Quadratic extensions of quasi－pythagorean fields

Daiji Kisima
（Received September 4，1984）

Let F be a field of characteristic different from 2 and K be a quadratic extension of F ．We let $N: K \rightarrow F$ be the norm map and $R(F)$（resp．$R(K)$ ）be Kaplansky＇s radical of F（resp．K ）．Formerly we proposed the following con－ jecture：Is $N^{-1}(R(F))$ equal to $\dot{F} \cdot R(K)$ ？In［3］，we gave a necessary and sufficient condition under which both F and K are quasi－pythagorean（see §1） and showed that the conjecture is true in this case．

The purpose of this paper is to show that the conjecture is true，whenever F is quasi－pythagorean and satisfies the finiteness condition for the space of orderings（see Theorem 6．1）．

The author would like to express his deep appreciation to Professor M．Nishi for his valuable suggestions and continuous encouragements．

§ 1．Quasi－pythagorean fields

Throughout this paper，F shall be a field of characteristic not equal to 2 ． First we recall a few basic notation．For a field $F, W F$ shall denote the Witt ring of F consisting of the Witt classes of all quadratic forms over F ，and $I F$ shall denote the fundamental ideal in $W F$ consisting of the Witt classes of all even－dimensional forms．The notation $\left\langle a_{1}, \ldots, a_{n}\right\rangle$ shall mean the diagonal form $a_{1} x_{1}^{2}+\cdots+a_{n} x_{n}^{2}$ ，where $a_{i} \in \dot{F}:=F \backslash\{0\}$ ．The nth power of the fundamental ideal shall be denoted by $I^{n} F$ ；it is additively generated by the n－fold Pfister forms $\left.《 a_{1}, \ldots, a_{n}\right\rangle:=\left\langle 1, a_{1}\right\rangle \otimes \cdots \otimes\left\langle 1, a_{n}\right\rangle$ ．For a form $f=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ ，we define $D_{F}(f)$ to be the set $\left\{\sum a_{i} x_{i}^{2} \neq 0 ; x_{i} \in F\right\}$ ．We note that if $n \geqq 2$ ，then $D_{F}\left\langle a_{1}, \ldots, a_{n}\right\rangle=$ $D_{F}\left\langle r_{1} a_{1}, \ldots, r_{n} a_{n}\right\rangle$ for $r_{i} \in R(F)$ ，where $R(F)$ is Kaplansky＇s radical of F ．We also note that，for a Pfister form ρ and $x \in \dot{F}, x \in D_{F}(\rho)$ if and only if $\rho \otimes 《-x 》$ is isotropic．

As in［4］，a field F is called quasi－pythagorean if $R(F)=D_{F}(2)$ ．It can be shown that F is quasi－pythagorean if and only if $I^{2} F$ is torsion free．In［3］，the subgroup H_{a} of F is defined by $H_{a}=\left\{x \in \dot{F} ; D_{F}\langle 1,-x\rangle D_{F}\langle 1,-a x\rangle=\dot{F}\right\}$ and，in case F is quasi－pythagorean，it is shown that H_{a} is a subgroup of $D_{F}\langle 1, a\rangle$ ．

Proposition 1．1．Let F be a quasi－pythagorean field and $K=F(\sqrt{a})$ be a quadratic extension of F ．Then the following statements are equivalent：
（1）$\quad N^{-1}(R(F))=\dot{F} \cdot R(K)$ ，where N is the norm map $N: \rightarrow F$ ．
(2) $D_{F}\langle 1, a\rangle R(K)=D_{K}(2)$.

Proof. We first note that $R(K) \cap \dot{F}=H_{a}$ by [3], Proposition 1.4 and Proposition 1.9. We also have $D_{K}(2) \cap \dot{F}=D_{F}\langle 1, a\rangle$ by [1], Lemma 3.5 and $N^{-1}(R(F))=\dot{F} \cdot D_{K}(2)$ by the norm principle ([2], 2.13). We assume that $N^{-1}(R(F))=\dot{F} \cdot D_{K}(2)=\dot{F} \cdot R(K)$. Then $D_{K}(2) \subseteq \dot{F} \cdot R(K)$. Thus for any $\alpha \in D_{K}(2)$, there exist $f \in \dot{F}$ and $\beta \in R(K)$ such that $\alpha=f \beta$; and so $f=\alpha \beta^{-1} \in D_{K}(2) \cap \dot{F}=$ $D_{F}\langle 1, a\rangle$, which implies $\alpha=f \beta \in D_{F}\langle 1, a\rangle R(K)$. The reverse inclusion is clear and we have $D_{F}\langle 1, a\rangle R(K)=D_{K}(2)$. Conversely we assume $D_{F}\langle 1, a\rangle R(K)=$ $D_{K}(2)$. Then $\dot{F} \cdot R(K) \supseteq D_{K}(2)$ and we have $\dot{F} \cdot R(K)=\dot{F} \cdot D_{K}(2)=N^{-1}(R(F))$.
Q.E.D.

Proposition 1.2. Let F be a quasi-pythagorean field and $K=F(\sqrt{a})$ be a quadratic extension of F. Further we assume that $R(F)$ is of finite index. Then the following statements hold:
(1) If $\operatorname{dim} D_{K}(2) / R(K) \leqq \operatorname{dim} D_{F}\langle 1, a\rangle / H_{a}$, then $N^{-1}(R(F))=\dot{F} \cdot R(K)$.
(2) For $d_{1}, \ldots, d_{m} \in \dot{F}$, if F is generated by the set $\left\{d_{1}, \ldots, d_{m},-1\right\} \cup R(F)$, then $R(K)=D_{K}(2) \cap\left(\cap_{i=1, \ldots, m} D_{K}\left\langle 1,-d_{i}\right\rangle\right)$.

Proof. Since $D_{K}(2) \cap \dot{F}=D_{F}\langle 1, a\rangle$ and $R(K) \cap \dot{F}=H_{a}$, we have a canoncial injection $\varphi: D_{F}\langle 1, a\rangle / H_{a} \rightarrow D_{K}(2) / R(K)$; hence $\operatorname{dim} D_{K}(2) \geqq \operatorname{dim} D_{F}\langle 1, a\rangle / H_{a}$. Therefore if $\operatorname{dim} D_{K}(2) / R(K) \leqq \operatorname{dim} D_{F}\langle 1, a\rangle / H_{a}$, then φ is bijective and this implies $D_{F}\langle 1, a\rangle R(K)=D_{K}(2)$. Thus the assertion (1) follows from Proposition 1.1.

Next we proceed to the assertion (2). It is easy to show that $D_{K}\langle 1,-x\rangle \cap D_{K}\langle 1,-y\rangle \subseteq D_{K}\langle 1,-x y\rangle$ for any $x, y \in \dot{F}$. We also have $R(K)=\cap_{x \in \mathcal{F}} D_{K}\langle 1,-x\rangle$ by [3], Proposition 1.10. The assertion (2) follows from these facts.
Q.E.D.

By a preordering of a field F, we mean a subgroup $P \varsubsetneqq \dot{F}$ such that $P+P \subseteq P$ and $\dot{F}^{2} \subseteq P$. A preordering P is called an ordering if P is of index 2 in \dot{F}. Let P be a preordering of F. We denote by $X(F)$ the space of orderings of F and by $X(F / P)$ the subspace of all orderings σ with $P(\sigma) \supseteq P$, where $P(\sigma)$ is the positive cone of σ.

We say that two forms f, g are P-isometric or isometric over P (in symbols $f \cong_{P} g$) if f, g have the same dimension and the same signature with respect to any $\sigma \in X(F / P)$. For a form $f=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ and $b \in F$ (which may be zero), if there exist $p_{1}, \ldots, p_{n} \in P \cup\{0\}$ such that $a_{1} p_{1}+\cdots+a_{n} p_{n}=b$ and $\left(p_{1}, \ldots, p_{n}\right) \neq$ $(0, \ldots, 0)$, then we say that the form f represents b over P. We put $D_{P}(f)=$ $\{b \in \dot{F} ; f$ represents b over $P\}$. We say that f is P-isotropic or f is isotropic over P if f represents 0 over P and P-anisotropic or anisotropic over P otherwise. For two forms f, g, we say that f contains a subform g over P if f is
P－isometric to $g \perp h$ for some form h ．In this case such a form h is uniquely determined and we write $h=f-g$ ．

For a form f ，it is well known that f is P－isotropic if and only if $\pm x \in D_{P}(f)$ for some $x \in \dot{F}$ ．Let F be a formally real，quasi－pythagorean field．Then $R(F)$ is a preordering of F ，and we can see that for a form f with $\operatorname{dim} f \geqq 2, D_{F}(f)=$ $D_{R(F)}(f)$ ．

Proposition 1．3．Let F be a quasi－pythagorean field and $K=F(\sqrt{a})$ be a quadratic extention of F ．Then the following statements hold：
（1）Let ρ be an n－fold Pfister form（ $n \geqq 1$ ）over F ．If $a \in D_{F}(\rho)$ ，then we have $D_{K}(\rho) \cap \dot{F}=D_{F}(\rho)$ ．
（2）For $x, y \in \dot{F}$ ，if $a \in D_{F}\langle x, y\rangle$ and $D_{F}\langle 1, x\rangle \subseteq D_{F}\langle 1, y\rangle$ ，then we have $D_{K}\langle 1, x\rangle \subseteq D_{K}\langle 1, y\rangle$.

Proof．As for（1），we note that if F is not formally real，then $R(F)=\dot{F}$ and the assertion（1）is clear．So we may assume that F is formally real．It is clear that $D_{F}(\rho) \subseteq D_{K}(\rho) \cap \dot{F}$ ，and we must show the reverse inclusion $D_{F}(\rho) \supseteq D_{K}(\rho) \cap \dot{F}$ ． We take an element $x \in D_{K}(\rho) \cap \dot{F}$ ．It is sufficient to show that the $(n+1)$－fold Pfister form $\rho \otimes 《-x\rangle$ is isotropic．Since $(\rho \otimes 《-x\rangle) \otimes K$ is isotropic，the form $\rho \otimes 《-x\rangle$ contains a subform $b\langle 1,-a\rangle$ for some $b \in \dot{F}([6]$, p．200，Lemma 3．1）． Now b is an element of $\left.\left.D_{F}(\rho \otimes 《-x\rangle\right)=G_{F}(\rho \otimes 《-x\rangle\right)$ and so $\left.\rho \otimes 《-x\right\rangle$ contains a subform $\langle 1,-a\rangle$ ；in particular，$\rho \otimes \ll-x\rangle$ represents $-a$ ．Since $\left.\pm a \in D_{R(F)}(\rho \otimes 《-x\rangle\right), \rho \otimes 《-x 》$ is $R(F)$－isotropic and we have $x \in D_{R(F)}(\rho)=$ $D_{F}(\rho)$ ．This implies that $D_{K}(\rho) \cap \dot{F}=D_{F}(\rho)$ ．

Next the assumption $D_{F}\langle 1, x\rangle \subseteq D_{F}\langle 1, y\rangle$ implies that $\dot{F} \cdot D_{K}\langle 1, x\rangle \subseteq F$ ． $D_{K}\langle 1, y\rangle$ by the norm principle（［2］，2．13）．So for $\alpha \in D_{K}\langle 1, x\rangle$ ，there exists $f \in \dot{F}$ such that $f \alpha \in D_{K}\langle 1, y\rangle$ ．We see that $f \in \alpha D_{K}\langle 1, y\rangle \subseteq D_{K}\langle 1, x\rangle D_{K}\langle 1, y\rangle \subseteq$ $D_{K}\langle x, y\rangle$ and it follows from the assertion（1）that $f \in D_{K}\left\langle\langle x, y\rangle \cap \dot{F}=D_{F}\langle x, y\rangle\right.$ ． The fact $D_{F}\langle 1, x\rangle \subseteq D_{F}\langle 1, y\rangle$ implies $x \in D_{F}\langle 1, y\rangle=G_{F}\langle 1, y\rangle$ and so $\langle x, y\rangle \cong$ $\langle 1, y\rangle \perp x\langle 1, y\rangle \cong\langle 1, y\rangle \perp\langle 1, y\rangle \cong 《 1, y\rangle$ ．Hence we can easily show that $D_{F}\langle x, y\rangle=D_{F}\langle 1, y\rangle=D_{F}\langle 1, y\rangle$ ，since F is quasi－pythagorean．Therefore we have $f \in D_{F}\langle 1, y\rangle \subseteq D_{K}\langle 1, y\rangle$ ．This implies $\alpha \in f D_{K}\langle 1, y\rangle=D_{K}\langle 1, y\rangle$ and the assertion（2）is proved．

Q．E．D．
Corollary 1．4．Let F be a quasi－pythagorean field and $K=F(\sqrt{a})$ be a quadratic extension of F ．Then for $x \in \dot{F}$ ，the following statements hold：
（1）If $a \in D_{F}\langle 1, x\rangle$ ，then we have $D_{K}(2) \subseteq D_{K}\langle 1, x\rangle$ ．
（2）If $x \in D_{F}\langle 1, a\rangle$ ，then we have $D_{K}\langle 1, x\rangle \subseteq D_{K}(2)$ ．

§ 2．The group $\boldsymbol{H}_{a}(\boldsymbol{P})$

Throughout this section，a field always means a formally real field．For a
subset Y of $X(F)$, we denote by Y^{\perp} the preordering $\cap P(\sigma), \sigma \in Y$. We have $P=X(F / P)^{\perp}$ and in particular, $X(F)^{\perp}=D_{F}(\infty)=\Sigma \dot{F}^{2}$. The topological structure of $X(F)$ is determined by Harrison sets $H(x)=\{\sigma \in X(F) ; x \in P(\sigma)\}$ as its subbasis, where x ranges over F. For a preordering P of F, we write $H_{P}(x)=H(x) \cap X(F / P)$.

Lemma 2.1. Let P be a preordering of a field F. Then for x, y and $a \in \dot{F}$, the following conditions are equivalent:
(1) $x \in D_{P}\langle 1,-y\rangle D_{P}\langle 1,-a y\rangle$.
(2) $\langle 1,-x,-y, a x y\rangle$ is P-isotropic.
(3) $y \in D_{P}\langle 1,-x\rangle D_{P}\langle 1,-a x\rangle$.

Proof. (1) \Rightarrow (2): We write $x=\alpha \beta$ for some $\alpha \in D_{P}\langle 1,-y\rangle$ and $\beta \in$ $D_{P}\langle 1,-a y\rangle$. Since $\alpha \beta^{2}-x \beta=0, \alpha \beta^{2} \in D_{P}\langle 1,-y\rangle$ and $-x \beta \in-x D_{P}\langle 1,-a y\rangle=$ $D_{P}\langle-x, a x y\rangle$, we see that $\langle 1,-y,-x, a x y\rangle$ is P-isotropic.
(2) $\Rightarrow(1)$: From the assumption, there exists a non-trivial relation $p_{1}-y p_{2}-x p_{3}+a x y p_{4}=0$ with $p_{i} \in P \cup\{0\}, i=1,2,3,4$. If $p_{1}-y p_{2}=$ $x\left(p_{3}-a y p_{4}\right)=0$, then at least one of the forms $\langle 1,-y\rangle$ and $\langle 1,-a y\rangle$ is P isotropic and we have $D_{P}\langle 1,-y\rangle D_{P}\langle 1,-a y\rangle=\dot{F}$. If $p_{1}-y p_{2}=x\left(p_{3}-a y p_{4}\right) \neq 0$, then $x\left(p_{3}-a y p_{4}\right)^{2}=\left(p_{1}-y p_{2}\right)\left(p_{3}-a y p_{4}\right) \in D_{P}\langle 1,-y\rangle D_{P}\langle 1,-a y\rangle$. Therefore in any case we have $x \in D_{P}\langle 1,-y\rangle D_{P}\langle 1,-a y\rangle$.

The equivalence of the conditions (2) and (3) is quite similar to the above one.
Q.E.D.

For $a \in \dot{F}$, the subgroup H_{a} of \dot{F} is defined by $H_{a}=\left\{x \in \dot{F} ; D_{F}<1\right.$, $\left.-x\rangle D_{F}\langle 1,-a x\rangle=\dot{F}\right\}$ in [3], §1. Generally, we put $H_{a}(P)=\left\{x \in \dot{F} ; D_{P}<1\right.$, $\left.-x\rangle D_{P}\langle 1,-a x\rangle=\dot{F}\right\}$, where P is a preordering of F. We note that $H_{-1}(P)$ is the group $H(P)$ defined in [5], §2. By [5], Remark 2.3, (1), we have $H(P)=\dot{F}$ if and only if the space $X(F / P)$ satisfies S. A. P. .

Proposition 2.2. Let P be a preordering of a field F. Then for $a \in \dot{F}$, we have $H_{a}(P)=\cap_{y \in \mathcal{F}} D_{P}\langle 1,-y\rangle D_{P}\langle 1,-a y\rangle$. In particular, $H_{a}(P)$ is a subgroup of \dot{F} and $P \subseteq H_{a}(P) \subseteq D_{P}\langle 1, a\rangle$.

Proof. Since $H_{a}(P)=\left\{x \in \dot{F} ; D_{P}\langle 1,-x\rangle D_{P}\langle 1,-a x\rangle=\dot{F}\right\}$, it follows from Lemma 2.1 that $H_{a}(P)=\cap_{y \in \mathcal{F}} D_{P}\langle 1,-y\rangle D_{P}\langle 1,-a y\rangle$. Thus $H_{a}(P)$ is a multiplicative subgroup of \dot{F} which contains P. For $y=-1, D_{P}\langle 1,-y\rangle D_{P}\langle 1,-a y\rangle=$ $D_{P}\langle 1,1\rangle D_{P}\langle 1, a\rangle=D_{P}\langle 1, a\rangle$, which implies $H_{a}(P) \subseteq D_{P}\langle 1, a\rangle$. Q.E.D.

In the rest of this section, we fix an element $a \in \dot{F}$ and a preordering P of F. We denote the sets $D_{P}\langle 1, a\rangle, D_{P}\langle 1,-a\rangle$ by T, T^{\prime} respectively. If $\pm a \notin P$, then T and T^{\prime} are preorderings of F and we have $H_{P}(a)=X(F / T), H_{P}(-a)=X\left(F / T^{\prime}\right)$. The following three lemmas are generalizations of [3], Lemma 2.6, Lemma 2.8 and Lemma 2.9 respectively, and the proofs are omitted.

Lemma 2.3. Assume that $\pm a \notin P$. Then for $x \in T$, the following statements hold:
(1) $D_{P}\langle 1, x\rangle=D_{T},\langle 1, x\rangle \cap T$.
(2) $D_{P}\langle 1,-x\rangle=D_{T^{\prime}}\langle 1,-x\rangle$.
(3) If we further assume $a \in H(P)$, then we have $D_{P}\langle 1, x\rangle D_{P}\langle 1,-x\rangle=$ $\left.D_{T^{\prime}}<1, x\right\rangle D_{T^{\prime}}\langle 1 .-x\rangle$.

Lemma 2.4. Assume that $\pm a \notin P$. Then we have $H\left(T^{\prime}\right) \cap T=H_{a}(P)$.
Lemma 2.5. Assume that $X(F / P)$ is finite and connected. Then we have $H_{a}(P)=P \cup a P$.

We shall say that two orderings $\sigma, \tau \in X(F / P)$ are connected in $X(F / P)$ if $\sigma=\tau$ or there exists a fan of index 8 which contains σ and τ. We denote this relation by $\sigma \sim \tau$. Marshall ([7], Theorem 4.7) showed that the relation \sim is an equivalence relation in $X(F / P)$. An equivalence class of this relation is called a conncected component of $X(F / P)$ and a union of some connected components is called full. If P is of finite index, then $X(F / P)$ is a finite space; let X_{1}, \ldots, X_{n} be the connected components of $X(F / P)$. We write $P_{i}=X_{i}^{\perp}(i=1, \ldots, n)$. By [5], Corollary 2.7, the canonical map $\varphi: \dot{F} / P \rightarrow \Pi \dot{F} / P_{i}(i=1, \ldots, n)$ is isomorphic. It is clear by the definition that $H_{a}(P) \subseteq H_{a}\left(P_{i}\right)$ for any $i=1, \ldots, n$. Therefore the $\operatorname{map} \psi: H_{a}(P) / P \rightarrow \Pi H_{a}\left(P_{i}\right) / P_{i}(i=1, \ldots, n)$ is well-defined, where ψ is the restriction of φ to $H_{a}(P) / P$.

Proposition 2.6. Let P be a preordering of F of finite index and X_{1}, \ldots, X_{n} be the connected components of $X(F / P)$. We write $P_{i}=X_{i}^{\perp}(i=1, \ldots, n)$. Then the canonical map $\psi: H_{a}(P) / P \rightarrow \Pi H_{a}\left(P_{i}\right) / P_{i}(i=1, \ldots, n)$ is isomorphic.

Proof. Clearly ψ is injective. We shall show that ψ is surjective. Let X_{i} be any connected component of $X(F / P)$. Since X_{i} is a full subspace of $X(F / P)$, $X_{i}=H_{P}(b)$ for some $b \in H(P)$ by [5], Proposition 2.4. Then we have $X(F / P) \backslash$ $X_{i}=H_{P}(-b), D_{P}\langle 1,-b\rangle=\cap_{j \neq \imath} P_{j}$ and $D_{P}\langle 1, b\rangle=P_{i}$. We can take an element $x \in D_{P}\langle 1,-b\rangle \cap a P_{i}$, since $D_{P}\langle 1,-b\rangle D_{P}\langle 1, b\rangle=\dot{F}$. The fact $x \in D_{P}\langle 1,-b\rangle=$ $\cap_{j \neq i} P_{j}$ shows that $H_{P}(-x) \subseteq X_{i}$ and this implies $D_{P}\langle 1,-x\rangle=\left(H_{P}(-x)\right)^{\perp} \supseteq$ $X_{i}^{\perp}=D_{P}\langle 1, b\rangle$. Since $a x \in P_{i}$, we have $H_{P}(-a x) \subseteq H_{P}(-b)$ and so $H_{P}\langle 1,-a x\rangle \supseteq$ $H_{P}\langle 1,-b\rangle$. Thus $D_{P}\langle 1,-x\rangle D_{P}\langle 1,-a x\rangle \supseteq D_{P}\langle 1, b\rangle D_{P}\langle 1,-b\rangle=\dot{F}$, which implies $x \in H_{a}(P)$. Hence $\varphi\left(H_{a}(P) / P\right) \supseteq \varphi(x P \cup P / P)$. By Lemma 2.5, we have $H_{a}\left(P_{i}\right)=P_{i} \cup a P_{i}$; since $x \in a P_{i} \cap\left(\cap_{j \neq i} P_{j}\right), \varphi(x P \cup P / P)=H_{a}\left(P_{i}\right) / P_{i} \times \Pi_{j \neq i}\left(P_{j} / P_{j}\right)$. From these facts, it is easily shown that ψ is surjective. \quad Q.E.D.

Let S be a subgroup of \dot{F} which contains P. Then S / P has the structure of Z_{2}-vector space, and we denote its dimension by $\operatorname{dim} S / P$. For a connected component X_{i} of $X(F / P)$, we can readily see that $a \notin P_{i}$ if and only if $X_{i} \cap$
$H_{P}(-a) \neq \phi$. Now we have the following corollary to Proposition 2.6.
Corollary 2.7. Let P be a preordering of F of finite index and X_{1}, \ldots, X_{n} be the connected components of $X(F / P)$. Then $\operatorname{dim} H_{a}(P) / P=|I|$, where $I=$ $\left\{i ; a \neq P_{i}\right\}$.

Lemma 2.8. Assume that P is of finite index and let $X(F / T)$ be a full subspace of $X(F / P)$. Then for any $x \in \dot{F}$, we have $D_{P}\langle 1, x\rangle T=D_{T}\langle 1, x\rangle$.

Proof. We put $T^{c}=(X(F / P) \backslash X(F / T))^{\perp}$. We note that $D_{T}\langle 1, x\rangle=\left(H_{P}(x) \cap\right.$ $X(F / T))^{\perp}$ and $D_{T^{c}}\langle 1, x\rangle=\left(H_{P}(x) \cap X\left(F / T^{c}\right)\right)^{\perp}$ for any $x \in \dot{F}$, hence $D_{P}\langle 1, x\rangle=$ $D_{T}\langle 1, x\rangle \cap D_{T^{c}}\langle 1, x\rangle$. Therefore $D_{P}\langle 1, x\rangle T=D_{T}\langle 1, x\rangle \cap D_{T c}\langle 1, x\rangle T$ and, since $T T^{c}=\dot{F}$, the assertion follows.
Q.E.D.

Proposition 2.9. Assume that P is of finite index and let $X\left(F / P_{1}\right), \ldots$, $X\left(F / P_{n}\right)$ be the connected components of $X(F / P)$. Then the following statements are equivalent:
(1) $H_{a}(P)=D_{P}\langle 1, a\rangle$.
(2) a is P_{i}-rigid for any $i=1, \ldots, n$.

Proof. (1) \Rightarrow (2): By the assumption, $D_{P}\langle 1, a\rangle P_{i}=H_{a}(P) P_{i}$ and also $H_{a}(P) P_{i}=H_{a}\left(P_{i}\right)$ by Proposition 2.6. Since $H_{a}\left(P_{i}\right)=P_{i} \cup a P_{i}$ by Lemma 2.5, $D_{P}\langle 1, a\rangle P_{i}=P_{i} \cup a P_{i}$. Thus the assertion follows immediately from Lemma 2.8.
(2) \Rightarrow (1): Assume that a is P_{i}-rigid for any i. Then $D_{P}\langle 1, a\rangle P_{i}=D_{P_{i}}\langle 1, a\rangle$ $=P_{i} \cup a P_{i}$ by Lemma 2.8, and so for any $i, D_{P}\langle 1, a\rangle P_{i}=H_{a}\left(P_{i}\right)$ by Lemma 2.5. Thus, by Proposition 2.6, we see that $D_{P}\langle 1, a\rangle \subseteq H_{a}(P)$. On the other hand the reverse inclusion holds always by Proposition 2.2 and so the assertion (1) is proved.
Q.E.D.

As a corollary of Proposition 2.9, we have the following assertion, which generalizes [3], Corollary 2.10.

Corollary 2.10. Suppose that $X(F)$ is a finite space. Let $K=F(\sqrt{a})$ be a quadratic extension of F and $X\left(F / P_{1}\right), \ldots, X\left(F / P_{n}\right)$ be the connected components of $X(F)$. Then the following statements are equivalent:
(1) K is quasi-pythagorean.
(2) F is quasi-pythagorean and a is P_{i}-rigid for any $i=1, \ldots, n$.

Lemma 2.11. Let F be a formally real, quasi-pythagorean field. We assume that $X(F)$ is a finite space and denote by $X\left(F / P_{1}\right), \ldots, X\left(F / P_{n}\right)$ the connected components of $X(F)$. Then the following statements hold:
(1) If $H(-x) \subseteq X\left(F / P_{i}\right)$, then $D_{F}\langle 1, x\rangle D_{F}\langle 1,-x\rangle=D_{P_{i}}\langle 1, x\rangle D_{P_{i}}\langle 1,-x\rangle$.
(2) If $a \notin-R(F)$ and $H(-x) \subseteq X\left(F / P_{i}\right) \cap H(-a)$, then we have

$$
D_{F}\langle 1, x\rangle D_{F}\langle 1, a x\rangle=D_{P_{i}}\langle 1, x\rangle D_{P_{i}}\langle 1,-x\rangle \cap T,
$$

where T denotes the preordering $D_{F}\langle 1, a\rangle$ of F.
Proof. If $X(F)$ is connected, then the assertion (1) is clear. Therefore, to prove (1), we may suppose $n \geqq 2$. Then there exists $b \in H(R(F))$ such that $X\left(F / P_{i}\right)$ $=H(-b)$ by [5], Proposition 2.4. Since $H(x) \supseteq X(F) \backslash X\left(F / P_{i}\right)=H(b)$, we have $x \in D_{F}\langle 1, x\rangle \subseteq D_{F}\langle 1, b\rangle$. Hence by Lemma 2.3. (3), we see $D_{F}\langle 1, x\rangle D_{F}\langle 1,-x\rangle$ $=D_{P_{i}}\langle 1, x\rangle D_{P_{i}}\langle 1,-x\rangle$.

Since $H(-x) \subseteq H(-a), H(x) \supseteq H(a)$ and $x \in D_{F}\langle 1, a\rangle=T$; hence it is clear that $D_{F}\langle 1, x\rangle D_{F}\langle 1, a x\rangle \subseteq T$. Also the inclusion $H(x) \supseteq H(a)$. implies $H(a x)=$ $H(-x) \cup H(a)$ and so $D_{F}\langle 1, a x\rangle=H(-x)^{\perp} \cap H(a)^{\perp}=D_{F}\langle 1,-x\rangle \cap T$. Therefore $D_{F}\langle 1, x\rangle D_{F}\langle 1, a x\rangle$ is contained in $D_{F}\langle 1, x\rangle D_{F}\langle 1,-x\rangle$ and we have

$$
D_{F}\langle 1, x\rangle D_{F}\langle 1, a x\rangle \subseteq D_{P_{i}}\langle 1, x\rangle D_{P_{i}}\langle 1,-x\rangle \cap T .
$$

For the reverse inclusion, we take $z \in D_{P_{i}}\langle 1, x\rangle D_{P_{i}}\langle 1,-x\rangle \cap T$. From the assertion (1), there exist $\alpha \in D_{F}\langle 1, x\rangle$ and $\beta \in D_{F}\langle 1,-x\rangle$ such that $z=\alpha \beta$. The fact $\alpha \in D_{F}\langle 1, x\rangle \subseteq T$ implies implies $\beta \in T$ and so $\beta \in T \cap D_{F}\langle 1,-x\rangle=D_{F}\langle 1, a x\rangle$. Thus we have $z=\alpha \beta \in D_{F}\langle 1, x\rangle D_{F}\langle 1, a x\rangle$ and the conclusion follows. Q.E.D.

§ 3. Connected spaces of orderings

Let F be a formally real field and P be a preordering of F. We denote by $\operatorname{gr}(X(F / P))$ the translation group of $X(F / P)$ in the terminology of [7], namely $\operatorname{gr}(X(F / P))=\{\alpha \in \chi(\dot{F} / P) ; \alpha X(F / P)=X(F / P)\}$, where $\chi(\dot{F} / P)=\operatorname{Hom}(\dot{F} / P,\{ \pm 1\})$ is the character group of \dot{F} / P. For a preordering P of finite index, $X(F / P)$ is connected if and only if $X(F / P)=1$ or $|X(F / P)|>3$ and $\operatorname{gr}(X(F / P)) \neq 1$. In what follows we assume that $X(F / P)$ is connected and $|X(F / P)|>3$. For $x \in \dot{F}$, we define the subgroup $J_{P}(x)$ of \dot{F} by $J_{P}(x)=D_{P}\langle 1, x\rangle D_{P}\langle 1,-x\rangle$ as in [5]. Since $X(F / P)$ is connected and $|X(F / P)|>3$, there exists $\alpha \in \operatorname{gr}(X(F / P)), \alpha \neq 1$ and we fix it in this section. Then we can write $\alpha=\sigma_{1} \sigma_{2}$ with $\sigma_{1}, \sigma_{2} \in X(F / P)$ and there exist orderings $\sigma_{3}, \ldots, \sigma_{n} \in X(F / P)$ such that $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is a basis of $X(F / P)$, namely $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ is a basis of the subgroup of $\chi(\dot{F} / P)$ generated by the set $X(F / P)$. For a subspace Y of $X(F / P)$, we denote by $\operatorname{dim} Y$ the dimension of the subgroup of $\chi(\dot{F} / P)$ generated by Y; it is well known that $\operatorname{dim} Y$ is equal to the index of Y^{\perp} in \dot{F}. Let $\left\{a_{1}, \ldots, a_{n}\right\}, a_{i} \in \dot{F}$, be the dual basis of $\left\{\sigma_{1}, \ldots, \sigma_{n}\right\}$ and we put $c_{j}=a_{j}(j \neq 2)$ and $c_{2}=a_{1} a_{2}$. The subgroups of \dot{F} generated by $\left\{c_{2}, \ldots, c_{n}\right\} \cup P$ and $\left\{c_{2}, \ldots, \check{c}_{j}, \ldots, c_{n}\right\} \cup P$ are denoted by L and $L_{j}(2 \leqq j \leqq n)$ respectively. It is clear that $\dot{F}=L \cup c_{1} L,-1 \in L$ and $-1 \notin L_{j}$, since $c_{2} \cdots c_{n}=a_{1} \cdots a_{n} \in-P$. Also it is easily shown that $\alpha\left(c_{1}\right)=-1, \alpha\left(c_{j}\right)=1(j=2, \ldots, n)$. We note that $H_{P}\left(c_{1}\right) \ni \sigma_{j}$ $(j=2, \ldots, n), H_{P}\left(c_{2}\right) \ni \alpha \sigma_{3}, \sigma_{j}(j=3, \ldots, n)$ and, for $i \geqq 3, H_{P}\left(c_{i}\right) \ni \sigma_{j}(j \neq i)$. We can readily see c_{i} is P-rigid for any $i=1, \ldots, n$, since an element x of \dot{F} is P-rigid if and only if $\operatorname{dim} H_{P}(x) \geqq \operatorname{dim} X(F / P)-1$. For $\alpha \in \chi(\dot{F} / P)$, the same symbol
α will often stand for the composite map $\alpha_{\circ} p, p$ being the canonical projection $\dot{F} \rightarrow \dot{F} / P$, as far as there is no fear of confusion.

Proposition 3.1. The following statements hold:
(1) $\operatorname{Ker} \alpha=L$.
(2) Any element of $c_{1} L$ is P-rigid.
(3) For $x \in L$, if $x \notin-P$, then $D_{P}\langle 1, x\rangle \subseteq L$.

Proof. Since $\sigma_{i}\left(a_{i}\right)=-1$ and $\sigma_{i}\left(a_{j}\right)=1(i \neq j)$, we have $\alpha\left(c_{1}\right)=\sigma_{1} \sigma_{2}\left(a_{1}\right)=-1$, $\alpha\left(c_{2}\right)=\sigma_{1} \sigma_{2}\left(a_{1} a_{2}\right)=1$ and $\alpha\left(c_{i}\right)=\sigma_{1} \sigma_{2}\left(a_{i}\right)=1$ for $i \geqq 3$. The assertion (1) follows immediately from these observations.

Let x be any element of $c_{1} L$. Then $\alpha(x)=-1$ by (1). Now for any $\sigma \in X(F / P)$, if $\sigma(x)=-1$, then $\alpha \sigma(x)=\alpha(x) \sigma(x)=1$. Thus for each $\sigma \in X(F / P)$, there exists $e(\sigma) \in\{0,1\}$ such that $\alpha^{e(\sigma)} \sigma(x)=1$. This implies that x is an element of the preordering $\cap_{\sigma \in X(F / P)} \operatorname{Ker}\left(\alpha^{e(\sigma)} \sigma\right)$, and hence, $D_{P}\langle 1, x\rangle \subseteq \cap_{\sigma \in X(F / P)}$ $\operatorname{Ker}\left(\alpha^{e(\sigma)} \sigma\right)$. Note however that

$$
\cap_{\sigma \in X(F / P)} \operatorname{Ker}\left(\alpha^{e(\sigma)} \sigma\right) \cap \operatorname{Ker}(\alpha)=\cap_{\sigma \in X(F / P)} \operatorname{Ker}(\sigma)=P
$$

Since $\operatorname{Ker}(\alpha)$ is of index 2 in \dot{F}, this implies that $\cap_{\sigma \in X(F / P)} \operatorname{Ker}\left(\alpha^{e(\sigma)} \sigma\right)$ has order at most 2 in \dot{F} / P. So we have $D_{P}\langle 1, x\rangle=P \cup x P$, which settles the assertion (2).

Since $x \notin-P$, there exists $\sigma \in X(F / P)$ such that $\sigma(x)=1$. Let y be an element of $D_{P}\langle 1, x\rangle$. We suppose $y \notin L$; then $-y \notin L$ because $-1 \in L$. Thus $-y \in c_{1} L$, so $-y$ is P-rigid. But $y \in D_{P}\langle 1, x\rangle$ and this is equivalent to $-x \in D_{P}\langle 1,-y\rangle$. So we have $-x \in P$ or $-x \in-y P$. The former case is impossible since $\sigma(x)=1$ and the latter case is also impossible since $x \in L, Y \notin L$. This proves the assertion (3).
Q.E.D.

Lemma 3.2. Let T be a preordering of a field F and f, g be forms over F. If any element of $D_{T}(f) D_{T}(g)=\left\{\alpha \beta ; \alpha \in D_{T}(f), \beta \in D_{T}(g)\right\}$ is T-rigid, then $D_{T}(f \perp g)=D_{T}(f) \cup D_{T}(g)$.

Proof. It suffices to show that $D_{T}(f \perp g) \subseteq D_{T}(f) \cup D_{T}(g)$. Let y be an element of $D_{T}(f \perp g)$. Then we can write $y=\alpha+\beta$, where $\alpha \in D_{T}(f) \cup\{0\}$ and $\beta \in$ $D_{T}(g) \cup\{0\}$. If $\alpha=0$ or $\beta=0$, then the assertion follows immediately. Thus we may assume $\alpha \neq 0$ and $\beta \neq 0$. We note that $\alpha^{-1} \beta=\left(\alpha^{-1}\right)^{2} \alpha \beta \in D_{T}(f) D_{T}(g)$. So by the assumption, we have $1+\alpha^{-1} \beta \in T$ or $1+\alpha^{-1} \beta \in \alpha^{-1} \beta T$. In the former case, $y=\alpha\left(1+\alpha^{-1} \beta\right) \in \alpha T \subseteq D_{T}(f)$ and in the latter case, $y \in \alpha\left(\alpha^{-1} \beta\right) T=\beta T \subseteq D_{T}(g)$. Therefore we have $y \in D_{T}(f) \cup D_{T}(g)$, and so $D_{T}(f \perp g) \subseteq D_{T}(f) \cup D_{T}(g)$.
Q.E.D.

We say that two forms f, g are P-similar if $f \cong{ }_{p} a g$ for some $a \in \dot{F}$.

Lemma 3.3. Let $x_{i}, y_{i}, z_{i}(i=1,2)$ be elements of the group L such that $x_{1} x_{2}, y_{1} y_{2} \notin z_{1} z_{2} P$ and $x_{1} x_{2}, y_{1} y_{2} \notin-P$. Then the form $\varphi=\left\langle x_{1}, x_{2}\right\rangle \perp c_{1}\left\langle y_{1}\right.$, $\left.y_{2}\right\rangle$ does not contain a subform which is P-similar to $\left\langle z_{1}, z_{2}\right\rangle$.

Proof. First we note that $D_{P}\left\langle x_{1}, x_{2}\right\rangle=x_{1} D_{P}\left\langle 1, x_{1} x_{2}\right\rangle \subseteq L$ and $D_{P}\left\langle y_{1}\right.$, $\left.y_{2}\right\rangle=y_{1} D_{P}\left\langle 1, y_{1} y_{2}\right\rangle \subseteq L$ by Proposition 3.1.
Since $D_{P}\left\langle x_{1}, x_{2}\right\rangle D_{P}\left(c_{1}\left\langle y_{1}, y_{2}\right\rangle\right) \subseteq c_{1} L$ and any element of $c_{1} L$ is P-rigid, $D_{P}(\varphi)=$ $D_{P}\left\langle x_{1}, x_{2}\right\rangle \cup c_{1} D_{P}\left\langle y_{1}, y_{2}\right\rangle$ by Lemma 3.2. We now suppose on the contrary that φ contains a subform $b\left\langle z_{1}, z_{2}\right\rangle$ over P for some $b \in \dot{F}$. We consider the following two cases.

Case 1. $b z_{1} \in D_{P}\left\langle x_{1}, x_{2}\right\rangle$. In this case, we have $\left\langle x_{1}, x_{2}\right\rangle \cong_{P}\left\langle b z_{1}, b z_{1} x_{1} x_{2}\right\rangle$ which implies that the form $\varphi-\left\langle b z_{1}\right\rangle=\left\langle b z_{1} x_{1} x_{2}\right\rangle \perp c_{1}\left\langle y_{1}, y_{2}\right\rangle$ represents $b z_{2}$ over P. We note that $b z_{1} \in L$ and so $D_{P}\left\langle b z_{1} x_{1} x_{2}\right\rangle D_{P}\left(c_{1}\left\langle y_{1}, y_{2}\right\rangle\right) \subseteq c_{1} L$. By Lemma 3.2, we have $D_{P}\left(\left\langle b z_{1} x_{1} x_{2}\right\rangle \perp c_{1}\left\langle y_{1}, y_{2}\right\rangle\right)=b z_{1} x_{1} x_{2} P \cup D_{P}\left(c_{1}\left\langle y_{1}, y_{2}\right\rangle\right)$, hence $b z_{2} \in b z_{1} x_{1} x_{2} P$. This contradicts the assumption $x_{1} x_{2} \notin z_{1} z_{2} P$.

Case 2. $b z_{1} \notin c_{1} D_{P}\left\langle y_{1}, y_{2}\right\rangle$. Similarly to the case 1 , we can show that $y_{1} y_{2} \notin z_{1} z_{2} P$, a contradiction. Q.E.D.

Lemma 3.4. Let a, x, y be elements of the group L and z an element of $c_{1} L$. If $y \notin D_{P}\langle 1,-x\rangle D_{P}\langle 1,-a x\rangle$, then the the form $\varphi=\langle 1,-x,-y, z\rangle$ does not contain a subform which is P-similar to $\langle 1,-a\rangle$. In particular, if $y \notin D_{P}\langle 1,-x\rangle D_{P}\langle 1, x\rangle$, then the form $\varphi=\langle 1, x, y, z\rangle$ does not contain a subform which is P-similar to $\langle 1,1\rangle$.

Proof. First we shall show that the form $\langle 1,-x,-y\rangle$ does not contain a subform which is P-similar to $\langle 1,-a\rangle$. Assume on the contrary that the form $\langle 1,-x,-y\rangle$ contains a subform $b\langle 1,-a\rangle$ over P for some $b \in \dot{F}$. Then we have $\langle 1,-x,-y\rangle \cong_{P}\langle b,-a b,-a x y\rangle$, which implies $-a x y \in D_{P}\langle 1,-x,-y\rangle$. Thus the form $\langle 1,-x,-y, a c y\rangle$ is P-isotropic and hence $y \in D_{P}\langle 1,-x\rangle D_{P}$ $\langle 1,-a x\rangle$ by Lemma 2.1, a contradiction.

Next we assume that φ contains subform $b\langle 1,-a\rangle$ over P for some $b \in \dot{F}$. From the assumption $y \notin D_{P}\langle 1,-x\rangle \cdot D_{P}\langle 1,-a x\rangle$, it follows that $x y \notin-P$ and so $D_{P}\langle-x,-y\rangle=-x D_{P}\langle 1, x y\rangle \subseteq L$ by Proposition 3.1. Let z be any element of $D_{P}\langle-x,-y\rangle$. Then $z \notin-P$, because the form $\langle 1,-x,-y$, axy \rangle is P-anisotropic by Lemma 2.1. From these observation, it is easy to show that $D_{P}\langle 1,-x,-y\rangle \subseteq L$ by Proposition 3.1. Therefore, since $z \in c_{1} L, D_{P}(\varphi)=$ $D_{P}\langle 1,-x,-y\rangle \cup z P$ by Lemma 3.2. We now treat the following two cases separately.

Case 1. $b \in z P$. In this case, since the form $\varphi-\langle b\rangle$ represents $-a b$, we have $-a b \in D_{P}\langle 1,-x,-y\rangle \subseteq L$. This contradicts the fact that $-a b \in-a z P \subseteq$ c_{1} L.

Case 2. $b \in D_{P}\langle 1,-x,-y\rangle$. In this case, the form $\langle 1,-x,-y\rangle$ is $P-$ isometric to $\left\langle b, b_{1}, b_{2}\right\rangle$ for some $b_{1}, b_{2} \in \dot{F}$. So we have $-a b \in D_{P}\left\langle b_{1}, b_{2}, z\right\rangle$. By Lemma 3.2, $D_{P}\left\langle b_{1}, b_{2}, z\right\rangle=D_{P}\left\langle b_{1}, b_{2}\right\rangle \cup z P$, and this shows that $-a b \in$ $D_{P}\left\langle b_{1}, b_{2}\right\rangle$ because $-a b \in L$ and $z P \subseteq c_{1} L$. Thus the form $\langle 1,-x,-y\rangle$ contains a subform $b\langle 1,-a\rangle$ over P. This contradicts the first step of our proof.

We now assume $y \notin D_{P}\langle 1,-x\rangle D_{P}\langle 1, x\rangle$. We put $y^{\prime}=-y, x^{\prime}=-x$ and $a=-1$. Then $y^{\prime} \notin D_{P}\left\langle 1,-x^{\prime}\right\rangle D_{P}\left\langle 1,-a x^{\prime}\right\rangle$, so by the first assertion, $\left\langle 1,-x^{\prime},-y^{\prime}, z\right\rangle=\langle 1, x, y, z\rangle$ does not contain a subform which is P-similar to $\langle 1,1\rangle$.
Q.E.D.

§4. Quadratic extensions of quasi-pythagorean fields

In this section, we assume that F is a formally real, quasi-pythagorean field and $R(F)$ is of finite index in \dot{F}. Let $X(F)$ be the space of orderings of F and $X\left(F / P_{1}\right), \ldots, X\left(F / P_{n}\right)$ be the connected components of $X(F)$. We write $n(i)=$ $\operatorname{dim} X\left(F / P_{i}\right)$ and $P_{i}^{c}=\cap_{j \neq i} P_{j}$ for $i=1, \ldots, n$. It is easily shown that for any $x \in P_{i}^{c}, H(x) \supseteq X(F) \backslash X\left(F / P_{i}\right)$, and $H(-x) \subseteq X\left(F / P_{i}\right)$. Since $X\left(F / P_{i}\right)$ is a full subspace of $X(F)$, there exists $b \in H(R(F))$ such that $X\left(F / P_{i}\right)=H(b)$ by [5], Proposition 2.4. We have $P_{i}=D_{F}\langle 1, b\rangle$ and $P_{i}^{c}=D_{F}\langle 1,-b\rangle$, and this implies $P_{i} \cdot P_{i}^{c}=$ $D_{F}\langle 1, b\rangle D_{F}\langle 1,-b\rangle=\dot{F}$. Therefore we can take a basis of \dot{F} / P_{i}, consisting of elements in P_{i}^{c}.

In what follows, whenever we say that a subset B of \dot{F} is a basis of \dot{F} / P_{i}, we understand that B consists of elements in P_{i}^{c}. We fix a quadratic extension $K=$ $F(\sqrt{a})$.

Proposition 4.1. If $a \in P_{i}$, then we have $D_{K}\langle 1,-x\rangle \supseteq D_{K}(2)$ for any $x \in P_{i}^{c}$. In particular if $\left\{c_{i}\right\} i=1, \ldots, n(i)$ is a basis of \dot{F} / P_{i}, then we have $D_{K}\left\langle 1,-c_{i}\right\rangle \supseteq$ $D_{K}(2)$ for any $i=1, \ldots, n(i)$.

Proof. Since $x \in P_{i}^{c}$, we have $H(-x) \subseteq X\left(F / P_{i}\right)$, and so $D_{F}\langle 1,-x\rangle=$ $H(-x)^{\perp} \supseteq P_{i}$. Thus we have $a \in D_{F}\langle 1,-x\rangle$ and the assertion follows from Corollary 1.4.
Q. E. D.

Theorem 4.2. If $-a \in P_{i}$, then there exists a basis $\left\{c_{1}, \ldots, c_{n(i)}\right\}$ of \dot{F} / P_{i} such that the dimension of $D_{K}(2) / \cap_{j=1, \ldots, n(i)} D_{K}\left\langle 1, c_{j}\right\rangle$ is equal to $n(i)-1$.

When P_{i} is an ordering, we have the following
Proposition 4.3. If $-a \in P_{i}$ and P_{i} is an ordering, then $P_{i}^{c} \subseteq R(K)$.
Proof. Let c be an element of P_{i}^{c}. Since P_{i} is an ordering, $H_{a}\left(P_{i}\right)=\dot{F}$ and $c \in P_{j}$ for any $j(j \neq i)$; therefore, $c \in H_{a} \subseteq R(K)$ by Proposition 2.6.
Q.E.D.

Remark 4.4. When P_{i} is an ordering, $D_{K}\langle 1, c\rangle=D_{K}(2)$ for any $c \in P_{i}^{c}$ by

Proposition 4.3. We note $n(i)-1=0$, and so Theorem 4.2 is valid in this case.
We now proceed to the general case of the proof of Theorem 4.2. Namely, in the rest of this section, we assume that $\left|X\left(F / P_{i}\right)\right|>3$. There exists $\alpha \neq 1$ in $\operatorname{gr}\left(X\left(F / P_{i}\right)\right)$ and we fix it. We can write $\alpha=\sigma_{1} \sigma_{2}$ with $\sigma_{1}, \sigma_{2} \in X\left(F / P_{i}\right)$ and there exist $\sigma_{3}, \ldots, \sigma_{n(i)} \in X\left(F / P_{i}\right)$ such that $\left\{\sigma_{1}, \ldots, \sigma_{n(i)}\right\}$ is basis of $X\left(F / P_{i}\right)$. We take the dual basis $\left\{a_{1}, \ldots, a_{n(i)}\right\}, a_{i} \in P_{i}^{c}$. We put $c_{j}=a_{j}(j \neq 2)$ and $c_{2}=a_{1} a_{2}$. It is clear that $\left\{c_{1}, \ldots, c_{n(i)}\right\}$ is a basis of \dot{F} / P_{i} with $c_{j} \in P_{i}^{c}$. Since $H\left(c_{j}\right) \supseteq X(F) \backslash X\left(F / P_{i}\right)$ $\supseteq H(a)$, we have $D_{F}\left\langle 1, c_{j}\right\rangle \subseteq D_{F}\langle 1, a\rangle$ for any j, and so $D_{K}\left\langle 1, c_{j}\right\rangle \subseteq D_{K}(2)$ by Corollary 1.4. We put $T=D_{F}\langle 1, a\rangle$.

Lemma 4.5. The dimension of $D_{K}(2) / D_{K}\left\langle 1, c_{j}\right\rangle$ is eaual to the dimension of $T / D_{F}\left\langle 1, c_{j}\right\rangle D_{F}\left\langle 1, a c_{j}\right\rangle$ for any $j=1, \ldots, n(i)$. In particular $\operatorname{dim} D_{K}(2) / D_{K}\left\langle 1, c_{1}\right\rangle$ $=n(i)-2$.

Proof. Since c_{j} is P_{i}-rigid for every $j=1, \ldots, n(i)$ (cf. §3), $\operatorname{dim} H_{P_{i}}\left(c_{j}\right)=$ $n(i)-1$ and hence, moreover, c_{j} is $R(F)$-rigid. We note that $c_{j} \notin P_{i}$ and $-a \in P_{i}$ by the assumption, so $c_{j} \notin D_{F}\langle 1,-a\rangle$. Therefore $D_{F}\langle 1,-a\rangle \cap D_{F}\left\langle 1, c_{j}\right\rangle=R(F)$, which implies that $\dot{F} \cdot D_{K}(2)=\dot{F} \cdot D_{K}\left\langle 1, c_{j}\right\rangle$ by the norm principle ([2], 2.13). We also note that $D_{K}(2) \cap \dot{F}=T$ and $D_{K}\left\langle 1, c_{j}\right\rangle \cap \dot{F}=D_{F}\left\langle 1, c_{j}\right\rangle D_{F}\left\langle 1, a c_{j}\right\rangle$; it follows from these relations that $\operatorname{dim} \dot{F} / T$ and $\operatorname{dim} \dot{F} / D_{F}\left\langle 1, c_{j}\right\rangle D_{F}\left\langle 1, a c_{j}\right\rangle$ equal $\operatorname{dim} \dot{F}$. $D_{K}(2) / D_{K}(2)$ and $\operatorname{dim} \dot{F} \cdot D_{K}(2) / D_{K}\left\langle 1, c_{j}\right\rangle$ respectively. Thus we have

$$
\operatorname{dim} T / D_{F}\left\langle 1, c_{j}\right\rangle D_{F}\left\langle 1, a c_{j}\right\rangle=\operatorname{dim} D_{K}(2) / D_{K}\left\langle 1, c_{j}\right\rangle .
$$

As for the second fissertion, note that $\pm c_{1}$ are P_{i}-rigid by Proposition 3.1, (2); so $\operatorname{dim} \dot{F} / J_{P_{i}}\left(c_{1}\right)=n(i)-2$. It is clear that $H\left(-c_{1}\right) \subseteq X\left(F / P_{i}\right) \subseteq H(-a)$ and hence $J_{P_{i}}\left(c_{1}\right) \cap T=D_{F}\left\langle 1, c_{1}\right\rangle D_{F}\left\langle 1, a c_{1}\right\rangle$ by Lemma 2.11. Since $T P_{i}=\dot{F}$, we can show that $\operatorname{dim} \dot{F} / J_{P_{i}}\left(c_{1}\right)$ coincides with $\operatorname{dim} T / D_{F}\left\langle 1, c_{1}\right\rangle D_{F}\left\langle 1, a c_{1}\right\rangle$. Our conclusion now follows from the first step.
Q.E.D.

The subgroups generated by $\left\{c_{1}, \ldots, c_{n(i)}\right\} \cup P$ and $\left\{c_{2}, \ldots, \check{c}_{j}, \ldots, c_{n(i)}\right\} \cup P$ are denoted by L and $L_{j}(j=2, \ldots, n(i))$ respectively.

Lemma 4.6. If $x \in L_{j} \backslash J_{P_{i}}\left(c_{j}\right)$, then $D_{K}\left\langle 1, c_{1}\right\rangle \cap x D_{K}\left\langle 1, c_{j}\right\rangle=\phi$ for every $j=2, \ldots, n(i)$.

Proof. Assume that there exists an element $x \in L_{j} \mid J_{P_{i}}\left(c_{j}\right)$ such that $D_{K}\left\langle 1, c_{1}\right\rangle \cap x D_{K}\left\langle 1, c_{j}\right\rangle \neq \phi$. Then the form $\varphi=\left\langle 1, c_{1}\right\rangle \perp(-a x)\left\langle 1, c_{j}\right\rangle$ is isotropic over K and so it contains a subform which is similar to $\langle 1,-a\rangle$. Hence the form $\left\langle 1, c_{1}\right\rangle \perp x\left\langle 1, c_{j}\right\rangle \cong\left\langle 1, x, c_{j} x, c_{1}\right\rangle$ contains a subform over P_{i} which is P_{i}-similar to $\langle 1,1\rangle$. But since $x \notin D_{P_{i}}\left\langle 1,-c_{j}\right\rangle \cdot D_{P_{i}}\left\langle 1, c_{j}\right\rangle$, the form $\left\langle 1, x, c_{j}\right.$, $\left.c_{1} x\right\rangle \cong x\left\langle 1, x, c_{j} x, c_{1}\right\rangle$ does not contain a subform which is P_{i}-similar to $\langle 1,1\rangle$ by Lemma 3.4. This is a contradiction.
Q.E.D.

We need a lemma on a vector space over a field. The proof is easy and omitted.

Lemma 4.7. Let L be a vector space over a field, and V, W, Z be subspaces of L. Let x be an element of V and W_{1} be the subspace generated by $\{x\} \cup W$. If $V \subseteq W_{1}+Z$ and $V \nsubseteq W_{1}$, then there exists $y \in Z \backslash W$ such that $V \cap(y+W) \neq \phi$.

Lemma 4.8. The dimension of $D_{K}(2) / D_{K}\left\langle 1, c_{1}\right\rangle \cap D_{K}\left\langle 1, c_{j}\right\rangle$ is equal to $n(i)-1$ for any $j=2, \ldots, n(i)$.

Proof. Since $\pm c_{1}$ are P_{i}-rigid, $J_{P_{i}}\left(c_{1}\right)=\left\{ \pm P_{i}, \pm c_{1} P_{i}\right\}$ and so $c_{j} \notin J_{P_{i}}\left(c_{1}\right)$. By [5], Lemma 2.2, $c_{1} \notin J_{P_{i}}\left(c_{j}\right)$. It follows from Lemma 2.11 that

$$
\dot{F} \cap D_{K}\left\langle 1, c_{j}\right\rangle=D_{F}\left\langle 1, c_{j}\right\rangle D_{F}\left\langle 1, c_{j} a\right\rangle=J_{P_{i}}\left(c_{j}\right) \cap T
$$

and hence $c_{i} \notin D_{K}\left\langle 1, c_{j}\right\rangle$. Thus $D_{K}\left\langle 1, c_{1}\right\rangle$ contains $D_{K}\left\langle 1, c_{1}\right\rangle \cap D_{K}\left\langle 1, c_{j}\right\rangle$ properly and it follows from Lemma 4.5 that the dimension of $D_{K}(2) / D_{K}\left\langle 1, c_{1}\right\rangle \cap$ $D_{K}\left\langle 1, c_{j}\right\rangle$ is at least $n(i)-1$. As for the reverse inequality, it suffices to show that $D_{K}\left\langle 1, c_{1}\right\rangle \subseteq c_{1} D_{K}\left\langle 1, c_{j}\right\rangle \cup D_{K}\left\langle 1, c_{j}\right\rangle$ (cf. Lemma 4.5). Assume on the contrary that $D_{K}\left\langle 1, c_{1}\right\rangle$ is not contained in $c_{1} D_{K}\left\langle 1, c_{j}\right\rangle \cup D_{K}\left\langle 1, c_{j}\right\rangle$. By Lemma 4.5 and Lemma 2.11, we have

$$
D_{K}(2) / D_{K}\left\langle 1, c_{j}\right\rangle \cong T / D_{F}\left\langle 1, c_{j}\right\rangle D_{F}\left\langle 1, a c_{j}\right\rangle \cong \dot{F} / J_{P_{i}}\left(c_{j}\right)
$$

From this, it is easy to see that $D_{K}(2)$ is contained in the subgroup of \dot{K} which is generated by L_{j} and $c_{1} D_{K}\left\langle 1, c_{j}\right\rangle \cup D_{K}\left\langle 1, c_{j}\right\rangle$. Since $c_{1} \in D_{K}\left\langle 1, c_{1}\right\rangle \subseteq D_{K}(2)$, there exists an element $x \in L_{j} \mid D_{K}\left\langle 1, c_{j}\right\rangle$ such that $D_{K}\left\langle 1, c_{1}\right\rangle \cap x D_{K}\left\langle 1, c_{j}\right\rangle \neq \phi$ by Lemma 4.7. Then x is not contained in $J_{P_{i}}\left(c_{j}\right)$, because

$$
J_{P_{i}}\left(c_{j}\right) \cap T=D_{F}\left\langle 1, c_{j}\right\rangle D_{F}\left\langle 1, a c_{j}\right\rangle=D_{K}\left\langle 1, c_{j}\right\rangle \cap \dot{F} .
$$

This contradicts Lemma 4.6.
Q.E.D.

Combining Lemma 4.8 with the following Lemma 4.9., we can complete the proof of our theorem.

Lemma 4.9. $D_{K}\left\langle 1, c_{1}\right\rangle \cap D_{K}\left\langle 1, c_{k}\right\rangle=D_{K}\left\langle 1, c_{1}\right\rangle \cap D_{K}\left\langle 1, c_{j}\right\rangle$ for any j, k $(j=2, \ldots, n(i), k=2, \ldots, n(i))$.

Proof. Assume that $D_{K}\left\langle 1, c_{1}\right\rangle \cap D_{K}\left\langle 1, c_{k}\right\rangle \nsubseteq D_{K}\left\langle 1, c_{j}\right\rangle$ for some j, k. By the proof of Lemma 4.5, $\dot{F} \cdot D_{K}(2)=\dot{F} \cdot D_{K}\left\langle 1, c_{m}\right\rangle$ for any $m=1, \ldots, n(i)$, so $D_{K}\left\langle 1, c_{1}\right\rangle \cap D_{K}\left\langle 1, c_{k}\right\rangle$ is contained in $\dot{F} \cdot D_{K}\left\langle 1, c_{j}\right\rangle$. Hence we can find an element $x \in \dot{F} \backslash D_{K}\left\langle 1, c_{j}\right\rangle$ such that $\left(D_{K}\left\langle 1, c_{1}\right\rangle \cap D_{k}\left\langle 1, c_{k}\right\rangle\right) \cap x D_{K}\left\langle 1, c_{j}\right\rangle \neq \phi$. In particular $D_{K}\left\langle 1, c_{1}\right\rangle \cap x D_{K}\left\langle 1, c_{j}\right\rangle \neq \phi$. On the other hand, by the proof of Lemma 4.8, $D_{K}\left\langle 1, c_{1}\right\rangle \subseteq c_{1} D_{K}\left\langle 1, c_{j}\right\rangle \cup D_{K}\left\langle 1, c_{j}\right\rangle$. This implies $x D_{K}\left\langle 1, c_{j}\right\rangle=c_{1} D_{K}\left\langle 1, c_{j}\right\rangle$
and so $D_{K}\left\langle 1, c_{k}\right\rangle \cap c_{1} D_{K}\left\langle 1, c_{j}\right\rangle \neq \phi$. Consider the form $\varphi=\left\langle 1, c_{k}\right\rangle \perp\left(-a c_{1}\right)$. $\left\langle 1, c_{j}\right\rangle$ over F. Then φ is isotropic over K, so φ contains a subform over F which is similar to $\langle 1,-a\rangle$. Hence the form $\left\langle 1, c_{k}\right\rangle \perp c_{1}\left\langle 1, c_{j}\right\rangle$ contains a subform over P_{i} which is P_{i}-similar to $\langle 1,1\rangle$. This contradicts Lemma 3.3.
Q.E.D.

§5. Quadratic extensions of quasi-pythagorean fields (continued)

In this section, we turn our attention now to the case where a is not contained in $P_{i} \cup-P_{i}$ in the situation of $\S 4$. In this case, P_{i} is not an ordering, so there exists an element $\alpha \in \operatorname{gr}\left(X\left(F / P_{i}\right)\right), \alpha \neq 1$, and we fix it. The bases $\left\{\sigma_{i}\right\},\left\{c_{i}\right\}(i=1, \ldots$, $n(i))$ and the group L will continue to have the previous meanings.

The main purpose of this section is to prove the following Theorem 5.1.
Theorem 5.1. If $a \notin \pm P_{i}$, then there exists a basis $\left\{d_{1}, \ldots, d_{n(i)}\right\}$ of \dot{F} / P_{i} such that the dimension of $D_{K}(2) / D_{K}(2) \cap\left(\cap_{j=1, \ldots, n(i)} D_{K}\left\langle 1,-d_{j}\right\rangle\right)$ is at most $n(i)-m(i)-1$, where $m(i)=\operatorname{dim} \dot{F} / D_{P_{i}}\langle 1, a\rangle$.

First we suppose that $\alpha(a)=-1$. Before proceeding with the next proposition, observe that from Proposition 3.1, a is P_{i}-rigid, so $n(i)-m(i)-1=0$.

Proposition 5.2. If $\alpha(a)=-1$, then there exists a basis $\left\{d_{1}, \ldots, d_{n(i)}\right\}$ of $\dot{F} \mid P_{i}$ such that $D_{K}(2) \subseteq D_{K}\left\langle 1,-d_{j}\right\rangle$ for any $j=1, \ldots, n(i)$. In particular, the dimension of $D_{K}(2) / D_{K}(2) \cap\left(\cap_{j=1, \ldots, n(i)} D_{K}\left\langle 1,-d_{j}\right\rangle\right)$ is equal to 0 .

Proof. Let d_{1} be an element of P_{i}^{c} such that $d_{1} \in-a P_{i}$. For $j \geqq 2$, we put $d_{j}=c_{j}$. Since $d_{1} \in a L=c_{1} L$, it is clear that $\left\{d_{1}, \ldots, d_{n(i)}\right\}$ is a basis of \dot{F} / P_{i}. Note that $H\left(-d_{1}\right)=H_{P_{i}}(a)$, and so $D_{F}\left\langle 1,-d_{1}\right\rangle=D_{P_{i}}\langle 1, a\rangle$. By Corollary 1.4, $D_{K}(2) \subseteq D_{K}\left\langle 1,-d_{1}\right\rangle$, thus it suffices to show that $D_{K}\left\langle 1,-d_{1}\right\rangle \subseteq D_{K}\left\langle 1,-d_{j}\right\rangle$ for any $j \geqq 2$. Since $D_{F}\langle 1,-a\rangle=D_{P_{i}}\langle 1,-a\rangle \cap D_{P_{i}}\langle 1,-a\rangle$, we have

$$
D_{F}\left\langle 1,-d_{1}\right\rangle \cap D_{F}\langle 1,-a\rangle=P_{i} \cap D_{P i}\langle 1,-a\rangle .
$$

Similarly, we have

$$
D_{F}\left\langle 1,-d_{j}\right\rangle \cap D_{F}\langle 1,-a\rangle=D_{P_{i}}\left\langle 1,-d_{j}\right\rangle \cap D_{P_{i}}\langle 1,-a\rangle \cap D_{P i}\langle 1,-a\rangle
$$

for $j \geqq 2$. Therefore

$$
D_{F}\left\langle 1,-d_{1}\right\rangle \cap D_{F}\langle 1,-a\rangle \subseteq D_{F}\left\langle 1,-d_{j}\right\rangle \cap D_{F}\langle 1,-a\rangle
$$

and this shows that $\dot{F} \cdot D_{K}\left\langle 1,-d_{1}\right\rangle \subseteq \dot{F} \cdot D_{K}\left\langle 1,-d_{j}\right\rangle$ by the norm principle. On the other hand, since $D_{K}\left\langle 1,-d_{j}\right\rangle \cap \dot{F}=D_{P_{i}}\left\langle 1,-d_{j}\right\rangle D_{F}\left\langle 1,-a d_{j}\right\rangle$, Lemma 2.8 shows that $D_{K}\left\langle 1,-d_{j}\right\rangle \cap \dot{F}=D_{P_{i}}\left\langle 1,-d_{j}\right\rangle D_{P_{i}}\left\langle 1,-a d_{j}\right\rangle$. This implies $a P_{i} \subseteq$ $D_{K}\left\langle 1,-d_{j}\right\rangle$, so $-d_{1} \in D_{K}\left\langle 1,-d_{j}\right\rangle$. By noting that $-d_{1} \in c_{1} L$, we can show
that $\dot{F} \cdot D_{K}\left\langle 1,-d_{j}\right\rangle=L \cdot D_{K}\left\langle 1,-d_{j}\right\rangle$, so $D_{K}\left\langle 1,-d_{1}\right\rangle \subseteq L \cdot D_{K}\left\langle 1,-d_{j}\right\rangle$. We now suppose on the contrary that $D_{K}\left\langle 1,-d_{1}\right\rangle \nsubseteq D_{K}\left\langle 1,-d_{j}\right\rangle$ for some $j \geqq 2$. There exists $y \in L \backslash D_{K}\left\langle 1,-d_{j}\right\rangle$ such that $D_{K}\left\langle 1,-d_{1}\right\rangle \cap y D_{K}\left\langle 1,-d_{j}\right\rangle \neq \phi$. So the form $\left\langle 1,-d_{1}\right\rangle \perp(-y)\left\langle 1,-d_{j}\right\rangle$ is isotropic over K, and it contains a subform over F which is similar to $\langle 1,-a\rangle$. However, we have

$$
y \notin D_{K}\left\langle 1,-d_{j}\right\rangle \cap \dot{F}=D_{P_{i}}\left\langle 1,-d_{j}\right\rangle D_{P_{i}}\left\langle 1,-a d_{j}\right\rangle .
$$

Therefore the form $\left\langle 1,-d_{j},-y, d_{1} y\right\rangle \cong-y\left\langle 1,-d_{1},-y, y d_{j}\right\rangle$ does not contain a subform which is P-similar to $\langle 1,-a\rangle$ by Lemma 3.4. This is a contradiction. Q.E.D.

For the rest, we suppose $\alpha(a)=1$. We claim that $\dot{F} \cdot D_{K}\left\langle 1,-c_{1}\right\rangle \subseteq \dot{F} \cdot D_{K}\langle 1$, $\left.-c_{j}\right\rangle$. To see this, it suffices to show by the norm principle that

$$
D_{F}\left\langle 1,-c_{1}\right\rangle \cap D_{F}\langle 1,-a\rangle \subseteq D_{F}\left\langle 1,-c_{j}\right\rangle \cap D_{F}\langle 1,-a\rangle
$$

Since $-c_{1}$ is P_{i}-rigid, $D_{P_{i}}\langle 1,-a\rangle \subseteq L$ implies $D_{P_{i}}\left\langle 1,-c_{1}\right\rangle \cap D_{P_{i}}\langle 1,-a\rangle=P_{i}$. Thus we can see that

$$
D_{F}\left\langle 1,-c_{1}\right\rangle \cap D_{F}\langle 1,-a\rangle=P_{i} \cap D_{P i}\langle 1,-a\rangle,
$$

because $D_{F}\langle 1,-a\rangle=D_{P_{i}}\langle 1,-a\rangle \cap D_{P_{i}}\langle 1,-a\rangle$. Similarly, for $j=2, \ldots, n(i)$ we have

$$
D_{F}\left\langle 1,-c_{j}\right\rangle \cap D_{F}\langle 1,-a\rangle=D_{P_{i}}\left\langle 1,-c_{j}\right\rangle \cap D_{P_{i}}\langle 1,-a\rangle \cap D_{P_{i} i}\langle 1,-a\rangle
$$

These establish the claim.
Lemma 5.3. $D_{K}\left\langle 1,-c_{1}\right\rangle \subseteq D_{K}\left\langle 1,-c_{j}\right\rangle \cup\left(-c_{1}\right) D_{K}\left\langle 1,-c_{j}\right\rangle$ for any $j=$ $2, \ldots, n(i)$.

Proof. Assume that $D_{K}\left\langle 1,-c_{1}\right\rangle \nsubseteq D_{K}\left\langle 1,-c_{j}\right\rangle \cup\left(-c_{1}\right) D_{K}\left\langle 1,-c_{j}\right\rangle$.
By Lemma 4.7, there exists $y \in L$ such that $y \notin D_{K}\left\langle 1,-c_{j}\right\rangle$ and $D_{K}\left\langle 1,-c_{1}\right\rangle \cap$ $y D_{K}\left\langle 1,-c_{j}\right\rangle \neq \phi$. The form $\left\langle 1,-c_{1}\right\rangle \perp(-y)\left\langle 1,-c_{j}\right\rangle$ is isotropic over K, so it contains a subform over F which is similar to $\langle 1,-a\rangle$. However, we have

$$
y \notin D_{K}\left\langle 1,-c_{j}\right\rangle \cap \dot{F}=D_{P_{i}}\left\langle 1,-c_{j}\right\rangle D_{P_{i}}\left\langle 1,-a c_{j}\right\rangle
$$

So, by Lemma 3.4, the form $\left\langle 1,-c_{j},-y, y c_{1}\right\rangle \cong(-y)\left\langle 1,-c_{1},-y, c_{j} y\right\rangle$ does not contain a subform which is P_{i}-similar to $\langle 1,-a\rangle$. This is a contradiction.

> Q.E.D.

Let b be an element of P_{i} such that $b \in-a P_{i}$. Then $H(a) \supseteq H(-b)=H_{P_{i}}(a)$, so $a \in D_{F}\langle 1,-b\rangle$. This shows $D_{K}(2) \subseteq D_{K}\langle 1,-b\rangle$ by Corollary 1.4. Since $D_{F}\langle 1,-b\rangle=D_{P i}\langle 1, a\rangle$, we have

$$
D_{F}\langle 1,-b\rangle \cap D_{F}\langle 1,-a\rangle=P_{i} \cap D_{P i}\langle 1,-a\rangle
$$

Therefore

$$
D_{F}\langle 1,-b\rangle \cap D_{F}\langle 1,-a\rangle=D_{F}\left\langle 1,-c_{1}\right\rangle \cap D_{F}\langle 1,-a\rangle,
$$

which implies $\dot{F} \cdot D_{K}\langle 1,-b\rangle=\dot{F} \cdot D_{K}\left\langle 1,-c_{1}\right\rangle$ by the norm principle. We fix the element b.

Lemma 5.4. $D_{K}\left\langle 1,-c_{1}\right\rangle \subseteq D_{K}\langle 1,-b\rangle \cup\left(-c_{1}\right) D_{K}\langle 1,-b\rangle$.
The proof is similar to that of Lemma 5.3, and is omitted.
Lemma 5.5. $\quad D_{K}\langle 1,-b\rangle \cap D_{K}\left\langle 1,-c_{1}\right\rangle \subseteq D_{K}\left\langle 1,-c_{j}\right\rangle$ for any $j=2, \ldots, n(i)$.
Proof. First assume $c_{j} \in a P_{i}$. Since c_{j} is in P_{i}^{c}, Proposition 2.6 implies that $c_{j} \in H_{a} \subseteq R(K)$. So the assertion is clear in this case. Next assume $c_{j} \notin a P_{i}$. We suppose that there exists $\alpha \in D_{K}\langle 1,-b\rangle \cap D_{K}\left\langle 1,-c_{1}\right\rangle$ such that $\alpha \notin D_{K}\langle 1$, $\left.-c_{j}\right\rangle$. By Lemma 5.3, $\alpha D_{K}\left\langle 1,-c_{j}\right\rangle=-c_{1} D_{K}\left\langle 1,-c_{j}\right\rangle$ and this shows that $D_{K}\langle 1,-b\rangle \cap\left(-c_{1}\right) D_{K}\left\langle 1,-c_{j}\right\rangle \neq \phi$. So the form $\langle 1,-b\rangle \perp c_{1}\left\langle 1, c_{j}\right\rangle$ is isotropic over K, and it contains a subform over F which is similar to $\langle 1,-a\rangle$. This contradicts Lemma 3.3.
Q.E.D.

To simplify the notation, we write $A_{i}=\cap_{j=1, \ldots, n(i)} D_{K}\left\langle 1,-c_{j}\right\rangle$. By Lemma 5.5, we have $D_{K}\langle 1,-b\rangle \cap A_{i}=D_{K}\langle 1,-b\rangle \cap D_{K}\left\langle 1,-c_{1}\right\rangle$. So the next lemma shows that the dimension of $D_{K}\langle 1,-b\rangle \mid D_{K}\langle 1,-b\rangle \cap A_{i}$ is at most $n(i)-m(i)-1$.

Lemma 5.6. $\operatorname{dim}\left(D_{K}\langle 1,-b\rangle / D_{K}\left\langle 1,-c_{1}\right\rangle \cap D_{K}\langle 1,-b\rangle\right) \leqq n(i)-m(i)-1$.
Proof. By Lemma 5.4, $\operatorname{dim}\left(D_{K}\left\langle 1,-c_{1}\right\rangle D_{K}\langle 1,-b\rangle / D_{K}\langle 1,-b\rangle\right) \leqq 1$, and so we also have $\operatorname{dim}\left(D_{K}\left\langle 1,-c_{1}\right\rangle / D_{K}\left\langle 1,-c_{1}\right\rangle \cap D_{K}\langle 1,-b\rangle\right) \leqq 1$. On the other hand,

$$
\operatorname{dim}\left(\dot{F} \cdot D_{K}\left\langle 1,-c_{1}\right\rangle / D_{K}\left\langle 1,-c_{1}\right\rangle\right)=\operatorname{dim}\left(\dot{F} / D_{P_{i}}\left\langle 1,-c_{1}\right\rangle D_{P_{i}}\left\langle 1,-a c_{1}\right\rangle\right)
$$

because $D_{K}\left\langle 1,-c_{1}\right\rangle \cap \dot{F}=D_{P_{i}}\left\langle 1,-c_{1}\right\rangle D_{P_{i}}\left\langle 1,-a c_{1}\right\rangle$. Since the elements $-c_{1}$, $-a c_{1}$ are P_{i}-rigid by Proposition 3.1, $\operatorname{dim}\left(\dot{F} \cdot D_{K}\left\langle 1,-c_{1}\right\rangle / D_{K}\left\langle 1,-c_{1}\right\rangle\right)=n(i)-2$, and hence

$$
\operatorname{dim}\left(\dot{F} \cdot D_{K}\left\langle 1,-c_{1}\right\rangle / D_{K}\left\langle 1,-c_{1}\right\rangle \cap D_{K}\langle 1,-b\rangle\right) \leqq n(i)-1 .
$$

Therefore, we have only to show that $\operatorname{dim}\left(\dot{F} \cdot D_{K}\left\langle 1,-c_{1}\right\rangle \mid D_{K}\langle 1,-b\rangle\right)=m(i)$. However since we have

$$
D_{K}\langle 1,-b\rangle \cap \dot{F}=D_{P_{i}}\langle 1,-b\rangle D_{P_{i}}\langle 1,-a b\rangle \text { and } b \in-a P_{i},
$$

$D_{K}\langle 1,-b\rangle \cap \dot{F}=D_{P_{i}}\langle 1, a\rangle$, and the claim is proved. We have seen that \dot{F}. $D_{K}\langle 1,-b\rangle=\dot{F} \cdot D_{K}\langle 1,-c\rangle$, and the assertion follows.
Q.E.D.

We can now prove Theorem 5.1. We have a homomorphism $D_{K}(2) \rightarrow$ $D_{K}\langle 1,-b\rangle \mid D_{K}\langle 1,-b\rangle \cap A_{i}$, whose kernel is $D_{K}(2) \cap A_{i}$. So $\operatorname{dim}\left(D_{K}(2) / D_{K}(2) \cap\right.$ $\left.A_{i}\right) \leqq n(i)-m(i)-1$ by Lemma 5.6. Thus we complete the proof of Theorem 5.1.

§6. Main theorem

In this section, we state the main theorem (Theorem 6.1) of this paper.
Theorem 6.1. Let F be a quasi-pythagorean field where its Kaplansky's radical $R(F)$ is of finite index. Let $K=F(\sqrt{a})$ be a quadratic extension of F. Then we have $N^{-1}(R(F))=\dot{F} \cdot R(K)$.

Proof. If F is not formally real, then the assertion follows from [4], Theorem 2.13. So we may assume that F is formally real. Let $X(F)$ be the space of orderings of F and $X\left(F / P_{1}\right), \ldots, X\left(F / P_{n}\right)$ be the connected components of $X(F)$. We write $n(i)=\operatorname{dim} X_{i}, \quad P_{i}^{c}=\cap_{j \neq i} P_{j}$ and $m(i)=\operatorname{dim} \dot{F} / D_{P_{i}}\langle 1, a\rangle$. We define the subgroups $A_{i}(i=1, \ldots, n)$ of \dot{K} as follows. If $-a \in P_{i}$, then we put $A_{i}=\cap_{j=1, \ldots, n(i)} D_{K}\left\langle 1, c_{j}\right\rangle$, where $\left\{c_{j}\right\} j=1, \ldots, n(i)$ is the basis of \dot{F} / P_{i} given in Theorem 4.2. In this case, $m(i)=0$, and so we have $\operatorname{dim} D_{K}(2) / A_{i}=n(i)-m(i)$ -1 by Theorem 4.2. If $a \in P_{i}$, then we put $A_{i}=D_{K}(2)$. It is clear that dim $D_{K}(2) / A_{i}=n(i)-m(i)=0$. If $a \notin \pm P_{i}$, then we put $A_{i}=D_{K}(2) \cap \quad\left(\cap_{j=1, \ldots, n(i)}\right.$ $\left.D_{K}\left\langle 1,-d_{j}\right\rangle\right)$, where $\left\{d_{j}\right\} j=1, \ldots, n(i)$ is the basis of \dot{F} / P_{i} given in Theorem 5.1. By Theorem 5.1, we have $\operatorname{dim} D_{K}(2) / A_{i} \leqq n(i)-m(i)-1$.

By the way, let $\left\{b_{i 1}, \ldots, b_{i n(i)}\right\}(i=1, \ldots, n)$ be a basis of \dot{F} / P_{i}, consisting of elements in P_{i}^{c}. Then we can easily see that $U_{i=1, \ldots, n}\left\{b_{i 1}, \ldots, b_{i n(i)}\right\}$ is a basis of $\dot{F} / R(F)$. Therefore we have $R(K)=\cap_{i=1, \ldots, n} A_{i}$ by Proposition 1.2 and Proposition 4.1. From this equation, it is easy to see that $\operatorname{dim} D_{K}(2) / R(K) \leqq$ $\sum_{i=1, \ldots, n} \operatorname{dim} D_{K}(2) / A_{i}$. On the other hand, from the above observation, we have

$$
\sum_{i=1, \ldots, n} \operatorname{dim} D_{K}(2) / A_{i} \leqq \sum_{i=1, \ldots, n} n(i)-\sum_{i=1, \ldots, n} m(i)-|I|
$$

where $\quad I=\left\{i ; a \notin P_{i}\right\}$. Since $\quad \sum_{i=1, \ldots, n} n(i)=\operatorname{dim} \dot{F} / R(F)$ and $\quad \sum_{i=1, \ldots n} m(i)=$ $\operatorname{dim} \dot{F} / D_{F}\langle 1, a\rangle$, we have $\quad \operatorname{dim} D_{K}(2) / R(K) \leqq \operatorname{dim} D_{F}\langle 1, a\rangle / R(F)-|I|$. By Corollary 2.7, $\operatorname{dim} H_{a} / R(F)=|I|$, and it implies $\operatorname{dim} D_{K}(2) / R(K) \leqq \operatorname{dim} D_{F}\langle 1, a\rangle \mid$ H_{a}. This proves the assertion by Proposition 1.2, (1). Q.E.D.

References

[1] L. Berman, Pythagorean field and the Kaplansky radical, J. Algebra 61 (1979), 497-507.
[2] R. Elman and T. Y. Lam, Quadratic forms under algebraic extensions, Math. Ann. 219 (1976), 21-42.
[3] T. Iwakami, D. Kijima and M. Nishi, Kaplansky's radical and Hilbert Theorem 90 III, to appear.
[4] D. Kijima and M. Nishi, Kaplansky's radical and Hilbert Theorem 90 II, Hiroshima Math. J. 13 (1983), 29-37.
[5] D. Kijima and M. Nishi, On the space of orderings and the group H, Hiroshima Math. J. 13 (1983), 215-225.
[6] T. Y. Lam, The algebraic theory of quadratic forms, W. A. Benjamin, Reading, Mass., 1973.
[7] M. Marshall, Classification of finite spaces of orderings, Can. J. Math. 31 (1979), 320-330.

Department of Mathematics,
Faculty of Science, Hiroshima University

