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Let F be a field of characteristic different from 2 and K be a quadratic
extension of F. We let N: K-+F be the norm map and R(F) (resp. R(K)) be
Kaplansky's radical of F (resp. K). Formerly we proposed the following con-
jecture: Is N~l(R(F)) equal to F-R(K)1 In [3], we gave a necessary and
sufficient condition under which both F and K are quasi-pythagorean (see §1)
and showed that the conjecture is true in this case.

The purpose of this paper is to show that the conjecture is true, whenever
F is quasi-pythagorean and satisfies the finiteness condition for the space of
orderings (see Theorem 6.1).

The author would like to express his deep appreciation to Professor M. Nishi
for his valuable suggestions and continuous encouragements.

§ 1. Quasi-pythagorean fields

Throughout this paper, F shall be a field of characteristic not equal to 2.
First we recall a few basic notation. For a field F, WF shall denote the Witt
ring of F consisting of the Witt classes of all quadratic forms over F, and 7F
shall denote the fundamental ideal in WF consisting of the Witt classes of all
even-dimensional forms. The notation <#!,...,#„> shall mean the diagonal
form a^x\ H h anx%, where «,-£/:= F\{0}. The nth power of the fundamental
ideal shall be denoted by /WF; it is additively generated by the n-fold Pfister forms

«α l 5...,«W>>' = <15 Λι>Θ-"®<l, any. For a form /=<α lv.., 0rt>> we define
DF(f) to be the set {Σ^xf^O; χf e F}. We note that if n^2, then Dpζa^..., any =
/)F<r1α1,..., rnany for ^-el^F), where R(F) is Kaplansky's radical of F. We also
note that, for a Pfister form p and xeF, xeDF(p) if and only if p®C~*^> is
isotropic.

As in [4], a field F is called quasi-pythagorean if R(F) = DF(2). It can be
shown that F is quasi-pythagorean if and only if I2F is torsion free. In [3], the
subgroup Ha of F is defined by Ha = {xeF; DF<1, -x>DF<l, -ax> = F} and, in
case F is quasi-pythagorean, it is shown that Ha is a subgroup of DF<1, α>.

PROPOSITION 1.1. Let F be a quasi-pythagorean field and K = F(^/a) be a
quadratic extension of F. Then the following statements are equivalent:

(1) N~l(R(F)) = F-R(K), where N is the norm map N: -»F.
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(2) DF<l,α>*(K) = Dx(2).

PROOF. We first note that R(K)ΠF = Ha by [3], Proposition 1.4 and
Proposition 1.9. We also have Dκ(2) ΠF=/>F<1, 0> by [1], Lemma 3.5 and

by the norm principle ([2], 2.13). We assume that
F.JR(K). Then DK(2)^F-R(K). Thus for any αeDκ(2),

there exist /eF and βeR(K) such that α=/β; and so f=aβ-1e Dκ(2) nF =
DF<1, α>, which implies α=//?eZ>F<l, a)R(K). The reverse inclusion is clear

and we have DF<1, ayR(K) = DK(2). Conversely we assume DF<1,
Dx(2). Then F-£(£) 2 Dκ(2) and we have F.̂ K) = F-DK(2) = JV

Q.E.D.

PROPOSITION 1.2. Let F be a quasi-pythagorean field and X = F(N/α) be
a quadratic extension of F. Further we assume that R(F) is of finite index.
Then the following statements hold:

(1) // dimDx(2)/£(K)^dimI>F<l, a)\Ha, then N-i(R(F)) = F-R(K).
(2) For dlv.., dmeF9 if F is generated by the set {dί9...9 dm, -1} U R(F),

then R(K) = DK(2) n ( n 1=1,..., A<1, -d,».

PROOF. Since Dκ(2) n F = DF<1, α> and ^(K) n F = Ha, we have a canoncial
injection φ: DF<1, β>/Hα-^Dx(2)/^(K); hence dimDx(2)^dimDF<l, α>/ίΓβ.
Therefore if dimZ)x(2)/JR(X)^dimDF<l, α>//ίΛ, then φ is bijective and this
implies DF<1, ayR(K) = DK(2). Thus the assertion (1) follows from Proposition

1.1.
Next we proceed to the assertion (2). It is easy to show that

DX<1, — x> Π/V(1, ~);>^^x<l5 -*yy for any x, yef. We also have
R(K)= Π xep £>κ<l, -x> by [3], Proposition 1.10. The assertion (2) follows
from these facts. Q. E. D.

By a preordering of a field F, we mean a subgroup P§iF such that
and F2^P. A preordering P is called an ordering if P is of index 2 in F. Let P
be a preordering of F. We denote by X(F) the space of orderings of F and by
X(F/P) the subspace of all orderings σ with P(σ) ^. P, where P(σ) is the positive

cone of σ.
We say that two forms/, g are P-isometric or isometric over P (in symbols

f=Pg) if /, g have the same dimension and the same signature with respect to
any σeX(F/P). For a form /=<αl5..., απ> and beF (which may be zero), if

there exist pl5..., p π e P u {0} such that 0ιJ>ι + - - - + 0/lpn = i? and (pl9..., pn)^
(0,...,0), then we say that the form / represents b over P. We put DP(f) =
{bεF;f represents b over P}. We say that / is P-isotropic or / is isotropic
over P if / represents 0 over P and P-anisotropic or anisotropic over P other-
wise. For two forms /, g, we say that / contains a subform g over P if / is
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P-isometric to g±h for some form h. In this case such a form h is uniquely
determined and we write h=f—g.

For a form/, it is well known that /is P-isotropic if and only if ±xeDP(f)
for some x e F. Let F be a formally real, quasi-pythagorean field. Then R(F)
is a preordering of F, and we can see that for a form/ with dim/^2, DF(f) =

PROPOSITION 1.3. Let F be a quasi-pythagorean field and K = F(^/a) be a
quadratic extention of F. Then the following statements hold:

(1) Let p be an n-fold Pfister form (n^l) over F. If aeDF(p), then we

(2) For x, yet, if aeDF^x, y» and Z)F<1, x>c/)F<l, yy, then we have

PROOF. As for (1), we note that if F is not formally real, then R(F) = F and
the assertion (1) is clear. So we may assume that F is formally real. It is clear
that DF(ρ)^Dκ(ρ) Π F, and we must show the reverse inclusion DF(p)^DK(p) n F.
We take an element x e Dκ(p) n F. It is sufficient to show that the (n 4- l)-fold
Pfister form p® C — x^> is isotropic. Since (p®C~ x^)®K is isotropic, the form
p®<-x> contains a subform b<l, -α> for some b eF([6], p. 200, Lemma 3.1).

Now b is an element of £F(p®<--x>) = GF(p®<--x>) and so p®<-x>
contains a subform <1, — α>; in particular, p®^—x^ represents —a. Since
±0eDΛ(F)(p®<-x», p®<-x> is £(F)-isotroρic and we have

This implies that Dκ(p) n F = DF(p).
Next the assumption DF<1, x>c/)F<l5 ^> implies that /-

> by the norm principle ([2], 2.13). So for αeD^<l, x>, there exists
/e F such that /α e DX<1, 3;). We see that /e αDκ<l, >;> ̂ DK<1, x>DK<l, )>> £
^x<^5 ^> and it follows from the assertion (1) that/eZ)x<x, yj n F = Z)F<x, j;>.
The fact DF<1, x>^I>F<l, J>> implies xeDF<l, 3;> = GF<1, 3;) and so <x, j>^
<1, j>_Lx<l, y>^<l, J>±<1, J>^<1, );>. Hence we can easily show that

^ffc 3;>=^)Xlj J;>=^>F<15 J7)^ since ί* is quasi-pythagorean. Therefore
we have/eDF<l, >;>SDX<1, y>. This implies αe/Dx<l, 3^> = I>κ<l5 j> and the
assertion (2) is proved. Q. E. D.

COROLLARY 1.4. Let F be a quasi-pythagorean field and K=F(Λ/α) be a
quadratic extension of F. Then for xeF, the following statements hold:

(1) If a e/)F<l, x>, f/ien w
(2) J/xeDF<l, α>, ί^en we

§2. The group Ha(P)

Throughout this section, a field always means a formally real field. For a
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subset 7 of X(F), we denote by Y1 the preordering n P(σ), σ e 7. We have
P = X(F/P)± and in particular, X(F)λ = DF(ao) = ΣF2. The topological structure
of X(F) is determined by Harrison sets H(x) = {σ e X(F) ; x e P(σ)} as its subbasis,
where x ranges over F. For a preordering P of F, we write HP(x) = #(jc) Π X(F/P).

LEMMA 2.1. Lef P be a preordering of a field F. Then for x, y and aeF9

the following conditions are equivalent:

(1) xeDXl, -y>D,<l, -«>->.
(2) <1, — x, — y, αxj) is P-isotropic.
(3)

PROOF. (1)=>(2): We write x = aβ for some αeDP<l, ->>> and βe

I>P<1, -ay). Since αβ2-x/? = 0,αβ2el>p<l, -j;>and -x0e -xDP<l, -ΛJ>> =
DP< — x, ΛXJ>, we see that <1, — y, — x, #xy> is P-isotropic.

(2)=>(1): From the assumption, there exists a non-trivial relation

p3 + <*xyp4s=Q with pteP\j{0}9 i = l, 2, 3, 4. If ^-^2 =
= 0, then at least one of the forms <1, — y) and <1, — αy> is P-

isotropicand wehaveDP<l, — y>DP<l, — βjy> = F. If pί— yp2 = ̂ (p^ — ^yp^)^^^

then x(p3-^3;

JP4)2 = (Pι-3;P2)(^3-«};P4)eDP<l, -J>^P<1, -ay). Therefore
in any case we have xeDP<l, — j>DP<l, — αy>.

The equivalence of the conditions (2) and (3) is quite similar to the above
one. Q. E. D.

For αeF, the subgroup #α of F is defined by Ha = {xeF; £>P<1,

-x>/>F<l, ~αx>=/} in [3], §1. Generally, we put Ha(P) = {xeF; DP<1,
— x>DP<l, — αx> = F}, where P is a preordering of F. We note that
H.^P) is the group H(P) defined in [5], §2. By [5], Remark 2.3, (1), we have
H(P) = F if and only if the space X(F/P) satisfies S. A. P. .

PROPOSITION 2.2. Let P be a preordering of a field F. Then for a e F, we

have Ha(P)= Πyeί-DP<l, — y>DP<l, — ay). In particular, Ha(P) is a subgroup
o f f and P<Ξ#α(P)c:DP<l, α>.

PROOF. Since Ha(P) = {xet\ Z)P<1, -x>DP<l, -αx> = F}, it follows from

Lemma 2.1 that #α(P)= nyeί£>P<l, -y>/)P<l, -αy>. Thus ,fira(P) is a multi-
plicative subgroup of F which contains P. Fory= — 1,DP<1, — j;>Z)P<l, — αy> =
Dp<l, !>/>p<l, α> = DP<l, β>, which implies Hβ(P)sDp<i, Λ>. Q.E.D.

In the rest of this section, we fix an element α e F and a preordering P of F.
We denote the sets DP<1, α>, DP<1, -α> by T, T respectively. If ±0<£P, then

Tand T are preorderings of F and we have HP(a) = X(F/T), #P(-α) = X(F/T').
The following three lemmas are generalizations of [3], Lemma 2.6, Lemma 2.8
and Lemma 2.9 respectively, and the proofs are omitted.
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LEMMA 2.3. Assume that ±a<£P. Then for x e T, the following statements
hold:

(1) Dp<l,x> = D r <l, jc>nΓ.
(2) DPα -χ>=Dr-α -*>.
(3) // we further assume aeH(P), then we have DP<1, x>DP<l, — x> =

LEMMA 2.4. Assume that ±a<£P. Then we have H(T') n T=Ha(P).

LEMMA 2.5. Assume that X(F/P) is finite and connected. Then we have
Ha(P) = PVaP.

We shall say that two orderings σ, τ e X(F/P) are connected in X(F/P) if
σ = τ or there exists a fan of index 8 which contains σ and τ. We denote this
relation by σ~τ. Marshall ([7], Theorem 4.7) showed that the relation ~ is
an equivalence relation in X(F/P). An equivalence class of this relation is called a
conncected component of X(F/P) and a union of some connected components is
called full. If P is of finite index, then X(F/P) is a finite space; let Xί9...9Xn

be the connected components of X(F/P). We write Pt = X± (i = l,...,n). By
[5], Corollary 2.7, the canonical map φ: F/P-^ΠF/Pi (ι = l,..., n) is isomorphic.
It is clear by the definition that Hα(P)c#α(p.) for any i = l,..., n. Therefore the

map φ : HJ(P)IP-+ΠHljίPύlPι (ί = 1,..., n) is well-defined, where ψ is the restriction
of φ to

PROPOSITION 2.6. Let P be a preordering of F of finite index and Xi9...9 Xn

be the connected components of X(F/P). We write Pt = X± (ί = l,..., n). Then

the canonical map ψ: Ha(P)/P-*ΠHa(Pd/Pi (i = l,..., n) is isomorphic.

PROOF. Clearly ψ is injective. We shall show that ψ is surjective. Let
Xt be any connected component of X(F/P). Since Xt is a full subspace of X(F/P)9

χ. = HP(b) for some beH(P) by [5], Proposition 2.4. Then we have X(F/P)\
χ. = HP(-b\ Dp<l, -6>= n j+tPj and DP<1, b> = Pf. We can take an element
x6Dp<l, -fc> ΠίzPf, since DP<1, -6>DP<1, b> = F. The fact xeDP<l, -6> =
ftj^iPj shows that HP(-x)^Xi and this implies DP<1, ~x> = (HP(-x))13

Xf = Dp<l, ft>. SinceαxePf, we have /f P( - αx) c HP( - ft) and so #P<1, -αx>2

ffp<l, -&>. Thus Dp<l, -jc>Dp<l, -fljc>2Dp<l,'ft>Dp<l, -b> = F, which
implies x e Hβ(P). Hence φ(Ha(P)/P) 3 <p(xP U P/P). By Lemma 2.5, we have

Ha(Pi) = Pi U αPί; since x e aPt n ( n Jnfr| Pj), φ(xP U P/P) = HJfύlPi x Πyn4 (̂ / )̂-
From these facts, it is easily shown that ψ is surjective. Q. E. D.

Let 5 be a subgroup of F which contains P. Then S/P has the structure of
Z2'Vector space, and we denote its dimension by dim S/P. For a connected
component Xt of X(F/P), we can readily see that α<£Pf if and only if Xi n
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HP(-ά)^φ. Now we have the following corollary to Proposition 2.6.

COROLLARY 2.7. Let P be a preordering of F of finite index and Xί9...,Xn

be the connected components of X(F/P). Then dim Ha(P)/P=\I\, where 1 =

LEMMA 2.8. Assume that P is of finite index and let X(F/T) be a full
subspace of X(F/P). Then for any xeF,we have DP<1, x>T=DT<l, x>.

PROOF. We put TC = (X(FJP)\X(FIT)Y. We note that DT<1, x> = (HP(x) n

X(FJT))L and DΓC<1, xy = (HP(x) n X(FJTC)Y for any xef, hence DP<1, x> =

Z)Γ<1, x> n £Γc<l> x>. Therefore Z)P<1, x>T=DΓ<l, x> n £Tc<l, x>Tand, since
7TC = F, the assertion follows. Q. E. D.

PROPOSITION 2.9. Assume that P is of finite index and let X(F/Pί),...9

X(F/Pn) be the connected components of X(F/P). Then the following statements
are equivalent:

(1) tffl(P) = £P<l,a>.
(2) a is Pi-rigid for any ΐ = l,..., n.

PROOF. (1)=>(2): By the assumption, DP<1, α>Pί=f/a(P)Pί and also
Ha(P)Pi = Ha(P^ by Proposition 2.6. Since Ha(Pi) = Pt U aPi by Lemma 2.5,
DP<1, α>Pί = Pί U αPf. Thus the assertion follows immediately from Lemma 2.8.

(2)=>(1): Assume that a is Prrigid for any ί. Then DP<1, α>Pί = DPί<l, α>
= Pi U aPt by Lemma 2.8, and so for any ϊ, DP<1, α>Pί = //α(Pί) by Lemma 2.5.
Thus, by Proposition 2.6, we see that DP<1, α>c#α(P). On the other hand the

reverse inclusion holds always by Proposition 2.2 and so the assertion (1) is
proved. Q. E. D.

As a corollary of Proposition 2.9, we have the following assertion, which
generalizes [3], Corollary 2.10.

COROLLARY 2.10. Suppose that X(F) is a finite space. Let K — F(^/a) be
a quadratic extension of F and X(F/P1),..., X(F/Pn) be the connected components
of X(F). Then the following statements are equivalent:

(1) K is quasi-Pythagorean.
(2) F is quasi-Pythagorean and a is Pi-rigίdfor any ΐ = l,..., n.

LEMMA 2.11. Let F be a formally real, quasi-pythagorean field. We
assume that X(F) is a finite space and denote by X(F/Pί)9..., X(F/Pn) the con-
nected components of X(F). Then the following statements hold:

(1) // #(-x)c;X(F/p.)5 then DF<1, x>DF<l, -x> = DPί<l, *>DP<<1, -x>.

(2) // α £ - R(F) andH(-x)^ X(F/Pt) n H( - α), then we have

DX1, x>0F<l,-ΛX> = DPί<l, x>DP|<l, -x> n Γ,
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where T denotes the preordering DF<1, α>o/F.

PROOF. If X(F) is connected, then the assertion (1) is clear. Therefore, to
prove (1), we may suppose n Ξ> 2. Then there exists b e H(R(FJ) such that Z(F/Pf)
= H(-b) by [5], Proposition 2.4. Since H(x)=>X(F)\X(F/Pi) = H(b), we have
xe£F<l, x>cDp<l, by. Hence by Lemma 2.3. (3), we see DF<1, x>DF<l, -x>

Since H(-x)sH(-α), H(x)^H(a) and xeDF<l, α> = T; hence it is clear

that DP<1, x>/>F<l, axy^T. Also the inclusion H(x)^H(a). implies H(ax) =
H(-x) U Jff(α) and so Z)F<1, ax> = H(-x)1 n H(fl)1=i)P<l, -x> n T. Therefore
DF<1, x>DF<l, αx> is contained in DF<1, x>DF<l, — x> and we have

DF<1, x>DF<l, axy s DP|<1, x>BP|<l, -x> Π T.

For the reverse inclusion, we take zeDP.<l, x>DP|<l, — x> n T. From the

assertion (1), there exist αe/)F<l, x> and j86DF<l, — x> such that z = αj8. The

fact α 6 DF<1, x> s Timplies implies jS e Tand so β e Γ n DF<1, -x> = J)F<1, αx>.
Thus we have z = α/?eDF<l, x>DF<l, «x> and the conclusion follows. Q.E.D.

§ 3. Connected spaces of orderings

Let F be a formally real field and P be a preordering of F. We denote by
gr(X(F/P)) the translation group of X(F/P) in the terminology of [7], namely

gr(X(F/P)) = {αeχ(F/P); αY(F/P) = X(F/P)}, where χ(F/P) = Hom(F/P, {±1})
is the character group of F/P. For a preordering P of finite index, X(F/P) is

connected if and only if X(F/P) = 1 or | JP(F/P)| > 3 and gr (X(F/PJ) ^ 1. In what
follows we assume that X(F/P) is connected and |Z(F/P)|>3. For xeF, we
define the subgroup JP(x) of F by JP(x) = DP<l, x>/)P<l, — x> as in [5]. Since
X(F/P) is connected and \X(F/P)\>3, there exists α e gr (X(F/P)), α^l and we
fix it in this section. Then we can write ot, = σίσ2 with σ l 5 σ2 eX(F/P) and there
exist orderings σ3,..., σn E X(F/P) such that {σls..., σn} is a basis of X(F/P), namely
{σ1,...,σπ} is a basis of the subgroup of χ(F/P) generated by the set X(F/P).
For a subspace Y of X(F/P), we denote by dim 7 the dimension of the sub-

group of χ(F/P) generated by 7; it is well known that dim 7 is equal to the
index of 71 in F. Let {άl5..., an}9 α feF, be the dual basis of {σls..., σn} and we

put Cy = aj(jV2)and C2 = tf1α2. The subgroups of F generated by {c2,..., cj U P
and {c2,..., Cy,..., cn} U P are denoted by L and L,- (2^j^n) respectively. It is
clear that F = Lu ctL, —1 eLand — 1ΦL7«, since c2"-cn = α 1 ---α n e —P. Also it is
easily shown that α(c1)=~l, α(cy)=l (j = 2,...,w). We note that HP(cί)3σj

(; = 2,..., n), /fp(c2)aασ3, σy (7 = 3,..., n) and, for i^3, Hp^Bσj (j^ί). We

can readily see ct is P-rigid for any z = l,..., n, since an element x of F is P-rigid
if and only if dim/ίχx)^dimZ(F/P)~l. For αeχ(F/P), the same symbol
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α will often stand for the composite map αop, p being the canonical projection
F-»F/P, as far as there is no fear of confusion.

PROPOSITION 3.1. The following statements hold:
(1) Kerα=L.
(2) Any element of c^L is P-rigid.
(3) ForxeL, i/xφ-P, then DP<1, x

PROOF. Since σfa) = - 1 and σf(>7.) = 1 (i =£y), we have α(cx) = σ1σ2(α1) = - 1,
α(c2) = σ1σ2(α1α2)=l and α(cί) = σ1σ2(αί)=l for i^3. The assertion (1) follows
immediately from these observations.

Let x be any element of c^L. Then α(x)=— 1 by (1). Now for any
σeX(FI?\ if σ(x)=-l, then ασ(x) = α(x)σ(x) = l. Thus for each σeX(F/P),
there exists e(σ) e {0, 1} such that αe(σ)σ(x) = 1. This implies that x is an element
of the preordering n σeX(F/P) Ker (α^σ), and hence, DP<1, x>c n σeX(F/P)

Ker (αβ(σ)σ). Note however that

fW(F/P)Ker(α^>σ) n Ker(α) = n σeX(F/P) Ker (σ) = P.

Since Ker (α) is of index 2 in F, this implies that n σeχ(F/p) Ker (αe(<r)σ) has order at
most 2 in F/P. So we have DP<1, x> = P U xP, which settles the assertion (2).

Since x $ — P, there exists σ e X(FJP) such that σ(x) = 1 . Let y be an element
of DP<1, x>. We suppose y&L; then — j>$L because — 1 eL. Thus — y ectL,
so — y is P-rigid. But ye£>P<l, x> and this is equivalent to — xeDP<l, — j>.
So we have — x e P o r —xe —yP. The former case is impossible since σ(x) = l
and the latter case is also impossible since xeL, 7<$L. This proves the
assertion (3). Q. E. D.

LEMMA 3.2. Let T be a preordering of a field F and f , g be forms over F.
If any element of Dτ(f)Dτ(g) = {κβ', αe£>Γ(/), βe Dτ(g)} is T-rigid, then

PROOF. It suffices to show that DT(fl.g)^DT(f) U Dτ(g). Let y be an ele-
ment of DΓ(y_L0). Then we can write j = α-fj5, where αeDΓ(/)U {0} and βe
Dτ(g)\J{0}. If α = 0 or j5=0, then the assertion follows immediately. Thus
we may assume α^O and ^^0. We note that vΓlβ=(vri)2vίβeDτ(f)Dτ(g}.
So by the assumption, we have l + or^eΓor l + u~1βea~ίβT. In the former
case, )> = α(l + vrlβ) e α T^DT(f) and in the latter case, y e u.(oΓlβ)T=βT<=:Dτ(g\
Therefore we have y e Dτ(f) U Dτ(g\ and so Dτ(/l g} ̂  Dτ(f) U Dτ(g).

Q.E.D.

We say that two forms/, g are P-similar iff=Pag for some α e F.
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LEMMA 3.3. Let xi9 y^ zt 0 = 1, 2) be elements of the group L such that

XιX2>y\y2&z\z2p and xxx2, yly2$ -P. Then the form φ = <x1? X2>lc1<y1,
y2y does not contain a subform which is P-similar to <z1? z2>.

PROOF. First we note that DP(xl9 x2> = x1DP<l, xίx2)^L and Dpζy^
y2y = y1Dp^l, y^y2y^L by Proposition 3.1.

Since DP(xί9 x2>£p(cιOι> }>2»^cι£ and anY element of c±L is P-rigid, DP(φ) =
DP<XI, x2> U CijPpCVu y2y by Lemma 3.2. We now suppose on the contrary
that φ contains a subform b<z l5 z2> over P for some beF. We consider the
following two cases.

Case 1. bz1eDP^xl9 x2>. In this case, we have <x l5 x2>^P<fez1, 6z1x1x2>
which implies that the form φ — <bz1> = <ftz1x1x2>±c1<j1, y2> represents bz2

over P. We note that bz^Land so DP<bz1x1x2>Dp(c1<<y1, j2»£c1L. By
Lemma 3.2, we have DP«bz1x1x2>lc1<y1, y2» = ftz1x1x2PU DP(c^yί9 j;2»,
hence i?z2 6 ί?z1x1x2P. This contradicts the assumption xix2 φ z1z2P.

Case 2. fczjφCijDp^!, j>2>. Similarly to the easel, we can show that
y±y2 φ z1z2P, a contradiction. Q. E. D.

LEMMA 3.4. Lei β, x, y be elements of the group L and z an element of
// y<£Z)p<l, ~x>Dp<l, -αx>, ί/ien ίfte the form φ = <l, -x, ~y, z>

noί contain a subform which is P-similar to <1, — α>. /n particular, if
<l, ~x>Dp<l, x>, ίΛβn the form φ = <l, x, y, z> does noί contain a

subform which is P-similar to <1, 1>.

PROOF. First we shall show that the form <1, —x, — y> does not contain
a subform which is P-similar to <1, ~α>. Assume on the contrary that the form
<1, -x, -y> contains a subform b<l, -α> over P for some bet. Then we
have <1, — x, ~y> = P<b, — αfe, — axy), which implies — αxyeDp<l, —x, — y>.
Thus the form <1, -x, -y, acy) is P-isotropic and hence yeDP<l, -x>DP

<!, — αx> by Lemma 2.1, a contradiction.
Next we assume that φ contains subform ί><l, -α> over P for some beF.

From the assumption y$DP<l, -x>-DP<l, ~αx>, it follows that xy$-P
and so DP<-x, ~y>= -xDP<l, xy>^L by Proposition 3.1. Let z be any
element of DP<-x, -j>>. Then z<£-P, because the form <1, -x, -y, axyy
is P-anisotropic by Lemma 2.1. From these observation, it is easy to show
that Dp<l, -x, -y>£L by Proposition 3.1. Therefore, since zec^L, DP(φ) =
Dp<l, —x, — y> U zP by Lemma 3.2. We now treat the following two cases
separately.

Case 1. bezP. In this case, since the form φ — <b> represents —ab, we
have -0beDp<l, -x, -)>>£L. This contradicts the fact that -αbe -
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Case 2. ί?eDP<l, — x, — j>>. In this case, the form <1, — x9 —y) is P-

isometric to <b, bί9 ί?2) f°
Γ some bί9 b2eF. So we have —abeDP(bl9 b2, z>.

By Lemma 3.2, DP(bί9 b2, z> = DP<f? l5 ί?2> U zP, and this shows that -αbe
DP(bί9 b2y because —abe Land zP^c^L. Thus the form < 1, —x, — y> contains
a subform 6<1, — 0> over P. This contradicts the first step of our proof.

We now assume y<$Z)P<l, — x>DP<l, x>. We put y'= — y9 x '=—x and
α=-l. Then /£DP<1, -x'>DP<l, -flx'>, so by the first assertion,
<1, —x'9 —y', z> = <l, x, y, z> does not contain a subform which is P-similar to
<!,!>. Q.E.D.

§ 4. Quadratic extensions of quasi-pythagorean fields

In this section, we assume that F is a formally real, quasi-pythagorean field
and R(F) is of finite index in F. Let X(F) be the space of orderings of F and
X(F/Pί),...,X(F/Pn) be the connected components of X(F). We write n(ί) =

dimX(F/Pi) and Pf= ϊ\jΦίPj for / = !,..., n. It is easily shown that for any
xePf, H(x)^X(F)\X(F/Pi), and #(-x)<=X(F/Pf). Since ^(F/Pf) is a full
subspace of X(F), there exists beH(R(F)) such that X(F/Pi)=H(b) by [5], Prop-
osition 2.4. We have Pf = Z)F<1, ί?> and Pf = DF<1 , - b>, and this implies PΓPf =
DF<1, i?>DF<l, —by = F. Therefore we can take a basis of F/Pί? consisting of
elements in Pf.

In what follows, whenever we say that a subset B of F is a basis of F/Pί5 we
understand that B consists of elements in Pf. We fix a quadratic extension K =

PROPOSITION 4.1. If ae P/? then we have DX<1, -x> ̂ Dκ(2)for any x e Pf.
7n particular if {ct} ί = l,..., n(ϊ) is α fc<75is of F/Ph then we have DK<1, — cf>3

Dκ(2)for any / = !,...,

PROOF. Since xeP?, we have H(-x)^X(F/Pi\ and so DF<1, -x> =
H( — x)13Pί. Thus we have αeDF<l, — x> and the assertion follows from
Corollary 1.4. Q.E.D.

THEOREM 4.2. // —aePi9 then there exists a basis {cί9..., cn(ί)} of F/Pt such

that the dimension of Dκ(2)/ ft j=ιtm..,na)Dκ(l9 c/> is equal to n(i) — l.

When Pf is an ordering, we have the following

PROPOSITION 4.3. // —aePt and Pt is an ordering, then P$^R(K).

PROOF. Let c be an element of Pf. Since Pf is an ordering, Ha(P^ = t and
c E Pj for any j (j ^ i) ; therefore, ceHa^ R(K) by Proposition 2.6. Q. E. D.

REMARK 4.4. When Pt is an ordering, Dχ<l, c>=DK(2) for any cePf by



Quadratic extensions of quasi-pythagorean fields 155

Proposition 4.3. We note n(ΐ) — 1 = 0, and so Theorem 4.2 is valid in this case.

We now proceed to the general case of the proof of Theorem 4.2. Namely,
in the rest of this section, we assume that \X(F/P^\>3. There exists α^l in
gr (X(F/Pi)) and we fix it. We can write α = σ^σ2 with σl9 σ2 e X(F/Pt) and there
exist σ3,..., σn(i)eX(F/Pi) such that {σί9..., σn(i)} is basis of X(F/Pf). We take

the dual basis {«15..., an(i)}, ^ePf. We put cj — aj (j¥^2) and c2 = α1α2. It is
clear that {cl9..., cn(ί)} is a basis of f/Pi with CjeP?. Since H(cJ)^X(F)\X(F/Pi)
^H(α), we have Dχi, c^eDXl, 0> for any 7, and so />χi, c^^D^T)
by Corollary 1.4. We put Γ=£F<1, a>.

LEMMA 4.5. The dimension of DK(2)/DK(1, c,-) is eaual to the dimension of
T/DF<1, Cy>DF<l, αcy) for any j= 1,..., n(i). /n particular

PROOF. Since cy is Pr rigid for every j = l,...,n(i) (cf. §3), dim HPi(Cj) =

rc(i)-l and hence, moreover, cy is β(F)-rigid. We note that c/ΦPf and -α ePf

by the assumption, so c7-φDF<l, -α>. Therefore DF<1, ~α> n DXl, cJ->=JR(jP),
which implies that F-DK(2) = F-DK<\, c7> by the norm principle ([2], 2.13). We
also note that Dκ(2) n F= Γ and DK<1, cy> n F=DF<1, cy>Dχi, ac7->; it follows
from these relations that dimF/Tand dimF/DF<l, c7.>DF<l, αc^) equal dimF-
^x(2)/^χ(2) and dim F-DK(2)/DK<1, cy> respectively. Thus we have

dim Γ/DX1, cy>Dχi, αcy> = dimDx(2)/DK<l, c7-> .

As for the second fissertion, note that ±cί are PΓrigid by Proposition 3.1,

(2); so dίm/I/JPί(c1) = n(0-2. It is clear that H(-cί)^X(F/Pl)^H(-a) and
hence JPi(c^) n T=Z)F<1, c^DXl, ac^ by Lemma 2.11. Since TPf = F, we can
show that dim F/Jp^Cj) coincides with dim T/DF<1, C!>DF<1, ac^. Our con-
clusion now follows from the first step. Q. E. D.

The subgroups generated by {c1?..., cn(ί)} U P and {c2,..., £,-,..., cΛ(i)) U P are
denoted by L and Ly (j = 2,..., n(z)) respectively.

LEMMA 4.6. // x e Ly\JP.(cy), ί/ien DX<1, c x> n xDχ<l, c7-> = φ /or

PROOF. Assume that there exists an element xeLj\JP.(Cj) such that

DK<1, c A > nxDK<l, c^^φ. Then the form φ = <l, c^) J_( — α#)<l, c,-) is iso-
tropic over K and so it contains a subform which is similar to <1, — α>. Hence
the form <1, c1>±x<l, Cy>^<l, x, cyx, c^) contains a subform over Pf which is
Prsimilar to <1, 1>. But since x^DP.<l, -c^-Dp^l, cy>, the form <1, x, c,-,

c1x> = x<l, x, c7-x, Cj> does not contain a subform which is Prsimilar to <1, 1>
by Lemma 3.4. This is a contradiction. Q. E. D.
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We need a lemma on a vector space over a field. The proof is easy and
omitted.

LEMMA 4.7. Let L be a vector space over afield, and V, W9 Z be subspaces
of L. Let x be an element of V and W± be the subspace generated by {x} U W.

VζWί9 then there exists y e Z\\V such that Vn (y+

LEMMA 4.8. The dimension of DK(2)/DK(l, Cj> Πl>χi, c/> is equal to
n(ϊ)-\for anyj*=29...9n(i).

PROOF. Since ±cί are Prrigid, JPi(cί) = {±Pi, ±cίPi} and so Cj^
By [5], Lemma 2.2, q <£JPi(Cj). It follows from Lemma 2.11 that

F n J>X1, c > = DF<l, c>DXl, c-α> = JP(c) n T

and hence c/φDx<l, c7->. Thus />χi, Cj> contains DX1, Cj> ΠDχi, c/>
properly and it follows from Lemma 4.5 that the dimension of DK(2)/DK(1, c^ n
D/C<1, c .̂) is at least n(i) — 1. As for the reverse inequality, it suffices to show
that Z)K<1, CI>CCI/)K<I, Cy> U Dχ<l, Cy> (cf. Lemma 4.5). Assume on the
contrary that />χi, Cj> is not contained in c1Dx<l, c,-) U I>χ<l, c^). By Lemma
4.5 and Lemma 2.11, we have

DK(2)/DK<1, Cjy s Γ/DX1, c,.>Dχi, αc7> S F/JPί(O).

From this, it is easy to see that Dκ(2) is contained in the subgroup of K which is
generated by Ly and cxDχi, c7> U />χi, cy>. Since cx eDx<l, c^sD^),
there exists an element xeL7-\DK<l, c7-> such that DK<1, Cj> n xDK(l, c^^φ
by Lemma 4.7. Then x is not contained in JPi(cj), because

JPl(cj) Π Γ= Dχi, c7->DF<l, flcy> = DX1, c,.> n F.

This contradicts Lemma 4.6. Q. E. D.

Combining Lemma 4.8 with the following Lemma 4.9., we can complete
the proof of our theorem.

LEMMA 4.9. £*<!, Cj> ΠDχi, cfc> = £*<l, Cj> nJDXl, cy> /or

PROOF. Assume that />χi, Cj> ΠDK<1, ck>φDx<l, c7> for some j, fe.
By the proof of Lemma 4.5, F-DK(2) = F-DK(l, cm> for any m = l,...,n(i), so
DX<1, Cj> n #κ<l, cfe> is contained in F-DK<1, cy>. Hence we can find an element
x 6 F\£κ<l> c,-> such that (/>χi, Cj> n Dfc<l, cfc>) n x/)x<l, cy> ̂  0. In particular
#κ<l> cι> ΠxDκ<l, c^^φ. On the other hand, by the proof of Lemma 4.8,
Z)K<1, c^sqDXl, cy> U /)χi, cy>. This implies xDχi, cJ.> = c1DK<l, Cj>
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and so DA<1, cky n c{DK(l, c^^φ. Consider the form φ = <l, cfc>±( — c
<1, Cj> over F. Then φ is isotropic over K9 so φ contains a subform over F
which is similar to <1, — α>. Hence the form <1, c f c>J_c1<l, cy> contains a
subform over Pf which is PΓsimilar to <1, 1>. This contradicts Lemma 3.3.

Q.E.D.

§ 5. Quadratic extensions of quasi-pythagorean fields (continued)

In this section, we turn our attention now to the case where a is not contained
in P f U — PΪ in the situation of §4. In this case, Pf is not an ordering, so there
exists an element α e gr (X(F/Pi))9 α 7^ 1, and we fix it. The bases {σj, {cj (i = 1,...,
n(ΐ)) and the group L will continue to have the previous meanings.

The main purpose of this section is to prove the following Theorem 5.1.

THEOREM 5.1. If a <£ ±Pi9 then there exists a basis {d^..., dπ(ί)} of F/Pf

such that the dimension of DK(2)/DK(2) Γ) ( ny=lj... jn( ί) DK(19 — dy» is at most
n(ϊ) — m(i) — l, where m(0 = dimF/DPί<l, α>.

First we suppose that α(α)=—1. Before proceeding with the next prop-
osition, observe that from Proposition 3.1, a is PΓrigid, so n(i) — w(0 —1=0.

PROPOSITION 5.2. //α(»=-l, then there exists a basis {dls..., dπ(0} of
F/P, such that DK(2)^DK(l, -dy> for any ; = !,..., n(i). In particular, the
dimension of DK(2)/DK(2) Π ( Πy=1>.>.>π(ί)/)κ<l, —dy» is equal to 0.

PROOF. Let di be an element of Pf such that dt 6 — αPj. For y'^2, we put
dj = Cj. Since dt e aL=ciL9 it is clear that {d^..., dM(ί)} is a basis of F/Pf. Note
that H( — d1) = /fPί(α), and so DF<1, —d1> = DP<<l, α>. By Corollary 1.4,
DK(2)cJDK<l, — dj), thus it suffices to show that DX<1, — d^sD^l, — dj>
foranyj^2. Since Df<l, —α>=DP.<l, —α>nD P f< l , —α>, we have

DF<1, -dx> n DF<1, -α> = Pt n DPf<l, -α>.

Similarly, we have

DF<1, -dy> n DF<1, -α> = DPί<l, -d7-> n £>Pί<l, -α> Π DPf<l, -α>

for ; ̂ 2. Therefore

Z)F<1, -di) n Z>F<1, -ay ^ DF(1, -d,> n I>F<1, -ay

and this shows that F-D^<1, — d1>cjp-Z)x<l, ~dy> by the norm principle. On
the other hand, since DK<1, -d,-) n F = DPί<l, -d^>DF<l, -αd^), Lemma 2.8
shows that £K<1, -dy> nF=Z)Pί<l, -dy>/)P|<l, -αd^). This implies αPf£
DK<1, — d7->, so — d16Dx<l, — dj.>. By noting that —dίecίL9 we can show
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that f-Dκζl, -djy = L.DK(l, -dy>, so £X<1, -d^cL-D^l, -dy>. We
now suppose on the contrary that DK<1, -d^φD^l, —dj) for some j^2.

There exists yeL\DK(\, -dy> such that DX<1, -dι> n^Dx<l, -dy>^0. So
the form <1, — dj) l(-j;)<l, -dy> is isotropic over K, and it contains a subform
over F which is similar to <1, — α>. However, we have

y φ DXl, -dy> Π F - DP|<1, -dy>DP<<l,

Therefore the form <1, -dy, -y, c^y)^ — XI, — d l 9 -y, yd,-) does not contain
a subform which is P-similar to <1, -α> by Lemma 3.4. This is a contradiction.

Q.E.D.

For the rest, we suppose α(α) = l. We claim that F-DX<1, — c^SjFV
— Cy>. To see this, it suffices to show by the norm principle that

DP<1, -Ci> n DP<1, -α>

Since -cx is PΓrigid, I>P.<1, -«>CL implies DP.<1, — C!>nDP <<l, -α>=Pf.
Thus we can see that

£Xi, -cι> n z>F<ι, -α> = P; n DPf<ι, -ay,

because DF<1, -α> = DP.<l, -α> nDPf<l, -α>. Similarly, for j = 2,...9n(ί)
we have

z)F<ι, -Cy> n DF<I, -Λ> = DP|<I, -Cjy n DP|<I, -α> n Dpί<ι, -α>.

These establish the claim.

LEMMA 5.3. DX<1, -c^^D^l, -Cy> U (-c^D^l, ~

PROOF. Assume that DX<1, -c^φD^l, -cy> U (-
By Lemma 4.7, there exists >^eL such that yφDκ<l, — Cj> and DX<1, — cx> Π

>;DX<1, —Cjy^φ. The form <1, — c 1>J_( — 3;)<1, -c7-> is isotropic over K, so
it contains a subform over F which is similar to <1, — α>. However, we have

So, by Lemma 3.4, the form <1, -cy, -y, ̂ ^(-j/Kl, -ct, -y, c7y> does
not contain a subform which is PΓsimilar to <1, — #>. This is a contradiction.

Q.E.D.

Let b be an element of Pf such that fc e - αPf. Then H(ά) ^H(-b) = HPί(a),
so αeDF<l, -by. This shows Dκ(2)cDχ<i? -fe> by Corollary 1.4. Since

DF<1, -fc>=DPί<l, α>, we have
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DF<1, -i>> Π DF<1, -α> = P, n DPf<l, -α>.

Therefore

DF<1, -*>> Π DF<1, -α> = DF<1, -ct> n DF<1, -fl>,

which implies F-DK<1, — ft> = F-DK<l, — Cj> by the norm principle. We fix

the element b.

LEMMA 5.4. DK<1, -c^sD^l, -6> U (-

The proof is similar to that of Lemma 5.3, and is omitted.

LEMMA 5.5. Z)K<1, -Z>> n />*<!, -c^sDjKl, -c7-> /or αnjμ j = 2,..., n(i).

PROOF. First assume cj e aP^ Since c, is in Pf , Proposition 2.6 implies
that Cj€Ha^R(K). So the assertion is clear in this case. Next assume CyφαP f.
We suppose that there exists αeDκ<l, — fe>n />*<!, — c x> such that α<£Dκ<l,
— Cy>. By Lemma 5.3, αDx<l, — c7->= — c^D^l, — c7-> and this shows that

DK<1, -6>n(-C!)i>x<l, -Cjϊϊφ. So the form <1, -6>lCl<l, c,.> is iso-
tropic over K, and it contains a subform over F which is similar to <1, — α>.
This contradicts Lemma 3.3. Q. E. D.

To simplify the notation, we write A{= ny=1}...}Π(ί)Dκ<l, — cy>. By Lemma
5.5, we have D^<1, - fc>n^i = DK<l, -b>nD x<l, -c^. So the next lemma
shows that the dimension of DK<1, — fr>/Dx<l, — b> n At is at most n(ί) — m(ί) — 1.

LEMMA 5.6. dim(DK<l, -b>/Dx<l, -c^nD^l, -&»^n(i)-m(i)-l.

PROOF. By Lemma 5.4, dim(£)x<l, -c^D^l, -ft>/Dx<l, -b»^l, and

so we also have dim(DK<l, -c^/D^l, -c^ nDK<l, -ί?»^l. On the
other hand,

dim(F.Dκ<l, -Cl>/DK<l, -Cl» = dim(F/DPί<l, -Cl>DP|<l, -αc^),

because Dχ<l, — cx> n F = DP.<l, — c^Dp^l, — αc^. Since the elements — c l 9

-αCi are Prrigid by Proposition 3.1, dim(F-Dx<l, -c^/D^l, ~c1» = n(i)-2,
and hence

Therefore, we have only to show that dim(F-Dx<l, -c1

However since we have

#κ<l> -6> Π F = DP.<1, ~b>DPί<l, ~αb> and be-aPi9

, — b> nF = Dp.<l, α>, and the claim is proved. We have seen that F-
> - by = F.DK<1, -c>, and the assertion follows. Q. E. D.
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We can now prove Theorem 5.1. We have a homomorphism

£*<!> ~b}IDκ<\, -by ίl Ai9 whose kernel is Dκ(2) n 4,. So dim (DK(2)/DK(2) Π
^f) ̂  n(ι) — m(0 — 1 by Lemma 5.6. Thus we complete the proof of Theorem 5.1.

§ 6. Main theorem

In this section, we state the main theorem (Theorem 6.1) of this paper.

THEOREM 6.1. Let F be a quasi-pythagorean field where its Kaplansky's

radical R(F) is of finite index. Let K = F(^/a) be a quadratic extension of F.
Then we have N~ί(R(Fy) =

PROOF. If F is not formally real, then the assertion follows from [4],
Theorem 2.13. So we may assume that F is formally real. Let X(F) be the
space of orderings of F and X(F/P1)9..., X(F/Pn) be the connected components

of X(F). We write n(i) = dimXi9 Pf= Πy^P, and m(i) = dimF/DP.<l, α>.
We define the subgroups At (i = l,..., n) of K as follows. If — αeP ί 5 then we

put At= Π ,•=!,...,„(;> £R;<I» c;>> where {Cj} y = l,..., n(i) is the basis of f/Pi given
in Theorem 4.2. In this case, m(i) = 0, and so we have άimDκ(2)/Ai = n(ΐ) — m(i)
— 1 by Theorem 4.2. If αeP ί ? then we put At = DK(2). It is clear that dim

Dκ(2)IAi = n(i)-m(i) = Q. If αφ+Pj, then we put ^ = ̂ (2)0 (n;=1 ..... n(ί)

DX<1, —<ίy», where {dj} 7 = !,..., n(i) is the basis of F/P; given in Theorem 5.1.
By Theorem 5.1, we have άimD^/A^n^-m^-l.

By the way, let {bfl,..., bίn(i)} (/ = !,..., n) be a basis of F/Pf, consisting of

elements in Pf. Then we can easily see that (J J=I,...,M {^ii,.-., bin(i)} is a basis of
F/R(F). Therefore we have R(K)= nί=:1,...ίM At by Proposition 1.2 and Prop-
osition 4.1. From this equation, it is easy to see that dim DK(2)/R(K) ^
Σi=ι,...f«dimZ)x(2)/>4ί. On the other hand, from the above observation, we have

Σι.ι......π(i) - Σι-ιf....»m(0 - |/| ,

where / = {/; ΛΦP,}.. Since Σί=1>..ι>πn(0 = dimF/Λ(F) and Σi=ι,...n™(0 =
dim F//)F<1, α>, we have dim DK(2)/R(K) ^ dim DF<1, α>/Λ(F)~ |/|. By
Corollary 2.7, dimJfα/JR(F) = |/|, and it implies dim Dκ(2)/R(K)^dimDF(l, α>/
Ha. This proves the assertion by Proposition 1.2, (1). Q.E.D.
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