the category of p-universal spaces and spaces treated in this paper are

all in this category (see [13-15] for the definition and the properties of ^-universal

spaces). We say that X is a mod p H-space (resp. a modp hop space) if it is

p-equivalent to an //-space (resp. a loop space ΩYfor some Y).

Now, for G(n, d) and M(λ) = M(n, d9 λ) in (1.1-2), we consider the following

conditions:

(pH) (resp. (pL), (pG)) M(λ) is p-equivalent to an //-space (resp. a loop space,

<Kn, d)\

where p is a prime or oo and 'oo-equivalent' means 'homotopy equivalent'.

((ooH) means that M(λ) is an //-space.) Then, we can state Theorems A and B

which are stronger versions of Theorems A and B in the introduction.

THEOREM A. Let d = 1, G(n, l) = SO(n) and M(λ) = M(n, 1, λ).

(I) The case n is even: (i) (pH), (pL) and (pG) hold for any odd prime p.

(ii) The conditions (2H), (2L), (2G), (ooH), (ooL), (ooG) and the following

(2.1) are equivalent to each other:

(2.1) λ is odd, or n = 2, 4, 8.

(II) The case n is odd: The conditions (pH), (pL), (pG) and the following

(2.2: p) are equivalent to each other for any prime p or p=cc:

(2.2: p) λ φ 0 modp (when p is a prime) λ = ± 1 (when p = oo).

THEOREM B. Letd = 2 or 4, G(n, d) = SU(n) or Sp(n) and M(λ) = M(n, d, λ).

(i) The conditions Q?L), (pG) and the following (2.3: p) are equivalent to

each other for any prime p:

(2.3: p) λφO mod p, or 2p ^ dn.

(ii) The condition (ooL) is equivalent to (pG) for all prime p and also to

(2.3: oo) λ φ 0 modp for any prime p with 2p < dn.

In addition to these theorems, we have the following

PROPOSITION 2.4. When M(n, d, λ) is homotopy equivalent to a loop space,

i.e., when (2.1) or (2.2: oo) holds in Theorem A or when (2.3: oo) holds in Theorem

B, the map cλ: G(n — 1, d)->M(n, d9 λ) in (1.2) is homotopy equivalent to a loop

map in the sense that we can choose a homotopy equivalence f of M(n, d, λ) to



454 Yutaka HEMMI

a loop space so that the composition focλ is a loop map.

We remark that hλ: M(n, d, λ)^G(n, d) in (1.2) is not necessarily homotopy

equivalent to a loop map unless λ— ± 1, even if M(n, d, λ) is homotopy equivalent

to G(w, d).

§ 3. Reduction of Theorems A and B to some propositions

In this section, assuming Propositions 3.2 and 3.11 stated below, we prove

Theorems A and B by using mainly the results due to A. Zabrodsky [17] [20].

PROOF OF THEOREM A (I). The implications (pG)=>(pL)=>(pH), (ooH)=>

(/?H), (ooL)=>(;?L) and (ooG)=>(/?G) are trivial for any p^oo. We notice that

(3.1) πn-^BSOin-l)) = 0, Z 2 or Z 2 ®Z2 for n = 2/c ^ 4

(cf. [10; pp. 161-162]).

(i) Let p be an odd prime. By (3.1) and the definition of M(λ) = M(n9 1, λ)

in (1,2), we see that hλ: M(λ)^pS0(n) for n = 2/c^4. When π = 2, π: SO(2)-*

S1 is a homeomorphism and so is πλ: M ^ - ^ S 1 — SO(2). Thus we see (pG).

(ii) (2H)=>(2.1): This is shown in [17; Cor.].

(2.1)=>(ooG): If λ is odd, then hλ: M(λ)~SO(n) for n = 2k^4 by (2.5). If

n = 2, 4 or 8. then the upper principal bundle in (1.2) is trivial and so is the lower

one. So, M(λ) is homeomorphic to SO(n). Q. E. D.

Theorem A (II) follows from the following proposition, which will be proved

in §5:

PROPOSITION 3.2. In Theorem A (II), (pH) implies (2.2: p)for any prime p.

PROOF OF THEOREM A (II) FROM PROPOSITION 3.2. (2.2: p) implies (pG)

for any p^oo by definition, and (2.2: oo) means (2.2: p) for all prime p. So, we

see Theorem A (II) by the trivial implications and (/?H)=>(2.2: p) for any prime p.

Q.E.D.

PROOF OF THEOREM B (i) FOR p = 2. (2G)=>(2L) is trivial.

(2.3: 2)=>(2G): If λ is odd, then hλ is a 2-equivalence and so is hλ: M(λ)-+

G(n, d) in (1.2). If 4^dn, then d = n = 2, G(2, 2) = S17(2), and π λ : M(λ)-+S3 =

5(7(2) is a homeomorphism, because so is π: SU(2)-+S3.

(2L)=>(2.3: 2): When dnφS, this is shown in [17; Cor.]. Assume dn = 8.

Then G(n, d) = SU(4) or Sp(2). We notice that

π7(BSU(3)) = Z 6 and πΊ(BSp(l)) = Z12 (cf. [3; 26.10], [12; Th. 2.2])
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By (1.2), we see that M(n, d, qλ)~pM(n, d9 λ) if qφO modp and p is a prime.

So, M(4, 2, λ)~SΊxSU(3) if λ = 0, 6, ^ 2 M ( 4 , 2, 6) if λ = 2; and M(2, 4, 2 ) ^

S 7 xSp( l ) if λ = 0, 12, ^ P M(2, 4, l) = Sp(2) if A = 2, ^ 2 M ( 2 , 4, 12) if λ = 4, ^ p

M(2, 4, 12) if A = 6, where p is any odd prime. Here, S7 x SC/(3) and S 7 x Sp(l)

are not mod 2 loop spaces, because they admit no mod 2 homotopy associative

//-structures by [5; Th. 2]. So, M(4, 2, A) (λ: even) and M(2, 4, λ) (/t = 0, 4) are

not mod 2 loop spaces. Furthermore M(2, 4, A) (A = 2, 6) is a mod /? //-space

for any odd prime, and is not an //-space by (1.5). So, it is not a mod 2 //-space

by [20; Prop. 4.5.3]. Thus M(2, 4, λ) (λ: even) is not a mod 2 loop space.

Q.E.D.

PROOF OF (ii) FROM (i) IN THEOREM B. If M(λ) satisfies (pG) for all prime p,

then it has the same genus type as G(n9 d) and hence satisfies (ooL), according to

[20; Cor. 4.7.4]. The implications (ooL)=>(2.3: oo)=K/?G) follow from (i).

Q.E.D.

Now, let p be an odd prime in the rest of this section. Then, Theorem B (i)

for p is proved in somewhat more general situation given as follows:

(3.3) Let G be a given simply connected finite mod p loop space such that

//*(G; Z) has no p-torsion, i.e.,

(3.4) //*(G; Zp) = Λ(gl9...9gά dimgt = 2 ^ - 1 , 2 g n, £ »£nk9

for some gt of mod p universal transgressive. Furthermore, let

(3.5) π: G->5m (m = 2nk — 1) be a given fibering with π*ξ = gk for a generator

By replacing G(n, d) by G in (1.2), we can define M(G, λ) for any integer λ

by the pullback diagram

(3.6)

where hλ is the map of degree λ. Then we can prove the following theorem,

where s/ denotes the mod p Steenrod algebra and s/ is its augmentation ideal:

THEOREM 3.7. Under the assumption that

(3.8) gk φ stf(H*(G; Zp)) if nk = p*b and 1 ̂  b < p,

M(G, λ) in (3.6) is a mod p loop space if and only if

(3.9) λ ψ 0 mod p, or nk - nx + 2 ^ p\
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and then M(G, λ) is p-equivalent to G.

PROOF OF THEOREM B (i) FOR ODD PRIME p FROM THEOREM 3.7. We notice

that (cf. [1; Prop. 9.1], [2; Cor. 11.4, Cor. 13.5])

H*(G(n, d); Zp) = Λ(e3, e3+d,..., em-d9 ej, d i m e i = i, m = dn - 1, π*(ξ) = em,

for G(n, d) (d = 2, 4) and π in (1.1-2), where et is universal transgressive. Fur-

thermore,

(•) &ιe2J-! = ( ^ 7 * ) e m where 2/ - 1 + 2ί(p-1) = m, i.e., j + i(p-l) = dn/2.

Assume that dnβ = pab and 1 ̂  b < p. Let

i = CQ^ + CiP ί + 1 (ί^O, l ^ c o < p , c ^ O ) and j = pαb - i(p—1) > 0.

Then, since l g ί x p , we see that t<a, (CQ + C ^ ) (p— l ) < p α " ί b and

j - 1 = cop' - 1 + cpt+ί where c = p^^b - c0 - c ^ p - 1 ) ^ 0.

So, the coefficients of pι in the p-adic expansions of i and 7 — 1 are c 0 and c 0 — 1,

respectively, which implies (* . J = 0 modp as is well-known. Therefore

emes/(H*(G(n, d)\ Zp)) by (*); and the assumption (3.8) is satisfied for G =

G(n, d). Now Theorem B (i) for odd prime p is the special case of Theorem 3.7

for G=G(n9 d) with n2 = 2 and nk = dn/2. Q.E.D.

Theorem 3.7 follows immediately from the following propositions:

PROPOSITION 3.10. (3.9) implies that M(G, λ) is p-equivalent to G.

PROPOSITION 3.11. Assume that M(G, λ) is a mod p loop space.

(i) If b>p (where nk = pab and bφΰ mod p), then λφO modp.

(ii) If \^b<p and (3.8) is valid, then ?.φθ modp or p^nk.

Proposition 3.11 will be proved in §§6-8.

PROOF OF PROPOSITION 3.10. Tf λ # 0 modp, then hλ is a p-equivalence and

so is hλ in (3.6).

Now suppose that nk — nι+2^p. Then, we have a homotopy equivalence

φ .Sft-ix-xSΰΓ1—'<?(,)

by Kumpel [11], where — (p) denotes the localization at p (cf. [15] for the details

on the localization). Here, we may assume that the composition π(p)°s of
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s = φ I Sfo: S&) • G ( P ) and π ( p ) : G ( P ) > Sm

p) (m = 2nfc - 1)

is a homotopy equivalence, i.e., s is a homotopy section for π(J7). Let r. Y->G(p)

be the homotopy fibre of π ( p ) . Then, the composition

/ = μo(s x 0 : Sfp) x Y — > G ( p ) x G ( p ) — * G ( p )

is a homotopy equivalence, where μ is the multiplication. Now we define

g = p r o / " 1 : G(/7) > Sg,) x Y > Y(prdenotes the projection).

It is clear that goc~id: Y-+ Y. Let cλ: Y->M(G, λ)ip) be the homotopy fibre of

(πλ)(p): M(G, λ)(p)->Sm

p) so that (hλ\pfCλ~c for (hλ)ip): M(G, λ\p)->G(p). Then

g<hλ\PfCλ~id> and

( ( π j ^ ^°(^A)(P)) : M(G, λ)(p) > Sfp) x 7

is a homotopy equivalence. Thus M(G, λ){p)^S^p)x Y-^Gip) and M(G, λ)^pG

by [15; Cor. 5.4]. Q.E.D.

§4. Proof of Proposition 2.4

Proposition 2.4 is clear in the case (2.2: oo) in Theorem A (II), and seen in

the case (2.1) in Theorem A (I) (ii) by the proof of (2.1)=>(ooG) in Theorem A (I)

given in §3.

The case (2.3: oo) in Theorem B (ii): If dn^4, then d = n = 2 and G(l, 2) =

= *. Thus cλ = *: *^>M(λ) is clearly a loop map.

Suppose an > 4. Put Pt = {p prime | λ = 0 mod p} and P 2 = {JP 5 prime |

Since P x is a finite set by definition, we write Pt = {pl9 p2> •> p j - We

define integers μf ( O ^ i g ί ) inductively so that λμt = ί modiV==2{(Jn/2-l)!} and

//,- έ̂ 0 mod pj for any j^i. Since A # 0 mod iV by (2.3: oo) and 2 < dn/2, there is

an integer μ0 such that λμo^l modN. Suppose that we have μ$ for j<i ( i ^ l )

with the desired properties. If μi_1 ψO mod ph then μi = μi_ί satisfies the desired

properties. If μ / _ 1 Ξθ modp ί 9 then μi~μi-i-\~Npί' 'pi^ί satisfies the desired

properties since N ψ 0 mod pt by the definition of Pί. Put μ = μ,. Then

(4.1) λμ s 1 modN = 2{(dn/2-l)!} and μ # 0 modp for any p e P t .

Now we notice that

(4.2) ^ ( B G ί n - l , d)) = Z N / 2 or ZN (cf. [3; 26.10], [12; Th. 2.2]).

Then we have the following commutative diagram of the principal bundles:
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G(n-l)==G(n-l)==G(n-l)===G(n-l)

(4.3) G(ή) ^ > M(λμ) ^ > M(λ) hλ > <?(/i)

ψ ψ ψ ψ

gdn-l ^ gdn-1 hM gdn~l hi gdn-l

where G(i) = G(ί, d) and φ is a homeomorphism by (4.1) and (4.2).

Now we use the localization theory (cf. [15]). Let P be a set of primes or

P = 0. We denote Z ( P ) (resp./(P)) for the localization of a space X (resp. a map/)

at P. We also write /(P) = /(X; P): X-+X(P) and /(P, ?') = / ( * ; P, P r ): X(P)->

X(P') for the standard maps, where P'czP. Then (4.3) induces the homotopy

commutative diagram

^U M ( 0 ) -J^L> σ(if)(-0)

G(n)i0),

where M = M(λ), /^/(P/) and /; = /(P;, 0) for ί = l, 2. Since ftA (resp. hμ) is a

P 2 (resp. P^-equivalence by the definition of P f and (4.1), so is hλ (resp. hμ)

Thus /tA(F2)' λ̂(0)> (hμoφ){Pύ and (βμ°φ)(0) are all homotopy equivalences. Now

the middle square consisting of /f and /̂  is homotopy equivalent to the weak

pullback diagram by [15; Cor. 4.2]. Therefore M is homotopy equivalent to

the weak pullback of (hλμoφ){0)ol(pu 0) and /(P2, 0). Now G(n)(0)^K(<2, 3)x

••• xK(Q9 dn — \) as loop spaces ([15; Lemma 7.4]) and (hλμ°φ)(0) is represented

by a diagonal matrix. Thus (hλμ

oφ)(0) is a loop map up to homotopy type.

Furthermore I(Pf, 0) and £(Pί)o/(P.) for i = l , 2 are all loop maps. Thus, up to

homotopy type, M is a loop space and threre is a loop m a p / : G(n — 1)-»M so that

hof~cλ(Pi)oKPi)~hoCλ f ° r ί = l ,2 . But according to Hilton-Mislin-Roitberg

[7; Th. 1], two maps # f : G ( n - 1)->M (ί = 1, 2) are mutually homotopic if and only

if li°gι ~ lio92 f° r z = 1? 2. Thus ίA ̂ / and the proposition is proved. Q. E. D.

§5. Zabrodsky's secondary operations and the proof of Proposition 3.2

ϊn this section, let d= 1, G(n, l) = SO(n), n = 2fc+l, M(Λ) = M(π, 1, A) in
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(1.2) and p be a prime.

LEMMA 5.1. If λ = 0 mod]?, ί/ten we have the following isomorphism of

algebras over the modp Steenrod algebra J?/:

H*(M(λ); Zp) s H*(S2k; Zp) ® tf*(SO(2k); Z p).

PROOF. The case p is odd: Consider the bundle SO(2k)-L>SO(2k+l)-?U

S2k in (1.2). We notice that (cf. [1 Prop. 10.2])

H*(SO(2k); Zp) = Λ(x39 x7,..., * 4 f c _ 5 , e2k.ί),

); Zp) = Λ(y3, yΊ,...9 y4fc_5, j ; ^ ) ,

and e*yi = xi (i^4k — 5), = 0 (i = 4k — 1). Furthermore, in the Serre spectral se-

quence {£**, ί/r} of modp cohomology for the above bundle with £f* =

H*(S2k\ Zp)®H*(SO(2k); Zp), dr: Es

r>
t->Es

r

+r>t-'+ί vanishes except for

d2ki\ ®e2k-ιa) = ξ®a (ξe H2k(S2k Zp\ a generator a e H*(SO(2k) Zp)).

Now, let {£**, ^Γ} be the spectral sequence for SO(2k)J±+M(λ)^>S2k in

(1.2) and h* :.£**-»£** be the map induced by /iA and /ϊΛ in (1.2). Then, JBj* =

£"! * and

= 0

because λ = 0 modp. So, 3

Thus {£**} collapses, and we have the lemma.

The case p = 2: Then (cf. [1; Prop. 10.3, (10.6)])

(5.2) fl*(SO(2fe);Z2) = Z 2 [x 1 ,x 3 , . . . ,x 2 k . 1 ]/(xί(θ: i = 1, 3,..., 2fc-l),

); Z2) = Z ^ j ^ j ; 3 , . . . , ^2fc_1]/(jf '>: i = 1, 3,..., 2/c-

and ί*yi = xi, where s(i) (resp. t(i)) is the least power of 2 not less than 2k/i (resp.

(2k + l)/0 Furthermore, if 2k = u(2v-l) and M is a power of 2, then π*(£) =

(^2^1)" for a generator ξ e H2k(S2k Z2).

Now, put z^hfyiGH^Miλ); Z2). Then ^Jz^x,. If iφ2υ-U then s(/) =

ί(i) and zf<'> = £?/<'> = (). If / = 2ι;-l, then S(I) = M and zf(ί> = Λj(y2l?_1)
ll =

β*π*ξ = π*(^ξ) = O since A = 0 mod 2. So, we can define an ^-algebra homomor-

phism

φ:Ή*(SO(2ky, Z2) — H*(M(λ); Z2) by φx Γ = z, (i = 1, 3,...,2k - 1),

which satisfies c%oφ=zid. Hence, by the theorem of Leray-Hirsch, we have an

j/-algebra isomorphism

: H*(S2k; Z2) ® H*(SO(2k); Z2) s //*(M(A); Z2) by

Q.E.D.
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PROOF OF PROPOSITION 3.2 FOR ODD p. Suppose λ==0 mod p. Then,

H*(M(λ), Zp)^H*(S2k; Zp)®H*(SO(2k); Zp) as algebras by Lemma 5.1, which

admits no Hopf algebra structures by BoreΓs structure theorem. So, M(λ) is

not a mod p //-space. Q. E. D.

Now we consider the case p — 2.

(5.3) ([16; Prop. 1.5]) Let

j£o-^>*o-Ax, E >ΠK(Z2,ms)JUnK(Z2Jt)

be fibrations such that Xo and X are H-spaces, f is an H-map, the products are

finite products and h is a loop map so that Xo and E have the H-structures in-

duced by H-maps f and h9 respectively. Assume that

(5.4) I m ( / * : H*(X; Z 2) — > H*(X0; Z2)) = Σi<nHKXo; Z2)

for some n with n^msand2n^lt. Then, for any mapg: Xo-+E, the composition

g°c: Xo-+E is an H-map.

LEMMA 5.5, (i) Let f: X0^X be an H-map between H-spaces satisfying

(5.4) for some n. Then, for any map / ' : X0->K = K(Z2, n), XxK has an H-

structure so that (/,/')• XQ-*XXK is an H-map.

(ii) Let Xo be an H-space and X = Πί=ι K(Z29 nr). If a map f:X0->X

satisfies (5.4) for some n with n^nr, then X has an H-structure so that f is an

H-map.

PROOF, (i) Let μ0 and μ be //-structures of Xo and X, respectively. Con-

sider

D: Xo x Xo > K given by D(y, / ) =f'(yfrψ(yyψ(μ0(y, /)) ,

where K = K(Z2, n) is regarded to be a group. Then, D\X0 V l o ~ * ar*d

D ~ Don: Xo x Xo -^-> Xo A Xo -5_> K (π denotes the projection)

for some map D. By the assumption (5.4), DeHn(X0AX0; Z2) is contained in

the image of (/Λ/)*: H»(X AX; Z2)^Hn(X0 AXo Z 2). So, we get a map

d: X A X —> K = X(Z2, n) with do(f A f) - D.

Thus, we see by definition that XxK has an //-structure

μΊXxKxX xK >X x K given by' μ'(x9 k, x\ k') = (μ(x,xf), kk'd(x9 x'))9

and that (/, / ' ) : X0^X x K is an //-map with respect to μ0 and μ!.

(ii) We may assume that nr^ns if r<s. Put Ks = Y\s

r=ί K(Z2, nr) and let
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fs: XO-*KS be the composition of/and the projection X = Kt~>Ks. Then, since

nr^ns^n for r < s , (5.4) shows that

So, we see that Ks=^Ks^ί xK(Z2, ns) has an //-structure so that/ s : XO-*KS is an

//-map, by induction starting from Ko = * and by using (i). Thus, (ii) holds for

X = Ktzndft=f. Q.E.D.

Now, let

Ko = K(Z29 2k) JbL>κx= K(Z2, 4k) -f^K2= K(Z2i 4fc +1)

be the maps such that

hξc4k = (c2k)
2, hfc4k+ί=Sq1c4k (cteH'(K(Z29 t); Z2) is the fundamental class).

Then, h^h^c4k+ί=Sqx(c2k)
2^=0 and so htoh0 is homotopic to *. Thus, we have

the following 2-stage Postnikov system

ΩKX = K(Z2, Ak-l)-l^E~^U ΩK2 = K(Z2, 4k)

(5.6) jr

where r: E-+Ko is the homotopy fibre of h0, j is the natural map and ΐi^ is the map

induced from a homotopy of hχohQ to * so that hίoj~Ωhί. Then, A. Zabrodsky

proved the following

(5.7) ([20; Lemma 3.4.1]) μ*v

for v=ίίfc4k and u = r*c2k, where μ: ExE-+E is the loop multiplication.

PROOF OF PROPOSITION 3.2 FOR p=2. Contrary to Proposition 3.2 for p = 2,

suppose that M(λ) = M(/t, 1, λ) is a mod 2 //-space for even λ, where n = 2k+\.

Then, we have an //-space X and a 2-equivalence φ: X-+M(λ). According to

Lemma 5.1 and (5.2), the algebra //*(X, Z 2) over <$/ is given by

(•) H*(X; Z2) = ^ ( 0 ® Z 2 [ z l f z3,..., Z a ^ J / ί z f O : / = 1, 3,..., 2/c-l),

C = φ*πK, z, = φ*^ίy,, πjξ ^ Im /if,

where πA, ίλ and hλ are the maps in (1.2), ξeH2k(S2k; Z2) is a generator and

X;, j j and 5(0 are given in (5.2). Consider the map

f:X—+K0=K(Z2, 2k) with / % f c = C .

τhmj*hξc4k =f*(c2k)
2 = ζ2 = 0 and we have a lift



462 Yutaka HEMMI

f:X—+E with r<>f~f for r: E > Ko in (5.6).

Furthermore, consider the fibering

X-L+X-&+nUiK(Z2.2i-l) with . 0**21-1 =*2<-i

Then, by Lemma 5.5 (ii) and (5.3), X is an //-space with multiplication μ so that

?°c: X-+E is an //-map. So, (5.7) shows that

(**) fi*(f°O*v = (/o

where (foc)*u = c*f*r*c2k = c*ξ. Now, by using (*), we see that

Im gf* = Im (φ*°/ϊ*) ^ ζ, I m ί * ^ //*(X Z2)//Im #* = Λ(0 and ί*C # 0.

Furthermore, f*υ e H*k(X Z2) = (Im g*) - H*(X Z 2) and (foe)*υ = 0. Thus, the

left and the right hand sides of (**) are zero and non-zero, respectively, which is a

contradiction. So, Proposition 3.2 for p = 2 is proved. Q. E. D.

§ 6. Proof of Proposition 3.11 (i)

The rest of this paper is devoted to prove Proposition 3.11.

Let p be an odd prime and s/ denotes the mod p Steenrod algebra.

LEMMA 6.1. Let m — pst with tφO mod p. Then,

&m = JH=o^pi(Xi for some

PROOF. When r= 1, the equality is trivial.

Assume that t ̂  2. If s = 0, then m = t φ 0 mod p and the Adem relation shows

that

Now, assume inductively that the equality is true for srg/— 1, and consider the

case m — qt with q = pι

9 / ^ l . Consider the Adem relation

. = Λ^^ ^ ^)(f
X V

Then,. α o #.0 modp because ςf(ί— l)(p— 1)— i — aq + q — 1, a = (t— l)(p—1) — 1 =

— ί ^ O m o d p a n d q = pι. Also, ^ - ί ^ 0 . m o d p ! for 0<i^q/p = pl~1. Thus,

we see the equality by induction. Q. E. D.

In the rest of this section, the coefficient Zp in cohomology is omitted to

simplify the notation.
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PROOF OF PROPOSITION 3.11 (i). By the assumption that M(G, λ) is a mod p

loop space, let / : ΣM(G, λ)->Y be the adjoint of a p-equivalence M(G, Λ)->ΩY.

Contrary to (i), suppose that λ = 0 mod p. Then, by (3.4-6),

(6.2) H*(M(G, λ)) = Λ(eu...,ek) (dim ̂  = 2^-1), ek = πfξ,

fifxi == ef (if i <k), = 0 (if i = k) mod £ M ,

where DM — DH*(M(G, λ)) is the decomposable module. Furthermore,

(6.3) H*(Y) = Zp[yl9...9 yk] (dim ^ = 2πf), /*>', s ^ mod D M ,

where/*: H*(Y)->H*(ΣM(G, λ^^H^'^MiG, A)). So, for any

/ ^ , λ)))

where .sΓ is the augmentation ideal of ja ,̂ since /if: Ht~1(G)^Ht~1(M(G, λ)).

Furthermore ek<£lmhf + DM. Thus e fc^/*j3Γ(H*(y)) + D M and

yk <

Now, by changing generators except for yki we may assume that

(6.4) <*(H*(Y)) <= Z P {1, yl9..., Λ - J + D y .

Since nk = pab and b^έO mod/?, Lemma 6.1 implies that

(6.5) yl = &nhyh = Σf=o ^p ia/y f c for some

On the other hand, we see the following

(6.6) For any ueH*(Y) with άimu>2nk(p— 1), ^ju (j>0) is a polynomial

in >>!,..., yk without including the term y{.

In fact, dim u >2nk(p— 1) implies that u e D(

γ

p) where

(6.7) D(

y

ί) = />( ί)JJ*(ϊr) is given by D(

y

2) = D r and D (

y

ί + 1 ) = D ^ . f i ^ T ) (t ^ 2).

So, « s Σ c j ι f i ^ (ceZ p ) modD (

y

p + 1 ) and

Hence ^•''M does not contain yl by (6.4).

Now, dim α ^ = 2nfcp — 2ρ\p — 1) > 2^/? — 1) since b > p in (6.5). So, j>£ does

not appear in the right hand side of (6.5), which is a contradiction. Therefore,

(i) is proved. Q. E. D.
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§ 7. BP-theory and the Landweber-Novikov operation

In this section, we summarize the known facts on the BP-theory and prove

Proposition 7.7, which are used to prove Proposition 3.11 (ii) in §8. The main

references are [8] and [9].

Let p be an odd prime and Z ( p ) be the integers localized at p. Then,

£ P * = Z(p)lυu ι;2,...], M = dim*, = - 2(pι-l).

(7.1) (cf. e.g. [8]) Let Y have the homotopy type of a CW-complex of finite

type. Then, the BP-cohomology BP*Yat p ofYis a module over BP*. Further-

more, the Thorn map

T: BP*Y > //*(Y; Zp) (which is a ring homomorphism)

is epimorphic and ker T=(p, υί9 v2,...) (the ideal generated by {p, vί9 v2,...}),

if H*(Y; Z) has no p-torsion.

Let E = (el9 e2,...) be an exponential sequence, i.e., a sequence of integers

e^O being 0 except for a finite number of i. Then, we have the Landweber-

Novikov operation

rE e BP*BP with deg rE = \rE\ = | £ | = 2 Σ et(pl -1).

(7.2) ([8; (1.1)]) rE acts on BP*Yso that the diagram

BP*Y ϊ& >BP*Y

[r \τ
H*(Y; Zp) * Ά H*(Y; Zp)

is commutative, where χ: s/-*s/ is the canonical anti-automorphism on the

moάp Steenrod algebra s/.

(7.3) ([9; (2.1)]) Put vo = p and ^ t = ( 0 , . . . , 0, t, 0,...) where t is in the i-th

position. Then,

rEvn = !;„_. if E = p^Ai, = 0 otherwise, mod (p, vu v2,...)
2;

M(P, v» υ2,...γ) cz (p», vu v2,...) (cf. [9; (2.3)]).

In the rest of this section, we concern mainly with the following composition

law:

(7.4) ([8; (1. 2)]) rErF = ΣR(X)=F,S(X)=EH^T(X) mod (vu v2,...),

where X ranges over all matrices (x l7) (i,7 = 0, 1,...) being omitted the term x 0 0
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and consisting of integers x ι 7 which are 0 except for a finite number of (i, j).

Furthermore, for such a matrix X = (xij), the exponential sequences

and b(X) e Z are defined as follows:

For exponential sequences E = (el9 e2,...) and F = (fί9f2,...), put

e 2 + / 2 , ) Also, put E — F = (et —fl9 e2—f2,...) if e^fi for any z. Furthermore,

a linear ordering £ < F is defined in [8] as follows:

(7.5) E<F if and only if (1) | £ | < | F | , or

(2) | £ | = \F\ and et=fi if i>s while e s > / s , for some s.

LEMMA 7.6. | T(X)\ = |Λ(X) + 5(X) | αnc/ Γ(X) g Λ(Jf) + S(X) in (7.4).

PROOF. If Xij — 0 for ί/VO, then r^x^, Si = xOi and ί^Xio
So T(X)==Λ(Z)4-5(X). Assume that x ί 7^0 for some i/#0, and let x β b #0
(αb=^0) and x^—0 for i + j>a + b and i/VO. Then, for i^ia + b, we have
ri = xί0, Sf^^ot and

if = xio + ^oi = ri + si if Ϊ > fl + ί>, ί, = xi0 + xoi > rt + Si if i = a + b.

So T(X)<R(X) + S(JO. IΓP0| = |K(X) + S(X)\ is clear by definition. Q. E. D.

Now, we prove the following decomposition formula of prpm by using (7.4),
where rt = rtΔί:

PROPOSITION 7.7. Let m ^ 1. 77ierc,

^ r p m = Σ ^ s ^ s m o d ( j [ ) 2 , i ; l s v2,...)

for some θseBP*BP and some exponential sequences Es with

(1) \Es\<4p ι/m = l, \Es\<2pm if m^2;
(2) EsφΔJor alli^L

To prove this proposition, we notice the following

LEMMA 7.8. Let m^2 and E be an exponential sequence with \E\ =2pm(p — 1)
andEΦpmΔv Then

= Σ ^ Λ mod(p 2 , v l 5 v29...),

where θseBP*BP, Es satisfies (I) for m^2 and (2) m Proposition Ί.Ί, aFeZ(p)9

|F| = |£| andF<E.
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PROOF OF PROPOSITION 7.7 FROM LEMMA 7.8. The case m = 1: By (7.4), we

have r2rp^2—\2jrp modO^, 2̂> ) a n d hence

prp = - 2r 2 r p _ 2 modQ?2, υί9 ι>2,...)

Since \2A^ =4(p— l ) < 4 p and 2AX ΦΔi9 this is the desired formula.

The case m ̂  2: Put q = pm~λ. Then, (7.4) shows that

(*) V w - i Ξ Σ?=<?/p<VW,p_ f$f), α, = ( M ~ _ ^ ~ ' ) , mod(i>l9 f>2,...)

Here, the term for * = 0 is

( ^ / ) = prp, modp2.

Also, in the left hand side of (*), qA1 satisfies (1) and (2), i.e., \qAί\—2q(p—1)<

2pq and igrzlt =̂ d̂t- for all i. Furthermore, if ί ^ l , then E = (pq — tp~t9 t) in the

right hand side of (*) satisfies \E\=2pq(p— 1) and EΦpqAx, and hence r ( M _ ί p _ M )

is decomposed into the form given in Lemma 7.8. Therefore, (*) implies the

desired formula. Q. E. D.

PROOF OF LEMMA 7.8. We prove the first congruence. Then, it can be ap-

plied also for rF there, since F <E with | F | = | £ | also satisfies the assumption of the

lemma. Also for £, the number of F's with F<E and \F\ = | £ | is finite. There-

fore, we see the second congruence using the first one finite times.

Let E = (eue2,...) satisfy \E\=2pm(p-l) and EΦpmAx. If etφ0, then
2{pf -1) ^ \E\ = 2pm(p -1) and so t <; m. Suppose et g 1 for all t. Then 2pm(p - 1 )

= \E\ S2 ΣΓ= i(jPf ~ 1)<4pm, which contradicts p;> 3. Therefore ef Ξ>2 for some ί.

Let β t = Σ WfP* be the p-adic expansion. Then, u ^ O f o r some i ^ l or M O ^ 2 .

Assume M ^ O for some ιΊ>l. Then, 2 p ί ( p ί - l ) g | £ | = 2 p m ( p - l ) and so

i + t^m or (/, ί)=(^> 1) If (Ϊ» 0= =(m» IX then £ = jPm^i which contradicts the

assumption. Thus i + t^m. Now, (7.4) shows that

mod(ϋ 1 ? u 2 , . . .),

where aFeZ, | F | = |JE| and F<E by Lemma 7.6. Here, (e\\φΰ modjp since

UiΦO. Furthermore, \piAt\=2pi(pt-l)<2pm since i + t^m. So, we see the

desired congruence.

Assume uo^2. Then, (7.4) and Lemma 7.6 show that

riΔjΈ-iΔx Ξ ( 2 J r E + Σ aFrF mod (t;1? u 2 , . . .),
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where aFeZ, | F | = |JE| and F<E. Since ( 9 7 ^ ° modp by w o έ2, this shows

the desired congruence. Q. E. D.

§ 8. Proof of Proposition 3.11 (ii)

In this section, we assume that G is a simply connected finite moάp loop

space and H*(G; Z) has no p-torsion (p: odd prime), and that

1 = 0 mod p and M = M(G, λ) ~pΩY for some Y.

We continue to use the notations given in (3.4-6) and (6.2-3), and the coefficient

Zp in cohomology is omitted.

LEMMA 8.1. BP*G = ΛBP*(gu..., gk) ( d i m ^ = 2w,-l),

BP*M = ΛBPJ(el9...9 ek) (dime, = 2 n f - l ) ,

BP*Y = BP*[[yl9..., M ] (dimy t = 2nd

(BP*[[ ]] denotes the ring of power series), and the generators gu e t and y{

can be taken to satisfy Tgt = gi9 Te^e^ Tyt = yb

t ( f ) ,
f*yt = et mod DM = DBP*M,

λek (ϊ/i = fc),

and πfξ = ek, where T denotes the Thorn map and BP*Sm = ΛBP*(ξ), Tξ = ξ

PROOF. We notice that (7.1) is valid for G, M and Y.

Take gteBP*G with Tg^g^H^G) for i<k, and put gk = π*ξeBP*G.
Then Tgk = π*ξ = gk by (3.5). We have ^ = 0 since dim ^ is odd. So, we see the

equality for G by (7.1).

In the second place, we define et e BP*M inductively. Put et = h*g1. Then

Teί = hfgί = eί by (6.2), since D// 2 n i " 1 (M) = 0. L e t j > l and assume that e{ is

defined for any i < j so that Tet = e{ and hfg( = et mod DM. If 7 < /c, then Tftfgj =

h*gj = ej + dj for some djGDM9 and dy is a polynomial of ef (/<j) by (6.2). So,

we can take 3jeDM such that T3j = dj by the inductive assumption. Put e} —

h*9j — dj. Then, Ύe^ — e^ and hfgj = ej modl5 M as desired. When j = /c, put

ek = πfξ. Then, ίίfgk = πfhfξ=λπfξ = λek and Tek = πfξ = ek. Thus, we have

defined ef and the equality for M holds by the same reason as that for G.

Finally, we define yteBP*Y inductively. Take yteBP*Y with Ty — ^ e

ff*(Y) for any i. Then Tf*y%=f*yi = ei m o d D M . Let 0=/(0)</(l) < — <

/(0 < /(ί +1) = fe be the sequence of integers such that nt = n ί ( s ) for /(s — 1) < i ̂  /(s).

By the equality for M,
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BPmM/DBPmM £ Z(p){ei\l(t) < i <> k) (m = 2nk-ΐ)

because | ^ | < 0 for ΐ>0. Therefore, for any i with l(t)<i^k,

f*9t ^ Σ atJej mod DM (l(t) <j£k),

where ais e Z ( p ) and 0^ = 3^ (the Kronecker delta) mod p. Consider the matrix

^ = (α ι7). Then det^4 = l moάp and we have the inverse matrix Λ"ί = (biJ).

Since v4 is the identity matrix mod p9 so is A"1 and 6^ = 5^- mod p. Now, put

ft = Σ ; 6 ι Λ for l(t) <i^k.

Then, we see that 7 * ^ = ̂  m o d 5 M and Ty^Ty^yi.

Suppose inductively that yteBP*Y is defined for any ί>l(s) (s^t) so that

Tyi-yi and / * f t s e £ modl5 M . By the equality for M, BPm'MjDBPm'M (m' =

2nZ(s) — 1) is isomorphic to

Z(p){e, , ufa I /(s-1) < j ^ l(s) < ί, ut e B~P*, \ut\ + 2nt - 1 = m'} .

So, for any i with Z(s — 1) < j ^ l(s),

f*yj = Σj> ajrer + Σ ι W , mod 5 M (/(s-1) < / S l(s) < i),

where ajr, CμeZip) and ajr = δjr mod p. Hence

Piyj—ΣiCjiUi^) = Σj>ajΊ>er modDM

since f*yi = ei mod D M for i>l(s). Therefore, by the same argument as above,

we can obtain yj (l(s — 1) < j g /(s)) from yj so that Z * ^ = e} mod 5 M and Tpj = ̂  .

Thus, we have defined yt and the equality BP*Y=BP*[[yίf..., ykj] is seen

by (7.1). Q.E.D.

Now we assume that

(8.2) nk = p°bAύb<p and gk<£ s/(H*(G)) = s/(H*(G;Zp))9

which is the assumption in Proposition 3.11 (ii). We may also assume that

(8.3) ^ ( H (G)) c Zp{l, gl9..., Λ . J + DG (DG =

by changing generators gi except for gk.

LEMMA 8.4. rEyteBP*{l9 yl9...9 yk-ι}+Dγ + (P2, vl9 ι?2,...) for any i<k,
where Dγ = DBP*Y.

PROOF. Since i<k9 Tr^^^^g^Z^l, gl9...9 gk-x}+DG by (7.2),

Lemma 8.1 and (8.3). Hence, by (7.1),

rE9i = cgk moάBP*{l, gί9..., gk_±} + DG + ( p 2 , vl9 υ29...) φ G
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w h e r e c — 0 m o d p. S o , f*rEyi^rEei = hlrEgi = cXgk=z0 m o d £ P * { l , eί9...9 ek-x]

+ ^ M + (P2> vu v2,".)> since λ = 0 mod p. This shows the lemma since Ker/* =

Dγ by Lemma 8.1. Q.E.D.

PROOF OF PROPOSITION 3.11 (ii). In addition to the assumptions stated in

the beginning of this section and in (8.2), we assume that p<nk. Then, we arrive

at a contradiction as is seen below; and so we see Proposition 3.11 (ii).

We notice that α ^ l by (8.2) and p<nk. Now, in the right hand side of

(6.5), dimα f <y f c>2n f c(p-l) if i<a. So, by (6.6) and (6.5), 0>paoίayk includes yv

k.

On the other hand,

H»(Y) = D^Hn(Y) = N + Zp{yp

k} mod !>^+1>H"(Y) for n = 2nkp,

where N = ZJ,{j;il <yίp| / < / 1 g ^ i p ^/c and ίι<k} for / with nι<nι+ί = nk. So,

yl ΞΞ 0>paOLayk m o d i V +

Here, 0>pa= - χ ^ ^ + Σ ^ Ί 1 &J x(^pa~J) and we see that

does not include yl for 0<j<pa by Lemma 6.1 and (6.6). Therefore, y{° =

-χ{^pa)oiayk mod N + D(P+VH*(Y). This implies that

yl = rpαz modΐV + D ( / + 1 ) + (/?, vu t?2,...) (5(yί) = Z>ίί)J5P*r)

by (7.2) and (7.1), where ]V = J5P*{j;t.1 .j; ίJ / < i , S'-ύiP^k and ί^fe}. Ap-

plying Proposition 7.7 to this equality, we have

(8.5) pyl s pr p .z s Σ r £ f ^ modN + D ( / + 1 ) . + (p 2, ϋ 1 ? ι?2,...),

where |£ β | <4j? if α = 1, |EJ < 2pa if α ̂ 2 and £ s Φ A for all i ̂  1. We remark that

(#, ft)7^(1, 1) since pab = nk>p>b by assumption. Now, in (8.5),

dimθ s2 = dim j f - |EJ = 2nkp - \ES\ > 2nk(p-l),

since 2nk = 2pab ^ Ap if α = 1 and ft > 1. Thus θsz e 5^p ) by the dimensional reason

and |ι?, | < 0 for />0. Therefore, we may write as follows:

θsz = w -h

where vv, w0, WfeD^Z^)^! , . . . , yfc]. Thus, we see that

rEsθsz = r£svv + ^r £ s w 0 + ^ Σ ^ O ^ - J ^ mod (p2, vl9

for Es=(eu e29...), by (7.3) and the Cartan formula Γ F (I1 1 M 2 ) = Σ F 1 + F 2 = F ( ^ F 1 W I )

(r F 2 ΰ 2 ) for the Landweber-Novikov operation (cf. e.g. [8]). Here, \ES — At\ Φθ for

any ί with e f > 0 since £ s # z l ί . Therefore, we have

rEsθszeN + D</+i> + (p*9 vί9 v29...)
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by Lemma 8.4 and w, w0, VV /GD (^>Z ( P )[J; 1,..., j J . This contradicts (8.5); and

Proposition 3.11 (ii) is proved completely. Q. E. D.
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