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§ 1. Introduction

Let X be a finite H-space, i.e., a path connected space admitting a continuous
multiplication with homotopy unit and having the homotopy type of a finite
CW-complex. Then, on the homotopy groups nn(X) of X, the following results
are basic :

(1.1) (W. Browder [6; Th. 6.11]) The first non-vanishing heίgher homotopy
group πn(X) (n^2) occurs for odd n.

(1.2) (A. Clark [9; Th. 1]) // X is simply connected, noncontractible and
admits an associative (not homotopy associative) multiplication, then π3

(1.2) is not true in general, e.g., for X = Sη, and we have the following
question :

(1.3) Does there exist a ^-connected finite H-space except for the product
(S7)1 = S7 x • • - x S7 (l-fold, I ̂  0)?

In this paper, we study this question under some assumptions. Our main
results are stated as follows :

THEOREM 1.4. For a 3-connected finite H-space X, assume that

(1.5) H*(X; G) are primitively generated for G = Z2 and Q, and
(1.6) the indecomposable module QHn(X; Z2) vanishes for n = 15.

Then, X has the homotopy type of (S1)1 for some /^

By this theorem, we have the following

COROLLARY 1.7. Let X be a homotopy associative finite H-space with
H*(X; Z) of 2-torsion free and (1.6). Then, X has the homotopy type of a torus
(S1)' = S1 x • • - x S1 (t-fold, t ̂  0) if and only if π3(X) = 0.

Our method of proof is to study the cohomology of X and the Adams
operation \l/n on the JC-ring of the projective plane PX of X.

The author wishes to express his hearty thanks to Professor M. Sugawara
for his variable suggestions and discussions.
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§ 2. Reduction of the main results to Lemma 2.4

PROOF OF COROLLARY 1.7 FROM THEOREM 1.4. Let X be an H -space stated
in Corollary 1.7, and X be the universal covering space of X. Then, X is a
homotopy associative #-space and so X satisfies (1.5) for G = Q by [4; Th. 6.6].
According to W. Browder [5; Cor.], X is also finite. Assume that π3(X) = 0.
Then X is 3-connected by (1.1). Furthermore, we can prove that

(2.1) X satisfies (1.5) for G = Z2 and (1.6) .

Then, 1~(S7)' by Theorem 1.4. If ί^l, then (S1)1 admits no (mod 2)
homotopy associative multiplications by [10; Th. 1]. Thus / = 0, X~* and
X = K(πl(X), 1). If K(π, 1) is a finite /f-space, then it has the homotopy type
of a torus. So, X^(Sly. Conversely, if X^(S1)t

9 then π3(JO = 0 clearly
Thus, we see the corollary.

To prove (2.1), we consider the map

f:X — » K

inducing the projection T^pQ-^pO/tor of the fundamental group. Further-
more, we take gt: S

1-^ (l^i^ί) so that their homotopy classes form a basis
for ni(X)/tor, and consider the composition

g: (Slγ gι χ -xg«>;r x ... x x (f-fbld) -̂ -> X,

where μt is the ί-fold multiplication of X, i.e.,

(2.2) μ2 = μ: X x X -* Xis the multiplication of X and μs+ί = μ(μs x id) (s ̂  2) .

Then, for the homotopy fibre c: X-*X off: Jf-KS1)', we see that

(2.3) μ(cxg): X x (S1)' -+ X x X ^> X is homotopy equivalence,

because so i s f g : (S1)r->(S1)ί by definition.
Now, since H*(X; Z) has no 2-torsion by assumption, so is H*(X; Z) by

(2.3) and π^X) = tor π^X) has only odd torsion. Thus, X is homotopy equivalent
to the universal covering space of X, which is 2-equivalent to X; and so

H*(X; Z2) s #*(*; Z2), Tor (H*(Z; Z), Z2) s Tor (H*(ί ; Z), Z2)

by natural maps. These shows that βH15(X; Z^QH^(X\ Z2)^Q15H(X'9 Z2)
= 0 by (2.3) and (1.6), and that #*(£; Z) has no 2-torsion since so is H*(X\ Z).
Thus fί*(^ί; Z2) is primitively generated by [4; Th. 6.6] since X is a homotopy
associative H-space, and (2.1) is valid. Q.E.D.
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Theorem 1.4 follows from the following

LEMMA 2.4. Under the assumptions in Theorem 1 A, QHn(X\ β) = 0 for
l.

PROOF OF THEOREM 1.4 FROM LEMMA 2.4. First we prove that

(2.5) H*(X\ Z) has no torsion.

In fact, if H*(X; Z) has p- torsion for a prime p, then QH2i(X\ Zp)^0 for some
ϊ^l by [6;Th. 4.9], and Qfl™p*-\X\ β)^0 for some k^l by [7; Th. 4.7].
Here, i ̂  3 by (1.1) since X is 3-connected, and hence 2ipk — \φl which contradicts
Lemma 2.4. So, (2.5) holds.

Now, we have H*(X\ Z)^/f*((S7)*; Z) by A. Borel [4: Prop. 6.5], (2.5)
and QHn(X; ρ) = 0 for n^l in Lemma 2.4. Since π7(X)^H7(X; Z)^
Hom(#7(X; Z), Z), there are maps f t : S7-+X (l^i^I) such that Hη(X\ Z) =

--,./;*(£)} (£e#7(S7;Z) is a generator). Then /=^(/x x - x/z):
te is given in (2.2)) satisfies /*: H*(X\ Z)^H*((57)Z; Z), and so

Q.E.D.

§3. Cohomόlogy of J^ in Theorem 1.4

The rest of this paper is devoted to prove Lemma 2.4.
In this section, assume that X is a 3-connected finite //-space with (1.5).

Then, we notice the following results due to E. Thomas [17] :

(3.1) (i) ([17; Th. 1.1]) Let n and t be positive integers with (2"~~/ ""*) ^0

mod 2. Then,

= Q and PH2n-\X; Z2) = S^PH^-^X' Z2),

where P denotes the primitive module.
(ii) ([17; Th. 1.2]) IfuePH2s\X; Z2), then

u = υ2* for somevePH^X; Z2).

REMARK. (3.1) is based on Browder-Thomas [8; Th. 1.1] for p = 2 which
is valid because X is finite (see [14]).

Now, we use the following notation hereafter :

(3.2) d(n, G) = d(n, G; X) = dim PHn(X\ G) for G = Z2 and Q.

Then, we have the following two lemmas:

LEMMA 3.3. (i) dimQ#"(X; β) = d(n, β), and d(2n, β) = 0.
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(ii) dimQH2n+l(XιZ2) = d(2n + l,Z2), and QH2n(X\ Z2) = 0. Therefore,
the assumption (1.6) is equivalent to d(15, Z2) = 0.

PROOF, (i) Since H*(X\ Q) is primitively generated by (1.5), PHn(X\ Q)^
QHn(X\ Q) by Milnor-Moore [16; Prop. 4.17]. Furthermore, by Hopf's
theorem, QH2n(X\ β) = 0, which implies d(2n, 0 = 0 by the above fact.

(ii) Since H*(X; Z2) is primitively generated by (1.5), we have the exact
sequence

(3.4) 0 - > P(ξH*(X; Z2)) - > PH*(X; Z2) -^ QH*(X; Z2) - > 0

by [16; Prop. 4.21], where ξ: H*(X\ Z2)-+H*(X; Z2) is denned by ξ(x) = x2

and is a map of Hopf algebras. Thus π: PH2n+1(X; Z2)^QH2n+1(X; Z2). By
(3.1) (ii), QH2»(Xι Z2) = π(PH2»(X; Z2)) = 0. These show (ii). Q. E. D.

LEMMA 3.5. (i) d(n, Q) = d(n, Z2)for n^!2, which is 0 ϊfnφl, 11.
(ii) //rf(15, Z2) = 0, ί/zen d(n, Z2) = 0/or n^30 and n^7, 11, 13, 14, 28.
(iii) //ί/(15, Z2) = 0, ίfcβn d(n, β) = 0/or n^30 αnJ n^7, 11, 13, 27.
(iv) If d(n, Z2) = 0/0r n = ll and 15, ί/iβn d(n, Q) = d(n, Z2) for all n, and

d(n, Q) = d(n, Z2) =

PROOF. For the simplicity, we denote PHn(X\ Z2) by
( i ) Since X is 3-connected, it is clear that rf(n, β) = 0 = rf(n, Z2) for n^4

by (1.1). Thus (3.1) (i) shows that PH5 = Sq2PH3 = Q and hence PH9 =

Sq4PH5 = 0. Furthermore, (3.1) (ii) implies

(3.6) PHn = (Pf/0(2s) = {x2s I x e PHr} for n = 2sί.

Thus, PH2n = 0 for n^6. Therefore, in the Bockstein spectral sequence

(3.7) E? = H»(X; Z2) =>£So = (#w(*; Z)/tor) ® Z2,

if n^!2, then dr = ΰ on £; and E? = £So, which implies ί/(n, Q) = d(n, Z2) by

Lemma 3.3.

(ii) If n^7, then Q^) 00 mod2 and PH*5+2» = Sq2»PHl5 = Q by (3.1)

(i) and the assumption. For n = 2sί^30 with odd ί, PH" = Q if ί^ 7, 11, 13 by
(3.6) and (i). On the other hand, by the Adem relation, we have

(3.8) PH2t = (P#0(2) = S^P/Γ = Sq^Sqt-ipH* c SqlPH2t-1 (i: odd),

which is 0 if t — 11, 13 by the above argument. Thus, we see (ii).
(iii) By (3.6), (3.8) and Sql(PH^ =0, we see that

PH2S =

Thus in (3.7), £|» = 0 for ri^lS and E2

2

n+^=E\n+\ for n^!4 with n^6, 13.
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Therefore, if ng30, then dr = 0 on En

r for r^2 and £$> = £$. Hence d(n, Q)
(n^30) is 0 if n* 7, 11, 13, 27 by (ii) and Lemma 3.3 (i).

(iv) Assume d(ll, Z2) = 0, in addition to (ii) and (iii). Then, P//13 =
Sq2PHίl = Q by (3.1) (i), P//14c=5^1P//13 = 0 by (3.8), and P//28 = (PH14)<2>=0
by (3.6). Thus d(n, Z2) = 0 for n ̂  30 and n Φ 1 by (ii). Now, we prove that

(3.9) d(2n + l, Z2) = 0 for 2r' + 1 ̂  2n + 1 ̂  4r' - 3 (rr = 2r'1)

by induction on r, which is shown already if r^4. Let r^5.

Case 1) 2r' + 1^2n + 1^3r'-3: Then(2w+^ ~r') fέO mod 2andP//2 w + 1

= Sqr'PH2n+1-r' = 0 by (3.1) (i) and the inductive hypothesis.
Case 2) 2n + 1 = 3r' - 1 : Take any x e PH2n+ί. Then, x = Sqr'y for some

yePH2"'-1 in the same way. Now, S^y ePH2r' =(PHlY2r"> = Q by (3.6),
and Sq2tyePH2r'+2t-1=Q for any ί with lgί^r-2 by Case 1). Thus, [1;
Th. 4.6.1] and r^5 imply that

x = Sqr'y = Σ &iVi for some vt e H*(X\ Z2) and αf e stf with 0 < deg α£ < r',

where ja/ is the mod 2 Steenrod algebra. Since H*(X ; Z2) is primitively generated,
we can write as vi = \vi

jf-di where wtEPH* and dt is decomposable. Here, w^O
if w( e PHodd by Case 1) and we can take w^O if w, e Pf/even by (3.1) (ii). There-
fore, x=Σ αίJίeP//2n+1 is decomposable, which implies x = 0 by the exact

sequence (3.4).

Case 3) 3r/ + 1^2n + 1^4r'-3: Put ί = 2n + 2-3r/.

00 mod2, and PH^+^Sg'PH3'''1^ by (3.1) (i) and Case 2).

This completes the inductive proof of (3.9).
Finally, we prove that

(3.10) d(2n, Z2) = 0 for any n = r't with r' = 2r~l and odd ί.

If t^2s-\ (s^3), then PH2ίl = 0 by (3.6) and (3.9). Assume ί = 2s-l (s^3).
If r' = l, then PH2nc:SqlPH2ί"l=Q by (3.8) and (3.9). If r'^2, then P//2w =
(P//2ί)(r/) by (3.6), which is 0 as is shown. Thus, we see (3.10), and (iv) is
proved for Z2.

Now, consider the Bockstein spectral sequence (3.7). Then, PE\n = PH2n = 0
and dr = 0 on En

r for any rΞ>l, since Ej = H"(X; Z2) is primitively generated.
Thus, E'^ = E'{ which means d(n, Q) = d(n, Z2) for any rcgrl, and (iv) is proved
completely. Q. E. D.

§ 4. JΓ-ring of Jί and the projective plane of A"

We continue to assume that X is a 3-connected finite //-space with (1.5).
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Furthermore, we regard X to be a finite CJF-complex and the multiplication μ a
cellular map.

Let 7 be a CW-complex with the n-skeleton Yn, and K*(Y) be the Z2-graded
complex K-ring with K°(Y) = K(Y) and X1(^) = ̂ (̂ )̂J where Σ denotes the
suspension. We filter K*(Y) by

(4.1) F^(y) = Ker(KJ(Y)^KJ(YP-*y) 0 = 0, 1).

Then, for any yeKJ(Y), we write

(4.2) degj; = p if yeFpKJ(Y) - FP+1&(Y).

Now, we prove the following key lemmas.

PROPOSITION 4.3. Under the above assumption on X, K*(X) is torsion free
and has the structure of primitively generated Hopf algebra. Moreover, there
exist xt e PKl(X), 1 g i ̂  /, such that

K*(X) £ Λ z(x l s---, xί) and ${ί \ degx^n} = d(rt, β).

Here, % A denotes the number of elements in a finite set A.

PROOF. Since H*(X; Z2) is primitively generated by (1.5), the Pontrjagin
ring H*(X\ Z2) is associative by [16; Prop. 4.20]. Thus H*(ΩX; Z) (ΩX is the
loop space of X) is torsion free by J. Lin [6; Th. 8.1], and then so is K*(X)
by R. Kane [13; Th. 1.4]. This implies that K*(Xx*)^K*(Z)®K*(X) and
K*(X) has the structure of Hopf algebra. Furthermore, the Chern character

ch: K*(X) - > K*(X) ®Q^ H*(X; Q)

is monomorphic and is a map of Hopf algebras. Here, H*(X; Q) is an exterior
algebra over primitive elements by assumption (1.5) and Hopf's theorem. Thus,
by L. Hodgikin [11; Th. 2.2], we see that

K*(*) = Λz(x t, ".,*/) for xtePK*(X).

Here XtePK^X), because PH™\X\ Q) = 0 by Lemma 3.3 (i) and cΛ(X°(ΛΓ))c:
Heven(X; Q). On the other hand, by the Atiyah-Hirzebruch spectral sequence
for K*( )®β, we see that

(F2p. ί

which implies # { i \ deg xt = 2p - 1 } = d(2p - 1 , Q). Q. E. D.

Let PX be the projective plane of X, i.e.,

PX = ΣX\JH^ C(X*X)
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is the mapping cone of the Hopf construction H(μ): X*X-+ΣX of μ. Then, PX
is a finite CW-complex containing ΣX as a subcomplex. By definition, we have
the exact sequence

(4.4) ..- - > K(X) - > K(X Λ X) - > K(PX) -JU fr(X) - > fr(X AX) - > ...

where £(* Λ X)^(K*(X)®K*(X))° by the above proposition.

PROPOSITION 4.5. For xt ( l^i^Ξ/) in the above proposition, there exist
elements y{ and an ideal S in K(PK) such that

τy{ = xl9 deg yt = deg xt + 1 ; τS = 0, 5 - K(PX) = 0,

K(PJSf) s ΓM ® 5 (as rm0s), and ιArt(S) c S/or all n,

where τ is the homomorphism in (4.4),

and ψ" is the Adams operation on K.

PROOF. The proof of the corresponding results for H*(PX ; Zp) and K(PK)®
Z(2) are given in [8; Th. 1.1] and [12; Lemmas 6.3-4]. This proposition can be
also proved by the same method, and we omit the details. Q. E. D.

T3A in the above is called the filtered truncated polynomial algebra of
height 3 on {yt}.

Let B be a filtered algebra over Z by a filtration

B = F0B ID FιB=>--=> FPB =>••• with FpB-FqB c Fp+qB for any p, q ^ 0.

Then, we say that B is a ψ-algebra if there are maps ψn: B-^B (n e Z) of filtered
algebras, i.e., algebra homomorphisms ψ" with ψnFpB<=FpB9 such that

(4.6.1) ι/Λ = id and \l/m[l/n = ψnψm = ψnm for any m, neZ,
(4.6.2) if xeF2rB9 then ψnx = nrx modF2r+lB for any r^O and neZ, and
(4.6.3) ι/r2x = x2 mod 2 for any xeB.

By [2; Th. 5.1], [3; (1.1-5)] and the definition, we see that

LEMMA 4.7. (i) The K-ring K(Y) of a finite CW-complex Y filtered by
(4.1) is a ψ-algebra by the Adams operations ψ".

(ii) /// is an ideal in a ψ-algebra B with ψnlcl for all n, then B/I is also
a ψ-algebra.

Now, according to Proposition 4.5, we can prove Lemma 2.4 and hence the
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main results in §1 (see §2) by the following

PROPOSITION 4.8. Assume that a filtered truncated polynomial algebra

T3A = A/D3A, A = Z[>!,-, y{\ with deg yt = 8, 12, 14 or even ^ 28,

of height 3 is a ψ-algebra. Then:
(i) Γ/ιere is no i with deg .y—12.
(ii) // deg yt is 8 or 2r (r ̂  5), then deg j;, = 8 for alii.

PROOF OF LEMMA 2.4 FROM PROPOSITION 4.8. Let X be an //-space in
Theorem 1.4. Then, X is regarded as an //-space in this section satisfying (1.6),
i.e., d(15, Z2) = 0 (see Lemma 3.3 (ii)). Thus, T3A = K(PX)/S in Proposition 4.5
is a ι/f-algebra by Lemma 4.7, and the generators yί9'-,yι satisfy #{i|deg<yί =
n + l} = d(n, Q) by Proposition 4.3. Therefore, d(ll, β) = 0 by Lemma 3.5 (iii)
and Proposition 4.8 (i), and hence QHn(X\ β) = 0 for nφl by Lemma 3.3 (i),
3.5 (iv) and Proposition 4.8 (ii). Q. E. D.

The above proposition is proved algebraically in the next section.

§ 5. Proof of Proposition 4.8

Let T3A be a ^-algebra in Proposition 4.8. Then, the ideal / in T3A generated
by {<vj|deg^,^28} satisfies ψ»Ic:I for all n. In fact, if degyί = 2r^28, then
ψπyiΞΞn'yi moάF2r+1T

3A by (4.6.2) and F2r+ίT
3Ac:I by assumption, which

show \l/nyi e I. Therefore, we have a ^-algebra T3A/I by Lemma 4.7 (ii), which
is isomorphic to

(5.1.1) a ^-algebra T3Aί = A1/D3Aί, A1 = Z[yί9—9 yt]9 with deg.v, = 2ε(s) if
ts-ι < i ^ ts9 and ε(s) = 4, 6 or 7 according to 5 = 1, 2 or 3, respectively

(ίo = 0, ί3 = ί).

Hereafter, consider this ^-algebra T3A^. Then, we have

(5.1.2) ψ*yi = n'Myt + Σt.<jA(i9j'9 n)yj + Σ^fc#(U, k\ n)yjyk (ί.-^i^O

for some integers A and B by (4.6.2). Therefore,

(5.1.3) for any j>t29 the coefficient of yj in \l/mψnyj is equal to

n7B(j9j,j; m) + ml*B(j9j9j; n) + m7 Σt&2B(J, i>Jm> n)A(i9j; m)

+ Σίgfcg ί 2^(Λ i> fc; n)A(iJ; m)A(kJ; m).

Thus, by comparing them in Ψ2ψ~ίyJ

:=ψ~1ψ2yj of (4.6.1), we have
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2B(j, 7, 7 ; 2) = Σ Wa #0, i, 7 ; 2)A(i, j ; - 1)

- Σιsw2B0', i, *; 2M(U; -lM(/c,7'; -1) mod 4,

because A(iJ',2) = Q mod 2 by (4.6.3). Here, (4.6.3) also shows that £(7,7,
7; 2)^0 and £(7, f, 7 ; 2) = 0 = ̂ (7, ί, /c; 2) mod 2. Therefore,

(*) for any 7 > ί2> there is / ?g ί2

 such that A(i, j: — 1) is odd.

Then, by changing the generators yi (1 ̂  / ̂  ί) if necessary, we may assume that

(5.1.4) A(i,j; — 1) (i^t2<j) is odd when and only when / = 1(7),

where

Γ j-t2 if 7'̂ 2 + r,
ί(7) = I for some r^O with d2—d2^r^dί

( ti+j-t2-r if j>t2 + r,

). In fact, for jQ>t2, take ϊ'0^ί2

 w^th odd

^4(zo» 7o ί — 1) by (*)» an(i w^th /0 > ίi if it exists ; and replace j>/7'0 ¥=j > t2) with odd

A(i0,j', -1) by 3^7 + ̂ 0 and ^/ (ΐ^iύh) with odd ^4(ί,70; -1) by yi + yh.
Repeat these replacements for all j0 > t2 and change the order if necessary. Then,
{yt} is replaced with the new {y^ so that A(i, 7; — 1) turns out to satisfy (5.1.4).

Here, we notice that

(5.1.5) A(ί, j ; - 1) = 0 for any i, j with i ^ ίt < 7 ̂  ί2 .

This is seen by the following equalities of (5.1.1) and (5.4.2) for n= — 1:

Now, we put

(5.1.6) yt = yt + Σt2<j LA(i, j ; - 1)/2]^ for i ^ t2 ,

yy = '̂̂ ία) ~ ytw for 7 ̂  *2 (by i(Λ in (5.1.4)).

Then, by (5.1.2), (5.1.4-5) and (4.6.1), we see the following (i£t2<j):

t + 3^ if i = i(fi
(5.1.7)

otherwise

(5.1.8) yf = Λ modF14TM1? y y s

LEMMA 5.2. (i) TMi //i (5.1.1) is equal to T3A1=Al/D3Ai with A{

(ii) Let I be the ideal in T3!^ generated by {yj\j>t2}.- Then, ψnlc:lfor
all n, and we have a ψ-algebra
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I s T*A2 = A2/D*A29 A2 =

PROOF, (i) is clear by (5.1.6-8). By (5.1.2) for

ψ»yj = n7j;; + Σ/ g* 5(Λ i, fc; ri)ytyk for 7 > r2 .

Now, compare the coeίBcients ofytyk in \l/~1ιl/nyj = \l/n\l/~1yj. Then, by (5.1.7) and
D2Aί=D2Aί9 we see that

5(7, ί, fc; n) = 0 for any i ̂  fc ̂  f2,
 anc* ΨnPjGl for any j > t2.

This implies that ψnIc:I9 and we see (ii) by Lemma 5.2 (ii). Q.E. D.

From now on, we omit the bars of generators and consider the above t^-algebra

TM2 = Λ2/Z>M2, Λ2 = ZD^,-, Λa], with

deg j^k = 8 if fc ̂  tί , = 12 otherwise,

where (5.1.2) is written as follows:

(5.3.1) ψ*yt = n*y, + Σ^^O', fc; n)j;fc + Σ» $*'*(», fc

? fe'5 Λ)ΛΛ- for ί ̂  ί1?

(5.3.2) ^"^ = n*yj + Σ f cg f e ' B(Λ ^ *'; ̂ Λ- for 7 > ί,.

Then, for i^ί'^ti ^7, the coefficient of ̂  in ψmψnyi is n4y4(i, 7 ; m) + m6A(ί, j ; n)
and that of yjyv in \^ιm^nyj is n6B(7, i, i' ; m) + msB(j, z, i'; n). Thus by

comparing them in Ψ2ψ3yk = Ψ3Ψ2yk of (4.6.1), we see that

(5.3.3) 3M(if7';2) = 2Λ(U;3) for any i^tΛ<j,

(5.3.4) 35J5(7, i, i'; 2) = 23B(Λ i, i'; 3) for any ί ^ i' ^ tί < j.

To study A and B more precisely, we prepare the following (5.3.6-7) for ΐ:g
tί <j and n, m 6 Z, where

(5.3.5) C(/) = m12B(/, 7, 7; n) + m6 ΣWl ^(/, fc, 7; «M(fc, 7 ; m)

+ Σi^fi B(^ k' fc/' wM(fc» J'; wM(fc', 7; m) ,

D(/) = m10B(/, 1,7; n) + m4 Σ*^£(/, fc, i; n)A(k,j; m)

+ m4 Σ^fc B(19 i, fc; nM(fc, 7 ; m) ,

£(/, Γ) = n4B(i, /, Γ; m) +Σίl<J^(i, fc; »)B(fc, I I'; m).

(5.3.6) The coefficients of yj and >>/)>./ in Ψmψnyj are equal to

n*B(jJ,j; m) + C(j) and n6B(7, 1,7; m) + D(», respectively.

(5.3.7) Those of yf , y^ an^ ̂ ί̂  in ψmψnyi are equal to

£(ί, i) + m8B(i, ί, i; n), £(7,7) 4- C(i) and £(1,7) + D(Ϊ), respectively.
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LEMMA 5.4. A(i, j\ 3) is even for any i^t^ <j.

PROOF. Suppose contrarily that A(a, b; 3) is odd for some a^t1<b. Then,
by changing the generators yk9 1 ̂ k^t2, we may assume that

(5.5.1) A(aJ; 3) = 0 = A(i9 b\ 3) mod27 for any i, j with a ̂  i^t1 <j ^ b.

In fact, there are integers λ and μ with λA(a, ft; 3)+μ = l and μ = 0 mod27 by
assumption. Then, we see (5.5.1) by replacing yi (a^i^t^) and yb with

yt = yt - λA(i, b\ 3)ya and yb = yb + Σtl<j+bA(a9j, 3)yj9 respectively,

because (5.3.1) turns out to

mod DMj.
μA(i, b; -

We now consider the coefficients in Ψ2ψ3yk = ψ3ψ2yk given in (5.3.6-7) (k = b
or α) and compare them by taking mod2r and by using (5.3.3-4) and (5.5.1).
Then, in the first place, we see that

(5.5.2) α = Λ ( α , 6; 2)B(fc, α, α; 3) = 0 mod24,

β = A(a, b; 3)B(b, α, α; 2) = 0 mod26.

In fact, (5.3.7) for y2

a implies α=j? mod24 by (5.5.1) and (5.3.3). On the other
hand, 22α = 33j? by (5.3.3-4). These show (5.5.2). In the second place, by (5.3.6)
for yayb taking mod 27, we see that

26B(b, a, b; 3) + 2-340 + 36(34-l)J5(fe, α, ft; 2) ΞΞ 25α mod27,

which together with (5.5.2) implies that

(5.5.3) B(b, a, b; 2) = 22B(b, α, b; 3) mod23.

In the third place, by (5.3.6) for yl taking mod 23 and (5.5.2), we have

B(b, a, b; 2)A(a, b;3) = aA(a, b; 2) - βA(a, b; 3) = 0 mod23.

Since A(a, b; 3) is odd by assumption, this shows that

(5.5.4) B(b, α, b; 2) = 0 mod 23, and hence B(b, α, 6; 3) is even,

by (5.5.3). Finally, taking mod 22, (5.3.7) for yayb implies that

2B(α, α, β; 2M(α, t; 3) = A(a, b; 3)B(b, a,b; 2) - A(a, b; 2)B(b, α, b; 3) = 0

mod 22 by (5.5.4) and (5.3.3). Thus

(5.5.5) B(a, a, a; 2) is even, since A(a, b; 3) is odd.
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This contradicts (4.6.3); and the lemma is proved. Q. E. D.

LEMMA 5.6. t2 — t^ i.e., there exists no yj with

PROOF. Compare the coefficients of yj in Ψ2ψ3yί=ψ3ψ2yi taking mod 23

for any i^tl<j by using (5.3.7), Lemma 5.4 and (5.3.3). Then, we see that

(5.7.1) Σtl<kA(i,

s Σtί<kA(i, k; 2 ) B ( k 9 j , j ; 3) + Σ^^O', kj; 2)A(k,j; 3)

+ Σws* BO, k, k'; 2)A(k9 7; 3>4(fc', 7; 3) mod 23.

We notice by (4.6.3) that

(5.7.2) B(fc, fc', fc"; 2) s i mod 2 if and only if fc = k' = k".

Here, (5.7.1) implies firstly by taking mod 22 that A(i, j; 3) = 0 mod 22 and then

(5.7.3) A(i, j; 3) = 0 mod 23 for any i^tl< j.

Compare now the coefficients of yj in Ψ2ψ3yj = \l/3ψ2yj taking mod24 using
(5.3.6). Then, by (5.7.2-3) and (5.3.3), we see that

(5.7.4) 36(3«-i)Ba-U;2)sO mod24.

Thus B ( j 9 j 9 j ; 2) is even, which contradicts (5.7.2) if j(>ί1) exists; and we have
t2 = tl. Q. E. D.

Now, we are ready to prove Proposition 4.8.

PROOF OF PROPOSITION 4.8. (i) is already proved by Lemma 5.6.
(ii) Suppose that (ii) is not valid, and let r^5 be the least integer with

#{ί I deg yi = 2r}^0. Consider the ideal / in T3A generated by {yi \ deg j^2r+1}.
Then, by Lemma 4.7 (ii), we have a ^-algebra T3A/I, which is isomorphic to

T3B = B/D3B, B = Z[yl9—9 yj, with degyf = 8 if i g si9 = 2r if i > st.

In this ^-algebra, (4.6.2) implies that

^»Λ = nVi + ΣSί<kA(i9 fc; n)yk modD2B for i ̂  sί9

ij/ny. = nr'y. + Σ*gk',k'>.1 *(Λ ^ V '9 n)ytfv for J > Sl9

where r' = 2r"1. Consider \l/2ψ3yj = \l/3ψ2yj (j>sl). Then, by comparing the
coefficients of ytyj (i^s^ taking mod 2Γ/, we see that

3''(34 -!)£(./, ί,;; 2) = 0 mod2'" and BO', U; 2) s 0 mod2'+2,

since r' — 4 ̂  r -I- 2. Therefore, by comparing those of yj taking mod 2r+2, we have
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,7;2) = 0 mod 2^

in the same way as (5.7.4). Here, 3r'-l = 2Γ+1 mod2r+2 by [2; Lemma 8.1].
Thus,

β(7,j,j;2) = 0 mod 2,

which contradicts (4.6.3); and (ii) is valid. Q. E. D.

Thus, the main results in §1 are proved completely as noted at the end of §4
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