On finite \boldsymbol{H}-spaces given by sphere extensions of classical groups

Yutaka Hemmi
(Received January 19, 1984)

§ 1. Introduction

An H-space is a path-connected (based) space admitting a continuous multiplication for which the base point is a homotopy unit. An H-space is called finite if it has the homotopy type of a finite $C W$-complex. Typical examples of finite H-spaces are the product spaces of Lie groups, the 7 -sphere S^{7} or the 7projective space $R P^{7}$. The other examples are constructed by Hilton-Roitberg [6], Curtis-Mislin [4], A. Zabrodsky [17] and so on. These are given actually by sphere extensions of the classical groups $S O(n), S U(n)$ or $S p(n)$ which we shall discuss in this paper. To prove our main results we find a decomposition formula for cohomology operation in the BP-theory, which would be useful in the further study of H-spaces.

Let $d=1,2$ or 4 , and

$$
\begin{equation*}
G(n, d)=S O(n), S U(n) \text { or } S p(n) \text { according to } d=1,2 \text { or } 4 . \tag{1.1}
\end{equation*}
$$

Consider the commutative diagram

of the principal bundles for any integers $n \geqq 2$ and λ, where the lower bundle is induced from the upper one by the map h_{λ} of degree λ. The total space $M(n, d, \lambda)$ is called a sphere extension of $G(n-1, d)$. On the conditions for $M(n, d, \lambda)$ to be an H-space, the following are known:
(1.3) ([17; Cor.]) When $G(n, 1)=S O(n)$ and n is even $\neq 2,4,8, M(n, 1, \lambda)$ is an H-space if and only if λ is odd.
(1.4) ([4], [17; Cor.]) When $G(n, 2)=S U(n), M(n, 2, \lambda)$ is an H-space if and only if $n=2,4$ or λ is odd.
(1.5) ([17; Cor.], [18; Th. 3.10]) When $G(n, 4)=S p(n), M(n, 4, \lambda)$ is an H-space if and only if λ is odd or $n=2$ and $\lambda \not \equiv 2 \bmod 4$.

The purpose of this paper is to complete (1.3) in case when $n=2,4,8$ or n is odd, and furthermore, to give the condition for the H-space $M(n, d, \lambda)$ to have the homotopy type of a loop space. Our main results are stated as follows:

Theorem A. $\quad M(n, 1, \lambda)$ in (1.2) for $G(n, 1)=S O(n)$ is an H-space if and only if

$$
n=2,4,8 \text { or } \lambda \text { is odd when } n \text { is even, and } \lambda= \pm 1 \text { when } n \text { is odd. }
$$

Furthermore, in these cases, $M(n, 1, \lambda)$ has the homotopy type of a loop space, and in fact, it is homotopy equivalent to $\mathrm{SO}(n)$.

Theorem B. $\quad M(n, d, \lambda)$ in (1.2) for $G(n, 2)=S U(n)$ or $G(n, 4)=S p(n)$ has the homotopy type of a loop space if and only if
$\lambda \not \equiv 0 \bmod p \quad$ for any prime p with $2 p<d n ;$
and then $M(n, d, \lambda)$ is p-equivalent to $G(n, d)$ for any prime p.
We remark that $M(n, d, \lambda)$ in Theorem \mathbf{B} is not homotopy equivalent to $G(n, d)$ if $\lambda \not \equiv \pm 1 \bmod (d n / 2-1)$! by A. Zabrodsky [19; Th. A].

Theorems A and B follow from Theorems A and B, respectively, which are presented in $\S 2$ by considering the conditions that $M(n, d, \lambda)$ is p-equivalent to an H-space or a loop space for a prime p. In addition to Theorems A and B, we state in Proposition 2.4 that ϵ_{λ} in (1.2) is a loop map up to homotopy type, which is proved in $\S 4$. Theorem A is proved in $\S 3$ assuming Proposition 3.2 which is proved in $\S 5$ by using the unstable secondary operations introduced by A. Zabrodsky. Theorem B is proved in $\S 3$ assuming Proposition 3.11 which is considered in a little more general situation than $M(n, d, \lambda)$. We prove (i) of Proposition 3.11 in $\S 6$ by studying the action of the Steenrod algebra, and (ii) in $\S 8$ after performing a decomposition formula (Proposition 7.7) for the Landweber-Novikov operations in the $B P$-theory in $\S 7$.

The author wishes to thank Professor M. Sugawara for his many helpful suggestions.

§ 2. Restatement of results

Throughout this paper, we assume that all spaces, maps and homotopies are based, and all spaces are path-connected and have the homotopy type of $C W$-complexes.

Let p be a prime. Then, we say simply that a map $f: X \rightarrow Y$ is a p-equivalence if f is a $\bmod p$ (co)homology equivalence, i.e., if

$$
\left.f_{*}: H_{*}\left(X ; Z_{p}\right) \longrightarrow H_{*}\left(Y ; Z_{p}\right) \quad \text { (or equivalently } f^{*}: H^{*}\left(Y ; Z_{p}\right) \longrightarrow H^{*}\left(X ; Z_{p}\right)\right)
$$

is an isomorphism. When such a map f exists, we say that X is p-equivalent to Y and denote by $X \simeq{ }_{p} Y$. We notice that this relation \simeq_{p} is an equivalence relation in the category of p-universal spaces and spaces treated in this paper are all in this category (see [13-15] for the definition and the properties of p-universal spaces). We say that X is a mod $p H$-space (resp. a mod p loop space) if it is p-equivalent to an H-space (resp. a loop space ΩY for some Y).

Now, for $G(n, d)$ and $M(\lambda)=M(n, d, \lambda)$ in (1.1-2), we consider the following conditions:
$(p \mathrm{H})($ resp. $(p \mathrm{~L}),(p \mathrm{G})) M(\lambda)$ is p-equivalent to an H-space (resp. a loop space, $G(n, d)$),
where p is a prime or ∞ and ' ∞-equivalent' means 'homotopy equivalent'. $((\infty \mathrm{H})$ means that $M(\lambda)$ is an H-space.) Then, we can state Theorems A and B which are stronger versions of Theorems \mathbf{A} and \mathbf{B} in the introduction.

Theorem A. Let $d=1, G(n, 1)=S O(n)$ and $M(\lambda)=M(n, 1, \lambda)$.
(I) The case n is even: (i) $(p \mathrm{H}),(p \mathrm{~L})$ and $(p \mathrm{G})$ hold for any odd prime p.
(ii) The conditions $(2 \mathrm{H}),(2 \mathrm{~L}),(2 \mathrm{G}),(\infty \mathrm{H}),(\infty \mathrm{L}),(\infty \mathrm{G})$ and the following (2.1) are equivalent to each other:

$$
\begin{equation*}
\lambda \text { is odd, or } n=2,4,8 . \tag{2.1}
\end{equation*}
$$

(II) The case n is odd: The conditions $(p \mathrm{H}),(p \mathrm{~L}),(p \mathrm{G})$ and the following (2.2: p) are equivalent to each other for any prime p or $p=\infty$:
(2.2: $p) \quad \lambda \neq 0 \bmod p($ when p is a prime $) ; \quad \lambda= \pm 1($ when $p=\infty)$.

Theorem B. Let $d=2$ or $4, G(n, d)=S U(n)$ or $S p(n)$ and $M(\lambda)=M(n, d, \lambda)$.
(i) The conditions $(p \mathrm{~L}),(p \mathrm{G})$ and the following (2.3: p) are equivalent to each other for any prime p :

$$
\begin{equation*}
\lambda \not \equiv 0 \bmod p, \quad \text { or } \quad 2 p \geqq d n . \tag{2.3:p}
\end{equation*}
$$

(ii) The condition $(\infty \mathrm{L})$ is equivalent to $(p \mathrm{G})$ for all prime p and also to (2.3: $\infty) \quad \lambda \not \equiv 0 \bmod p \quad$ for any prime p with $2 p<d n$.

In addition to these theorems, we have the following
Proposition 2.4. When $M(n, d, \lambda)$ is homotopy equivalent to a loop space, i.e., when (2.1) or $(2.2: \infty)$ holds in Theorem A or when (2.3: ∞) holds in Theorem B, the map $c_{\lambda}: G(n-1, d) \rightarrow M(n, d, \lambda)$ in (1.2) is homotopy equivalent to a loop map in the sense that we can choose a homotopy equivalence f of $M(n, d, \lambda)$ to
a loop space so that the composition $f \circ \iota_{\lambda}$ is a loop map.
We remark that $\tilde{h}_{\lambda}: M(n, d, \lambda) \rightarrow G(n, d)$ in (1.2) is not necessarily homotopy equivalent to a loop map unless $\lambda= \pm 1$, even if $M(n, d, \lambda)$ is homotopy equivalent to $G(n, d)$.

§3. Reduction of Theorems A and B to some propositions

In this section, assuming Propositions 3.2 and 3.11 stated below, we prove Theorems A and B by using mainly the results due to A. Zabrodsky [17] [20].

Proof of Theorem A (I). The implications $(p \mathrm{G}) \Rightarrow(p \mathrm{~L}) \Rightarrow(p \mathrm{H}),(\infty \mathrm{H}) \Rightarrow$ $(p \mathrm{H}),(\infty \mathrm{L}) \Rightarrow(p \mathrm{~L})$ and $(\infty \mathrm{G}) \Rightarrow(p \mathrm{G})$ are trivial for any $p \leqq \infty$. We notice that

$$
\begin{equation*}
\pi_{n-1}(B S O(n-1))=0, Z_{2} \text { or } Z_{2} \oplus Z_{2} \quad \text { for } n=2 k \geqq 4 \tag{3.1}
\end{equation*}
$$

(cf. [10; pp. 161-162]).
(i) Let p be an odd prime. By (3.1) and the definition of $M(\lambda)=M(n, 1, \lambda)$ in (1.2), we see that $\tilde{h}_{\lambda}: M(\lambda) \simeq{ }_{p} S O(n)$ for $n=2 k \geqq 4$. When $n=2, \pi: S O(2) \rightarrow$ S^{1} is a homeomorphism and so is $\pi_{\lambda}: M(\lambda) \rightarrow S^{1}=S O(2)$. Thus we see $(p G)$.
(ii) $(2 \mathrm{H}) \Rightarrow(2.1)$: This is shown in [17; Cor.].
(2.1) $\Rightarrow(\infty \mathrm{G})$: If λ is odd, then $\tilde{h}_{\lambda}: M(\lambda) \simeq S O(n)$ for $n=2 k \geqq 4$ by (2.5). If $n=2,4$ or 8 . then the upper principal bundle in (1.2) is trivial and so is the lower one. So, $M(\lambda)$ is homeomorphic to $\operatorname{SO}(n)$.
Q.E.D.

Theorem A (II) follows from the following proposition, which will be proved in §5:

Proposition 3.2. In Theorem A (II), ($p \mathrm{H}$) implies (2.2: p) for any prime p.
Proof of Theorem A (II) from Proposition 3.2. (2.2: p) implies ($p \mathrm{G}$) for any $p \leqq \infty$ by definition, and (2.2: ∞) means ($2.2: p$) for all prime p. So, we see Theorem A (II) by the trivial implications and $(p \mathrm{H}) \Rightarrow(2.2: p)$ for any prime p.
Q.E.D.

Proof of Theorem B (i) for $p=2$. $\quad(2 \mathrm{G}) \Rightarrow(2 \mathrm{~L})$ is trivial.
$(2.3: 2) \Rightarrow(2 G):$ If λ is odd, then h_{λ} is a 2 -equivalence and so is $\tilde{h}_{\lambda}: M(\lambda) \rightarrow$ $G(n, d)$ in (1.2). If $4 \geqq d n$, then $d=n=2, G(2,2)=S U(2)$, and $\pi_{\lambda}: M(\lambda) \rightarrow S^{3}=$ $S U(2)$ is a homeomorphism, because so is $\pi: S U(2) \rightarrow S^{3}$.
$(2 \mathrm{~L}) \Rightarrow(2.3: 2)$: When $d n \neq 8$, this is shown in [17; Cor.]. Assume $d n=8$. Then $G(n, d)=S U(4)$ or $S p(2)$. We notice that

$$
\left.\pi_{7}(B S U(3))=Z_{6} \text { and } \pi_{7}(B S p(1))=Z_{12} \quad \text { (cf. [3; 26.10], [12; Th. 2.2] }\right)
$$

By (1.2), we see that $M(n, d, q \lambda) \simeq_{p} M(n, d, \lambda)$ if $q \neq 0 \bmod p$ and p is a prime. So, $M(4,2, \lambda) \simeq S^{7} \times S U(3)$ if $\lambda=0,6, \simeq{ }_{2} M(4,2,6)$ if $\lambda=2$; and $M(2,4, \lambda) \simeq$ $S^{7} \times S p(1)$ if $\lambda=0,12, \simeq_{p} M(2,4,1)=S p(2)$ if $\lambda=2, \simeq_{2} M(2,4,12)$ if $\lambda=4, \simeq_{p}$ $M(2,4,12)$ if $\lambda=6$, where p is any odd prime. Here, $S^{7} \times S U(3)$ and $S^{7} \times S p(1)$ are not mod 2 loop spaces, because they admit no mod 2 homotopy associative H-structures by [5; Th. 2]. So, $M(4,2, \lambda)(\lambda$: even $)$ and $M(2,4, \lambda)(\lambda=0,4)$ are not mod 2 loop spaces. Furthermore $M(2,4, \lambda)(\lambda=2,6)$ is a mod $p H$-space for any odd prime, and is not an H-space by (1.5). So, it is not a $\bmod 2 H$-space by [20; Prop. 4.5.3]. Thus $M(2,4, \lambda)(\lambda$: even $)$ is not a mod 2 loop space.
Q.E.D.

Proof of (ii) from (i) in Theorem B. If $M(\lambda)$ satisfies ($p \mathrm{G}$) for all prime p, then it has the same genus type as $G(n, d)$ and hence satisfies ($\infty \mathrm{L}$), according to $[20 ;$ Cor. 4.7.4]. The implications $(\infty \mathrm{L}) \Rightarrow(2.3: \infty) \Rightarrow(p \mathrm{G})$ follow from (i).
Q.E.D.

Now, let p be an odd prime in the rest of this section. Then, Theorem B (i) for p is proved in somewhat more general situation given as follows:
(3.3) Let G be a given simply connected finite mod p loop space such that $H^{*}(G ; Z)$ has no p-torsion, i.e.,

$$
\begin{equation*}
H^{*}\left(G ; Z_{p}\right)=\Lambda\left(g_{1}, \ldots, g_{k}\right), \quad \operatorname{dim} g_{i}=2 n_{i}-1,2 \leqq n_{1} \leqq \cdots \leqq n_{k}, \tag{3.4}
\end{equation*}
$$

for some g_{i} of $\bmod p$ universal transgressive. Furthermore, let
(3.5) $\pi: G \rightarrow S^{m}\left(m=2 n_{k}-1\right)$ be a given fibering with $\pi^{*} \xi=g_{k}$ for a generator $\xi \in H^{m}\left(S^{m} ; Z_{p}\right)$.

By replacing $G(n, d)$ by G in (1.2), we can define $M(G, \lambda)$ for any integer λ by the pullback diagram

where h_{λ} is the map of degree λ. Then we can prove the following theorem, where \mathscr{A} denotes the mod p Steenrod algebra and $\tilde{\mathscr{A}}$ is its augmentation ideal:

Theorem 3.7. Under the assumption that

$$
\begin{equation*}
g_{k} \notin \tilde{\mathscr{A}}\left(H^{*}\left(G ; Z_{p}\right)\right) \quad \text { if } \quad n_{k}=p^{a} b \quad \text { and } \quad 1 \leqq b<p \tag{3.8}
\end{equation*}
$$

$M(G, \lambda)$ in (3.6) is a mod p loop space if and only if

$$
\begin{equation*}
\lambda \not \equiv 0 \bmod p, \text { or } \quad n_{k}-n_{1}+2 \leqq p ; \tag{3.9}
\end{equation*}
$$

and then $M(G, \lambda)$ is p-equivalent to G.
Proof of Theorem B (i) for odd prime p from Theorem 3.7. We notice that (cf. [1; Prop. 9.1], [2; Cor. 11.4, Cor. 13.5])

$$
H^{*}\left(G(n, d) ; Z_{p}\right)=\Lambda\left(e_{3}, e_{3+d}, \ldots, e_{m-d}, e_{m}\right), \operatorname{dim} e_{i}=i, m=d n-1, \pi^{*}(\xi)=e_{m},
$$

for $G(n, d)(d=2,4)$ and π in (1.1-2), where e_{i} is universal transgressive. Furthermore,
(*) $\mathscr{P}^{i} e_{2 j-1}=\binom{j-1}{i} e_{m}$ where $2 j-1+2 i(p-1)=m$, i.e., $j+i(p-1)=d n / 2$.
Assume that $d n / 2=p^{a} b$ and $1 \leqq b<p$. Let

$$
i=c_{0} p^{t}+c_{1} p^{t+1}\left(t \geqq 0,1 \leqq c_{0}<p, c_{1} \geqq 0\right) \quad \text { and } \quad j=p^{a} b-i(p-1)>0 .
$$

Then, since $1 \leqq b<p$, we see that $t<a,\left(c_{0}+c_{1} p\right)(p-1)<p^{a-t} b$ and

$$
j-1=c_{0} p^{t}-1+c p^{t+1} \text { where } c=p^{a-t-1} b-c_{0}-c_{1}(p-1) \geqq 0 .
$$

So, the coefficients of p^{t} in the p-adic expansions of i and $j-1$ are c_{0} and $c_{0}-1$, respectively, which implies $\binom{j-1}{i} \equiv 0 \bmod p$ as is well-known. Therefore $e_{m} \in \mathscr{A}\left(H^{*}\left(G(n, d) ; Z_{p}\right)\right)$ by (*); and the assumption (3.8) is satisfied for $G=$ $G(n, d)$. Now Theorem \mathbf{B} (i) for odd prime p is the special case of Theorem 3.7 for $G=G(n, d)$ with $n_{2}=2$ and $n_{k}=d n / 2$.
Q. E. D.

Theorem 3.7 follows immediately from the following propositions:
Proposition 3.10. (3.9) implies that $M(G, \lambda)$ is p-equivalent to G.
Proposition 3.11. Assume that $M(G, \lambda)$ is $a \bmod p$ loop space.
(i) If $b>p\left(\right.$ where $n_{k}=p^{a} b$ and $\left.b \not \equiv 0 \bmod p\right)$, then $\lambda \not \equiv 0 \bmod p$.
(ii) If $1 \leqq b<p$ and (3.8) is valid, then $\lambda \not \equiv 0 \bmod p$ or $p \geqq n_{k}$.

Proposition 3.11 will be proved in §§6-8.
Proof of Proposition 3.10. If $\lambda \neq 0 \bmod p$, then h_{λ} is a p-equivalence and so is \tilde{h}_{λ} in (3.6).

Now suppose that $n_{k}-n_{1}+2 \leqq p$. Then, we have a homotopy equivalence

$$
\varphi: S_{(p)}^{2 n_{1}-1} \times \cdots \times S_{(p)}^{2 n_{k}-1} \longrightarrow G_{(p)}
$$

by Kumpel [11], where $-_{(p)}$ denotes the localization at p (cf. [15] for the details on the localization). Here, we may assume that the composition $\pi_{(p)}{ }^{\circ} s$ of

$$
s=\varphi \mid S_{(p)}^{m}: S_{(p)}^{m} \longrightarrow G_{(P)} \quad \text { and } \quad \pi_{(p)}: G_{(P)} \longrightarrow S_{(p)}^{m} \quad\left(m=2 n_{k}-1\right)
$$

is a homotopy equivalence, i.e., s is a homotopy section for $\pi_{(p)}$. Let $\iota: Y \rightarrow G_{(p)}$ be the homotopy fibre of $\pi_{(p)}$. Then, the composition

$$
f=\mu \circ(s \times \ell): S_{(p)}^{m} \times Y \longrightarrow G_{(p)} \times G_{(p)} \longrightarrow G_{(p)}
$$

is a homotopy equivalence, where μ is the multiplication. Now we define

$$
g=\operatorname{prof} f^{-1}: G_{(p)} \longrightarrow S_{(p)}^{m} \times Y \longrightarrow Y(\text { pr denotes the projection })
$$

It is clear that $g \circ c \sim \operatorname{id}: Y \rightarrow Y$. Let $\iota_{\lambda}: Y \rightarrow M(G, \lambda)_{(p)}$ be the homotopy fibre of $\left(\pi_{\lambda}\right)_{(p)}: M(G, \lambda)_{(p)} \rightarrow S_{(p)}^{m}$ so that $\left(\tilde{h}_{\lambda}\right)_{(p)}{ }^{\circ} \ell_{\lambda} \sim c$ for $\left(\tilde{h}_{\lambda}\right)_{(p)}: M(G, \lambda)_{(p)} \rightarrow G_{(p)}$. Then $g \circ\left(\tilde{h}_{\lambda}\right)_{(p)}{ }^{\circ} \ell_{\lambda} \sim \mathrm{id}$, and

$$
\left(\left(\pi_{\lambda}\right)_{(p)}, g \circ\left(\tilde{h}_{\lambda}\right)_{(p)}\right): M(G, \lambda)_{(p)} \longrightarrow S_{(p)}^{m} \times Y
$$

is a homotopy equivalence. Thus $M(G, \lambda)_{(p)} \simeq S_{(p)}^{m} \times Y \rightarrow G_{(p)}$ and $M(G, \lambda) \simeq{ }_{p} G$ by [15; Cor. 5.4].
Q.E.D.

§ 4. Proof of Proposition 2.4

Proposition 2.4 is clear in the case (2.2: ∞) in Theorem A (II), and seen in the case (2.1) in Theorem A (I) (ii) by the proof of (2.1) $\Rightarrow(\infty \mathrm{G})$ in Theorem A (I) given in §3.

The case (2.3: ∞) in Theorem B (ii): If $d n \leqq 4$, then $d=n=2$ and $G(1,2)=$ $S U(1)=*$. Thus $\iota_{\lambda}=*: * \rightarrow M(\lambda)$ is clearly a loop map.

Suppose $d n>4$. Put $P_{1}=\{p ;$ prime $\mid \lambda \equiv 0 \bmod p\}$ and $P_{2}=\{p$; prime \mid $\left.p \notin P_{1}\right\}$. Since P_{1} is a finite set by definition, we write $P_{1}=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$. We define integers $\mu_{i}(0 \leqq i \leqq t)$ inductively so that $\lambda \mu_{i} \equiv 1 \bmod N=2\{(d n / 2-1)!\}$ and $\mu_{i} \not \equiv 0 \bmod p_{j}$ for any $j \leqq i$. Since $\lambda \not \equiv 0 \bmod N$ by (2.3: ∞) and $2<d n / 2$, there is an integer μ_{0} such that $\lambda \mu_{0} \equiv 1 \bmod N$. Suppose that we have μ_{j} for $j<i(i \geqq 1)$ with the desired properties. If $\mu_{i-1} \not \equiv 0 \bmod p_{i}$, then $\mu_{i}=\mu_{i-1}$ satisfies the desired properties. If $\mu_{i-1} \equiv 0 \bmod p_{i}$, then $\mu_{i}=\mu_{i-1}+N p_{1} \cdots p_{i-1}$ satisfies the desired properties since $N \not \equiv 0 \bmod p_{i}$ by the definition of P_{1}. Put $\mu=\mu_{t}$. Then

$$
\begin{equation*}
\lambda \mu \equiv 1 \bmod N=2\{(d n / 2-1)!\} \quad \text { and } \quad \mu \not \equiv 0 \bmod p \text { for any } p \in P_{1} . \tag{4.1}
\end{equation*}
$$

Now we notice that

$$
\begin{equation*}
\pi_{d n-1}(B G(n-1, d))=Z_{N / 2} \text { or } Z_{N} \quad(\text { cf. }[3 ; 26.10],[12 ; \text { Th. } 2.2]) \tag{4.2}
\end{equation*}
$$

Then we have the following commutative diagram of the principal bundles:

where $G(i)=G(i, d)$ and φ is a homeomorphism by (4.1) and (4.2).
Now we use the localization theory (cf. [15]). Let P be a set of primes or $P=\varnothing$. We denote $X_{(P)}$ (resp. $f_{(P)}$) for the localization of a space X (resp. a map f) at P. We also write $l(P)=l(X ; P): X \rightarrow X_{(P)}$ and $l\left(P, P^{\prime}\right)=l\left(X ; P, P^{\prime}\right): X_{(P)} \rightarrow$ $X_{\left(P^{\prime}\right)}$ for the standard maps, where $P^{\prime} \subset P$. Then (4.3) induces the homotopy commutative diagram

where $M=M(\lambda), l_{i}=l\left(P_{i}\right)$ and $l_{i}^{\prime}=l\left(P_{i}, \emptyset\right)$ for $i=1,2$. Since h_{λ} (resp. h_{μ}) is a P_{2} (resp. P_{1})-equivalence by the definition of P_{i} and (4.1), so is \tilde{h}_{λ} (resp. \tilde{h}_{μ}) Thus $\tilde{h}_{\lambda\left(P_{2}\right)}, \tilde{h}_{\lambda(\emptyset)},\left(\tilde{h}_{\mu} \circ \varphi\right)_{\left(P_{1}\right)}$ and $\left(\tilde{h}_{\mu} \circ \varphi\right)_{\left(\varnothing_{)}\right)}$are all homotopy equivalences. Now the middle square consisting of l_{i} and l_{i}^{\prime} is homotopy equivalent to the weak pullback diagram by [15; Cor. 4.2]. Therefore M is homotopy equivalent to the weak pullback of $\left(\tilde{h}_{\lambda \mu}{ }^{\circ} \varphi\right)_{(\emptyset)} l\left(P_{1}, \emptyset\right)$ and $l\left(P_{2}, \emptyset\right)$. Now $G(n)_{(\varnothing)} \simeq K(Q, 3) \times$ $\cdots \times K(Q, d n-1)$ as loop spaces ($\left[15\right.$; Lemma 7.4]) and $\left(\tilde{h}_{\lambda \mu} \circ \varphi\right)_{(\Phi)}$ is represented by a diagonal matrix. Thus $\left(\tilde{h}_{\lambda \mu} \circ \varphi\right)_{(\varnothing)}$ is a loop map up to homotopy type. Furthermore $l\left(P_{i}, \varnothing\right)$ and $\iota_{\left(P_{i}\right)} l\left(P_{i}\right)$ for $i=1,2$ are all loop maps. Thus, up to homotopy type, M is a loop space and threre is a loop map $f: G(n-1) \rightarrow M$ so that $l_{i} \circ f \sim c_{\lambda\left(P_{i}\right)} \circ l\left(P_{i}\right) \sim l_{i} \circ \iota_{\lambda}$ for $i=1,2$. But according to Hilton-Mislin-Roitberg [7; Th. 1], two maps $g_{i}: G(n-1) \rightarrow M(i=1,2)$ are mutually homotopic if and only if $l_{i} \circ g_{1} \sim l_{i} \circ g_{2}$ for $i=1,2$. Thus $c_{\lambda} \sim f$ and the proposition is proved. Q.E.D.

§5. Zabrodsky's secondary operations and the proof of Proposition 3.2

In this section, let $d=1, G(n, 1)=S O(n), n=2 k+1, M(\lambda)=M(n, 1, \lambda)$ in
(1.2) and p be a prime.

Lemma 5.1. If $\lambda \equiv 0 \bmod p$, then we have the following isomorphism of algebras over the mod p Steenrod algebra \mathscr{A} :

$$
H^{*}\left(M(\lambda) ; Z_{p}\right) \cong H^{*}\left(S^{2 k} ; Z_{p}\right) \otimes H^{*}\left(S O(2 k) ; Z_{p}\right)
$$

Proof. The case p is odd: Consider the bundle $S O(2 k) \xrightarrow{\iota} S O(2 k+1) \xrightarrow{\pi}$ $S^{2 k}$ in (1.2). We notice that (cf. [1; Prop. 10.2])

$$
\begin{aligned}
& H^{*}\left(S O(2 k) ; Z_{p}\right)=\Lambda\left(x_{3}, x_{7}, \ldots, x_{4 k-5}, e_{2 k-1}\right), \\
& H^{*}\left(S O(2 k+1) ; Z_{p}\right)=\Lambda\left(y_{3}, y_{7}, \ldots, y_{4 k-5}, y_{4 k-1}\right)
\end{aligned}
$$

and $\iota^{*} y_{i}=x_{i}(i \leqq 4 k-5),=0(i=4 k-1)$. Furthermore, in the Serre spectral sequence $\left\{E_{r}^{* *}, d_{r}\right\}$ of $\bmod p$ cohomology for the above bundle with $E_{2}^{* *}=$ $H^{*}\left(S^{2 k} ; Z_{p}\right) \otimes H^{*}\left(S O(2 k) ; Z_{p}\right), d_{r}: E_{r}^{s, t} \rightarrow E_{r}^{s+r, t-r+1}$ vanishes except for

$$
d_{2 k}\left(1 \otimes e_{2 k-1} a\right)=\xi \otimes a \quad\left(\xi \in H^{2 k}\left(S^{2 k} ; Z_{p}\right), \text { a generator; } a \in H^{*}\left(S O(2 k) ; Z_{p}\right)\right)
$$

Now, let $\left\{\tilde{E}_{r}^{* *}, \tilde{d}_{r}\right\}$ be the spectral sequence for $S O(2 k) \xrightarrow{\iota \lambda} M(\lambda) \xrightarrow{\pi_{\lambda}} S^{2 k}$ in (1.2) and $h^{*}: E_{r}^{* *} \rightarrow \tilde{E}_{r}^{* *}$ be the map induced by h_{λ} and \tilde{h}_{λ} in (1.2). Then, $\tilde{E}_{2}^{* *}=$ $E_{2}^{* *}$ and

$$
h^{*}\left(1 \otimes x_{i}\right)=1 \otimes x_{i}, \quad h^{*}\left(1 \otimes e_{2 k-1}\right)=1 \otimes e_{2 k-1}, \quad h^{*}(\xi \otimes 1)=0
$$

because $\quad \lambda \equiv 0 \quad \bmod p$. So, $\quad \tilde{d}_{2 k}\left(1 \otimes e_{2 k-1} a\right)=h^{*} d_{2 k}\left(1 \otimes e_{2 k-1} a\right)=h^{*}(\xi \otimes a)=0$. Thus $\left\{E_{r}^{* *}\right\}$ collapses, and we have the lemma.

The case $p=2$: Then (cf. [1; Prop. 10.3, (10.6)])

$$
\begin{align*}
& H^{*}\left(S O(2 k) ; Z_{2}\right)=Z_{2}\left[x_{1}, x_{3}, \ldots, x_{2 k-1}\right] /\left(x_{i}^{s(i)}: i=1,3, \ldots, 2 k-1\right), \tag{5.2}\\
& H^{*}\left(S O(2 k+1) ; Z_{2}\right)=Z_{2}\left[y_{1}, y_{3}, \ldots, y_{2 k-1}\right] /\left(y_{i}^{t(i)}: i=1,3, \ldots, 2 k-1\right)
\end{align*}
$$

and $\iota^{*} y_{i}=x_{i}$, where $s(i)($ resp. $t(i))$ is the least power of 2 not less than $2 k / i$ (resp. $(2 k+1) / i)$. Furthermore, if $2 k=u(2 v-1)$ and u is a power of 2 , then $\pi^{*}(\xi)=$ $\left(y_{2 v-1}\right)^{u}$ for a generator $\xi \in H^{2 k}\left(S^{2 k} ; Z_{2}\right)$.

Now, put $z_{i}=\tilde{h}_{\lambda}^{*} y_{i} \in H^{*}\left(M(\lambda) ; Z_{2}\right)$. Then $\iota_{\lambda}^{*} z_{i}=x_{i}$. If $i \neq 2 v-1$, then $s(i)=$ $t(i)$ and $z_{i}^{s(i)}=\tilde{h}_{\lambda}^{*} y^{t(i)}=0$. If $i=2 v-1$, then $s(i)=u$ and $z_{i}^{s(i)}=\tilde{h}_{\lambda}^{*}\left(y_{2 v-1}\right)^{u}=$ $\tilde{h}_{\lambda}^{*} \pi^{*} \xi=\pi_{\lambda}^{*}(\lambda \xi)=0$ since $\lambda \equiv 0 \bmod 2$. So, we can define an \mathscr{A}-algebra homomorphism

$$
\varphi: H^{*}\left(S O(2 k) ; Z_{2}\right) \longrightarrow H^{*}\left(M(\lambda) ; Z_{2}\right) \text { by } \varphi x_{i}=z_{i} \quad(i=1,3, \ldots, 2 k-1),
$$

which satisfies $\iota_{\lambda}^{*} \circ \varphi=$ id. Hence, by the theorem of Leray-Hirsch, we have an \mathscr{A}-algebra isomorphism
$\psi: H^{*}\left(S^{2 k} ; Z_{2}\right) \otimes H^{*}\left(S O(2 k) ; Z_{2}\right) \cong H^{*}\left(M(\lambda) ; Z_{2}\right) \quad$ by $\quad \psi(b \otimes a)=\left(\pi_{\lambda}^{*} b\right)(\phi a)$. Q.E.D.

Proof of Proposition 3.2 For odd p. Suppose $\lambda \equiv 0 \bmod p$. Then, $H^{*}\left(M(\lambda) ; Z_{p}\right) \cong H^{*}\left(S^{2 k} ; Z_{p}\right) \otimes H^{*}\left(S O(2 k) ; Z_{p}\right)$ as algebras by Lemma 5.1, which admits no Hopf algebra structures by Borel's structure theorem. So, $M(\lambda)$ is not a $\bmod p H$-space.
Q.E.D.

Now we consider the case $p=2$.
(5.3) ([16; Prop. 1.5]) Let

$$
\tilde{X}_{0} \xrightarrow{\iota} X_{0} \xrightarrow{f} X, \quad E \longrightarrow \Pi K\left(Z_{2}, m_{s}\right) \xrightarrow{h} \Pi K\left(Z_{2}, l_{t}\right)
$$

be fibrations such that X_{0} and X are H-spaces, f is an H-map, the products are finite products and h is a loop map so that \tilde{X}_{0} and E have the H-structures induced by H-maps f and h, respectively. Assume that

$$
\begin{equation*}
\operatorname{Im}\left(f^{*}: H^{*}\left(X ; Z_{2}\right) \longrightarrow H^{*}\left(X_{0} ; Z_{2}\right)\right) \supset \sum_{i<n} H^{i}\left(X_{0} ; Z_{2}\right) \tag{5.4}
\end{equation*}
$$

for some n with $n \geqq m_{s}$ and $2 n \geqq l_{t}$. Then, for any map $g: X_{0} \rightarrow E$, the composition $g \circ \subset: \tilde{X}_{0} \rightarrow E$ is an H-map.

Lemma 5.5. (i) Let $f: X_{0} \rightarrow X$ be an H-map between H-spaces satisfying (5.4) for some n. Then, for any map $f^{\prime}: X_{0} \rightarrow K=K\left(Z_{2}, n\right), X \times K$ has an H structure so that $\left(f, f^{\prime}\right): X_{0} \rightarrow X \times K$ is an H-map.
(ii) Let X_{0} be an H-space and $X=\prod_{r=1}^{t} K\left(Z_{2}, n_{r}\right)$. If a map $f: X_{0} \rightarrow X$ satisfies (5.4) for some n with $n \geqq n_{r}$, then X has an H-structure so that f is an H-map.

Proof. (i) Let μ_{0} and μ be H-structures of X_{0} and X, respectively. Consider

$$
D: X_{0} \times X_{0} \longrightarrow K \text { given by } D\left(y, y^{\prime}\right)=f^{\prime}\left(y^{\prime}\right)^{-1} f^{\prime}(y)^{-1} f^{\prime}\left(\mu_{0}\left(y, y^{\prime}\right)\right),
$$

where $K=K\left(Z_{2}, n\right)$ is regarded to be a group. Then, $D \mid X_{0} \vee X_{0} \sim *$ and

$$
D \sim \hat{D}_{\circ} \pi: X_{0} \times X_{0} \xrightarrow{\pi} X_{0} \wedge X_{0} \xrightarrow{\hat{D}} K(\pi \text { denotes the projection })
$$

for some map \hat{D}. By the assumption (5.4), $\hat{D} \in H^{n}\left(X_{0} \wedge X_{0} ; Z_{2}\right)$ is contained in the image of $(f \wedge f)^{*}: H^{n}\left(X \wedge X ; Z_{2}\right) \rightarrow H^{n}\left(X_{0} \wedge X_{0} ; Z_{2}\right)$. So, we get a map

$$
d: X \wedge X \longrightarrow K=K\left(Z_{2}, n\right) \quad \text { with } \quad d \circ(f \wedge f) \sim \hat{D} .
$$

Thus, we see by definition that $X \times K$ has an H-structure
$\mu^{\prime}: X \times K \times X \times K \longrightarrow X \times K$ given by $\mu^{\prime}\left(x, k, x^{\prime}, k^{\prime}\right)=\left(\mu\left(x, x^{\prime}\right), k k^{\prime} d\left(x, x^{\prime}\right)\right)$, and that $\left(f, f^{\prime}\right): X_{0} \rightarrow X \times K$ is an H-map with respect to μ_{0} and μ^{\prime}.
(ii) We may assume that $n_{r} \leqq n_{s}$ if $r<s$. Put $K_{s}=\prod_{r=1}^{s} K\left(Z_{2}, n_{r}\right)$ and let
$f_{s}: X_{0} \rightarrow K_{s}$ be the composition of f and the projection $X=K_{t} \rightarrow K_{s}$. Then, since $n_{r} \leqq n_{s} \leqq n$ for $r<s$, (5.4) shows that

$$
\operatorname{Im}\left(f_{s-1}^{*}: H^{*}\left(K_{s-1} ; Z_{2}\right) \longrightarrow H^{*}\left(X_{0} ; Z_{2}\right)\right) \supset \sum_{i<n_{s}} H^{i}\left(X_{0} ; Z_{2}\right) .
$$

So, we see that $K_{s}=K_{s-1} \times K\left(Z_{2}, n_{s}\right)$ has an H-structure so that $f_{s}: X_{0} \rightarrow K_{s}$ is an H-map, by induction starting from $K_{0}=*$ and by using (i). Thus, (ii) holds for $X=K_{t}$ and $f_{t}=f$.
Q.E.D.

Now, let

$$
K_{0}=K\left(Z_{2}, 2 k\right) \xrightarrow{h_{0}} K_{1}=K\left(Z_{2}, 4 k\right) \xrightarrow{h_{1}} K_{2}=K\left(Z_{2}, 4 k+1\right)
$$

be the maps such that

$$
h_{0}^{*} \iota_{4 k}=\left(\iota_{2 k}\right)^{2}, h_{1}^{*} \iota_{4 k+1}=\operatorname{Sq}^{1} \iota_{4 k}\left(\iota_{t} \in H^{t}\left(K\left(Z_{2}, t\right) ; Z_{2}\right) \text { is the fundamental class }\right) .
$$

Then, $h_{0}^{*} h_{1}^{*} \iota_{4 k+1}=S q^{1}\left(\iota_{2 k}\right)^{2}=0$ and so $h_{1} \circ h_{0}$ is homotopic to $*$. Thus, we have the following 2 -stage Postnikov system

where $r: E \rightarrow K_{0}$ is the homotopy fibre of h_{0}, j is the natural map and \hat{h}_{1} is the map induced from a homotopy of $h_{1} \circ h_{0}$ to $*$ so that $\hat{h}_{1} \circ j \sim \Omega h_{1}$. Then, A. Zabrodsky proved the following
(5.7) ([20; Lemma 3.4.1]) $\quad \mu^{*} v=v \otimes 1+1 \otimes v+u \otimes u$
for $v=\hat{h}_{1}^{*} \iota_{4 k}$ and $u=r^{*} c_{2 k}$, where $\mu: E \times E \rightarrow E$ is the loop multiplication.
Proof of Proposition 3.2 for $p=2$. Contrary to Proposition 3.2 for $p=2$, suppose that $M(\lambda)=M(n, 1, \lambda)$ is a $\bmod 2 H$-space for even λ, where $n=2 k+1$. Then, we have an H-space X and a 2-equivalence $\varphi: X \rightarrow M(\lambda)$. According to Lemma 5.1 and (5.2), the algebra $H^{*}\left(X, Z_{2}\right)$ over \mathscr{A} is given by
(*) $\quad H^{*}\left(X ; Z_{2}\right)=\Lambda(\zeta) \otimes Z_{2}\left[z_{1}, z_{3}, \ldots, z_{2 k-1}\right] /\left(z_{i}^{s(i)}: i=1,3, \ldots, 2 k-1\right)$,

$$
\zeta=\varphi^{*} \pi_{\lambda}^{*} \xi, \quad z_{i}=\varphi^{*} \tilde{h}_{\lambda}^{*} y_{i}, \quad \pi_{\lambda}^{*} \xi \notin \operatorname{Im} \tilde{h}_{\lambda}^{*}
$$

where $\pi_{\lambda}, \iota_{\lambda}$ and \tilde{h}_{λ} are the maps in (1.2), $\xi \in H^{2 k}\left(S^{2 k} ; Z_{2}\right)$ is a generator and x_{i}, y_{i} and $s(i)$ are given in (5.2). Consider the map

$$
f: X \longrightarrow K_{0}=K\left(Z_{2}, 2 k\right) \quad \text { with } \quad f^{*} \iota_{2 k}=\zeta .
$$

Then, $f^{*} h_{0}^{*} \iota_{4 k}=f^{*}\left(\iota_{2 k}\right)^{2}=\zeta^{2}=0$ and we have a lift

$$
\tilde{f}: X \longrightarrow E \quad \text { with } \quad r \circ f \sim f \quad \text { for } \quad r: E \longrightarrow K_{0} \quad \text { in (5.6). }
$$

Furthermore, consider the fibering

$$
\tilde{X} \xrightarrow{\ell} X \xrightarrow{g} \prod_{i=1}^{k} K\left(Z_{2} .2 i-1\right) \text { with } g^{*} \iota_{2 i-1}=z_{2 i-1} .
$$

Then, by Lemma 5.5 (ii) and (5.3), \tilde{X} is an H-space with multiplication $\tilde{\mu}$ so that $\tilde{f} \circ \ell: \tilde{X} \rightarrow E$ is an H-map. So, (5.7) shows that

$$
\begin{equation*}
\tilde{\mu}^{*}(\tilde{f} \circ \iota)^{*} v=(\tilde{f} \circ \iota)^{*} v \otimes 1+1 \otimes(\tilde{f} \circ \iota)^{*} v+(\tilde{f} \circ \iota)^{*} u \otimes(\tilde{f} \circ \iota)^{*} u, \tag{**}
\end{equation*}
$$

where $(\tilde{f} \circ \iota)^{*} u=\iota^{*} \tilde{f}^{*} r^{*} \iota_{2 k}=\iota^{*} \xi$. Now, by using (*), we see that
$\operatorname{Im} g^{*}=\operatorname{Im}\left(\varphi^{*} \circ \tilde{h}_{\lambda}^{*}\right) \not \equiv \zeta, \quad \operatorname{Im} \iota^{*} \cong H^{*}\left(X ; Z_{2}\right) / / \operatorname{Im} g^{*}=\Lambda(\zeta)$ and $\iota^{*} \zeta \neq 0$.
Furthermore, $\tilde{f}^{*} v \in H^{4 k}\left(X ; Z_{2}\right)=\left(\operatorname{Im} g^{*}\right) \cdot \tilde{H}^{*}\left(X ; Z_{2}\right)$ and $(\tilde{f} \circ \varsigma)^{*} v=0$. Thus, the left and the right hand sides of (**) are zero and non-zero, respectively, which is a contradiction. So, Proposition 3.2 for $p=2$ is proved.
Q.E.D.

§6. Proof of Proposition 3.11 (i)

The rest of this paper is devoted to prove Proposition 3.11.
Let p be an odd prime and \mathscr{A} denotes the $\bmod p$ Steenrod algebra.
Lemma 6.1. Let $m=p^{s} t$ with $t \not \equiv 0 \bmod p$. Then,

$$
\mathscr{P}^{m}=\sum_{i=0}^{s} \mathscr{P}^{p^{i}} \alpha_{i} \quad \text { for some } \alpha_{i} \in \mathscr{A} .
$$

Proof. When $t=1$, the equality is trivial.
Assume that $t \geqq 2$. If $s=0$, then $m=t \not \equiv 0 \bmod p$ and the Adem relation shows that

$$
\mathscr{P}^{1} \mathscr{P}^{m-1}=m \mathscr{P}^{m} \quad \text { and } \quad \mathscr{P}^{m}=\mathscr{P}^{1} \alpha_{0} \quad \text { for } \quad \alpha_{0}=m^{-1} \mathscr{P}^{m-1} .
$$

Now, assume inductively that the equality is true for $s \leqq l-1$, and consider the case $m=q t$ with $q=p^{l}, l \geqq 1$. Consider the Adem relation

$$
\mathscr{P}^{q} \mathscr{P}^{q(t-1)}=\sum_{i=0}^{q / p}(-1)^{i+q / p} a_{i} \mathscr{P}^{q s-i} \mathscr{P}^{i}, \quad a_{i}=\binom{(q(t-1)-i)(p-1)-1}{q-p i} .
$$

Then, $a_{0} \neq 0 \bmod p$ because $q(t-1)(p-1)-1=a q+q-1, a=(t-1)(p-1)-1 \equiv$ $-t \not \equiv 0 \bmod p$ and $q=p^{l}$. Also, $q t-i \not \equiv 0 \bmod p^{l}$ for $0<i \leqq q / p=p^{l-1}$. Thus, we see the equality by induction.
Q.E.D.

In the rest of this section, the coefficient Z_{p} in cohomology is omitted to simplify the notation.

Proof of Proposition 3.11 (i). By the assumption that $M(G, \lambda)$ is a $\bmod p$ loop space, let $f: \Sigma M(G, \lambda) \rightarrow Y$ be the adjoint of a p-equivalence $M(G, \lambda) \rightarrow \Omega Y$. Contrary to (i), suppose that $\lambda \equiv 0 \bmod p$. Then, by (3.4-6),

$$
\begin{align*}
& H^{*}(M(G, \lambda))=\Lambda\left(e_{1}, \ldots, e_{k}\right)\left(\operatorname{dim} e_{i}=2 n_{i}-1\right), \quad e_{k}=\pi_{\lambda}^{*} \xi \tag{6.2}\\
& \tilde{h}_{\lambda}^{*} x_{i} \equiv e_{i}(\text { if } i<k), \equiv 0(\text { if } i=k) \bmod D_{M}
\end{align*}
$$

where $D_{M}=D H^{*}(M(G, \lambda))$ is the decomposable module. Furthermore,

$$
\begin{equation*}
H^{*}(Y)=Z_{p}\left[y_{1}, \ldots, y_{k}\right]\left(\operatorname{dim} y_{i}=2 n_{i}\right), \quad f^{*} y_{i} \equiv e_{i} \bmod D_{M}, \tag{6.3}
\end{equation*}
$$

where $f^{*}: H^{*}(Y) \rightarrow H^{*}(\Sigma M(G, \lambda)) \cong H^{*-1}(M(G, \lambda))$. So, for any $t<2 n_{k}$,

$$
\begin{aligned}
f^{*} \tilde{\mathscr{A}}\left(H^{t}(Y)\right)=\tilde{\mathscr{A}}\left(f^{*} H^{t}(Y)\right) & \subset \tilde{\mathscr{A}}\left(H^{t-1}(M(G, \lambda))\right) \\
& =\widetilde{\mathscr{A}}\left(\tilde{h}_{\lambda}^{*} H^{t-1}(G)\right) \subset \tilde{h}_{\lambda}^{*} \tilde{\mathscr{A}}\left(H^{*}(G)\right),
\end{aligned}
$$

where $\tilde{\mathscr{A}}$ is the augmentation ideal of \mathscr{A}, since $\tilde{h}_{\lambda}^{*}: H^{t-1}(G) \cong H^{t-1}(M(G, \lambda))$. Furthermore $e_{k} \notin \operatorname{Im} \tilde{h}_{\lambda}^{*}+D_{M}$. Thus $e_{k} \notin f^{*} \widetilde{\mathscr{A}}\left(H^{*}(Y)\right)+D_{M}$ and

$$
y_{k} \notin \tilde{\mathscr{A}}\left(H^{*}(Y)\right)+D_{Y}\left(D_{Y}=D H^{*}(Y)\right) .
$$

Now, by changing generators except for y_{k}, we may assume that

$$
\begin{equation*}
\widetilde{\mathscr{A}}\left(H^{*}(Y)\right) \subset Z_{p}\left\{1, y_{1}, \ldots, y_{k-1}\right\}+D_{Y} \tag{6.4}
\end{equation*}
$$

Since $n_{k}=p^{a} b$ and $b \not \equiv 0 \bmod p$, Lemma 6.1 implies that

$$
\begin{equation*}
y_{k}^{p}=\mathscr{P}^{n_{k}} y_{k}=\sum_{i=0}^{a} \mathscr{P}^{i} \alpha_{i} y_{k} \quad \text { for some } \quad \alpha_{i} \in \mathscr{A} \tag{6.5}
\end{equation*}
$$

On the other hand, we see the following
(6.6) For any $u \in H^{*}(Y)$ with $\operatorname{dim} u>2 n_{k}(p-1), \mathscr{P}^{j} u(j>0)$ is a polynomial in y_{1}, \ldots, y_{k} without including the term y_{k}^{p}.

In fact, $\operatorname{dim} u>2 n_{k}(p-1)$ implies that $u \in D_{Y}^{(p)}$ where
(6.7) $D_{Y}^{(t)}=D^{(t)} H^{*}(Y)$ is given by $D_{Y}^{(2)}=D_{Y}$ and $D_{Y}^{(t+1)}=D_{Y}^{(t)} \cdot \tilde{H}^{*}(Y)(t \geqq 2)$.

So, $u \equiv \sum c y_{i_{1}} \cdots y_{i_{p}}\left(c \in Z_{p}\right) \bmod D_{Y}^{(p+1)}$ and

$$
\mathscr{P}^{j} u \equiv \sum_{l_{1}+\cdots+l_{p}=j} c \mathscr{P}^{l_{1}} y_{i_{1}} \cdots \mathscr{P}^{l_{p}} y_{i_{p}} \bmod D_{Y}^{(p+1)}
$$

Hence $\mathscr{P}^{j} u$ does not contain y_{k}^{p} by (6.4).
Now, $\operatorname{dim} \alpha_{i} y_{k}=2 n_{k} p-2 p^{i}(p-1)>2 n_{k}(p-1)$ since $b>p$ in (6.5). So, y_{k}^{p} does not appear in the right hand side of (6.5), which is a contradiction. Therefore, (i) is proved.
Q.E.D.

§7. BP-theory and the Landweber-Novikov operation

In this section, we summarize the known facts on the BP-theory and prove Proposition 7.7, which are used to prove Proposition 3.11 (ii) in §8. The main references are [8] and [9].

Let p be an odd prime and $Z_{(p)}$ be the integers localized at p. Then,

$$
B P^{*}=Z_{(p)}\left[v_{1}, v_{2}, \ldots\right], \quad\left|v_{i}\right|=\operatorname{dim} v_{i}=-2\left(p^{i}-1\right) .
$$

(7.1) (cf. e.g. [8]) Let Y have the homotopy type of a CW-complex of finite type. Then, the BP-cohomology BP*Y at p of Y is a module over BP*. Furthermore, the Thom map

$$
T: B P^{*} Y \longrightarrow H^{*}\left(Y ; Z_{p}\right) \quad(\text { which is a ring homomorphism })
$$

is epimorphic and $\operatorname{ker} T=\left(p, v_{1}, v_{2}, \ldots\right)\left(\right.$ the ideal generated by $\left.\left\{p, v_{1}, v_{2}, \ldots\right\}\right)$, if $H^{*}(Y ; Z)$ has no p-torsion.

Let $E=\left(e_{1}, e_{2}, \ldots\right)$ be an exponential sequence, i.e., a sequence of integers $e_{i} \geqq 0$ being 0 except for a finite number of i. Then, we have the LandweberNovikov operation

$$
r_{E} \in B P^{*} B P \quad \text { with } \quad \operatorname{deg} r_{E}=\left|r_{E}\right|=|E|=2 \sum e_{i}\left(p^{i}-1\right) .
$$

(7.2) ($[8 ;(1.1)]) \quad r_{E}$ acts on $B P^{*} Y$ so that the diagram

is commutative, where $\chi: \mathscr{A} \rightarrow \mathscr{A}$ is the canonical anti-automorphism on the $\bmod p$ Steenrod algebra \mathscr{A}.
(7.3) $([9 ;(2.1)])$ Put $v_{0}=p$ and $t \Delta_{i}=(0, \ldots, 0, t, 0, \ldots)$ where t is in the $i-t h$ position. Then,

$$
\begin{aligned}
& r_{E} v_{n} \equiv v_{n-i} \text { if } E=p^{n-i} \Delta_{i}, \equiv 0 \quad \text { otherwise, } \bmod \left(p, v_{1}, v_{2}, \ldots\right)^{2} ; \\
& r_{E}\left(\left(p, v_{1}, v_{2}, \ldots\right)^{n}\right) \subset\left(p^{n}, v_{1}, v_{2}, \ldots\right)(\text { cf. }[9 ;(2.3)]) .
\end{aligned}
$$

In the rest of this section, we concern mainly with the following composition law:

$$
\begin{equation*}
([8 ;(1.2)]) \quad r_{E} r_{F} \equiv \sum_{R(X)=F, S(X)=E} b(X) r_{T(X)} \bmod \left(v_{1}, v_{2}, \ldots\right), \tag{7.4}
\end{equation*}
$$ where X ranges over all matrices $\left(x_{i j}\right)(i, j=0,1, \ldots)$ being omitted the term x_{00}

and consisting of integers $x_{i j}$ which are 0 except for a finite number of (i, j). Furthermore, for such a matrix $X=\left(x_{i j}\right)$, the exponential sequences

$$
R(X)=\left(r_{1}, r_{2}, \ldots\right), \quad S(X)=\left(s_{1}, s_{2}, \ldots\right), \quad T(X)=\left(t_{1}, t_{2}, \ldots\right)
$$

and $b(X) \in Z$ are defined as follows:

$$
r_{i}=\sum_{j} p^{j} x_{i j}, \quad s_{j}=\sum_{i} x_{i j}, \quad t_{n}=\sum_{i+j=n} x_{i j}, \quad b(X)=\Pi\left(t_{n}!\right) / \Pi\left(x_{i j}!\right) .
$$

For exponential sequences $E=\left(e_{1}, e_{2}, \ldots\right)$ and $F=\left(f_{1}, f_{2}, \ldots\right)$, put $E+E=\left(e_{1}+f_{1}\right.$, $\left.e_{2}+f_{2}, \ldots\right)$. Also, put $E-F=\left(e_{1}-f_{1}, e_{2}-f_{2}, \ldots\right)$ if $e_{i} \geqq f_{i}$ for any i. Furthermore, a linear ordering $E<F$ is defined in [8] as follows:
$E<F$ if and only if (1) $|E|<|F|$, or
(2) $|E|=|F|$ and $e_{i}=f_{i}$ if $i>s$ while $e_{s}>f_{s}$, for some s.

Lemma 7.6. $|T(X)|=|R(X)+S(X)|$ and $T(X) \leqq R(X)+S(X)$ in (7.4).
Proof. If $x_{i j}=0$ for $i j \neq 0$, then $r_{i}=x_{i 0}, s_{i}=x_{0 i}$ and $t_{i}=x_{i 0}+x_{0 i}=r_{i}+s_{i}$. So $T(X)=R(X)+S(X)$. Assume that $x_{i j} \neq 0$ for some $i j \neq 0$, and let $x_{a b} \neq 0$ $(a b \neq 0)$ and $x_{i j}=0$ for $i+j>a+b$ and $i j \neq 0$. Then, for $i \geqq a+b$, we have $r_{i}=x_{i 0}, s_{i}=x_{0 i}$ and

$$
t_{i}=x_{i 0}+x_{o i}=r_{i}+s_{i} \quad \text { if } \quad i>a+b, t_{i}=x_{i 0}+x_{0 i}>r_{i}+s_{i} \quad \text { if } \quad i=a+b
$$

So $T(X)<R(X)+S(X) . \quad|T(X)|=|R(X)+S(X)|$ is clear by definition. Q.E.D.
Now, we prove the following decomposition formula of $p r_{p^{m}}$ by using (7.4), where $r_{t}=r_{t \Lambda_{1}}$:

Proposition 7.7. Let $m \geqq 1$. Then,

$$
p r_{p^{m}} \equiv \sum r_{E_{s}} \theta_{s} \bmod \left(p^{2}, v_{1}, v_{2}, \ldots\right)
$$

for some $\theta_{s} \in B P^{*} B P$ and some exponential sequences E_{s} with
(1) $\left|E_{s}\right|<4 p$ if $m=1,\left|E_{s}\right|<2 p^{m}$ if $m \geqq 2$; and
(2) $E_{s} \neq \Delta_{i}$ for all $i \geqq 1$.

To prove this proposition, we notice the following
Lemma 7.8. Let $m \geqq 2$ and E be an exponential sequence with $|E|=2 p^{m}(p-1)$ and $E \neq p^{m} \Delta_{1}$. Then

$$
r_{E} \equiv r_{E_{1}} \theta_{1}+\sum a_{F} r_{F} \equiv \sum r_{E_{s}} \theta_{s} \bmod \left(p^{2}, v_{1}, v_{2}, \ldots\right)
$$

where $\theta_{s} \in B P^{*} B P, E_{s}$ satisfies (1) for $m \geqq 2$ and (2) in Proposition 7.7, $a_{F} \in Z_{(p)}$, $|F|=|E|$ and $F<E$.

Proof of Proposition 7.7 from Lemma 7.8. The case $m=1: \quad$ By (7.4), we have $r_{2} r_{p-2} \equiv\binom{p}{2} r_{p} \bmod \left(v_{1}, v_{2}, \ldots\right)$ and hence

$$
p r_{p} \equiv-2 r_{2} r_{p-2} \bmod \left(p^{2}, v_{1}, v_{2}, \ldots\right)
$$

Since $\left|2 \Delta_{1}\right|=4(p-1)<4 p$ and $2 \Delta_{1} \neq \Delta_{i}$, this is the desired formula.
The case $m \geqq 2$: Put $q=p^{m-1}$. Then, (7.4) shows that
(*) $\quad r_{q} r_{p q-q} \equiv \sum_{t=0}^{q-q / p} a_{t} r_{(p q-t p-t, t)}, a_{t}=\binom{p q-t p-t}{q-t}, \bmod \left(v_{1}, v_{2}, \ldots\right)$.
Here, the term for $t=0$ is

$$
a_{0} r_{p q}=p\binom{p q-1}{q-1} r_{p q} \equiv p r_{p q} \bmod p^{2}
$$

Also, in the left hand side of (*), $q \Delta_{1}$ satisfies (1) and (2), i.e., $\left|q \Delta_{1}\right|=2 q(p-1)<$ $2 p q$ and $q \Delta_{1} \neq \Delta_{i}$ for all i. Furthermore, if $t \geqq 1$, then $E=(p q-t p-t, t)$ in the right hand side of $(*)$ satisfies $|E|=2 p q(p-1)$ and $E \neq p q \Delta_{1}$, and hence $r_{(p q-t p-t, t)}$ is decomposed into the form given in Lemma 7.8. Therefore, (*) implies the desired formula.
Q.E.D.

Proof of Lemma 7.8. We prove the first congruence. Then, it can be applied also for r_{F} there, since $F<E$ with $|F|=|E|$ also satisfies the assumption of the lemma. Also for E, the number of F^{\prime} s with $F<E$ and $|F|=|E|$ is finite. Therefore, we see the second congruence using the first one finite times.

Let $E=\left(e_{1}, e_{2}, \ldots\right)$ satisfy $|E|=2 p^{m}(p-1)$ and $E \neq p^{m} \Delta_{1}$. If $e_{t} \neq 0$, then $2\left(p^{t}-1\right) \leqq|E|=2 p^{m}(p-1)$ and so $t \leqq m$. Suppose $e_{t} \leqq 1$ for all t. Then $2 p^{m}(p-1)$ $=|E| \leqq 2 \sum_{t=1}^{m}\left(p^{t}-1\right)<4 p^{m}$, which contradicts $p \geqq 3$. Therefore $e_{t} \geqq 2$ for some t. Let $e_{t}=\sum u_{i} p^{i}$ be the p-adic expansion. Then, $u_{i} \neq 0$ for some $i \geqq 1$ or $u_{0} \geqq 2$.

Assume $u_{i} \neq 0$ for some $i \geqq 1$. Then, $2 p^{i}\left(p^{t}-1\right) \leqq|E|=2 p^{m}(p-1)$ and so $i+t \leqq m$ or $(i, t)=(m, 1)$. If $(i, t)=(m, 1)$, then $E=p^{m} \Delta_{1}$ which contradicts the assumption. Thus $i+t \leqq m$. Now, (7.4) shows that

$$
r_{p^{i} \Delta_{t}} r_{E-p^{i} \Delta_{t}} \equiv\binom{e_{t}}{p^{i}} r_{E}+\sum a_{F} r_{F} \bmod \left(v_{1}, v_{2}, \ldots\right)
$$

where $a_{F} \in Z,|F|=|E|$ and $F<E$ by Lemma 7.6. Here, $\binom{e_{t}}{p^{i}} \not \equiv 0 \bmod p$ since $u_{i} \neq 0$. Furthermore, $\left|p^{i} \Delta_{t}\right|=2 p^{i}\left(p^{t}-1\right)<2 p^{m}$ since $i+t \leqq m$. So, we see the desired congruence.

Assume $u_{0} \geqq 2$. Then, (7.4) and Lemma 7.6 show that

$$
r_{2 \Lambda_{1}} r_{E-2 \Lambda_{1}} \equiv\binom{e_{t}}{2} r_{E}+\sum a_{F} r_{F} \bmod \left(v_{1}, v_{2}, \ldots\right)
$$

where $a_{F} \in Z,|F|=|E|$ and $F<E . \quad$ Since $\binom{e_{t}}{2} \not \equiv 0 \bmod p$ by $u_{0} \geqq 2$, this shows the desired congruence.
Q.E.D.

§8. Proof of Proposition 3.11 (ii)

In this section, we assume that G is a simply connected finite $\bmod p$ loop space and $H^{*}(G ; Z)$ has no p-torsion (p : odd prime), and that

$$
\lambda \equiv 0 \bmod p \quad \text { and } \quad M=M(G, \lambda) \simeq_{p} \Omega Y \quad \text { for some } \quad Y
$$

We continue to use the notations given in (3.4-6) and (6.2-3), and the coefficient Z_{p} in cohomology is omitted.

$$
\begin{array}{lll}
\text { LEMMA 8.1. } & B P^{*} G=\Lambda_{B P *}\left(\bar{g}_{1}, \ldots, \bar{g}_{k}\right) & \left(\operatorname{dim} \bar{g}_{i}=2 n_{i}-1\right), \\
& B P^{*} M=\Lambda_{B P^{*}}\left(\bar{e}_{1}, \ldots, \bar{e}_{k}\right) & \left(\operatorname{dim} \bar{e}_{i}=2 n_{i}-1\right), \\
& B P^{*} Y=B P^{*}\left[\left[\bar{y}_{1}, \ldots, \bar{y}_{k}\right]\right] & \left(\operatorname{dim} \bar{y}_{i}=2 n_{i}\right)
\end{array}
$$

($B P^{*}[[]]$ denotes the ring of power series), and the generators \bar{g}_{i}, \bar{e}_{i} and \bar{y}_{i} can be taken to satisfy $T \bar{g}_{i}=g_{i}, T \bar{e}_{i}=e_{i}, T \bar{y}_{i}=y_{i}$,

$$
\tilde{h}_{\lambda}^{*} \bar{g}_{i} \equiv\left\{\begin{array}{ll}
\bar{e}_{i} & (\text { if } i<k), \\
\lambda \bar{e}_{k} & (\text { if } i=k),
\end{array} \quad f^{*} \bar{y}_{i} \equiv \bar{e}_{i} \bmod \bar{D}_{M}=D B P^{*} M\right.
$$

and $\pi_{\lambda}^{*} \bar{\xi}=\bar{e}_{k}$, where T denotes the Thom map and $B P^{*} S^{m}=\Lambda_{B P^{*}}(\bar{\xi}), T \bar{\xi}=\xi$ ($m=2 n_{k-1}$).

Proof. We notice that (7.1) is valid for G, M and Y.
Take $\bar{g}_{i} \in B P^{*} G$ with $T \bar{g}_{i}=g_{i} \in H^{*}(G)$ for $i<k$, and put $\bar{g}_{k}=\pi * \bar{\xi} \in B P^{*} G$. Then $T \bar{g}_{k}=\pi^{*} \xi=g_{k}$ by (3.5). We have $\bar{g}_{i}^{2}=0$ since $\operatorname{dim} \bar{g}_{i}$ is odd. So, we see the equality for G by (7.1).

In the second place, we define $\bar{e}_{i} \in B P^{*} M$ inductively. Put $\bar{e}_{1}=\tilde{h}_{\lambda}^{*} \bar{g}_{1}$. Then $T \bar{e}_{1}=\tilde{h}_{\lambda}^{*} g_{1}=e_{1}$ by (6.2), since $D H^{2 n_{1}-1}(M)=0$. Let $j>1$ and assume that \bar{e}_{i} is defined for any $i<j$ so that $T \bar{e}_{i}=e_{i}$ and $\tilde{h}_{\lambda}^{*} \bar{g}_{i} \equiv \bar{e}_{i} \bmod \bar{D}_{M}$. If $j<k$, then $T \tilde{h}_{\lambda}^{*} \bar{g}_{j}=$ $\tilde{h}_{\lambda}^{*} g_{j}=e_{j}+d_{j}$ for some $d_{j} \in D_{M}$, and d_{j} is a polynomial of $e_{i}(i<j)$ by (6.2). So, we can take $\bar{d}_{j} \in \bar{D}_{M}$ such that $T \bar{d}_{j}=d_{j}$ by the inductive assumption. Put $\bar{e}_{j}=$ $\tilde{h}_{\lambda}^{*} \bar{g}_{j}-\bar{d}_{j}$. Then, $T \bar{e}_{j}=e_{j}$ and $\tilde{h}_{\lambda}^{*} \bar{g}_{j} \equiv \bar{e}_{j} \bmod \bar{D}_{M}$ as desired. When $j=k$, put $\bar{e}_{k}=\pi_{\lambda}^{*} \bar{\xi}$. Then, $\tilde{h}_{\lambda}^{*} \bar{g}_{k}=\pi_{\lambda}^{*} h_{\lambda}^{*} \bar{\xi}=\lambda \pi_{\lambda}^{*} \bar{\xi}=\lambda \bar{e}_{k}$ and $T \bar{e}_{k}=\pi_{\lambda}^{*} \xi=e_{k}$. Thus, we have defined \bar{e}_{i} and the equality for M holds by the same reason as that for G.

Finally, we define $\bar{y}_{i} \in B P^{*} Y$ inductively. Take $\tilde{y}_{i} \in B P^{*} Y$ with $T \tilde{y}_{i}=y_{i} \in$ $H^{*}(Y)$ for any i. Then $T f^{*} \tilde{y}_{i}=f^{*} y_{i} \equiv e_{i} \bmod D_{M}$. Let $0=l(0)<l(1)<\cdots<$ $l(t)<l(t+1)=k$ be the sequence of integers such that $n_{i}=n_{l(s)}$ for $l(s-1)<i \leqq l(s)$. By the equality for M,

$$
B P^{m} M / D B P^{m} M \cong Z_{(p)}\left\{\bar{e}_{i} \mid l(t)<i \leqq k\right\} \quad\left(m=2 n_{k}-1\right)
$$

because $\left|v_{i}\right|<0$ for $i>0$. Therefore, for any i with $l(t)<i \leqq k$,

$$
f^{*} \tilde{y}_{i} \equiv \sum a_{i j} \bar{e}_{j} \bmod \bar{D}_{M} \quad(l(t)<j \leqq k)
$$

where $a_{i j} \in Z_{(p)}$ and $a_{i j} \equiv \delta_{i j}$ (the Kronecker delta) mod p. Consider the matrix $A=\left(a_{i j}\right)$. Then $\operatorname{det} A \equiv 1 \bmod p$ and we have the inverse matrix $A^{-1}=\left(b_{i j}\right)$. Since A is the identity matrix $\bmod p$, so is A^{-1} and $b_{i j} \equiv \delta_{i j} \bmod p$. Now, put

$$
\bar{y}_{i}=\sum_{j} b_{i j} \tilde{y}_{j} \quad \text { for } \quad l(t)<i \leqq k
$$

Then, we see that $f^{*} \bar{y}_{i} \equiv \bar{e}_{i} \bmod \bar{D}_{M}$ and $T \bar{y}_{i}=T \tilde{y}_{i}=y_{i}$.
Suppose inductively that $\bar{y}_{i} \in B P^{*} Y$ is defined for any $i>l(s)(s \leqq t)$ so that $T \bar{y}_{i}=y_{i}$ and $f^{*} \bar{y}_{i} \equiv \bar{e}_{i} \bmod \bar{D}_{M}$. By the equality for $M, B P^{m^{\prime}} M / D B P^{m^{\prime}} M\left(m^{\prime}=\right.$ $\left.2 n_{l(s)}-1\right)$ is isomorphic to

$$
Z_{(p)}\left\{\bar{e}_{j}, u_{i} \bar{e}_{i}\left|l(s-1)<j \leqq l(s)<i, u_{i} \in \tilde{B P}^{*},\left|u_{i}\right|+2 n_{i}-1=m^{\prime}\right\} .\right.
$$

So, for any i with $l(s-1)<j \leqq l(s)$,

$$
f^{*} \tilde{y}_{j} \equiv \sum_{j^{\prime}} a_{j j^{\prime}} \bar{e}_{j^{\prime}}+\sum_{i} c_{j i} u_{i} \bar{e}_{i} \bmod \bar{D}_{M} \quad\left(l(s-1)<j^{\prime} \leqq l(s)<i\right),
$$

where $a_{i j^{\prime}}, c_{j i} \in Z_{(p)}$ and $a_{j j^{\prime}} \equiv \delta_{i j^{\prime}} \bmod p$. Hence

$$
f^{*}\left(\tilde{y}_{j}-\sum_{i} c_{j i} u_{i} \bar{y}_{i}\right) \equiv \sum_{j^{\prime}} a_{j j^{\prime}} \bar{e}_{j^{\prime}} \bmod \bar{D}_{M}
$$

since $f^{*} y_{i} \equiv \bar{e}_{i} \bmod \bar{D}_{M}$ for $i>l(s)$. Therefore, by the same argument as above, we can obtain $\bar{y}_{j}(l(s-1)<j \leqq l(s))$ from \tilde{y}_{j} so that $f^{*} \bar{y}_{j} \equiv \bar{e}_{j} \bmod \bar{D}_{M}$ and $T \bar{y}_{j}=y_{j}$.

Thus, we have defined \bar{y}_{i} and the equality $B P^{*} Y=B P^{*}\left[\left[\bar{y}_{1}, \ldots, \bar{y}_{k}\right]\right]$ is seen by (7.1).
Q.E.D.

Now we assume that

$$
\begin{equation*}
n_{k}=p^{a} b, 1 \leqq b<p \quad \text { and } \quad g_{k} \notin \widetilde{\mathscr{A}}\left(H^{*}(G)\right)=\widetilde{\mathscr{A}}\left(H^{*}\left(G ; Z_{p}\right)\right) \tag{8.2}
\end{equation*}
$$

which is the assumption in Proposition 3.11 (ii). We may also assume that

$$
\begin{equation*}
\widetilde{\mathscr{A}}\left(H^{*}(G)\right) \subset Z_{p}\left\{1, g_{1}, \ldots, g_{k-1}\right\}+D_{G} \quad\left(D_{G}=D H^{*}(G)\right) \tag{8.3}
\end{equation*}
$$

by changing generators g_{i} except for g_{k}.
Lemma 8.4. $r_{E} \bar{y}_{i} \in B P^{*}\left\{1, \bar{y}_{1}, \ldots, \bar{y}_{k-1}\right\}+\bar{D}_{Y}+\left(p^{2}, v_{1}, v_{2}, \ldots\right)$ for any $i<k$, where $\bar{D}_{Y}=D B P^{*} Y$.

Proof. Since $i<k, \quad \operatorname{Tr}_{E} \bar{g}_{i}=\chi\left(\mathscr{P}^{E}\right) g_{i} \in Z_{p}\left\{1, g_{1}, \ldots, g_{k-1}\right\}+D_{G} \quad$ by (7.2), Lemma 8.1 and (8.3). Hence, by (7.1),

$$
r_{E} \bar{g}_{i} \equiv c \bar{g}_{k} \bmod B P^{*}\left\{1, \bar{g}_{1}, \ldots, \bar{g}_{k-1}\right\}+\bar{D}_{G}+\left(p^{2}, v_{1}, v_{2}, \ldots\right) \quad\left(\bar{D}_{G}=D B P^{*} G\right),
$$

where $c \equiv 0 \bmod p . \quad$ So, $f^{*} r_{E} \bar{y}_{i} \equiv r_{E} \bar{e}_{i} \equiv \tilde{h}_{\lambda}^{*} r_{E} \bar{g}_{i} \equiv c \lambda \bar{g}_{k} \equiv 0 \bmod B P^{*}\left\{1, \bar{e}_{1}, \ldots, \bar{e}_{k-1}\right\}$ $+\bar{D}_{M}+\left(p^{2}, v_{1}, v_{2}, \ldots\right)$, since $\lambda \equiv 0 \bmod p$. This shows the lemma since $\operatorname{Ker} f^{*}=$ \bar{D}_{Y} by Lemma 8.1.
Q.E.D.

Proof of Proposition 3.11 (ii). In addition to the assumptions stated in the beginning of this section and in (8:2), we assume that $p<n_{k}$. Then, we arrive at a contradiction as is seen below; and so we see Proposition 3.11 (ii).

We notice that $a \geqq 1$ by (8.2) and $p<n_{k}$. Now, in the right hand side of (6.5), $\operatorname{dim} \alpha_{i} y_{k}>2 n_{k}(p-1)$ if $i<a$. So, by (6.6) and (6.5), $\mathscr{P}^{p^{a}} \alpha_{a} y_{k}$ includes y_{k}^{p}. On the other hand,

$$
H^{n}(Y)=D^{(p)} H^{n}(Y) \equiv N+Z_{p}\left\{y_{k}^{p}\right\} \bmod D^{(p+1)} H^{n}(Y) \quad \text { for } \quad n=2 n_{k} p
$$

where $N=Z_{p}\left\{y_{i_{1}} \cdots y_{i_{p}} \mid l<i_{1} \leqq \cdots \leqq i_{p} \leqq k\right.$ and $\left.i_{1}<k\right\}$ for l with $n_{l}<n_{l+1}=n_{k}$. So,

$$
y_{k}^{p} \equiv \mathscr{P}^{p^{a}} \alpha_{a} y_{k} \bmod N+D^{(p+1)} H^{*}(Y)
$$

Here, $\mathscr{P} p^{a}=-\chi\left(\mathscr{P}^{p^{a}}\right)+\sum_{j=1}^{p_{j}^{a-1}} \mathscr{P}^{j} \chi\left(\mathscr{P}^{p^{a-j}}\right)$ and we see that $\mathscr{P}^{j} \chi\left(\mathscr{P}^{p^{a-j}}\right) \alpha_{a} y_{k}$ does not include y_{k}^{p} for $0<j<p^{a}$ by Lemma 6.1 and (6.6). Therefore, $y_{k}^{p} \equiv$ $-\chi\left(\mathscr{P}^{p^{a}}\right) \alpha_{a} y_{k} \bmod N+D^{(p+1)} H^{*}(Y)$. This implies that

$$
\tilde{y}_{k}^{p} \equiv r_{p} \bar{z}^{\bar{z}} \bmod \bar{N}+\bar{D}_{Y}^{(p+1)}+\left(p, v_{1}, v_{2}, \ldots\right) \quad\left(\bar{D}_{Y}^{(t)}=D^{(t)} B P^{*} Y\right)
$$

by (7.2) and (7.1), where $\bar{N}=B P^{*}\left\{\bar{y}_{i_{1}} \cdots \bar{y}_{i_{p}} \mid l<i_{1} \leqq \cdots \leqq i_{p} \leqq k\right.$ and $\left.i_{1}<k\right\}$. Applying Proposition 7.7 to this equality, we have

$$
\begin{equation*}
p \bar{y}_{k}^{p} \equiv p r_{p^{a}} \bar{z} \equiv \sum r_{E_{s}} \theta_{s} \bar{z} \quad \bmod \bar{N}+\bar{D}_{Y}^{(p+1)}+\left(p^{2}, v_{1}, v_{2}, \ldots\right) \tag{8.5}
\end{equation*}
$$

where $\left|E_{s}\right|<4 p$ if $a=1,\left|E_{s}\right|<2 p^{a}$ if $a \geqq 2$ and $E_{s} \neq \Delta_{i}$ for all $i \geqq 1$. We remark that $(a, b) \neq(1,1)$ since $p^{a} b=n_{k}>p>b$ by assumption. Now, in (8.5),

$$
\operatorname{dim} \theta_{s} \bar{z}=\operatorname{dim} \bar{y}_{k}^{p}-\left|E_{s}\right|=2 n_{k} p-\left|E_{s}\right|>2 n_{k}(p-1),
$$

since $2 n_{k}=2 p^{a} b \geqq 4 p$ if $a=1$ and $b>1$. Thus $\theta_{s} \bar{z} \in \bar{D}_{Y}^{(p)}$ by the dimensional reason and $\left|v_{i}\right|<0$ for $i>0$. Therefore, we may write as follows:

$$
\theta_{s} \bar{z} \equiv \bar{w}+p \bar{w}_{0}+\sum v_{i} \bar{w}_{i} \bmod \left(p, v_{1}, v_{2}, \ldots\right)^{2}
$$

where $\bar{w}, \bar{w}_{0}, \bar{w}_{i} \in D^{(p)} Z_{(p)}\left[\bar{y}_{1}, \ldots, \bar{y}_{k}\right]$. Thus, we see that

$$
r_{E_{s}} \theta_{s} \bar{z} \equiv r_{E_{s}} \overline{\bar{w}}+p r_{E_{s}} \bar{w}_{0}+p \sum_{e_{i}>0} r_{E_{s}-\Delta_{i}} \bar{w}_{i} \bmod \left(p^{2}, v_{1}, v_{2}, \ldots\right)
$$

for $E_{s}=\left(e_{1}, e_{2}, \ldots\right)$, by (7.3) and the Cartan formula $r_{F}\left(\bar{u}_{1} \bar{u}_{2}\right)=\sum_{F_{1}+F_{2}=F}\left(r_{F_{1}} \bar{u}_{1}\right)$ ($r_{F_{2}} \bar{u}_{2}$) for the Landweber-Novikov operation (cf. e.g. [8]). Here, $\left|E_{s}-\Delta_{i}\right| \neq 0$ for any i with $e_{i}>0$ since $E_{s} \neq \Delta_{i}$. Therefore, we have

$$
r_{E_{s}} \theta_{s} \bar{z} \in \bar{N}+D_{Y}^{(p+1)}+\left(p^{2}, v_{1}, v_{2}, \ldots\right)
$$

by Lemma 8.4 and $\bar{w}, \bar{w}_{0}, \bar{w}_{i} \in D^{(p)} Z_{(p)}\left[\bar{y}_{1}, \ldots, \bar{y}_{k}\right]$. This contradicts (8.5); and Proposition 3.11 (ii) is proved completely.
Q.E.D.

References

[1] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. 57 (1953), 115-207.
[2] A. Borel and J.-P. Serre, Groupes de Lie et puissances réduites de Steenrod, Amer. J. Math. 75 (1953), 409-448.
[3] A. Borel and F. Hirzebruch, Characteristic classes and homogeneous spaces, II., Amer. J. Math. 81 (1959), 315-382.
[4] M. Curtis and G. Mislin, Two new H-spaces, Bull. Amer. Math. Soc. 76 (1970), 851-852.
[5] D. L. Goncalves, Mod 2 homotopy-associative H-spaces, Geometric Applications of Homotopy Theory I, Lecture Notes in Math. 657 (1978), Springer, Berlin, 198-216.
[6] P. Hilton and J. Roitberg, On the principal S^{3}-bundles over spheres, Ann. of Math. 90 (1969), 91-107.
[7] P. Hilton, G. Mislin and J. Roitberg, Topological localization and nilpotent groups, Bull. Amer. Math. Soc. 78 (1972), 1060-1063.
[8] R. Kane, Brown-Peterson operations and Steenrod modules, Quart. J. Math. Oxford (2) 30 (1979), 455-467.
[9] R. Kane, The mod 3 cohomology of the exceptional Lie group E_{8}, Algebraic Topology Waterloo 1978, Lecture Notes in Math. 741 (1978), Springer, Berlin, 557-587.
[10] M. A. Kervaire, Some nonstable homotopy groups of Lie groups, Illinois J. Math. 4 (1960), 161-169.
[11] P. G. Kumpel, Jr., On p-equivalences of mod $p H$-spaces, Quart. J. Math. Oxford (2) 23 (1973), 173-178.
[12] M. Mimura and H. Toda, Homotopy groups of symplectic groups, J. Math. Kyoto Univ. 3 (1964), 251-273.
[13] M. Mimura, R. C. O'Neill and H. Toda, On p-equivalence in the sence of Serre, Jap. J. Math. 40 (1971), 1-10.
[14] M. Mimura and H. Toda, On p-equivalences and p-universal spaces, Comment. Math. Helv. 46 (1971), 87-97.
[15] M. Mimura, G. Nishida and H. Toda, Localization of CW-complexes and its applications, J. Math. Soc. Japan 23 (1971), 593-624.
[16] A. Zabrodsky, On spherical classes in the cohomology of H-spaces, H-spaces Neuchâtel (Suisse) Août 1970, Lecture Notes in Math. 196 (1971), Springer, Berlin, 25-33.
[17] A. Zabrodsky, On the construction of new finite $C W H$-spaces, Invent. Math. 16 (1972), 260-266.
[18] A. Zabrodsky, The classification of simply connected H-spaces with three cells II, Math. Scand. 30 (1972), 211-222.
[19] A. Zabrodsky, On the homotopy type of principal classical group bundles over spheres, Israel J. Math. 11 (1972), 315-325.
[20] A. Zabrodsky, Hopf Spaces, North-Holland Mathematics Studies 22 (1976), Notas de Mathemática (59).

Department of Mathematics, Faculty of Science, Hiroshima University

