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Let F be a field of characteristic different from 2 and K be a quadratic
extension of F. We let N: K—F be the norm map and R(F) (resp. R(K)) be
Kaplansky’s radical of F (resp. K). Formerly we proposed the following con-
jecture: Is N-}(R(F)) equal to F-R(K)? In [3], we gave a necessary and
sufficient condition under which both F and K are quasi-pythagorean (see §1)
and showed that the conjecture is true in this case.

The purpose of this paper is to show that the conjecture is true, whenever
F is quasi-pythagorean and satisfies the finiteness condition for the space of
orderings (see Theorem 6.1).

The author would like to express his deep appreciation to Professor M. Nishi
for his valuable suggestions and continuous encouragements.

§1. Quasi-pythagorean fields

Throughout this paper, F shall be a field of characteristic not equal to 2.
First we recall a few basic notation. For a field F, WF shall denote the Witt
ring of F consisting of the Witt classes of all quadratic forms over F, and IF
shall denote the fundamental ideal in WF consisting of the Witt classes of all
even-dimensional forms. The notation {aj,..., a,) shall mean the diagonal
form a,x?+---+a,x2, where a;e F:=F\{0}. The nth power of the fundamental
ideal shall be denoted by I"F; it is additively generated by the n-fold Pfister forms
€agyeya,y:={,a,>®-®<1,a,y. For a form f=<a,,...,a,>, we define
Dp(f) tobetheset {3 a;x?#0; x;e€ F}. Wenote thatif n>2, then Dg<ay,...,a,y=
Dg(riay,..., r,a,y for r;e R(F), where R(F) is Kaplansky’s radical of F. We also
note that, for a Pfister form p and x € F, x € D(p) if and only if p@{—x) is
isotropic.

As in [4], a field F is called quasi-pythagorean if R(F)=Dg(2). It can be
shown that F is quasi-pythagorean if and only if I?F is torsion free. In [3], the
subgroup H, of F is defined by H,={x € F; Dz{1, —x>Dg{1, —ax)=F} and, in
case F is quasi-pythagorean, it is shown that H, is a subgroup of Dz(1, a).

PROPOSITION 1.1. Let F be a quasi-pythagorean field and K=F(JE) be a
quadratic extension of F. Then the following statements are equivalent:
(1) N-YR(F))=F-R(K), where N is the norm map N: —»F.
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(2) D1, adR(K)=Dg(2).

ProOF. We first note that R(K)nF=H, by [3], Proposition 1.4 and
Proposition 1.9. We also have Dg(2) N F=Dy{1, a) by [1], Lemma 3.5 and
N-YR(F)=F-Dg(2) by the norm principle ([2],2.13). We assume that
N-YR(F))=F-Dg(2)=F-R(K). Then Dy(2)=F-R(K). Thus for any ae Dg(2),
there exist fe F and feR(K) such that a=fB; and so f=af e D) nF=
Dg(1, a), which implies a=ff e Dg(1, a)R(K). The reverse inclusion is clear
and we have Dg(l, adR(K)=Dg(2). Conversely we assume Dy{l, a)R(K)=
Di(2). Then F-R(K)2Dg(2) and we have F-R(K)=F-Dg(2)=N"(R(F)).

Q.E.D.

PROPOSITION 1.2. Let F be a quasi-pythagorean field and K=F(\/a) be
a quadratic extension of F. Further we assume that R(F) is of finite index.
Then the following statements hold:

(1) If dim Dg(2)/R(K)<dim Dg{1, ay/H,, then N~}(R(F))=F-R(K).

(2) For d,,...,d,eF, if F is generated by the set {d,,..., d,, —1} U R(F),
then R(K)=Dg(2) N (N =1, mDx<1, —di)).

PrOOF. Since Dg(2) N F=Dg(1, a) and R(K) n F=H,, we have a canoncial
injection ¢: D1, a)/H,—»Dg(2)/R(K); hence dim Dg(2)=dim Dz{1, a)/H,.
Therefore if dim Dg(2)/R(K)<dim D1, a)/H,, then ¢ is bijective and this
implies Dg{1, a)R(K)=Dg(2). Thus the assertion (1) follows from Proposition
1.1.

Next we proceed to the assertion (2). It is easy to show that
Di{l, —x) N D1, —y>= D1, —xy) for any x, ye F. We also have
R(K)= N 4y D1, —x) by [3], Proposition 1.10. The assertion (2) follows
from these facts. Q.E.D.

By a preordering of a field F, we mean a subgroup P& F such that P+P<P
and F2cP. A preordering P is called an ordering if P is of index 2 in F. Let P
be a preordering of F. We denote by X(F) the space of orderings of F and by
X(F/P) the subspace of all orderings ¢ with P(c)2 P, where P(¢) is the positive
cone of o.

We say that two forms f, g are P-isometric or isometric over P (in symbols
f=pg) if f, g have the same dimension and the same signature with respect to
any o€ X(F/P). For a form f=<a,,..., a,» and beF (which may be zero), if
there exist py,..., p,€ PU {0} such that a,p,+:--+a,p,=b and (p,,..., pn)#
(0,..., 0), then we say that the form f represents b over P. We put Dp(f)=
{beF; f represents b over P}. We say that f is P-isotropic or f is isotropic
over P if f represents 0 over P and P-anisotropic or anisotropic over P other-
wise. For two forms f, g, we say that f contains a subform g over P if f is
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P-isometric to g Lh for some form h. In this case such a form h is uniquely
determined and we write h=f—g.

For a form f, it is well known that f is P-isotropic if and only if +x € Dp(f)
for some xe F. Let F be a formally real, quasi-pythagorean field. Then R(F)
is a preordering of F, and we can see that for a form f with dim f=2, D(f)=

Dg(r(f)-

PrOPOSITION 1.3. Let F be a quasi-pythagorean field and K=FQ/E) be a
quadratic extention of F. Then the following statements hold:

(1) Let p be an n-fold Pfister form (n=1) over F. If aeDg(p), then we
have Dg(p) N F = Dx(p).

(2) For x, yeF, if ae Dg{x, y) and D{1, x)=Dg{1, y>, then we have
Dicl, xS Dg(1, y.

PrROOF. As for (1), we note that if F is not formally real, then R(F)=F and
the assertion (1) is clear. So we may assume that F is formally real. It is clear
that Dx(p) = Dy(p) N F, and we must show the reverse inclusion Dx(p) 2 Dx(p) n F.
We take an element x € Di(p) N F. It is sufficient to show that the (n+ 1)-fold
Pfister form p® ¢ —x)) is isotropic. Since (p®{ —x))®K is isotropic, the form
p®{ —x) contains a subform b{1, —a) for some b € F([6], p. 200, Lemma 3.1).
Now b is an element of Dy(p®{—x»)=G(p®K—x)) and so pRL—x)
contains a subform <1, —a); in particular, p®{ —x) represents —a. Since
tae Dy (p@®L—xP), p®L —x) is R(F)-isotropic and we have x € Dg(r)(p)=
Dg(p). This implies that Dy(p) N F = Dg(p).

Next the assumption Dg{l, x)SDg(1, y)> implies that F-Dg{l, x> <F-
Di{1, y> by the norm principle ([2], 2.13). So for a € Dg{1, x>, there exists
feF such that fue Dg{l, y>. We see that feaDg(l, y>SDg{l, xDDx{1, yd S
Dg{x, y) and it follows from the assertion (1) that fe Dg{x, y) N F=Dp{x, y).
The fact Dp{1, x) = Dg{1, y) implies x € Dg<1, y>=Gg{1, y> and so x, yYy=
L, y>Llx{d, y>={1, y> L1, y>=K1, y). Hence we can easily show that
Dpkx, yy=Dg{1, y»=Dg{l1, y>, since F is quasi-pythagorean. Therefore
we have fe D1, y) = Dg(1, y>. This implies a € fDg<1, y>=Dg{1, y)> and the
assertion (2) is proved. Q.E.D.

COROLLARY 1.4. Let F be a quasi-pythagorean field and K=F(\/a-) be a
quadratic extension of F. Then for x € F, the following statements hold:

(1) If ae D1, x), then we have Dg(2) = Dg{1, x). '

(2) If xe D1, a), then we have Dg{1, x) = Dg(2).

§2. The group H,(P)

Throughout this section, a field always means a formally real field. For a
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subset Y of X(F), we denote by Y* the preordering N P(c), e Y. We have
P=X(F/P)* and in particular, X(F)*=Dg(o0)=2F2. The topological structure
of X(F) is determined by Harrison sets H(x)={o € X(F); x € P(c)} as its subbasis,
where x ranges over F. For a preordering P of F, we write Hp(x)= H(x) n X(F/P).

LeMMA 2.1. Let P be a preordering of a field F. Then for x, y and acF,
the following conditions are equivalent:

(1) xeDp(l, —y)Dy1, —ay).

(2 1, —x, —y, axy) is P-isotropic.

(3) yeDp{l, —x)Dp{l, —ax).

Proor. (1)=>(2): We write x=oaf for some aeDp{l, —y) and Be
Dp{1, —ay). Sinceaf?—xf=0,a8%e Dp{l, —y>and —xBe —xD{1, —ayd>=
Dp{—x, axy), we see that {1, —y, —x, axy) is P-isotropic.

(2)=>(1): From the assumption, there exists a non-trivial relation
D1—yp,—xp3+axyp,=0 with p,ePU{0}, i=1, 2, 3, 4. If p,—yp,=
x(p;—ayp,)=0, then at least one of the forms <1, —y) and {1, —ay) is P-
isotropic and we have Dp{1, —y>Dp{l, —ayd=F. If p;—yp,=x(p;—ayp,)#0,
then x(p3—ayps)*=(p1—yp,)(ps—ayps) € Dp{l, —y»Dp(1, —ay). Therefore
in any case we have x € Dp{1, —y>Dp{1, —ay).

The equivalence of the conditions (2) and (3) is quite similar to the above
one. Q.E.D.

For aeF, the subgroup H, of F is defined by H,={xeF; DI,
—xYDg{1, —ax)=F} in [3], §1. Generally, we put H (P)={xeF; D1,
—xYDp{l, —ax)=F}, where P is a preordering of F. We note that
H_,(P) is the group H(P) defined in [5], §2. By [5], Remark 2.3, (1), we have
H(P)=F if and only if the space X(F/P) satisfies S. A.P..

PROPOSITION 2.2. Let P be a preordering of a field F. Then for acF, we
have H,(P)= N ey Dp{1, —y)Dp{1, —ay). In particular, H,(P) is a subgroup
of F and PS H(P)= Dy{1, a).

PrROOF. Since H,(P)={xeF; Dp{l, —x)Dp{1, —ax)=F}, it follows from
Lemma 2.1 that H,(P)= N ,.Dp{l, —y)Dp<{1, —ay). Thus H,(P) is a multi-
plicative subgroup of F which contains P. For y= —1,Dp{1, —ydDp{l, —ayd=
Dp<1, 1)Dp{1, a)=Dp{1, a), which implies H,(P) < Dp{1, a). Q.E.D.

In the rest of this section, we fix an element a € F and a preordering P of F.
We denote the sets Dp{l, a), Dp{1, —a) by T, T' respectively. If +aec=P, then
T and T’ are preorderings of F and we have Hp(a)=X(F/T), Hp(—a)=X(F|T’).
The following three lemmas are generalizations of [3], Lemma 2.6, Lemma 2.8
and Lemma 2.9 respectively, and the proofs are omitted.
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LeMMA 2.3. Assume that aceP. Then for x € T, the following statements
hold:

1) Dp{l,x>=Dr{1,x>nT.

(2 Del, =x>=Dr1, —x).

(3) If we further assume ae H(P), then we have Dp{l, xD>Dp{l, —x)=
D.{1, xYDp.<1. —x).

LEMMA 2.4. Assume that +a&P. Then we have H(T') n T=H (P).

LeMMA 2.5. Assume that X(F/P) is finite and connected. Then we have
H, (P)=PUaP.

We shall say that two orderings o, T e X(F/P) are connected in X(F/P) if
og=1 or there exists a fan of index 8 which contains ¢ and t. We denote this
relation by 6 ~1. Marshall ([7], Theorem 4.7) showed that the relation ~ is
an equivalence relation in X(F/P). Anequivalence class of this relation is called a
conncected component of X(F/P) and a union of some connected components is
called full. If P is of finite index, then X(F/P) is a finite space; let X,,..., X,
be the connected components of X(F/P). We write P,=X{ (i=1,...,n). By
[5], Corollary 2.7, the canonical map ¢: F/P—ITF/P, (i=1,..., n) is isomorphic.
It is clear by the definition that H (P)< H,(P,) for any i=1,..., n. Therefore the
map ¥ : H(P)/P—IIH (P;)/P;(i=1,..., n) is well-defined, where i is the restriction
of ¢ to H(P)/P.

PROPOSITION 2.6. Let P be a preordering of F of finite index and X,,..., X,
be the connected components of X(F/P). We write P,=X¢{ (i=1,...,n). Then
the canonical map : H,(P)/P->IIH(P)/P; (i=1,..., n) is isomorphic.

Proor. Clearly ¥ is injective. We shall show that Y is surjective. Let

X, be any connected component of X(F/P). Since X, is a full subspace of X(F/P),
X,;=Hpy(b) for some be H(P) by [5], Proposition 2.4. Then we have X(F/P)\
X;=Hp(—b), Dp{1, —=b>= N ;% P; and Dp(l, b)=P;. We can take an element
x€Dp{l, —b) naP;, since Dp{l, —bdDp{l, by =F. The fact xe Dp{l, —b)=
N j+ P; shows that Hp(—x)=X; and this implies Dp(l, —x)=(Hp(—x))*2
X+=Dp{l, b). Sinceaxe P;, we have Hp(—ax)< Hp(—b) and so Hp{l, —ax) 2
Hp{l, —b). Thus Dp{l, —xD>Dp{1l, —ax)2Dp{1, bYDp{l, —b>=F, which
implies x € H,(P).. Hence @(H,(P)/P)=¢(xPU P/P). By Lemma 2.5, we have
H,(P)=P,U aP;; since x € aP; N (N j4; P,), ¢(xP U P|P)=H(P)|P;x I 4, (P,/P)).
From these facts, it is easily shown that  is surjective. Q.E.D.

Let S be a subgroup of F which contains P. Then S/P has the structure of
Z,-vector space, and we denote its dimension by dim S/P. For a connected
component X; of X(F/P), we can readily see that a¢c P; if and only if X;n
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Hp(—a)#¢. Now we have the following corollary to Proposition 2.6.

COROLLARY 2.7. Let P be a preordering of F of finite index and X4,..., X,
be the connected components of X(F/P). Then dim H,(P)/P=|I|, where I=
{i; a&=P;}.

LEMMA 2.8. Assume that P is of finite index and let X(F|T) be a full
subspace of X(F|P). Then for any xeF, we have Dp{1, x)T=D{1, x).

Proor. We put Te=(X(F/P)\X(F/T))*. We note that D;{1, x>=(Hp(x) N
X(F/T))t and D;.{1, x)=(Hp(x) n X(F/T¢))* for any x € F, hence Dp(1, x> =
D;{1, x) N D71, x). Therefore Dp{1, x)T=D.{1, x> N D7.{1, x>T and, since
TTe<=F, the assertion follows. Q.E.D.

PROPOSITION 2.9. Assume that P is of finite index and let X(F/P,),...,
X(F/P,) be the connected components of X(F|/P). Then the following statements
are equivalent:

(1) H/P)=Dgl, a.

(2) a is Pyrigid for any i=1,..., n.

Proor. (1)=>(2): By the assumption, Dp{l, a)P,=H,(P)P; and also
H/(P)P;,=H,P; by Proposition 2.6. Since H,(P;)=P,UaP; by Lemma 2.5,
Dp{l, a)P;=P;U aP;. Thus the assertion follows immediately from Lemma 2.8.

(2)=>(1): Assume that a is P;-rigid for any i. Then Dp{1, ad)P;=Dp[(1, a)
=P;U aP; by Lemma 2.8, and so for any i, Dp<1, a)P;=H,(P;) by Lemma 2.5.
Thus, by Proposition 2.6, we see that Dp{1, a=H,(P). On the other hand the
reverse inclusion holds always by Proposition 2.2 and so the assertion (1) is
proved. Q.E.D.

As a corollary of Proposition 2.9, we have the following assertion, which
generalizes [3], Corollary 2.10.

COROLLARY 2.10. Suppose that X(F) is a finite space. Let K=F(\/a_) be
a quadratic extension of F and X(F/P,),..., X(F|P,) be the connected components
of X(F). Then the following statements are equivalent:

(1) K is quasi-pythagorean.

(2) F is quasi-pythagorean and a is Pi-rigid for any i=1,..., n.

LEMMA 2.11. Let F be a formally real, quasi-pythagorean field. We
assume that X(F) is a finite space and denote by X(F/|P,),..., X(F|P,) the con-
nected components of X(F). Then the following statements hold:

(1) If H(—x)SX(F/P;), then D1, x)Dg{l, —x>=Dp[(1, x)Dp 1, —x).

(2) Ifag —R(F)and H(—x)< X(F/P;) n H(— a), then we have

D1, x)Dp(1, axy = Dpl1, xpDp<l, =x> 0 T,
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where T denotes the preordering Dg(l1, a)) of F.

Proor. If X(F) is connected, then the assertion (1) is clear. Therefore, to
prove (1), we may suppose n=2. Then there exists b € H(R(F)) such that X(F/P))
=H(-b) by [5], Proposition 2.4. Since H(x)= X(F)\X(F/P;)=H(b), we have
xeDp{l, x>=Dg{1, b). Hence by Lemma 2.3. (3), we see D1, xDDp{1, —x)
=Dp (1, x)Dp 1, —x>.

Since H(—x)< H(—a), H(x)2H(a) and xe D{1, a)=T; hence it is clear
that Dp{1, x)Dp1, ax><T. Also the inclusion H(x)=2H(a). implies H(ax)=
H(—x)U H(a) and so D1, ax>=H(—x)* n H(a)* =DK1, —x> N T. Therefore
D1, x>Dr{1, ax) is contained in Dp{1, x>Dp{1, —x) and we have

D1, x)Dg{1, ax) < Dp 1, xpDp<1, —x> N T.

For the reverse inclusion, we take ze Dp (1, x)Dp<1, —x> N T. From the
assertion (1), there exist a € Di<{1, x> and f e Dg{l, —x) such that z=af. The
fact a € Dg{1, x> < T implies implies fe T and so fe T N D1, —x)>=Dp{1, ax).
Thus we have z=af € Dp{1, x)Dg{1, ax) and the conclusion follows. Q.E.D.

§3. Connected spaces of orderings

Let F be a formally real field and P be a preordering of F. We denote by
gr (X(F/P)) the translation group of X(F/P) in the terminology of [7], namely
gr (X(F/P))={ae x(F/P); aX(F/P)=X(F|P)}, where x(F/P)=Hom (F/P, {£1})
is the character group of F/P. For a preordering P of finite index, X(F/P) is
connected if and only if X(F/P)=1 or |X(F/P)|>3 and gr (X(F/P))#1. In what
follows we assume that X(F/P) is connected and |X(F/P)|>3. For xeF, we
define the subgroup Jp(x) of F by Ju(x)=Dp{1, x>Dp{1, —x> as in [5]. Since
X(F/P) is connected and |X(F/P)|>3, there exists o e gr (X(F/P)), a#1 and we
fix it in this section. Then we can write a=0,0, with ¢,, 0, € X(F/P) and there
exist orderings o3,..., 0,€ X(F/P) such that {c,..., 6,} is a basis of X(F/P), namely
{04,..., 6,} is a basis of the subgroup of y(F/P) generated by the set X(F/P).
For a subspace Y of X(F/P), we denote by dim Y the dimension of the sub-
group of yx(F/P) generated by Y; it is well known that dim Y is equal to the
index of Y+ in F. Let {ay,..., a,}, a;€ F, be the dual basis of {s,,..., 7,} and we
putc;=a;(j#2)and ¢c,=a,a,. The subgroups of F generated by {c,,..., ¢,} UP
and {c,,..., ¢;,..., ¢,; U P are denoted by L and L; (2<j<n) respectively. It is
clear that F=LU ¢,L, —1e€ Land —1& L, since ¢,'--c,=a,--a,€ —P. Alsoit is
easily shown that a(c;)=—1, a(c)=1 (j=2,...,n). We note that Hp(c,)30;
(j=2,...,n), Hp(c;) 3003, 0; (j=3,...,n) and, for i=3, Hp(c))30; (j#i). We
can readily see c; is P-rigid for any i=1,..., n, since an element x of F is P-rigid
if and only if dim Hp(x)=dim X(F/P)—1. For ae y(F/P), the same symbol
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o will often stand for the composite map aop, p being the canonical projection
F—F|P, as far as there is no fear of confusion.

PRroOPOSITION 3.1.  The following statements hold:
(1) Kera=L.

(2) Any element of c¢,L is P-rigid.

(3) For xel, if xé —P, then Dp{l, x>< L.

Proor. Since g,(a;)= —1and o(a;)=1 (i#)), we have a(c;)=0,0,(a;)= —1,
acy)=040,(ajaz)=1 and afc;)=0,0,(a;)=1 for i=3. The assertion (1) follows
immediately from these observations.

Let x be any element of ¢,L. Then a(x)=-—1 by (1). Now for any
o€ X(F/P), if o(x)=—1, then ag(x)=0o(x)o(x)=1. Thus for each o€ X(F/P),
there exists e(o) € {0, 1} such that a¢(?)e(x)=1. This implies that x is an element
of the preordering N ,cxr/p) Ker (2°(?g), and hence, Dp{l, XD S N sex(r/p)
Ker (2¢(?¢g). Note however that

n seX(F/P) Ker(ae(")a) n Ker ((l) =N seX(F/P) Ker (O')= P.

Since Ker () is of index 2 in F, this implies that n sex(r/py Ker (a¢(9)g) has order at
most 2 in F/P. So we have Dp{1, x> =P U xP, which settles the assertion (2).
Since x & — P, there exists o € X(F/P) such that 6(x)=1. Let y be an element
of Dp{1, x>. We suppose ye& L; then —ye L because —1e L. Thus —yec,L,
so —y is P-rigid. But ye Dp{l, x) and this is equivalent to —x e Dp{l, —y).
So we have —xe P or —xe —yP. The former case is impossible since a(x)=1
and the latter case is also impossible since xeL, Ye&L. This proves the
assertion (3). Q.E.D.

LEmMMA 3.2. Let T be a preordering of a field F and f, g be forms over F.
If any element of D(f)D(g)={aB; ae D(f), Be Di(g9)} is T-rigid, then
D1(fLg)=Dr(f) U D(g).

Proor. It suffices to show that D;(fLg)<D(f)U Dy(g). Let ybe an ele-
ment of D(fLg). Then we can write y=oa+f, where ae Dr(f)U {0} and Be
Dr(g)u{0}. If =0 or B=0, then the assertion follows immediately. Thus
we may assume a0 and f#0. We note that o~!f=(a"Y)2af e Dr(f)Dr(g):
So by the assumption, we have 1+a"!fe Tor 1+a 1Bea 1BT. In the former
case, y=a(l+a"1f)ea TS D(f) and in the latter case, y € a0~ 1) T=BT< D1(g).
Therefore we have y € D(f) U D1(g), and so D(f L g)< D(f) U D(g).

Q.E.D.

We say that two forms f, g are P-similar if f= pag for some a e F.
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LemMa 3.3. Let x;, y;, z; (i=1, 2) be elements of the group L such that
X1Xp, V1V2€2,12,P and x,x,, y,y,& —P. Then the form ¢o=<{x, x,> Lc{yy,
y2» does not contain a subform which is P-similar to {z, z,).

Proor. First we note that Dp{xy, x,)=xDp(l, x;x,)SL and Dp{y,,

V2 =y1Dp{1, y,¥,> S L by Proposition 3.1.
Since Dp{x, X,>Dp(c1{¥1, ¥2))Sc,L and any element of ¢,L is P-rigid, Dp(¢)=
Dplxy, x,) Uy Dp{yy, y2) by Lemma 3.2. We now suppose on the contrary
that ¢ contains a subform b{z,, z,)> over P for some be F. We consider the
following two cases.

Case 1. bz, € Dp{x;, X,». Inthiscase, we have {x,, x,) = p(bz;, bz;x,x,)
which implies that the form ¢ —<{bz,;>={bz x(x,) Lc,{y;, y,) represents bz,
over P. We note that bz, e L and so Dp{bzyx1X,)Dp(c;{yy, y,))Sc,;L. By
Lemma 3.2, we have Dp({bzyx;X;) Lciyy, ¥22)=bzyx,X,P U Dp(c1{y1, ¥22),
hence bz, € bz;x,;x,P. This contradicts the assumption x,x, €& z,z,P.

Case 2. bz;e&c;Dp{yy, y,). Similarly to the case 1, we can show that
¥1Y, € 2,2, P, a contradiction. - QE.D.

LEMMA 3.4. Let a, x, y be elements of the group L and z an element of
c;L. If ye&Dp(l, —x)Dp{l, —ax), then the the form @={1, —x, —y, z)
does not contain a subform which is P-similar to {1, —a). In particular, if
yea&Dp{l, =xD>Dp{1, x>, then the form ¢=<{1,x,y,z) does not contain a
subform which is P-similar to {1, 1).

Proor. First we shall show that the form {1, —x, —y> does not contain
a subform which is P-similar to {1, —a). Assume on the contrary that the form
{1, —x, —y)> contains a subform b{1, —a) over P for some beF. Then we
have {1, —x, —y)=p{b, —ab, —axy), which implies —axy e Dp{l, —x, —y).
Thus the form {1, —x, —y, acy) is P-isotropic and hence ye Dp{l, —x>Dp
{1,—ax) by Lemma 2.1, a contradiction.

Next we assume that ¢ contains subform b{1, —a) over P for some beF.
From the assumption ye&Dp{l, —x)-Dp{l, —ax), it follows that xy& —P
and so Dp{—x, —y>=—xDp{l, xy> =L by Proposition 3.1. Let z be any
element of Dp{ —x, —y). Then z& — P, because the form {1, —x, —y, axy)
is P-anisotropic by Lemma 2.1. From these observation, it is easy.to show
that Dp{1, —x, —y><SL by Proposition 3.1. Therefore, since zec,L, Dp(¢p)=
Dp{l, —x, —y)U zP by Lemma 3.2. We now treat the following two cases
separately.

Case 1. bezP. In this case, since the form ¢ —<{b) represents —ab, we
have —abe Dp{l, —x, —y)< L. This contradicts the fact that —abe —azPc
cyL.
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Case 2. beDp{l, —x, —y>. In this case, the form {1, —x, —y) is P-
isometric to <{b, b,, b,> for some by, b,e F. So we have —abe Dp(by, b,, z).
By Lemma 3.2, Dp(by, by, z)=Dp(by, b,> U zP, and this shows that —abe
Dp(b,, b,> because —abe Land zP<c,L. Thustheform {1, —x, —y) contains
a subform b{l, —a) over P. This contradicts the first step of our proof.

We now assume yea Dp{l, —x)>Dp{1, x). We put y'=—y, x'=—x and
a=—1. Then y &Dp{l, —x'>Dp{l, —ax'y, so by the first assertion,
1, —=x', —y', z)={1, x, y, z) does not contain a subform whichis P-similar to
{1, 1. Q.E.D.

§4. Quadratic extensions of quasi-pythagorean fields

In this section, we assume that F is a formally real, quasi-pythagorean field
and R(F) is of finite index in F. Let X(F) be the space of orderings of F and
X(F/P,),..., X(F|P,) be the connected components of X(F). We write n(i)=
dim X(F/P)) and P{= N ;4; P; for i=1,...,n. It is easily shown that for any
xePs, Hx)2X(F)\X(F/P;), and H(—x)< X(F/P;). Since X(F/P;) is a full
subspace of X(F), there exists b € H(R(F)) such that X(F/P,)=H(b) by [5], Prop-
osition 2.4, We have P,=Dg{1, b) and P§ =D{1, —b), and this implies P;-P§ =
Di{1, bYDg{1l, —b>=F. Therefore we can take a basis of F/P;, consisting of
elements in P§.

In what follows, whenever we say that a subset B of F is a basis of F/P;, we
understand that B consists of elements in P§. We fix a quadratic extension K=

F(/a).

PROPOSITION 4.1. If a€ P;, then we have Dy<{1, —x) 2 Dg(2) for any x € P§.
In particular if {c;} i=1,..., n(i) is a basis of F|P;, then we have Dg{1, —c¢;>2
Dk(2) for any i=1,..., n(i).

PrROOF. Since xeP§, we have H(—x)SX(F/P;), and so Dg{l, —x)=
H(—x)*2P,, Thus we have aeDg{1, —x) and the assertion follows from
Corollary 1.4. Q.E.D.

THEOREM 4.2. If —ae P,, then there exists a basis {cy,..., ¢y} of F|P; such
that the dimension of Dg(2)/ N j=1,. @y Dx<1, c;> is equal to n(i)—1.

When P; is an ordering, we have the following
PrOPOSITION 4.3. If —a€eP; and P; is an ordering, then P§< R(K).

PROOF. Let c be an element of P§. Since P; is an ordering, H,(P;))=F and
ce P; for any j (j#i); therefore, c € H,< R(K) by Proposition 2.6. Q.E.D.

REMARK 4.4. When P; is an ordering, Dg<1, c)=Dg(2) for any ce P§ by



Quadratic extensions of quasi-pythagorean fields 155

Prbposition 4.3. We note n(i)—1=0, and so Theorem 4.2 is valid in this case.

We now proceed to the general case of the proof of Theorem 4.2. Namely,
in the rest of this section, we assume that |X(F/P;)|>3. There exists a1 in
gr(X(F/Py) and we fix it. We can write a=0,0, with ¢, 6, € X(F/P;) and there
exist g3,..., 6,; € X(F/P;) such that {g,..., 0,} is basis of X(F/P;). We take
the dual basis {ay,..., a,;}, a;e P{. We put ¢;=a; (j#2) and c,=a,a,. Itis
clear that {c,..., ¢} is a basis of F/|P; with c;e Ps. Since H(c;)2 X(F)\X(F/P))
2H(a), we have Dp(l, c;><SDg(1, a) for any j, and so Dg(l, ¢;> SDg(2)
by Corollary 1.4. We put T=Dg{1, a).

LemMA 4.5.  The dimension of Dg(2)/D{1, c¢;) is eaual to the dimension of
T/Di(1, ¢;7Dg1, ac;) for any j=1,..., n(i). In particular dim Dg(2)/Dg<1, ¢y)
=n(i)—2.

ProoF. Since c; is Pyrigid for every j=1,..., n(i) (cf. §3), dim Hp(c;)=
n(i)—1 and hence, moreover, c; is R(F)-rigid. We note that ¢ j&P;and —aeP;
by the assumption, so c;& D1, —a). Therefore D1, —a) N D1, ¢;> =R(F),
which implies that F-Dy(2)=F-Dx{1, c;> by the norm principle ([2], 2.13). We
also note that Dy(2) N F=T and Dy{1, c;yn F=Dg(, c;>Dp(1, ac;y; it follows
from these relations that dim F/T and dim F/D<1, ¢;>D<1, ac;» equal dim F-
Dx(2)/Dx(2) and dim F-Dg(2)/Dg{1, ¢ ;> respectively. Thus we have

dim T/Dg(1, ¢;5D<1, ac;y = dim Dy(2)/Di{1, ¢, .

As for the second fissertion, note that +c, are P;-rigid by Proposition 3.1,
(2); so dim F/Jp(c,)=n(i)—2. Tt is clear that H(—c,)< X(F/P)<H(—a) and
hence Jp(c;) N T=Dg{1, ¢;>Di{1, ac,> by Lemma 2.11. Since TP;=F, we can
show that dim F/Jp(c;) coincides with dim T/Dg{1, ¢,>Dg{1, ac,». Our con-
clusion now follows from the first step. Q.E.D.

The subgroups generated by {c,,..., ¢,;} UP and {c,,..., ¢j,..., c,} U P are
denoted by L and L; (j=2,..., n(i)) respectively.

LemMa 4.6. If xeL\Jp(c;), then Dy<1, c;> NxDx(l, c;>=¢ for every
j=2,..., n(i).

PrOOF. Assume that there exists an element xeL;\Jp(c;) such that
Dg<1, ¢y NxDg<1, ¢;>#¢. Then the form ¢=(1, ¢;)> L(—ax){1, c;) is iso-
tropic over K and so it contains a subform which is similar to {1, —a). Hence
the form <1, ¢;> L x{1, ¢;>=(1, x, c¢;x, ¢y contains a subform over P; which is
P;-similar to <1, 1). But since x&Dp<1l, —c;>-Dp(1, ¢;», the form (1, x, c;,
¢y x)=x{1, x, ¢;x, ¢;) does not contain a subform which is P;-similar to <1, 1)
by Lemma 3.4. This is a contradiction. Q.E.D.
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We need a lemma on a vector space over a field. The proof- is easy and
omitted.

LeEMMA 4.7. Let L be a vector space over a field, and V, W, Z be subspaces
of L. Let x be an element of V and W, be the subspace generated by {x} U W.
If VEW,+Z and V& W,, then there exists y € Z\W such that Vn (y+ W)#¢.

LEMMA 4.8. The dimension of Dy(2)/Dg(l1, ¢;> N Dx(1, ¢;> is equal to
n(i)—1 for any j=2,..., n(i).

PrRoOF. Since *c, are P;rigid, Jp(c)={+P; +c,P;} and so c;&Jp(cy).
By [5], Lemma 2.2, ¢; & Jp(c;). It follows from Lemma 2.11 that

F 0 Dg<l, ¢>=D(1, 3Dl cjay = Jp(e) N T

and hence c¢;&EDg(l, c;>. Thus Dg(l, c;) contains Dg<l1, ¢;> N D1, ¢;>
properly and it follows from Lemma 4.5 that the dimension of Dy(2)/Dg<{1, ¢;> N
Dg{1, c;» is at least n(i)—1. As for the reverse inequality, it suffices to show
that Dy(l, c¢;pScyDg<l, ¢;> UDg(l, ¢;> (cf. Lemma 4.5). Assume on the
contrary that Dg{1, c,) is not contained in ¢;Dg{1, ¢;> U Dg<1, ¢;>. By Lemma
4.5 and Lemma 2.11, we have

Dk(2)/Dk<1, ¢;» = T/Dg<1, ¢;D¢<1, ac;) = F/JP((C,')-

From this, it is easy to see that Dy(2) is contained in the subgroup of K which is
generated by L; and c¢;Dg<1, ¢;» UDg<1, ¢;>. Since c; e Dg{1, ¢;> S Dk(2),
there exists an element xe L;\Dx(1, ¢;> such that Dg(l, ¢;> N xDg<1, ¢;p# ¢
by Lemma 4.7. Then x is not contained in Jp(c;), because

This contradicts Lemma 4.6. Q.E.D.

Combining Lemma 4.8 with the following Lemma 4.9., we can complete
the proof of our theorem.

LEMMA 4.9. D1, ¢;> N Dx<1, ¢> =Dy, ¢;) N D1, ¢;> for any j, k
(j=2,..., n(i), k=2,..., n(i)).

ProOF. Assume that Dg<1, ¢;> N D1, ¢;) ¢ Di<1, ¢;> for some j, k.
By the proof of Lemma 4.5, F-Dg(2)=F-Dy{l, c,> for any m=1,..., n(i), so
Dy, ¢;> N D1, ¢ is contained in F-Dy{1, c¢;>. Hence we can find an element
x € F\Dg{1, ¢;» such that (Dg<1, ¢;» N D1, ¢,») N xDg<1, ¢;> #¢. In particular
Dg{1, ¢1) NxDg<1, ¢;>#¢. On the other hand, by the proof of Lemma 4.8,
Dg<l, ¢y sy Dg<l, ¢;) U D1, ¢;».  This implies xDg<1, ¢;»=c;Dg{1, ¢;>
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and so Dg{l, ¢,> NeciDg(l, ¢;>#¢. Consider the form ¢=<1, ¢,> L(—ac,)
{1, ¢;> over F. Then ¢ is isotropic over K, so ¢ contains a subform over F
which is similar to {1, —a). Hence the form (1, ¢;» L¢,{1, ¢;) contains a
subform over P; which is P;-similar to {1, 1>. This contradicts Lemma 3.3.
Q.E.D.

§5. Quadratic extensions of quasi-pythagorean fields (continued)

In this section, we turn our attention now to the case where a is not contained
in P;U — P; in the situation of §4. In this case, P; is not an ordering, so there
exists an element « € gr (X(F/P,)), a# 1, and we fixit. The bases {a;}, {¢;} (i=1,...,
n(i)) and the group L will continue to have the previous meanings.

The main purpose of this section is to prove the following Theorem 5.1.

THEOREM 5.1. If a & +P;, then there exists a basis {d,,..., d,;} of F/IP;
such that the dimension of Dg(2)/Dg(2) N (N j=1,. au Dx<1, —d;) is at most
n(i)—m(i)— 1, where m(i)=dim F/Dp (1, a).

First we suppose that a(a)= —1. Before proceeding with the next prop-
osition, observe that from Proposition 3.1, a is P;-rigid, so n(i)—m(i)—1=0.

PROPOSITION 5.2. If a(a)= —1, then there exists a basis {d,,...,d,} of
F|P; such that Dg(2)=Dg(l, —d;> for any j=1,...,n(i). In particular, the
dimension of Dg(2)/Dg(2) N (N j=1,. niyPx<1, —d;)) is equal to 0.

ProOF. Let d, be an element of P§ such that d, € —aP;. For j=2, we put
d;=c;. Since d;€aL=c,L, it s clear that {d,,..., d,} is a basis of F/P;., Note
that H(—d;)=Hp(a), and so Dg(l, —d;>=Dp(1,a). By Corollary 1.4,
Dy(2)=Dg<1, —d,>, thus it suffices to show that Dy{l, —d>SDg(1, —d;>
forany j=2. Since D1, —a)=Dp< 1, —a) n Dp;{1, —a), we have

De{1, —d,> n D1, —a) = P; n Dpg{l, —a).
Similarly, we have
DiC1, —d;) n D1, —a) = Dp<1, —d;> n Dp1l, —a) n Dpi(l, —a)
for j=2. Therefore
Dg(l, —dy) n D1, —a) = Dg{(1, —d,? n D1, —a)

and this shows that F-Dg(1, —d;» < F-D¢(1, —d,> by the norm principle. On
the other hand, since Dg{l1, —d;» nF=DP‘<1, —d;»Dg(1, —ad;», Lemma 2.8
shows that Dy(l, —d;» N F=Dp(1, —d;»Dp<1, —ad;y. This implies aP;c
Dg(1, —d;>, so —d;€Dg(l, —d;>. By noting that —d, ec,L, we can show
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that F-DgCl, —d;>=L-Dgl, —d;>, so Dy{l, —d,>SL-Di(1, —d;>. We
now suppose on the contrary that Dg<1, —d;> ¢ Dg(1, —d;) for some j=2.
There exists y € L\Dg(1, —d;> such that Dg(l, —d;> NyDg<1, —d;>#¢. So
the form {1, —d,> L(—~y)1, —d,) is isotropic over K, and it contains a subform
over F which is similar to {1, —a). However, we have

y & D1, —=dj> n F= Dpl1, —d;>Dp(1, —ad;.

Therefore the form <1, —d;, —y, d,y>= —y{1, ~d,, —y, yd;> does not contain
a subform which is P-similar to {1, —a) by Lemma 3.4, This is a contradiction.
Q.E.D.

For the rest, we suppose a(a)=1. We claim that F-Dg{l, —c,;> S F-Dg{1,
—c;»>. To see this, it suffices to show by the norm principle that

D1, —c1) N DKL, —a) € Decl, —c;> N DKL, —a).

Since —c; is Pyrigid, Dp<1, —a)<L implies Dp{1, —c;> NDp1, —a)>=P;.
Thus we can see that

DF<19 —C1> N DF<1’ _a> = Pi n DP7<12 _a>9

because Dp{l, —a)=Dp (1, —a) N Dp;{1, —a). Similarly, for j=2,..., n(i)
we have

DF<1, _Cj> n DF<1, _a> = DPi<1’ _'Cj> n DP1<1’ "‘a> n DP§<1, _a>.
These establish the claim.

LEMMA 5.3. Dg<l, —¢;> S D1, —¢;> U(—c)Dg(1, —¢;> for any j=
2,..., n(i).

PrOOF. Assume that D1, —c¢; > $EDg<1, —c;> U (—c;)Dg1, —c;D.
By Lemma 4.7, there exists y € L such that yeDg(l, —c¢;» and Dg(l, —c;> N
yDg1, —c;>#¢. The form (1, —c;> L(—y)1, —c;> is isotropic over K, so
it contains a subform over F which is similar to {1, —a). However, we have

y&ED(1, —¢p> 0 F =Dpl, —c;Dpl1, —ac;>.

So, by Lemma 3.4, the form <1, —¢;, —y, yc;>=(—y)X1, —c¢y, —y, ¢;y) does
not contain a subform which is P~similar to {1, —a). This is a contradiction.
Q.E.D.

Let b be an element of P§ such that be —aP;. Then H(a)=2 H(—b)=Hp(a),
s0 aeDgCl, —b). This shows Dy(2)<Dx(l, —b) by Corollary 1.4. Since
Dp{1, —b)>=Dp{1, a), we have
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D1, —b) n D1, —a) = P; n Dp{l, —a).
Therefore
DF<1’ _b> n DF<1’ _a> = DF<1, —-Cl> ﬂ DF<1’ _a>,

which implies F-Dg{1, —b>=F-Dg{1, —c,;> by the norm principle. We fix
the element b.

LeMMA 5.4. Dy<l, —¢; > Dy, —b) U (—¢;)Dg(1, —b).
The proof is similar to that of Lemma 5.3, and is omitted.
LEMMA 5.5. Dg(l, —b) N D1, —c;> S D1, —c;) for any j=2,..., n(i).

PrROOF. First assume c;eaP;. Since ¢; is in P§, Proposition 2.6 implies
that c;e H,=R(K). So the assertion is clear in this case. Next assume c; & aP;.
We suppose that there exists a€ Dg<{1, —b) N D1, —c;> such that ae Dg<{1,
—c;»>. By Lemma 5.3, aDg<l, —c;>=—c;Dg<1, —c;> and this shows that
Dy{1, =b) n(—c)Dg1, —c;>#¢. So the form (I, —b) L¢( <1, ¢;> is iso-
tropic over K, and it contains a subform over F which is similar to {1, —a).
This contradicts Lemma 3.3. Q.E.D.

To simplify the notation, we write 4;= N =y, .q Dx<1, —c¢;>. By Lemma
5.5, we have Dg(1, —b)> N 4;=Dy<1, —b) N Dg<1, —c¢;>. So the next lemma
shows that the dimension of D1, —b>/Dg{1, —b) n A, is at most n(i)—m(i)—1.

LeMMa 5.6, dim (Dg<1, —b>/De<1, —c;> N Dgdl, —bY) < n(i)—m(i)—1.

Proor. By Lemma 5.4, dim (Dg{1, —c¢,;>Dg<1, —b)|Dg{1, —b))<1, and
so we also have dim(Dg<1, —c;>/DgLl, —¢;> NDg(1, —bD)<1. On the
other hand,

dim (F-Dy<1, —¢1)/Dx<1, —¢;D) = dim (F/Dp1, —c;dDpll, —acy)),

because Dg(l, —cy) nF=D,,..<1, —cyyDp 1, —acy). Since the elements —c;,,
—ac, are P;-rigid by Proposition 3.1, dim (F-Dg{1, —c¢,>/Dg{1, —c,>)=n(i)—2,
and hence

dim (F-Dg<1, —¢;>/Dg<1, —¢;> 0 Dxll, —b)) < n(i) — 1.

Therefore, we have only to show that dim (F-Dg{l, —c,>/Dg{1, —b>)=m(i).
However since we have

Dg(l, —b) n F = Dp(l, —bYDp(1, —aby and be —aP,

Dg<l, =bY N F=Dp[<1, a), and the claim is proved. We have seen that F-
Dg{l, —bY=F-Dg{1, —c), and the assertion follows. Q.E.D.
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We can now prove Theorem 5.1. We have a homomorphism Dg(2)—
DiL1, —b)/Dg{1, —b) n A;, whose kernel is Dg(2) N 4;. So dim (Dx(2)/Dg(2) n
A)En(i))—m(i)—1 by Lemma 5.6. Thus we complete the proof of Theorem 5.1.

§6. Main theorem

In this section, we state the main theorem (Theorem 6.1) of this paper.

THEOREM 6.1. Let F be a quasi-pythagorean field where its Kaplansky’s
radical R(F) is of finite index. Let K=F(\/a—) be a quadratic extension of F.
Then we have N-Y(R(F))=F-R(K).

Proor. If F is not formally real, then the assertion follows from [4],
Theorem 2.13. So we may assume that F is formally real. Let X(F) be the
space of orderings of F and X(F/P,),..., X(F/P,) be the connected components
of X(F). We write n(i)=dim X;, P{=n0;,;P; and m(i)=dim F/Dp(1, a).
We define the subgroups 4; (i=1,..., n) of K as follows. If —aeP,, then we
put A;= N =1, ..a Px<1, ¢;>, where {c;} j=1,..., n(i) is the basis of F/[P; given
in Theorem 4.2. In this case, m(i)=0, and so we have dim Dg(2)/A;=n(i)— m(i)
—1 by Theorem 4.2. If ae P;, then we put A;=Dg(2). It is clear that dim
Dy(2)/A;=n(i)—m(i)=0. If a& +P;, then we put A;=D(2)N (N =1, i
D1, —d;»), where {d;} j=1,..., n(i) is the basis of F/P; given in Theorem 5.1.
By Theorem 5.1, we have dim Dg(2)/A4; < n(i)—m(i)—1.

By the way, let {b;y,..., b} (i=1,..., n) be a basis of F/P;, consisting of
elements in P§. Then we can easily see that U=y, {bi,--., by} is @ basis of
F/R(F). Therefore we have R(K)= N, A; by Proposition 1.2 and Prop-
osition 4.1. From this equation, it is easy to see that dim Dg(2)/R(K)=
>i=1,..,dim Dg(2)/A;. On the other hand, from the above observation, we have

2i=t1,.n M Dg(2)/A; £ Xi=q, (i) — i=y,...am() — |1,
where I={i;a&P;}. Since Y., ,n())=dimF/R(F) and Y., . .m@)=

dim F/Dy(1, a%, we have dim Dg(2)/R(K) < dim Dp(l, ad/R(F)—|Il. By
Corollary 2.7, dim H,/R(F)=|I|, and it implies dim Dg(2)/R(K)<dim Dg{1, a)/

H,. This proves the assertion by Proposition 1.2, (1). Q.E.D.
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