On 3-connected finite \boldsymbol{H}-spaces

Yutaka Hemmi
(Received June 1, 1984)

§1. Introduction

Let X be a finite H-space, i.e., a path connected space admitting a continuous multiplication with homotopy unit and having the homotopy type of a finite $C W$-complex. Then, on the homotopy groups $\pi_{n}(X)$ of X, the following results are basic:
(1.1) (W. Browder [6; Th. 6.11]) The first non-vanishing heigher homotopy group $\pi_{n}(X)(n \geqq 2)$ occurs for odd n.
(1.2) (A. Clark [9; Th. 1]) If X is simply connected, noncontractible and admits an associative (not homotopy associative) multiplication, then $\pi_{3}(X) \neq 0$.
(1.2) is not true in general, e.g., for $X=S^{7}$, and we have the following question:
(1.3) Does there exist a 3-connected finite H-space except for the product $\left(S^{7}\right)^{l}=S^{7} \times \cdots \times S^{7}(l-f o l d, l \geqq 0)$?

In this paper, we study this question under some assumptions. Our main results are stated as follows:

Theorem 1.4. For a 3-connected finite H-space X, assume that
(1.5) $H^{*}(X ; G)$ are primitively generated for $G=Z_{2}$ and Q, and
(1.6) the indecomposable module $Q H^{n}\left(X ; Z_{2}\right)$ vanishes for $n=15$.

Then, X has the homotopy type of $\left(S^{7}\right)^{l}$ for some $l \geqq 0$.
By this theorem, we have the following
Corollary 1.7. Let X be a homotopy associative finite H-space with $H^{*}(X ; Z)$ of 2-torsion free and (1.6). Then, X has the homotopy type of a torus $\left(S^{1}\right)^{t}=S^{1} \times \cdots \times S^{1}(t-f o l d, t \geqq 0)$ if and only if $\pi_{3}(X)=0$.

Our method of proof is to study the cohomology of X and the Adams operation ψ^{n} on the K-ring of the projective plane $P X$ of X.

The author wishes to express his hearty thanks to Professor M. Sugawara for his variable suggestions and discussions.

§ 2. Reduction of the main results to Lemma 2.4

Proof of Corollary 1.7 from Theorem 1.4. Let X be an H-space stated in Corollary 1.7, and \tilde{X} be the universal covering space of X. Then, \tilde{X} is a homotopy associative H-space and so \tilde{X} satisfies (1.5) for $G=Q$ by [4; Th. 6.6]. According to W. Browder [5; Cor.], \tilde{X} is also finite. Assume that $\pi_{3}(X)=0$. Then \tilde{X} is 3 -connected by (1.1). Furthermore, we can prove that

$$
\begin{equation*}
\tilde{X} \text { satisfies (1.5) for } G=Z_{2} \text { and (1.6). } \tag{2.1}
\end{equation*}
$$

Then, $\tilde{X} \simeq\left(S^{7}\right)^{l}$ by Theorem 1.4. If $l \geqq 1$, then $\left(S^{7}\right)^{l}$ admits no $(\bmod 2)$ homotopy associative multiplications by $[10 ;$ Th. 1]. Thus $l=0, \tilde{X} \simeq *$ and $X=K\left(\pi_{1}(X), 1\right)$. If $K(\pi, 1)$ is a finite H-space, then it has the homotopy type of a torus. So, $X \simeq\left(S^{1}\right)^{t}$. Conversely, if $X \simeq\left(S^{1}\right)^{t}$, then $\pi_{3}(X)=0$ clearly Thus, we see the corollary.

To prove (2.1), we consider the map

$$
f: X \longrightarrow K\left(\pi_{1}(X) / \text { tor, } 1\right) \simeq\left(S^{1}\right)^{t}
$$

inducing the projection $\pi_{1}(X) \rightarrow \pi_{1}(X) /$ tor of the fundamental group. Furthermore, we take $g_{i}: S^{1} \rightarrow X(1 \leqq i \leqq t)$ so that their homotopy classes form a basis for $\pi_{1}(X) /$ tor, and consider the composition

$$
g:\left(S^{1}\right)^{t} \xrightarrow{g_{1} \times \cdots \times g_{t}} X \times \cdots \times X(t \text {-fold }) \xrightarrow{\mu_{t}} X,
$$

where μ_{t} is the t-fold multiplication of X, i.e.,
(2.2) $\mu_{2}=\mu: X \times X \rightarrow X$ is the multiplication of X and $\mu_{s+1}=\mu\left(\mu_{s} \times\right.$ id $)(s \geqq 2)$.

Then, for the homotopy fibre $c: \bar{X} \rightarrow X$ of $f: X \rightarrow\left(S^{1}\right)^{t}$, we see that
(2.3) $\mu(\iota \times g): \bar{X} \times\left(S^{1}\right)^{t} \rightarrow X \times X \rightarrow X$ is homotopy equivalence,
because so is $f g:\left(S^{1}\right)^{t} \rightarrow\left(S^{1}\right)^{t}$ by definition.
Now, since $H^{*}(X ; Z)$ has no 2-torsion by assumption, so is $H^{*}(\bar{X} ; Z)$ by (2.3) and $\pi_{1}(\bar{X})=$ tor $\pi_{1}(X)$ has only odd torsion. Thus, \tilde{X} is homotopy equivalent to the universal covering space of \bar{X}, which is 2-equivalent to \bar{X}; and so

$$
H^{*}\left(\bar{X} ; Z_{2}\right) \cong H^{*}\left(\tilde{X} ; Z_{2}\right), \quad \operatorname{Tor}\left(H^{*}(\bar{X} ; Z), Z_{2}\right) \cong \operatorname{Tor}\left(H^{*}(\tilde{X} ; Z), Z_{2}\right)
$$

by natural maps. These shows that $Q H^{15}\left(\tilde{X} ; Z_{2}\right) \cong Q H^{15}\left(\bar{X} ; Z_{2}\right) \cong Q^{15} H\left(X ; Z_{2}\right)$ $=0$ by (2.3) and (1.6), and that $H^{*}(\tilde{X} ; Z)$ has no 2-torsion since so is $H^{*}(\bar{X} ; Z)$. Thus $H^{*}\left(X ; Z_{2}\right)$ is primitively generated by [4; Th. 6.6] since \tilde{X} is a homotopy associative H-space, and (2.1) is valid.
Q.E.D.

Theorem 1.4 follows from the following
Lemma 2.4. Under the assumptions in Theorem 1.4, $Q H^{n}(X ; Q)=0$ for $n \neq 7$.

Proof of Theorem 1.4 from Lemma 2.4. First we prove that

$$
\begin{equation*}
H^{*}(X ; Z) \text { has no torsion. } \tag{2.5}
\end{equation*}
$$

In fact, if $H^{*}(X ; Z)$ has p-torsion for a prime p, then $Q H^{2 i}\left(X ; Z_{p}\right) \neq 0$ for some $i \geqq 1$ by [6; Th. 4.9], and $Q H^{2 i p^{k-1}}(X ; Q) \neq 0$ for some $k \geqq 1$ by [7; Th. 4.7]. Here, $i \geqq 3$ by (1.1) since X is 3 -connected, and hence $2 i p^{k}-1 \neq 7$ which contradicts Lemma 2.4. So, (2.5) holds.

Now, we have $H^{*}(X ; Z) \cong H^{*}\left(\left(S^{7}\right)^{l} ; Z\right)$ by A. Borel [4: Prop. 6.5], (2.5) and $Q H^{n}(X ; Q)=0$ for $n \neq 7$ in Lemma 2.4. Since $\pi_{7}(X) \cong H_{7}(X ; Z) \cong$ Hom $\left(H^{7}(X ; Z), Z\right)$, there are maps $f_{i}: S^{7} \rightarrow X(1 \leqq i \leqq l)$ such that $H_{7}(X ; Z)=$ $Z\left\{f_{1 *}(\xi), \cdots, f_{l *}(\xi)\right\} \quad\left(\xi \in H_{7}\left(S^{7} ; Z\right)\right.$ is a generator). Then $f=\mu_{l}\left(f_{1} \times \cdots \times f_{l}\right)$: $\left(S^{7}\right)^{l} \rightarrow X$ (μ_{l} is given in (2.2)) satisfies $f^{*}: H^{*}(X ; Z) \cong H^{*}\left(\left(S^{7}\right)^{l} ; Z\right)$, and so $X \cong\left(S^{7}\right)^{l}$.
Q.E.D.

§3. Cohomology of \boldsymbol{X} in Theorem 1.4

The rest of this paper is devoted to prove Lemma 2.4.
In this section, assume that X is a 3 -connected finite H-space with (1.5). Then, we notice the following results due to E . Thomas [17]:
(3.1) (i) ([17; Th. 1.1]) Let n and t be positive integers with $\binom{2 n-1-t}{t} \not \equiv 0$ mod 2. Then,

$$
S q^{t} P H^{2 n-1}\left(X ; Z_{2}\right)=0 \quad \text { and } \quad P H^{2 n-1}\left(X ; Z_{2}\right)=S q^{t} P H^{2 n-1-t}\left(X ; Z_{2}\right),
$$

where P denotes the primitive module.
(ii) ([17; Th. 1.2]) If $u \in P H^{2 s t}\left(X ; Z_{2}\right)$, then

$$
u=v^{2^{s}} \text { for some } v \in P^{t}\left(X ; Z_{2}\right) .
$$

Remark. (3.1) is based on Browder-Thomas [8; Th. 1.1] for $p=2$ which is valid because X is finite (see [14]).

Now, we use the following notation hereafter:
(3.2) $d(n, G)=d(n, G ; X)=\operatorname{dim} P H^{n}(X ; G) \quad$ for $G=Z_{2}$ and Q.

Then, we have the following two lemmas:
Lemma 3.3. (i) $\operatorname{dim} Q H^{n}(X ; Q)=d(n, Q)$, and $d(2 n, Q)=0$.
(ii) $\operatorname{dim} Q H^{2 n+1}\left(X ; Z_{2}\right)=d\left(2 n+1, Z_{2}\right)$, and $Q H^{2 n}\left(X ; Z_{2}\right)=0$. Therefore, the assumption (1.6) is equivalent to $d\left(15, Z_{2}\right)=0$.

Proof. (i) Since $H^{*}(X ; Q)$ is primitively generated by (1.5), $P H^{n}(X ; Q) \cong$ $Q H^{n}(X ; Q)$ by Milnor-Moore [16; Prop. 4.17]. Furthermore, by Hopf's theorem, $Q H^{2 n}(X ; Q)=0$, which implies $d(2 n, Q)=0$ by the above fact.
(ii) Since $H^{*}\left(X ; Z_{2}\right)$ is primitively generated by (1.5), we have the exact sequence

$$
\begin{equation*}
0 \longrightarrow P\left(\xi H^{*}\left(X ; Z_{2}\right)\right) \longrightarrow P H^{*}\left(X ; Z_{2}\right) \xrightarrow{\pi} Q H^{*}\left(X ; Z_{2}\right) \longrightarrow 0 \tag{3.4}
\end{equation*}
$$

by [16; Prop. 4.21], where $\xi: H^{*}\left(X ; Z_{2}\right) \rightarrow H^{*}\left(X ; Z_{2}\right)$ is defined by $\xi(x)=x^{2}$ and is a map of Hopf algebras. Thus $\pi: P H^{2 n+1}\left(X ; Z_{2}\right) \cong Q H^{2 n+1}\left(X ; Z_{2}\right)$. By (3.1) (ii), $Q H^{2 n}\left(X ; Z_{2}\right)=\pi\left(P H^{2 n}\left(X ; Z_{2}\right)\right)=0$. These show (ii). Q.E.D.

Lemma 3.5. (i) $d(n, Q)=d\left(n, Z_{2}\right)$ for $n \leqq 12$, which is 0 if $n \neq 7,11$.
(ii) If $d\left(15, Z_{2}\right)=0$, then $d\left(n, Z_{2}\right)=0$ for $n \leqq 30$ and $n \neq 7,11,13,14,28$.
(iii) If $d\left(15, Z_{2}\right)=0$, then $d(n, Q)=0$ for $n \leqq 30$ and $n \neq 7,11,13,27$.
(iv) If $d\left(n, Z_{2}\right)=0$ for $n=11$ and 15 , then $d(n, Q)=d\left(n, Z_{2}\right)$ for all n, and $d(n, Q)=d\left(n, Z_{2}\right)=0$ if $n \neq 7,2^{r}-1(r \geqq 5)$.

Proof. For the simplicity, we denote $P H^{n}\left(X ; Z_{2}\right)$ by $P H^{n}$.
(i) Since X is 3-connected, it is clear that $d(n, Q)=0=d\left(n, Z_{2}\right)$ for $n \leqq 4$ by (1.1). Thus (3.1) (i) shows that $P H^{5}=S q^{2} P H^{3}=0$ and hence $P H^{9}=$ $S q^{4} P H^{5}=0$. Furthermore, (3.1) (ii) implies

$$
\begin{equation*}
P H^{n}=\left(P H^{t}\right)^{\left(2^{s}\right)}=\left\{x^{2^{s}} \mid x \in P H^{t}\right\} \quad \text { for } \quad n=2^{s} t . \tag{3.6}
\end{equation*}
$$

Thus, $P H^{2 n}=0$ for $n \leqq 6$. Therefore, in the Bockstein spectral sequence

$$
\begin{equation*}
E_{1}^{n}=H^{n}\left(X ; Z_{2}\right) \Longrightarrow E_{\infty}^{n}=\left(H^{n}(X ; Z) / \text { tor }\right) \otimes Z_{2}, \tag{3.7}
\end{equation*}
$$

if $n \leqq 12$, then $d_{r}=0$ on E_{r}^{n} and $E_{1}^{n}=E_{\infty}^{n}$, which implies $d(n, Q)=d\left(n, Z_{2}\right)$ by Lemma 3.3.
(ii) If $n \leqq 7$, then $\binom{15}{2 n} \not \equiv 0 \bmod 2$ and $P H^{15+2 n}=S q^{2 n} P H^{15}=0$ by (3.1) (i) and the assumption. For $n=2^{s} t \leqq 30$ with odd $t, P H^{n}=0$ if $t \neq 7,11,13$ by (3.6) and (i). On the other hand, by the Adem relation, we have

$$
\begin{equation*}
P H^{2 t}=\left(P H^{t}\right)^{(2)}=S q^{t} P H^{t}=S q^{1} S q^{t-1} P H^{t} \subset S q^{1} P H^{2 t-1}(t: \text { odd }), \tag{3.8}
\end{equation*}
$$

which is 0 if $t=11,13$ by the above argument. Thus, we see (ii).
(iii) By (3.6), (3.8) and $S q^{1}\left(P H^{t}\right)^{(2)}=0$, we see that

$$
P H^{28}=\left(P H^{7}\right)^{(4)} \subset\left(S q^{1} P H^{13}\right) \cdot\left(P H^{7}\right)^{(2)}=S q^{1}\left(P H^{13} \cdot\left(P H^{7}\right)^{(2)}\right) .
$$

Thus in (3.7), $E_{2}^{2 n}=0$ for $n \leqq 15$ and $E_{2}^{2 n+1}=E_{1}^{2 n+1}$ for $n \leqq 14$ with $n \neq 6,13$.

Therefore, if $n \leqq 30$, then $d_{r}=0$ on E_{r}^{n} for $r \geqq 2$ and $E_{\infty}^{n}=E_{2}^{n}$. Hence $d(n, Q)$ ($n \leqq 30$) is 0 if $n \neq 7,11,13,27$ by (ii) and Lemma 3.3 (i).
(iv) Assume $d\left(11, Z_{2}\right)=0$, in addition to (ii) and (iii). Then, $P H^{13}=$ $S q^{2} P H^{11}=0$ by (3.1) (i), $P H^{14} \subset S q^{1} P H^{13}=0$ by (3.8), and $P H^{28}=\left(P H^{14}\right)^{(2)}=0$ by (3.6). Thus $d\left(n, Z_{2}\right)=0$ for $n \leqq 30$ and $n \neq 7$ by (ii). Now, we prove that

$$
\begin{equation*}
d\left(2 n+1, Z_{2}\right)=0 \quad \text { for } 2 r^{\prime}+1 \leqq 2 n+1 \leqq 4 r^{\prime}-3\left(r^{\prime}=2^{r-1}\right) \tag{3.9}
\end{equation*}
$$

by induction on r, which is shown already if $r \leqq 4$. Let $r \geqq 5$.
Case 1) $2 r^{\prime}+1 \leqq 2 n+1 \leqq 3 r^{\prime}-3$: Then $\binom{2 n+1-r^{\prime}}{r^{\prime}} \not \equiv 0 \bmod 2$ and $P H^{2 n+1}$ $=S q^{r^{\prime}} P H^{2 n+1-r^{\prime}}=0$ by (3.1) (i) and the inductive hypothesis.

Case 2) $2 n+1=3 r^{\prime}-1$: Take any $x \in P H^{2 n+1}$. Then, $x=S q^{r^{\prime}} y$ for some $y \in P H^{2 r^{\prime-1}}$ in the same way. Now, $S q^{1} y \in P H^{2 r^{\prime}}=\left(P H^{1}\right)^{\left(2 r^{\prime}\right)}=0$ by (3.6), and $S q^{2 t} y \in P H^{2 r^{\prime}+2^{t-1}}=0$ for any t with $1 \leqq t \leqq r-2$ by Case 1). Thus, [1; Th. 4.6.1] and $r \geqq 5$ imply that

```
\(x=S q^{r^{\prime}} y=\sum \alpha_{i} v_{i}\) for some \(v_{i} \in H^{*}\left(X ; Z_{2}\right)\) and \(\alpha_{i} \in \mathscr{A}\) with \(0<\operatorname{deg} \alpha_{i}<r^{\prime}\),
```

where \mathscr{A} is the mod 2 Steenrod algebra. Since $H^{*}\left(X ; Z_{2}\right)$ is primitively generated, we can write as $v_{i}=w_{i}+d_{i}$ where $w_{i} \in P H^{*}$ and d_{i} is decomposable. Here, $w_{i}=0$ if $w_{\imath} \in P H^{\text {odd }}$ by Case 1) and we can take $w_{i}=0$ if $w_{i} \in P H^{\text {even }}$ by (3.1) (ii). Therefore, $x=\sum \alpha_{i} d_{i} \in P H^{2 n+1}$ is decomposable, which implies $x=0$ by the exact sequence (3.4).

Case 3) $3 r^{\prime}+1 \leqq 2 n+1 \leqq 4 r^{\prime}-3:$ Put $t=2 n+2-3 r^{\prime}$. Then $\binom{2 n+1-t}{t}=$ $\binom{3 r^{\prime}-1}{t} \not \equiv 0 \bmod 2$, and $P H^{2 n+1}=S q^{t} P H^{3 r^{\prime}-1}=0$ by (3.1) (i) and Case 2). This completes the inductive proof of (3.9).

Finally, we prove that

$$
\begin{equation*}
d\left(2 n, Z_{2}\right)=0 \quad \text { for any } n=r^{\prime} t \text { with } r^{\prime}=2^{r-1} \text { and odd } t . \tag{3.10}
\end{equation*}
$$

If $t \neq 2^{s}-1(s \geqq 3)$, then $P H^{2 n}=0$ by (3.6) and (3.9). Assume $t=2^{s}-1 \quad(s \geqq 3)$. If $r^{\prime}=1$, then $P H^{2 n} \subset S q^{1} P H^{2 t-1}=0$ by (3.8) and (3.9). If $r^{\prime} \geqq 2$, then $P H^{2 n}=$ $\left(P H^{2 t}\right)^{\left(r^{\prime}\right)}$ by (3.6), which is 0 as is shown. Thus, we see (3.10), and (iv) is proved for Z_{2}.

Now, consider the Bockstein spectral sequence (3.7). Then, $P E_{1}^{2 n}=P H^{2 n}=0$ and $d_{r}=0$ on E_{r}^{n} for any $r \geqq 1$, since $E_{1}^{n}=H^{n}\left(X ; Z_{2}\right)$ is primitively generated. Thus, $E_{\infty}^{n}=E_{1}^{n}$ which means $d(n, Q)=d\left(n, Z_{2}\right)$ for any $n \geqq 1$, and (iv) is proved completely.
Q.E.D.

§4. $\quad K$-ring of X and the projective plane of X

We continue to assume that X is a 3 -connected finite H-space with (1.5).

Furthermore, we regard X to be a finite $C W$-complex and the multiplication μ a cellular map.

Let Y be a $C W$-complex with the n-skeleton Y^{n}, and $K^{*}(Y)$ be the Z_{2}-graded complex K-ring with $K^{0}(Y)=K(Y)$ and $K^{1}(Y)=K(\Sigma Y)$, where Σ denotes the suspension. We filter $K^{*}(Y)$ by

$$
\begin{equation*}
F_{p} K^{j}(Y)=\operatorname{Ker}\left(K^{j}(Y) \rightarrow K^{j}\left(Y^{p-1}\right)\right) \quad(j=0,1) \tag{4.1}
\end{equation*}
$$

Then, for any $y \in K^{j}(Y)$, we write

$$
\begin{equation*}
\operatorname{deg} y=p \quad \text { if } \quad y \in F_{p} K^{j}(Y)-F_{p+1} K^{j}(Y) \tag{4.2}
\end{equation*}
$$

Now, we prove the following key lemmas.
Proposition 4.3. Under the above assumption on $X, K^{*}(X)$ is torsion free and has the structure of primitively generated Hopf algebra. Moreover, there exist $x_{i} \in P K^{1}(X), 1 \leqq i \leqq l$, such that

$$
K^{*}(X) \cong \Lambda_{Z}\left(x_{1}, \cdots, x_{l}\right) \quad \text { and } \quad \#\left\{i \mid \operatorname{deg} x_{i}=n\right\}=d(n, Q)
$$

Here, $\# A$ denotes the number of elements in a finite set A.
Proof. Since $H^{*}\left(X ; Z_{2}\right)$ is primitively generated by (1.5), the Pontrjagin ring $H_{*}\left(X ; Z_{2}\right)$ is associative by [16; Prop. 4.20]. Thus $H_{*}(\Omega X ; Z)(\Omega X$ is the loop space of X) is torsion free by J. Lin [6; Th. 8.1], and then so is $K^{*}(X)$ by R. Kane [13; Th. 1.4]. This implies that $K^{*}(X \times X) \cong K^{*}(X) \otimes K^{*}(X)$ and $K^{*}(X)$ has the structure of Hopf algebra. Furthermore, the Chern character

$$
\operatorname{ch}: K^{*}(X) \longrightarrow K^{*}(X) \otimes Q \cong H^{*}(X ; Q)
$$

is monomorphic and is a map of Hopf algebras. Here, $H^{*}(X ; Q)$ is an exterior algebra over primitive elements by assumption (1.5) and Hopf's theorem. Thus, by L. Hodgikin [11; Th. 2.2], we see that

$$
K^{*}(X)=\Lambda_{z}\left(x_{1}, \cdots, x_{l}\right) \quad \text { for } \quad x_{i} \in P K^{*}(X)
$$

Here $x_{i} \in P K^{1}(X)$, because $P H^{\text {even }}(X ; Q)=0$ by Lemma 3.3 (i) and $\operatorname{ch}\left(K^{0}(X)\right) \subset$ $H^{\text {even }}(X ; Q)$. On the other hand, by the Atiyah-Hirzebruch spectral sequence for $K^{*}() \otimes Q$, we see that

$$
\left(F_{2 p-1} K^{1}(X) / F_{2 p} K^{1}(X)\right) \otimes Q \cong H^{2 p-1}(X ; Q),
$$

which implies $\#\left\{i \mid \operatorname{deg} x_{i}=2 p-1\right\}=d(2 p-1, Q)$.
Q.E.D.

Let $P X$ be the projective plane of X, i.e.,

$$
P X=\Sigma X \cup_{H(\mu)} C(X * X)
$$

is the mapping cone of the Hopf construction $H(\mu): X * X \rightarrow \Sigma X$ of μ. Then, $P X$ is a finite $C W$-complex containing ΣX as a subcomplex. By definition, we have the exact sequence
(4.4) $\cdots \longrightarrow \tilde{K}(X) \longrightarrow \tilde{K}(X \wedge X) \longrightarrow \tilde{K}(P X) \xrightarrow{\tau} \tilde{K}^{1}(X) \longrightarrow \tilde{K}^{1}(X \wedge X) \longrightarrow \cdots$ $\left(\tilde{K}(Y)=\tilde{K}^{0}(Y)\right)$,
where $\tilde{K}(X \wedge X) \cong\left(\tilde{K}^{*}(X) \otimes \tilde{K}^{*}(X)\right)^{0}$ by the above proposition.
Proposition 4.5. For $x_{i}(1 \leqq i \leqq l)$ in the above proposition, there exist elements y_{i} and an ideal S in $K(P K)$ such that

$$
\begin{aligned}
& \tau y_{i}=x_{i}, \quad \operatorname{deg} y_{i}=\operatorname{deg} x_{i}+1 ; \quad \tau S=0, \quad S \cdot K(P X)=0, \\
& K(P X) \cong T^{3} A \oplus S(\text { as rings }), \quad \text { and } \quad \psi^{n}(S) \subset S \text { for all } n,
\end{aligned}
$$

where τ is the homomorphism in (4.4),

$$
T^{3} A=A / D^{3} A, \quad A=Z\left[y_{1}, \cdots, y_{l}\right], \quad D^{3} A=(\tilde{A} \cdot \tilde{A}) \cdot \tilde{A}
$$

and ψ^{n} is the Adams operation on K.
Proof. The proof of the corresponding results for $H^{*}\left(P X ; Z_{p}\right)$ and $K(P K) \otimes$ $Z_{(2)}$ are given in [8; Th. 1.1] and [12; Lemmas 6.3-4]. This proposition can be also proved by the same method, and we omit the details.
Q.E.D.
$T^{3} A$ in the above is called the filtered truncated polynomial algebra of height 3 on $\left\{y_{i}\right\}$.

Let B be a filtered algebra over Z by a filtration

$$
B=F_{0} B \supset F_{1} B \supset \cdots \supset F_{p} B \supset \cdots \text { with } F_{p} B \cdot F_{q} B \subset F_{p+q} B \text { for any } p, q \geqq 0 .
$$

Then, we say that B is a ψ-algebra if there are maps $\psi^{n}: B \rightarrow B(n \in Z)$ of filtered algebras, i.e., algebra homomorphisms ψ^{n} with $\psi^{n} F_{p} B \subset F_{p} B$, such that
(4.6.1) $\quad \psi^{1}=$ id and $\psi^{m} \psi^{n}=\psi^{n} \psi^{m}=\psi^{n m}$ for any $m, n \in Z$,
(4.6.2) if $x \in F_{2 r} B$, then $\psi^{n} x \equiv n^{r} x \bmod F_{2 r+1} B$ for any $r \geqq 0$ and $n \in Z$, and
(4.6.3) $\quad \psi^{2} x \equiv x^{2} \bmod 2$ for any $x \in B$.

By [2; Th. 5.1], [3; (1.1-5)] and the definition, we see that
Lemma 4.7. (i) The K-ring $K(Y)$ of a finite $C W$-complex Y filtered by (4.1) is a ψ-algebra by the Adams operations ψ^{n}.
(ii) If I is an ideal in a ψ-algebra B with $\psi^{n} I \subset I$ for all n, then B / I is also a ψ-algebra.

Now, according to Proposition 4.5, we can prove Lemma 2.4 and hence the
main results in $\S 1$ (see $\S 2$) by the following
Proposition 4.8. Assume that a filtered truncated polynomial algebra
$T^{3} A=A / D^{3} A, \quad A=Z\left[y_{1}, \cdots, y_{l}\right] \quad$ with $\quad \operatorname{deg} y_{i}=8,12,14$ or even $\geqq 28$, of height 3 is a ψ-algebra. Then:
(i) There is no i with $\operatorname{deg} y_{i}=12$.
(ii) If $\operatorname{deg} y_{i}$ is 8 or $2^{r}(r \geqq 5)$, then $\operatorname{deg} y_{i}=8$ for all i.

Proof of Lemma 2.4 from Proposition 4.8. Let X be an H-space in Theorem 1.4. Then, X is regarded as an H-space in this section satisfying (1.6), i.e., $d\left(15, Z_{2}\right)=0$ (see Lemma 3.3 (ii)). Thus, $T^{3} A=K(P X) / S$ in Proposition 4.5 is a ψ-algebra by Lemma 4.7, and the generators y_{1}, \cdots, y_{l} satisfy $\#\left\{i \mid \operatorname{deg} y_{i}=\right.$ $n+1\}=d(n, Q)$ by Proposition 4.3. Therefore, $d(11, Q)=0$ by Lemma 3.5 (iii) and Proposition 4.8 (i), and hence $Q H^{n}(X ; Q)=0$ for $n \neq 7$ by Lemma 3.3 (i), 3.5 (iv) and Proposition 4.8 (ii).
Q.E.D.

The above proposition is proved algebraically in the next section.

§5. Proof of Proposition 4.8

Let $T^{3} A$ be a ψ-algebra in Proposition 4.8. Then, the ideal I in $T^{3} A$ generated by $\left\{y_{i} \mid \operatorname{deg} y_{i} \geqq 28\right\}$ satisfies $\psi^{n} I \subset I$ for all n. In fact, if $\operatorname{deg} y_{i}=2 r \geqq 28$, then $\psi^{n} y_{i} \equiv n^{r} y_{i} \bmod F_{2 r+1} T^{3} A$ by (4.6.2) and $F_{2 r+1} T^{3} A \subset I$ by assumption, which show $\psi^{n} y_{i} \in I$. Therefore, we have a ψ-algebra $T^{3} A / I$ by Lemma 4.7 (ii), which is isomorphic to
(5.1.1) a ψ-algebra $T^{3} A_{1}=A_{1} / D^{3} A_{1}, A_{1}=Z\left[y_{1}, \cdots, y_{t}\right]$, with $\operatorname{deg} y_{i}=2 \varepsilon(s)$ if $t_{s-1}<i \leqq t_{s}$, and $\varepsilon(s)=4,6$ or 7 according to $s=1,2$ or 3 , respectively ($t_{0}=0, t_{3}=t$).

Hereafter, consider this ψ-algebra $T^{3} A_{1}$. Then, we have

$$
\begin{equation*}
\psi^{n} y_{i}=n^{\varepsilon(s)} y_{i}+\sum_{t_{s}<j} A(i, j ; n) y_{j}+\sum_{j \leqq k} B(i, j, k ; n) y_{j} y_{k}\left(t_{s-1}<i \leqq t_{s}\right) \tag{5.1.2}
\end{equation*}
$$

for some integers A and B by (4.6.2). Therefore,
(5.1.3) for any $j>t_{2}$, the coefficient of y_{j}^{2} in $\psi^{m} \psi^{n} y_{j}$ is equal to

$$
\begin{gathered}
n^{7} B(j, j, j ; m)+m^{14} B(j, j, j ; n)+m^{7} \sum_{i \leqq t_{2}} B(j, i, j ; n) A(i, j ; m) \\
+\sum_{i \leqq k \leqq t_{2}} B(j, i, k ; n) A(i, j ; m) A(k, j ; m)
\end{gathered}
$$

Thus, by comparing them in $\psi^{2} \psi^{-1} y_{j}=\psi^{-1} \psi^{2} y_{j}$ of (4.6.1), we have

$$
\begin{aligned}
& 2 B(j, j, j ; 2) \equiv \sum_{i \leqq t_{2}} B(j, i, j ; 2) A(i, j ;-1) \\
& \quad-\sum_{i \leqq k \leqq t_{2}} B(j, i, k ; 2) A(i, j ;-1) A(k, j ;-1) \bmod 4,
\end{aligned}
$$

because $A(i, j ; 2) \equiv 0 \bmod 2$ by (4.6.3). Here, (4.6.3) also shows that $B(j, j$, $j ; 2) \equiv \equiv 0$ and $B(j, i, j ; 2) \equiv 0 \equiv B(j, i, k ; 2) \bmod 2$. Therefore,
(*) for any $j>t_{2}$, there is $i \leqq t_{2}$ such that $A(i, j:-1)$ is odd.
Then, by changing the generators $y_{i}(1 \leqq i \leqq t)$ if necessary, we may assume that
(5.1.4) $A(i, j ;-1)\left(i \leqq t_{2}<j\right)$ is odd when and only when $i=i(j)$,
where

$$
i(j)=\left\{\begin{array}{ll}
j-t_{2} & \text { if } j \leqq t_{2}+r, \\
t_{1}+j-t_{2}-r & \text { if } j>t_{2}+r,
\end{array} \text { for some } r \leqq 0 \text { with } d_{3}-d_{2} \leqq r \leqq d_{1}\right.
$$

$\left(d_{s}=t_{s}-t_{s-1}=\#\left\{i \mid \operatorname{deg} y_{i}=2 \varepsilon(s)\right\}\right)$. In fact, for $j_{0}>t_{2}$, take $i_{0} \leqq t_{2}$ with odd $A\left(i_{0}, j_{0} ;-1\right)$ by ($*$), and with $i_{0}>t_{1}$ if it exists; and replace $y_{j}\left(j_{0} \neq j>t_{2}\right)$ with odd $A\left(i_{0}, j ;-1\right)$ by $y_{j}+y_{j_{0}}$ and $y_{i}\left(i_{0} \neq i \leqq t_{2}\right)$ with odd $A\left(i, j_{0} ;-1\right)$ by $y_{i}+y_{i_{0}}$. Repeat these replacements for all $j_{0}>t_{2}$ and change the order if necessary. Then, $\left\{y_{i}\right\}$ is replaced with the new $\left\{y_{i}\right\}$ so that $A(i, j ;-1)$ turns out to satisfy (5.1.4).

Here, we notice that

$$
\begin{equation*}
A(i, j ;-1)=0 \text { for any } i, j \text { with } i \leqq t_{1}<j \leqq t_{2} \tag{5.1.5}
\end{equation*}
$$

This is seen by the following equalities of (5.1.1) and (5.4.2) for $n=-1$:

$$
y_{i}=\psi^{1} y_{i}=\psi^{-1} \psi^{-1} y_{i} \equiv y_{i}+2 \sum_{t_{1}<j \leqq t_{2}} A(i, j ;-1) \bmod F_{13} T^{3} A_{1} .
$$

Now, we put

$$
\begin{align*}
& \bar{y}_{i}=y_{i}+\sum_{t_{2}<j}[A(i, j ;-1) / 2] y_{j} \text { for } i \leqq t_{2}, \tag{5.1.6}\\
& \bar{y}_{j}=\psi^{-1} \bar{y}_{i(j)}-\bar{y}_{i(j)} \text { for } j \geqq t_{2} \quad(\text { by } i(j) \text { in (5.1.4)). }
\end{align*}
$$

Then, by (5.1.2), (5.1.4-5) and (4.6.1), we see the following ($i \leqq t_{2}<j$):

$$
\begin{align*}
\psi^{-1} \bar{y}_{i} & \equiv \begin{cases}\bar{y}_{i}+y_{j} \text { if } i=i(j) \\
\bar{y}_{i} \text { otherwise } & \bmod D^{2} A_{1}, \quad \psi^{-1} \bar{y}_{j}=-\bar{y}_{j} ;\end{cases} \tag{5.1.7}\\
\bar{y}_{i} & \equiv y_{i} \bmod F_{14} T^{3} A_{1}, \quad \bar{y}_{j} \equiv y_{j} \quad \bmod F_{15} T^{3} A_{1} . \tag{5.1.8}
\end{align*}
$$

Lemma 5.2. (i) $T^{3} A_{1}$ in (5.1.1) is equal to $T^{3} \bar{A}_{1}=\bar{A}_{1} / D^{3} \bar{A}_{1}$ with $\bar{A}_{1}=$ $Z\left[\bar{y}_{1}, \cdots, \bar{y}_{t}\right]$, where $\operatorname{deg} \bar{y}_{i}=\operatorname{deg} y_{i}(1 \leqq i \leqq t)$.
(ii) Let I be the ideal in $T^{3} \bar{A}_{1}$ generated by $\left\{\bar{y}_{j} \mid j>t_{2}\right\}$. Then, $\psi^{n} I \subset I$ for all n, and we have a ψ-algebra

$$
T^{3} \bar{A}_{1} / I \cong T^{3} A_{2}=A_{2} / D^{3} A_{2}, A_{2}=Z\left[\bar{y}_{1}, \cdots, \bar{y}_{t_{2}}\right]
$$

Proof. (i) is clear by (5.1.6-8). By (5.1.2) for $T^{3} \bar{A}_{1}$,

$$
\psi^{n} \bar{y}_{j}=n^{7} \bar{y}_{j}+\sum_{i \leqq k} \bar{B}(j, i, k ; n) \bar{y}_{i} \bar{y}_{k} \quad \text { for } \quad j>t_{2} .
$$

Now, compare the coefficients of $\bar{y}_{i} \bar{y}_{k}$ in $\psi^{-1} \psi^{n} \bar{y}_{j}=\psi^{n} \psi^{-1} \bar{y}_{j}$. Then, by (5.1.7) and $D^{2} A_{1}=D^{2} \bar{A}_{1}$, we see that
$\bar{B}(j, i, k ; n)=0$ for any $i \leqq k \leqq t_{2}$, and $\psi^{n} \bar{y}_{j} \in I$ for any $j>t_{2}$.
This implies that $\psi^{n} I \subset I$, and we see (ii) by Lemma 5.2 (ii).
Q.E.D.

From now on, we omit the bars of generators and consider the above ψ-algebra

$$
\begin{aligned}
T^{3} A_{2}= & A_{2} / D^{3} A_{2}, A_{2}=Z\left[y_{1}, \cdots, y_{t_{2}}\right], \text { with } \\
& \operatorname{deg} y_{k}=8 \text { if } k \leqq t_{1},=12 \text { otherwise, }
\end{aligned}
$$

where (5.1.2) is written as follows:

$$
\begin{equation*}
\psi^{n} y_{i}=n^{4} y_{i}+\sum_{t_{1}<k} A(i, k ; n) y_{k}+\sum_{k \leqq k^{\prime}} B\left(i, k, k^{\prime} ; n\right) y_{k} y_{k^{\prime}} \text { for } i \leqq t_{1}, \tag{5.3.1}
\end{equation*}
$$

$$
\begin{equation*}
\psi^{n} y_{j}=n^{6} y_{j}+\sum_{k \leqq k^{\prime}} B\left(j, k, k^{\prime} ; n\right) y_{k} y_{k^{\prime}} \text { for } j>t_{1} \tag{5.3.2}
\end{equation*}
$$

Then, for $i \leqq i^{\prime} \leqq t_{1} \leqq j$, the coefficient of y_{j} in $\psi^{m} \psi^{n} y_{i}$ is $n^{4} A(i, j ; m)+m^{6} A(i, j ; n)$ and that of $y_{i} y_{i^{\prime}}$ in $\psi^{m} \psi^{n} y_{j}$ is $n^{6} B\left(j, i, i^{\prime} ; m\right)+m^{8} B\left(j, i, i^{\prime} ; n\right)$. Thus by comparing them in $\psi^{2} \psi^{3} y_{k}=\psi^{3} \psi^{2} y_{k}$ of (4.6.1), we see that
(5.3.3) $\quad 3^{3} A(i, j ; 2)=2 A(i, j ; 3) \quad$ for any $i \leqq t_{1}<j$,
(5.3.4) $\quad 3^{5} B\left(j, i, i^{\prime} ; 2\right)=2^{3} B\left(j, i, i^{\prime} ; 3\right) \quad$ for any $\quad i \leqq i^{\prime} \leqq t_{1}<j$.

To study A and B more precisely, we prepare the following (5.3.6-7) for $i \leqq$ $t_{1}<j$ and $n, m \in Z$, where

$$
\begin{align*}
C(l)= & m^{12} B(l, j, j ; n)+m^{6} \sum_{k \leqq t_{1}} B(l, k, j ; n) A(k, j ; m) \tag{5.3.5}\\
& \quad+\sum_{k \leqq k^{\prime} \leqq t_{1}} B\left(l, k, k^{\prime} ; n\right) A(k, j ; m) A\left(k^{\prime}, j ; m\right), \\
D(l)= & m^{10} B(l, i, j ; n)+m^{4} \sum_{k \leqq i} B(l, k, i ; n) A(k, j ; m) \\
& \quad+m^{4} \sum_{i \leqq k} B(l, i, k ; n) A(k, j ; m), \\
E\left(l, l^{\prime}\right)= & n^{4} B\left(i, l, l^{\prime} ; m\right)+\sum_{t_{1}<k} A(i, k ; n) B\left(k, l, l^{\prime} ; m\right) .
\end{align*}
$$

(5.3.6) The coefficients of y_{j}^{2} and $y_{i} y_{j}$ in $\psi^{m} \psi^{n} y_{j}$ are equal to

$$
n^{6} B(j, j, j ; m)+C(j) \text { and } n^{6} B(j, i, j ; m)+D(j), \text { respectively. }
$$

(5.3.7) Those of y_{i}^{2}, y_{j}^{2} and $y_{i} y_{j}$ in $\psi^{m} \psi^{n} y_{i}$ are equal to
$E(i, i)+m^{8} B(i, i, i ; n), E(j, j)+C(i)$ and $E(i, j)+D(i)$, respectively.

Lemma 5.4. $\quad A(i, j ; 3)$ is even for any $i \leqq t_{1}<j$.
Proof. Suppose contrarily that $A(a, b ; 3)$ is odd for some $a \leqq t_{1}<b$. Then, by changing the generators $y_{k}, 1 \leqq k \leqq t_{2}$, we may assume that
(5.5.1) $A(a, j ; 3) \equiv 0 \equiv A(i, b ; 3) \bmod 2^{7}$ for any i, j with $a \neq i \leqq t_{1}<j \neq b$.

In fact, there are integers λ and μ with $\lambda A(a, b ; 3)+\mu=1$ and $\mu \equiv 0 \bmod 2^{7}$ by assumption. Then, we see (5.5.1) by replacing $y_{i}\left(a \neq i \leqq t_{1}\right)$ and y_{b} with

$$
\tilde{y}_{i}=y_{i}-\lambda A(i, b ; 3) y_{a} \text { and } \tilde{y}_{b}=y_{b}+\sum_{t_{1}<j \neq b} A(a, j ; 3) y_{j}, \text { respectively }
$$

because (5.3.1) turns out to

$$
\begin{aligned}
& \psi^{3} y_{a} \equiv 3^{4} y_{a}+\sum_{t_{1}<j \neq b} \mu A(a, j ; 3) y_{j}+A(a, b ; 3) \tilde{y}_{b} \\
& \psi^{3} \tilde{y}_{i} \equiv 3^{4} \tilde{y}_{i}+\sum_{t_{1}<j \neq b} \tilde{A}(i, j ; 3) y_{j}+\mu A(i, b ; 3) \tilde{y}_{b} \quad \bmod D^{2} A_{2} .
\end{aligned}
$$

We now consider the coefficients in $\psi^{2} \psi^{3} y_{k}=\psi^{3} \psi^{2} y_{k}$ given in (5.3.6-7) ($k=b$ or a) and compare them by taking mod 2^{r} and by using (5.3.3-4) and (5.5.1). Then, in the first place, we see that

$$
\begin{align*}
& \alpha=A(a, b ; 2) B(b, a, a ; 3)=0 \quad \bmod 2^{4} \tag{5.5.2}\\
& \beta=A(a, b ; 3) B(b, a, a ; 2) \equiv 0 \quad \bmod 2^{6} .
\end{align*}
$$

In fact, (5.3.7) for y_{a}^{2} implies $\alpha \equiv \beta \bmod 2^{4}$ by (5.5.1) and (5.3.3). On the other hand, $2^{2} \alpha=3^{3} \beta$ by (5.3.3-4). These show (5.5.2). In the second place, by (5.3.6) for $y_{a} y_{b}$ taking $\bmod 2^{7}$, we see that

$$
2^{6} B(b, a, b ; 3)+2 \cdot 3^{4} \beta+3^{6}\left(3^{4}-1\right) B(b, a, b ; 2) \equiv 2^{5} \alpha \bmod 2^{7},
$$

which together with (5.5.2) implies that

$$
\begin{equation*}
B(b, a, b ; 2) \equiv 2^{2} B(b, a, b ; 3) \bmod 2^{3} . \tag{5.5.3}
\end{equation*}
$$

In the third place, by (5.3.6) for y_{b}^{2} taking $\bmod 2^{3}$ and (5.5.2), we have

$$
B(b, a, b ; 2) A(a, b ; 3) \equiv \alpha A(a, b ; 2)-\beta A(a, b ; 3) \equiv 0 \bmod 2^{3}
$$

Since $A(a, b ; 3)$ is odd by assumption, this shows that

$$
\begin{equation*}
B(b, a, b ; 2) \equiv 0 \bmod 2^{3}, \text { and hence } B(b, a, b ; 3) \text { is even, } \tag{5.5.4}
\end{equation*}
$$

by (5.5.3). Finally, taking $\bmod 2^{2},(5.3 .7)$ for $y_{a} y_{b}$ implies that $2 B(a, a, a ; 2) A(a, b ; 3) \equiv A(a, b ; 3) B(b, a, b ; 2)-A(a, b ; 2) B(b, a, b ; 3) \equiv 0$ $\bmod 2^{2}$ by (5.5.4) and (5.3.3). Thus
$B(a, a, a ; 2)$ is even, since $A(a, b ; 3)$ is odd.

This contradicts (4.6.3); and the lemma is proved.
Q. E. D.

Lemma 5.6. $\quad t_{2}=t_{1}$, i.e., there exists no y_{j} with $\operatorname{deg} y_{j}=12$.
Proof. Compare the coefficients of y_{j}^{2} in $\psi^{2} \psi^{3} y_{i}=\psi^{3} \psi^{2} y_{i}$ taking $\bmod 2^{3}$ for any $i \leqq t_{1}<j$ by using (5.3.7), Lemma 5.4 and (5.3.3). Then, we see that
(5.7.1) $\quad \sum_{t_{1}<k} A(i, k ; 3) B(k, j, j ; 2)$

$$
\begin{aligned}
\equiv & \sum_{t_{1}<k} A(i, k ; 2) B(k, j, j ; 3)+\sum_{k \leqq t_{1}} B(i, k, j ; 2) A(k, j ; 3) \\
& +\sum_{k \leqq k^{\prime} \leqq t_{1}} B\left(i, k, k^{\prime} ; 2\right) A(k, j ; 3) A\left(k^{\prime}, j ; 3\right) \bmod 2^{3} .
\end{aligned}
$$

We notice by (4.6.3) that
(5.7.2) $B\left(k, k^{\prime}, k^{\prime \prime} ; 2\right) \equiv 1 \bmod 2$ if and only if $k=k^{\prime}=k^{\prime \prime}$.

Here, (5.7.1) implies firstly by taking $\bmod 2^{2}$ that $A(i, j ; 3) \equiv 0 \bmod 2^{2}$ and then

$$
\begin{equation*}
A(i, j ; 3) \equiv 0 \bmod 2^{3} \text { for any } i \leqq t_{1}<j \tag{5.7.3}
\end{equation*}
$$

Compare now the coefficients of y_{j}^{2} in $\psi^{2} \psi^{3} y_{j}=\psi^{3} \psi^{2} y_{j}$ taking $\bmod 2^{4}$ using (5.3.6). Then, by (5.7.2-3) and (5.3.3), we see that

$$
\begin{equation*}
3^{6}\left(3^{6}-1\right) B(j, j, j ; 2) \equiv 0 \quad \bmod 2^{4} . \tag{5.7.4}
\end{equation*}
$$

Thus $B(j, j, j ; 2)$ is even, which contradicts (5.7.2) if $j\left(>t_{1}\right)$ exists; and we have $t_{2}=t_{1}$.
Q.E.D.

Now, we are ready to prove Proposition 4.8.
Proof of Proposition 4.8. (i) is already proved by Lemma 5.6.
(ii) Suppose that (ii) is not valid, and let $r \geqq 5$ be the least integer with $\#\left\{i \mid \operatorname{deg} y_{i}=2^{r}\right\} \neq 0$. Consider the ideal I in $T^{3} A$ generated by $\left\{y_{i} \mid \operatorname{deg} y_{i} \geqq 2^{r+1}\right\}$. Then, by Lemma 4.7 (ii), we have a ψ-algebra $T^{3} A / I$, which is isomorphic to

$$
T^{3} B=B / D^{3} B, B=Z\left[y_{1}, \cdots, y_{s}\right] \text {, with } \operatorname{deg} y_{i}=8 \text { if } i \leqq s_{1},=2^{r} \text { if } i>s_{1} .
$$

In this ψ-algebra, (4.6.2) implies that

$$
\begin{aligned}
& \psi^{n} y_{i} \equiv n^{4} y_{i}+\sum_{s_{1}<k} A(i, k ; n) y_{k} \bmod D^{2} B \text { for } i \leqq s_{1}, \\
& \psi^{n} y_{j}=n^{r^{\prime}} y_{j}+\sum_{k \leqq k^{\prime}, k^{\prime}>s_{1}} B\left(j, k, k^{\prime} ; n\right) y_{k} y_{k^{\prime}} \text { for } j>s_{1},
\end{aligned}
$$

where $r^{\prime}=2^{r-1}$. Consider $\psi^{2} \psi^{3} y_{j}=\psi^{3} \psi^{2} y_{j}\left(j>s_{1}\right)$. Then, by comparing the coefficients of $y_{i} y_{j}\left(i \leqq s_{1}\right)$ taking mod $2^{r^{\prime}}$, we see that

$$
3^{r^{\prime}\left(3^{4}-1\right) B(j, i, j ; 2) \equiv 0 \bmod 2^{r^{\prime}} \text { and } B(j, i, j ; 2) \equiv 0 \bmod 2^{r+2}, ~}
$$

since $r^{\prime}-4 \geqq r+2$. Therefore, by comparing those of y_{j}^{2} taking $\bmod 2^{r+2}$, we have

$$
3^{r^{\prime}}\left(3^{r^{\prime}}-1\right) B(j, j, j ; 2) \equiv 0 \quad \bmod 2^{r+2}
$$

in the same way as (5.7.4). Here, $3^{r^{\prime}}-1 \equiv 2^{r+1} \bmod 2^{r+2}$ by [2; Lemma 8.1]. Thus,

$$
B(j, j, j ; 2) \equiv 0 \quad \bmod 2
$$

which contradicts (4.6.3); and (ii) is valid. Q.E.D.
Thus, the main results in $\S 1$ are proved completely as noted at the end of $\S 4$

References

[1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
[2] J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
[3] J. F. Adams and M. F. Atiyah, K-theory and the Hopf invariant, Quart. J. Math. Oxford (2) 17 (1966), 31-38.
[4] A. Borel, Topics in the Homology Theory of Fibre Bundles, Lecture Notes in Math. 36 (1967), Springer, Berlin.
[5] W. Browder, The cohomology of covering spaces of H-spaces, Bull. Amer. Math. Soc. 65 (1959), 140-141.
[6] W. Browder, Torsion in H-spaces, Ann. of Math. 74 (1961), 24-51.
[7] W. Browder, On differential Hopf algebra, Trans. Amer. Math. Soc. 107 (1963), 153-176.
[8] W. Browder and E. Thomas, On the projective plane of an H-space, Illinois J. Math. 7 (1963), 492-502.
[9] A. Clark, On π_{3} of finite dimensional H-spaces, Ann. of Math. 78 (1963), 193-196.
[10] D. L. Goncalves, Mod 2 homotopy associative H-spaces, Geometric Applications of Homotopy Theory I, Lecture Notes in Math 659 (1976), Springer, Berlin, 196-216.
[11] L. Hodgkin, On the K-theory of Lie groups, Topology 6 (1967), 1-36.
[12] J. R. Hubbuck, Generalized cohomology operations and H-spaces of low rank, Trans. Amer. Math. Soc. 141 (1969), 335-360.
[13] R. Kane, The BP homology of H-spaces, Trans. Amer. Math. Soc. 241 (1978), 99-119.
[14] J. P. Lin, Steenrod squares in the mod 2 cohomology of a finite H-space, Comment. Math. Helv. 55 (1980), 398-412.
[15] J. P. Lin, Two torsion and the loop space conjecture, Ann. of Math. 115 (1982), 35-91.
[16] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
[17] E. Thomas, Steenrod squares and H-spaces: II, Ann. of Math. 81 (1965), 473-495.

> Department of Mathematics,
> Faculty of Science, Hiroshima University

