Нікозніма Матн. J. 15 (1985), 55–67

On 3-connected finite H-spaces

Yutaka HEMMI

(Received June 1, 1984)

§1. Introduction

Let X be a finite H-space, i.e., a path connected space admitting a continuous multiplication with homotopy unit and having the homotopy type of a finite CW-complex. Then, on the homotopy groups $\pi_n(X)$ of X, the following results are basic:

(1.1) (W. Browder [6; Th. 6.11]) The first non-vanishing heigher homotopy group $\pi_n(X)$ ($n \ge 2$) occurs for odd n.

(1.2) (A. Clark [9; Th. 1]) If X is simply connected, noncontractible and admits an associative (not homotopy associative) multiplication, then $\pi_3(X) \neq 0$.

(1.2) is not true in general, e.g., for $X = S^7$, and we have the following question:

(1.3) Does there exist a 3-connected finite H-space except for the product $(S^7)^l = S^7 \times \cdots \times S^7$ (l-fold, $l \ge 0$)?

In this paper, we study this question under some assumptions. Our main results are stated as follows:

THEOREM 1.4. For a 3-connected finite H-space X, assume that

(1.5) $H^*(X; G)$ are primitively generated for $G=Z_2$ and Q, and

(1.6) the indecomposable module $QH^n(X; Z_2)$ vanishes for n=15.

Then, X has the homotopy type of $(S^7)^l$ for some $l \ge 0$.

By this theorem, we have the following

COROLLARY 1.7. Let X be a homotopy associative finite H-space with $H^*(X; Z)$ of 2-torsion free and (1.6). Then, X has the homotopy type of a torus $(S^1)^t = S^1 \times \cdots \times S^1$ (t-fold, $t \ge 0$) if and only if $\pi_3(X) = 0$.

Our method of proof is to study the cohomology of X and the Adams operation ψ^n on the K-ring of the projective plane PX of X.

The author wishes to express his hearty thanks to Professor M. Sugawara for his variable suggestions and discussions.

§2. Reduction of the main results to Lemma 2.4

PROOF OF COROLLARY 1.7 FROM THEOREM 1.4. Let X be an H-space stated in Corollary 1.7, and \tilde{X} be the universal covering space of X. Then, \tilde{X} is a homotopy associative H-space and so \tilde{X} satisfies (1.5) for G=Q by [4; Th. 6.6]. According to W. Browder [5; Cor.], \tilde{X} is also finite. Assume that $\pi_3(X)=0$. Then \tilde{X} is 3-connected by (1.1). Furthermore, we can prove that

(2.1)
$$\tilde{X}$$
 satisfies (1.5) for $G = Z_2$ and (1.6).

Then, $\tilde{X} \simeq (S^7)^l$ by Theorem 1.4. If $l \ge 1$, then $(S^7)^l$ admits no (mod 2) homotopy associative multiplications by [10; Th. 1]. Thus l=0, $\tilde{X} \simeq *$ and $X = K(\pi_1(X), 1)$. If $K(\pi, 1)$ is a finite *H*-space, then it has the homotopy type of a torus. So, $X \simeq (S^1)^t$. Conversely, if $X \simeq (S^1)^t$, then $\pi_3(X) = 0$ clearly Thus, we see the corollary.

To prove (2.1), we consider the map

$$f: X \longrightarrow K(\pi_1(X)/\text{tor}, 1) \simeq (S^1)^t$$

inducing the projection $\pi_1(X) \rightarrow \pi_1(X)/\text{tor}$ of the fundamental group. Furthermore, we take $g_i: S^1 \rightarrow X$ $(1 \le i \le t)$ so that their homotopy classes form a basis for $\pi_1(X)/\text{tor}$, and consider the composition

$$g: (S^1)^t \xrightarrow{g_1 \times \cdots \times g_t} X \times \cdots \times X \text{ (t-fold)} \xrightarrow{\mu_t} X,$$

where μ_t is the *t*-fold multiplication of X, i.e.,

(2.2)
$$\mu_2 = \mu: X \times X \to X$$
 is the multiplication of X and $\mu_{s+1} = \mu(\mu_s \times id)$ ($s \ge 2$).

Then, for the homotopy fibre $\iota: \overline{X} \to X$ of $f: X \to (S^1)^t$, we see that

(2.3) $\mu(t \times g): \overline{X} \times (S^1)^t \to X \times X \to X$ is homotopy equivalence,

because so is $fg: (S^1)^t \to (S^1)^t$ by definition.

Now, since $H^*(X; Z)$ has no 2-torsion by assumption, so is $H^*(\overline{X}; Z)$ by (2.3) and $\pi_1(\overline{X}) = \operatorname{tor} \pi_1(X)$ has only odd torsion. Thus, \widetilde{X} is homotopy equivalent to the universal covering space of \overline{X} , which is 2-equivalent to \overline{X} ; and so

$$H^*(\overline{X}; Z_2) \cong H^*(\widetilde{X}; Z_2), \text{ Tor } (H^*(\overline{X}; Z), Z_2) \cong \text{Tor } (H^*(\widetilde{X}; Z), Z_2)$$

by natural maps. These shows that $QH^{15}(\tilde{X}; Z_2) \cong QH^{15}(\overline{X}; Z_2) \cong Q^{15}H(X; Z_2) = 0$ by (2.3) and (1.6), and that $H^*(\tilde{X}; Z)$ has no 2-torsion since so is $H^*(\overline{X}; Z)$. Thus $H^*(X; Z_2)$ is primitively generated by [4; Th. 6.6] since \tilde{X} is a homotopy associative *H*-space, and (2.1) is valid. Q. E. D. Theorem 1.4 follows from the following

LEMMA 2.4. Under the assumptions in Theorem 1.4, $QH^n(X; Q)=0$ for $n \neq 7$.

PROOF OF THEOREM 1.4 FROM LEMMA 2.4. First we prove that

(2.5) $H^*(X; Z)$ has no torsion.

In fact, if $H^*(X; Z)$ has p-torsion for a prime p, then $QH^{2i}(X; Z_p) \neq 0$ for some $i \ge 1$ by [6; Th. 4.9], and $QH^{2ip^{k-1}}(X; Q) \neq 0$ for some $k \ge 1$ by [7; Th. 4.7]. Here, $i \ge 3$ by (1.1) since X is 3-connected, and hence $2ip^k - 1 \neq 7$ which contradicts Lemma 2.4. So, (2.5) holds.

Now, we have $H^*(X; Z) \cong H^*((S^7)^l; Z)$ by A. Borel [4: Prop. 6.5], (2.5) and $QH^n(X; Q) = 0$ for $n \neq 7$ in Lemma 2.4. Since $\pi_7(X) \cong H_7(X; Z) \cong$ Hom $(H^7(X; Z), Z)$, there are maps $f_i: S^7 \to X$ $(1 \le i \le l)$ such that $H_7(X; Z) =$ $Z\{f_{1*}(\xi), \dots, f_{l*}(\xi)\}$ $(\xi \in H_7(S^7; Z)$ is a generator). Then $f = \mu_l(f_1 \times \dots \times f_l)$: $(S^7)^l \to X$ (μ_l is given in (2.2)) satisfies $f^*: H^*(X; Z) \cong H^*((S^7)^l; Z)$, and so $X \cong (S^7)^l$. Q. E. D.

§ 3. Cohomology of X in Theorem 1.4

The rest of this paper is devoted to prove Lemma 2.4.

In this section, assume that X is a 3-connected finite H-space with (1.5). Then, we notice the following results due to E. Thomas [17]:

(3.1) (i) ([17; Th. 1.1]) Let n and t be positive integers with $\binom{2n-1-t}{t} \neq 0$ mod 2. Then,

$$Sq^{t}PH^{2n-1}(X; Z_{2}) = 0$$
 and $PH^{2n-1}(X; Z_{2}) = Sq^{t}PH^{2n-1-t}(X; Z_{2}),$

where P denotes the primitive module.

(ii) ([17; Th. 1.2]) If $u \in PH^{2st}(X; Z_2)$, then

$$u = v^{2^s}$$
 for some $v \in PH^t(X; \mathbb{Z}_2)$.

REMARK. (3.1) is based on Browder-Thomas [8; Th. 1.1] for p=2 which is valid because X is finite (see [14]).

Now, we use the following notation hereafter:

(3.2) $d(n, G) = d(n, G; X) = \dim PH^n(X; G)$ for $G = Z_2$ and Q.

Then, we have the following two lemmas:

LEMMA 3.3. (i) dim $QH^n(X; Q) = d(n, Q)$, and d(2n, Q) = 0.

Yutaka Неммі

(ii) dim $QH^{2n+1}(X; Z_2) = d(2n+1, Z_2)$, and $QH^{2n}(X; Z_2) = 0$. Therefore, the assumption (1.6) is equivalent to $d(15, Z_2) = 0$.

PROOF. (i) Since $H^*(X; Q)$ is primitively generated by (1.5), $PH^n(X; Q) \cong QH^n(X; Q)$ by Milnor-Moore [16; Prop. 4.17]. Furthermore, by Hopf's theorem, $QH^{2n}(X; Q)=0$, which implies d(2n, Q)=0 by the above fact.

(ii) Since $H^*(X; Z_2)$ is primitively generated by (1.5), we have the exact sequence

$$(3.4) \qquad 0 \longrightarrow P(\xi H^*(X; Z_2)) \longrightarrow PH^*(X; Z_2) \xrightarrow{\pi} QH^*(X; Z_2) \longrightarrow 0$$

by [16; Prop. 4.21], where $\xi: H^*(X; Z_2) \rightarrow H^*(X; Z_2)$ is defined by $\xi(x) = x^2$ and is a map of Hopf algebras. Thus $\pi: PH^{2n+1}(X; Z_2) \cong QH^{2n+1}(X; Z_2)$. By (3.1) (ii), $QH^{2n}(X; Z_2) = \pi(PH^{2n}(X; Z_2)) = 0$. These show (ii). Q. E. D.

LEMMA 3.5. (i) $d(n, Q) = d(n, Z_2)$ for $n \le 12$, which is 0 if $n \ne 7, 11$.

(ii) If $d(15, Z_2)=0$, then $d(n, Z_2)=0$ for $n \leq 30$ and $n \neq 7$, 11, 13, 14, 28.

(iii) If $d(15, \mathbb{Z}_2) = 0$, then d(n, Q) = 0 for $n \leq 30$ and $n \neq 7, 11, 13, 27$.

(iv) If $d(n, Z_2) = 0$ for n = 11 and 15, then $d(n, Q) = d(n, Z_2)$ for all n, and $d(n, Q) = d(n, Z_2) = 0$ if $n \neq 7, 2^r - 1$ $(r \ge 5)$.

PROOF. For the simplicity, we denote $PH^n(X; Z_2)$ by PH^n .

(i) Since X is 3-connected, it is clear that $d(n, Q)=0=d(n, Z_2)$ for $n \le 4$ by (1.1). Thus (3.1) (i) shows that $PH^5=Sq^2PH^3=0$ and hence $PH^9=Sq^4PH^5=0$. Furthermore, (3.1) (ii) implies

(3.6)
$$PH^n = (PH^t)^{(2^s)} = \{x^{2^s} \mid x \in PH^t\}$$
 for $n = 2^s t$.

Thus, $PH^{2n} = 0$ for $n \leq 6$. Therefore, in the Bockstein spectral sequence

$$(3.7) E_1^n = H^n(X; Z_2) \Longrightarrow E_\infty^n = (H^n(X; Z)/\text{tor}) \otimes Z_2,$$

if $n \leq 12$, then $d_r = 0$ on E_r^n and $E_1^n = E_{\infty}^n$, which implies $d(n, Q) = d(n, Z_2)$ by Lemma 3.3.

(ii) If $n \le 7$, then $\binom{15}{2n} \ne 0 \mod 2$ and $PH^{15+2n} = Sq^{2n}PH^{15} = 0$ by (3.1) (i) and the assumption. For $n = 2^{s}t \le 30$ with odd t, $PH^{n} = 0$ if $t \ne 7$, 11, 13 by (3.6) and (i). On the other hand, by the Adem relation, we have

$$(3.8) PH^{2t} = (PH^{t})^{(2)} = Sq^{t}PH^{t} = Sq^{1}Sq^{t-1}PH^{t} \subset Sq^{1}PH^{2t-1} (t: \text{ odd}),$$

which is 0 if t = 11, 13 by the above argument. Thus, we see (ii).

(iii) By (3.6), (3.8) and $Sq^{1}(PH^{t})^{(2)} = 0$, we see that

$$PH^{28} = (PH^7)^{(4)} \subset (Sq^1PH^{13}) \cdot (PH^7)^{(2)} = Sq^1(PH^{13} \cdot (PH^7)^{(2)}).$$

Thus in (3.7), $E_2^{2n} = 0$ for $n \le 15$ and $E_2^{2n+1} = E_1^{2n+1}$ for $n \le 14$ with $n \ne 6, 13$.

Therefore, if $n \leq 30$, then $d_r = 0$ on E_r^n for $r \geq 2$ and $E_\infty^n = E_2^n$. Hence d(n, Q) $(n \leq 30)$ is 0 if $n \neq 7$, 11, 13, 27 by (ii) and Lemma 3.3 (i).

(iv) Assume $d(11, Z_2)=0$, in addition to (ii) and (iii). Then, $PH^{13} = Sq^2PH^{11}=0$ by (3.1) (i), $PH^{14} \subset Sq^1PH^{13}=0$ by (3.8), and $PH^{28} = (PH^{14})^{(2)}=0$ by (3.6). Thus $d(n, Z_2)=0$ for $n \leq 30$ and $n \neq 7$ by (ii). Now, we prove that

(3.9)
$$d(2n+1, Z_2) = 0$$
 for $2r' + 1 \le 2n + 1 \le 4r' - 3$ $(r'=2^{r-1})$

by induction on r, which is shown already if $r \leq 4$. Let $r \geq 5$.

Case 1) $2r' + 1 \leq 2n + 1 \leq 3r' - 3$: Then $\binom{2n+1-r'}{r'} \neq 0 \mod 2$ and $PH^{2n+1} = Sq^{r'}PH^{2n+1-r'} = 0$ by (3.1) (i) and the inductive hypothesis.

Case 2) 2n+1=3r'-1: Take any $x \in PH^{2n+1}$. Then, $x = Sq^{r'y}$ for some $y \in PH^{2r'-1}$ in the same way. Now, $Sq^1y \in PH^{2r'} = (PH^1)^{(2r')} = 0$ by (3.6), and $Sq^{2t}y \in PH^{2r'+2^{t-1}} = 0$ for any t with $1 \le t \le r-2$ by Case 1). Thus, [1; Th. 4.6.1] and $r \ge 5$ imply that

$$x = Sq^{r'}y = \sum \alpha_i v_i$$
 for some $v_i \in H^*(X; Z_2)$ and $\alpha_i \in \mathscr{A}$ with $0 < \deg \alpha_i < r'$,

where \mathscr{A} is the mod 2 Steenrod algebra. Since $H^*(X; \mathbb{Z}_2)$ is primitively generated, we can write as $v_i = w_i + d_i$ where $w_i \in PH^*$ and d_i is decomposable. Here, $w_i = 0$ if $w_i \in PH^{\text{odd}}$ by Case 1) and we can take $w_i = 0$ if $w_i \in PH^{\text{even}}$ by (3.1) (ii). Therefore, $x = \sum \alpha_i d_i \in PH^{2n+1}$ is decomposable, which implies x = 0 by the exact sequence (3.4).

Case 3) $3r' + 1 \le 2n + 1 \le 4r' - 3$: Put t = 2n + 2 - 3r'. Then $\binom{2n+1-t}{t} = \binom{3r'-1}{t} \ne 0 \mod 2$, and $PH^{2n+1} = Sq^tPH^{3r'-1} = 0$ by (3.1) (i) and Case 2). This completes the inductive proof of (3.9).

Finally, we prove that

(3.10) $d(2n, Z_2) = 0$ for any n = r't with $r' = 2^{r-1}$ and odd t.

If $t \neq 2^{s} - 1$ ($s \geq 3$), then $PH^{2n} = 0$ by (3.6) and (3.9). Assume $t = 2^{s} - 1$ ($s \geq 3$). If r' = 1, then $PH^{2n} \subset Sq^{1}PH^{2t-1} = 0$ by (3.8) and (3.9). If $r' \geq 2$, then $PH^{2n} = (PH^{2t})^{(r')}$ by (3.6), which is 0 as is shown. Thus, we see (3.10), and (iv) is proved for Z_{2} .

Now, consider the Bockstein spectral sequence (3.7). Then, $PE_1^{2n} = PH^{2n} = 0$ and $d_r = 0$ on E_r^n for any $r \ge 1$, since $E_1^n = H^n(X; Z_2)$ is primitively generated. Thus, $E_\infty^n = E_1^n$ which means $d(n, Q) = d(n, Z_2)$ for any $n \ge 1$, and (iv) is proved completely. Q. E. D.

§4. K-ring of X and the projective plane of X

We continue to assume that X is a 3-connected finite H-space with (1.5).

Yutaka Неммі

Furthermore, we regard X to be a finite CW-complex and the multiplication μ a cellular map.

Let Y be a CW-complex with the *n*-skeleton Y^n , and $K^*(Y)$ be the Z_2 -graded complex K-ring with $K^0(Y) = K(Y)$ and $K^1(Y) = K(\Sigma Y)$, where Σ denotes the suspension. We filter $K^*(Y)$ by

(4.1)
$$F_p K^j(Y) = \operatorname{Ker} (K^j(Y) \to K^j(Y^{p-1})) \quad (j=0, 1).$$

Then, for any $y \in K^{j}(Y)$, we write

(4.2)
$$\deg y = p \text{ if } y \in F_p K^j(Y) - F_{p+1} K^j(Y).$$

Now, we prove the following key lemmas.

PROPOSITION 4.3. Under the above assumption on X, $K^*(X)$ is torsion free and has the structure of primitively generated Hopf algebra. Moreover, there exist $x_i \in PK^1(X)$, $1 \le i \le l$, such that

$$K^*(X) \cong \Lambda_Z(x_1, \dots, x_l)$$
 and $\#\{i \mid \deg x_i = n\} = d(n, Q)$.

Here, #A denotes the number of elements in a finite set A.

PROOF. Since $H^*(X; Z_2)$ is primitively generated by (1.5), the Pontrjagin ring $H_*(X; Z_2)$ is associative by [16; Prop. 4.20]. Thus $H_*(\Omega X; Z)$ (ΩX is the loop space of X) is torsion free by J. Lin [6; Th. 8.1], and then so is $K^*(X)$ by R. Kane [13; Th. 1.4]. This implies that $K^*(X \times X) \cong K^*(X) \otimes K^*(X)$ and $K^*(X)$ has the structure of Hopf algebra. Furthermore, the Chern character

$$ch\colon K^*(X) \longrightarrow K^*(X) \otimes Q \xrightarrow{\simeq} H^*(X; Q)$$

is monomorphic and is a map of Hopf algebras. Here, $H^*(X; Q)$ is an exterior algebra over primitive elements by assumption (1.5) and Hopf's theorem. Thus, by L. Hodgikin [11; Th. 2.2], we see that

$$K^*(X) = \Lambda_Z(x_1, \dots, x_l) \quad \text{for} \quad x_i \in PK^*(X).$$

Here $x_i \in PK^1(X)$, because $PH^{even}(X; Q) = 0$ by Lemma 3.3 (i) and $ch(K^0(X)) \subset H^{even}(X; Q)$. On the other hand, by the Atiyah-Hirzebruch spectral sequence for $K^*() \otimes Q$, we see that

$$(F_{2p-1}K^{1}(X)/F_{2p}K^{1}(X)) \otimes Q \cong H^{2p-1}(X; Q),$$

which implies $\#\{i \mid \deg x_i = 2p - 1\} = d(2p - 1, Q).$

Q. E. D.

Let PX be the projective plane of X, i.e.,

$$PX = \Sigma X \cup_{H(\mu)} C(X * X)$$

60

is the mapping cone of the Hopf construction $H(\mu): X * X \to \Sigma X$ of μ . Then, PX is a finite CW-complex containing ΣX as a subcomplex. By definition, we have the exact sequence

$$(4.4) \quad \cdots \longrightarrow \widetilde{K}(X) \longrightarrow \widetilde{K}(X \wedge X) \longrightarrow \widetilde{K}(PX) \xrightarrow{\tau} \widetilde{K}^{1}(X) \longrightarrow \widetilde{K}^{1}(X \wedge X) \longrightarrow \cdots \\ (\widetilde{K}(Y) = \widetilde{K}^{0}(Y)),$$

where $\tilde{K}(X \wedge X) \cong (\tilde{K}^*(X) \otimes \tilde{K}^*(X))^0$ by the above proposition.

PROPOSITION 4.5. For x_i $(1 \le i \le l)$ in the above proposition, there exist elements y_i and an ideal S in K(PK) such that

$$\tau y_i = x_i, \quad \deg y_i = \deg x_i + 1; \quad \tau S = 0, \quad S \cdot K(PX) = 0,$$

$$K(PX) \cong T^{3}A \oplus S$$
 (as rings), and $\psi^{n}(S) \subset S$ for all n ,

where τ is the homomorphism in (4.4),

$$T^{3}A = A/D^{3}A, A = Z[y_{1}, \dots, y_{l}], D^{3}A = (\tilde{A} \cdot \tilde{A}) \cdot \tilde{A}$$

and ψ^n is the Adams operation on K.

PROOF. The proof of the corresponding results for $H^*(PX; Z_p)$ and $K(PK) \otimes Z_{(2)}$ are given in [8; Th. 1.1] and [12; Lemmas 6.3-4]. This proposition can be also proved by the same method, and we omit the details. Q. E. D.

 $T^{3}A$ in the above is called the *filtered truncated polynomial algebra of* height 3 on $\{y_i\}$.

Let B be a filtered algebra over Z by a filtration

$$B = F_0 B \supset F_1 B \supset \cdots \supset F_p B \supset \cdots$$
 with $F_p B \cdot F_a B \subset F_{p+a} B$ for any $p, q \ge 0$.

Then, we say that B is a ψ -algebra if there are maps $\psi^n \colon B \to B$ $(n \in \mathbb{Z})$ of filtered algebras, i.e., algebra homomorphisms ψ^n with $\psi^n F_p B \subset F_p B$, such that

(4.6.1) $\psi^1 = \text{id and } \psi^m \psi^n = \psi^n \psi^m = \psi^{nm} \text{ for any } m, n \in \mathbb{Z},$

(4.6.2) if $x \in F_{2r}B$, then $\psi^n x \equiv n^r x \mod F_{2r+1}B$ for any $r \ge 0$ and $n \in \mathbb{Z}$, and (4.6.3) $\psi^2 x \equiv x^2 \mod 2$ for any $x \in B$.

By [2; Th. 5.1], [3; (1.1-5)] and the definition, we see that

LEMMA 4.7. (i) The K-ring K(Y) of a finite CW-complex Y filtered by (4.1) is a ψ -algebra by the Adams operations ψ^n .

(ii) If I is an ideal in a ψ -algebra B with $\psi^n I \subset I$ for all n, then B/I is also a ψ -algebra.

Now, according to Proposition 4.5, we can prove Lemma 2.4 and hence the

main results in §1 (see §2) by the following

PROPOSITION 4.8. Assume that a filtered truncated polynomial algebra

 $T^{3}A = A/D^{3}A$, $A = Z[y_{1}, \dots, y_{l}]$ with deg $y_{i} = 8$, 12, 14 or even ≥ 28 ,

of height 3 is a ψ -algebra. Then:

- (i) There is no i with deg $y_i = 12$.
- (ii) If deg y_i is 8 or 2^r ($r \ge 5$), then deg $y_i = 8$ for all i.

PROOF OF LEMMA 2.4 FROM PROPOSITION 4.8. Let X be an H-space in Theorem 1.4. Then, X is regarded as an H-space in this section satisfying (1.6), i.e., $d(15, Z_2)=0$ (see Lemma 3.3 (ii)). Thus, $T^3A = K(PX)/S$ in Proposition 4.5 is a ψ -algebra by Lemma 4.7, and the generators y_1, \dots, y_l satisfy $\#\{i|\deg y_i = n+1\} = d(n, Q)$ by Proposition 4.3. Therefore, d(11, Q) = 0 by Lemma 3.5 (iii) and Proposition 4.8 (i), and hence $QH^n(X; Q) = 0$ for $n \neq 7$ by Lemma 3.3 (i), 3.5 (iv) and Proposition 4.8 (ii). Q.E.D.

The above proposition is proved algebraically in the next section.

§5. Proof of Proposition 4.8

Let T^3A be a ψ -algebra in Proposition 4.8. Then, the ideal I in T^3A generated by $\{y_i | \deg y_i \ge 28\}$ satisfies $\psi^n I \subset I$ for all n. In fact, if $\deg y_i = 2r \ge 28$, then $\psi^n y_i \equiv n^r y_i \mod F_{2r+1}T^3A$ by (4.6.2) and $F_{2r+1}T^3A \subset I$ by assumption, which show $\psi^n y_i \in I$. Therefore, we have a ψ -algebra T^3A/I by Lemma 4.7 (ii), which is isomorphic to

(5.1.1) a ψ -algebra $T^3A_1 = A_1/D^3A_1$, $A_1 = Z[y_1, \dots, y_t]$, with deg $y_i = 2\varepsilon(s)$ if $t_{s-1} < i \le t_s$, and $\varepsilon(s) = 4$, 6 or 7 according to s = 1, 2 or 3, respectively $(t_0 = 0, t_3 = t)$.

Hereafter, consider this ψ -algebra T^3A_1 . Then, we have

(5.1.2) $\psi^n y_i = n^{\varepsilon(s)} y_i + \sum_{t_s < j} A(i, j; n) y_j + \sum_{j \le k} B(i, j, k; n) y_j y_k (t_{s-1} < i \le t_s)$ for some integers A and B by (4.6.2). Therefore,

(5.1.3) for any $j > t_2$, the coefficient of y_i^2 in $\psi^m \psi^n y_i$ is equal to

$$n^{7}B(j, j, j; m) + m^{14}B(j, j, j; n) + m^{7}\sum_{i \leq t_{2}} B(j, i, j; n)A(i, j; m) + \sum_{i \leq k \leq t_{1}} B(j, i, k; n)A(i, j; m)A(k, j; m).$$

Thus, by comparing them in $\psi^2 \psi^{-1} y_i = \psi^{-1} \psi^2 y_i$ of (4.6.1), we have

62

$$2B(j, j, j; 2) \equiv \sum_{i \le t_2} B(j, i, j; 2)A(i, j; -1) - \sum_{i \le k \le t_2} B(j, i, k; 2)A(i, j; -1)A(k, j; -1) \mod 4,$$

because $A(i, j; 2) \equiv 0 \mod 2$ by (4.6.3). Here, (4.6.3) also shows that $B(j, j, j; 2) \not\equiv 0$ and $B(j, i, j; 2) \equiv 0 \equiv B(j, i, k; 2) \mod 2$. Therefore,

(*) for any $j > t_2$, there is $i \leq t_2$ such that A(i, j; -1) is odd.

Then, by changing the generators y_i $(1 \le i \le t)$ if necessary, we may assume that

(5.1.4) A(i, j; -1) $(i \le t_2 < j)$ is odd when and only when i = i(j),

where

$$i(j) = \begin{cases} j - t_2 & \text{if } j \le t_2 + r, \\ t_1 + j - t_2 - r & \text{if } j > t_2 + r, \end{cases} \text{ for some } r \ge 0 \text{ with } d_3 - d_2 \le r \le d_1$$

 $(d_s = t_s - t_{s-1} = \#\{i \mid \deg y_i = 2\varepsilon(s)\})$. In fact, for $j_0 > t_2$, take $i_0 \le t_2$ with odd $A(i_0, j_0; -1)$ by (*), and with $i_0 > t_1$ if it exists; and replace $y_j(j_0 \ne j > t_2)$ with odd $A(i_0, j; -1)$ by $y_j + y_{j_0}$ and y_i $(i_0 \ne i \le t_2)$ with odd $A(i, j_0; -1)$ by $y_i + y_{j_0}$. Repeat these replacements for all $j_0 > t_2$ and change the order if necessary. Then, $\{y_i\}$ is replaced with the new $\{y_i\}$ so that A(i, j; -1) turns out to satisfy (5.1.4).

Here, we notice that

(5.1.5)
$$A(i, j; -1) = 0$$
 for any i, j with $i \le t_1 < j \le t_2$.

This is seen by the following equalities of (5.1.1) and (5.4.2) for n = -1:

$$y_i = \psi^1 y_i = \psi^{-1} \psi^{-1} y_i \equiv y_i + 2 \sum_{t_1 < j \le t_2} A(i, j; -1) \mod F_{13} T^3 A_1.$$

Now, we put

(5.1.6)
$$\bar{y}_i = y_i + \sum_{t_2 < j} [A(i, j; -1)/2] y_j \text{ for } i \le t_2,$$

 $\bar{y}_j = \psi^{-1} \bar{y}_{i(j)} - \bar{y}_{i(j)} \text{ for } j \ge t_2 \quad (\text{by } i(j) \text{ in } (5.1.4))$

Then, by (5.1.2), (5.1.4–5) and (4.6.1), we see the following $(i \le t_2 < j)$:

(5.1.7)
$$\psi^{-1}\overline{y}_i \equiv \begin{cases} \overline{y}_i + y_j \text{ if } i = i(j) \\ \overline{y}_i \text{ otherwise} \end{cases} \mod D^2 A_1, \quad \psi^{-1}\overline{y}_j = -\overline{y}_j;$$

(5.1.8) $\bar{y}_i \equiv y_i \mod F_{14}T^3A_1, \quad \bar{y}_j \equiv y_j \mod F_{15}T^3A_1.$

LEMMA 5.2. (i) T^3A_1 in (5.1.1) is equal to $T^3\overline{A}_1 = \overline{A}_1/D^3\overline{A}_1$ with $\overline{A}_1 = Z[\overline{y}_1, \dots, \overline{y}_t]$, where deg $\overline{y}_i = \deg y_i$ $(1 \le i \le t)$.

(ii) Let I be the ideal in $T^3\overline{A}_1$ generated by $\{\overline{y}_j | j > t_2\}$. Then, $\psi^n I \subset I$ for all n, and we have a ψ -algebra

Yutaka Неммі

$$T^{3}\overline{A}_{1}/I \cong T^{3}A_{2} = A_{2}/D^{3}A_{2}, A_{2} = Z[\overline{y}_{1}, \dots, \overline{y}_{t}].$$

PROOF. (i) is clear by (5.1.6-8). By (5.1.2) for $T^3\overline{A}_{1,2}$

 $\psi^n \bar{y}_j = n^7 \bar{y}_j + \sum_{i \leq k} \overline{B}(j, i, k; n) \bar{y}_i \bar{y}_k \quad \text{for} \quad j > t_2 \,.$

Now, compare the coefficients of $\bar{y}_i \bar{y}_k$ in $\psi^{-1} \psi^n \bar{y}_j = \psi^n \psi^{-1} \bar{y}_j$. Then, by (5.1.7) and $D^2 A_1 = D^2 \bar{A}_1$, we see that

$$\overline{B}(j, i, k; n) = 0$$
 for any $i \leq k \leq t_2$, and $\psi^n \overline{y}_i \in I$ for any $j > t_2$.

This implies that $\psi^n I \subset I$, and we see (ii) by Lemma 5.2 (ii). Q.E.D.

From now on, we omit the bars of generators and consider the above ψ -algebra

$$T^{3}A_{2} = A_{2}/D^{3}A_{2}, A_{2} = Z[y_{1}, \dots, y_{t_{2}}],$$
 with
deg $y_{k} = 8$ if $k \leq t_{1}, = 12$ otherwise

where (5.1.2) is written as follows:

(5.3.1)
$$\psi^n y_i = n^4 y_i + \sum_{t_1 < k} A(i, k; n) y_k + \sum_{k \le k'} B(i, k, k'; n) y_k y_{k'}$$
 for $i \le t_1$,
(5.3.2) $\psi^n y_j = n^6 y_j + \sum_{k \le k'} B(j, k, k'; n) y_k y_{k'}$ for $j > t_1$.

Then, for $i \leq i' \leq t_1 \leq j$, the coefficient of y_j in $\psi^m \psi^n y_i$ is $n^4 A(i, j; m) + m^6 A(i, j; n)$ and that of $y_i y_{i'}$ in $\psi^m \psi^n y_j$ is $n^6 B(j, i, i'; m) + m^8 B(j, i, i'; n)$. Thus by comparing them in $\psi^2 \psi^3 y_k = \psi^3 \psi^2 y_k$ of (4.6.1), we see that

(5.3.3)
$$3^{3}A(i, j; 2) = 2A(i, j; 3)$$
 for any $i \le t_{1} < j$,

(5.3.4) $3^{5}B(j, i, i'; 2) = 2^{3}B(j, i, i'; 3)$ for any $i \leq i' \leq t_{1} < j$.

To study A and B more precisely, we prepare the following (5.3.6-7) for $i \le t_1 < j$ and $n, m \in \mathbb{Z}$, where

(5.3.5)
$$C(l) = m^{12}B(l, j, j; n) + m^{6} \sum_{k \leq t_{1}} B(l, k, j; n)A(k, j; m) + \sum_{k \leq k' \leq t_{1}} B(l, k, k'; n)A(k, j; m)A(k', j; m), D(l) = m^{10}B(l, i, j; n) + m^{4} \sum_{k \leq i} B(l, k, i; n)A(k, j; m) + m^{4} \sum_{i \leq k} B(l, i, k; n)A(k, j; m),$$

 $E(l, l') = n^4 B(i, l, l'; m) + \sum_{t_1 < k} A(i, k; n) B(k, l, l'; m).$

(5.3.6) The coefficients of y_j^2 and $y_i y_j$ in $\psi^m \psi^n y_j$ are equal to

 $n^{6}B(j, j, j; m) + C(j)$ and $n^{6}B(j, i, j; m) + D(j)$, respectively.

(5.3.7) Those of y_i^2 , y_j^2 and $y_i y_j$ in $\psi^m \psi^n y_i$ are equal to

 $E(i, i) + m^8 B(i, i, i; n)$, E(j, j) + C(i) and E(i, j) + D(i), respectively.

LEMMA 5.4. A(i, j; 3) is even for any $i \leq t_1 < j$.

PROOF. Suppose contrarily that A(a, b; 3) is odd for some $a \leq t_1 < b$. Then, by changing the generators y_k , $1 \leq k \leq t_2$, we may assume that

(5.5.1) $A(a, j; 3) \equiv 0 \equiv A(i, b; 3) \mod 2^7$ for any i, j with $a \neq i \leq t_1 < j \neq b$.

In fact, there are integers λ and μ with $\lambda A(a, b; 3) + \mu = 1$ and $\mu \equiv 0 \mod 2^7$ by assumption. Then, we see (5.5.1) by replacing $y_i \ (a \neq i \leq t_1)$ and y_b with

$$\tilde{y}_i = y_i - \lambda A(i, b; 3) y_a$$
 and $\tilde{y}_b = y_b + \sum_{i, < i \neq b} A(a, j; 3) y_i$, respectively,

because (5.3.1) turns out to

$$\begin{split} \psi^{3}y_{a} &\equiv 3^{4}y_{a} + \sum_{t_{1} < j \neq b} \mu A(a, j; 3)y_{j} + A(a, b; 3)\tilde{y}_{b} \\ \psi^{3}\tilde{y}_{i} &\equiv 3^{4}\tilde{y}_{i} + \sum_{t_{1} < j \neq b} \tilde{A}(i, j; 3)y_{i} + \mu A(i, b; 3)\tilde{y}_{b} \end{split} \qquad \text{mod } D^{2}A_{2}.$$

We now consider the coefficients in $\psi^2 \psi^3 y_k = \psi^3 \psi^2 y_k$ given in (5.3.6-7) (k=b or *a*) and compare them by taking mod 2^r and by using (5.3.3-4) and (5.5.1). Then, in the first place, we see that

(5.5.2)
$$\alpha = A(a, b; 2)B(b, a, a; 3) = 0 \mod 2^4,$$

 $\beta = A(a, b; 3)B(b, a, a; 2) \equiv 0 \mod 2^6.$

In fact, (5.3.7) for y_a^2 implies $\alpha \equiv \beta \mod 2^4$ by (5.5.1) and (5.3.3). On the other hand, $2^2\alpha = 3^3\beta$ by (5.3.3-4). These show (5.5.2). In the second place, by (5.3.6) for $y_a y_b$ taking mod 2^7 , we see that

 $2^{6}B(b, a, b; 3) + 2 \cdot 3^{4}\beta + 3^{6}(3^{4}-1)B(b, a, b; 2) \equiv 2^{5}\alpha \mod 2^{7}$

which together with (5.5.2) implies that

(5.5.3) $B(b, a, b; 2) \equiv 2^2 B(b, a, b; 3) \mod 2^3$.

In the third place, by (5.3.6) for y_b^2 taking mod 2³ and (5.5.2), we have

 $B(b, a, b; 2)A(a, b; 3) \equiv \alpha A(a, b; 2) - \beta A(a, b; 3) \equiv 0 \mod 2^3.$

Since A(a, b; 3) is odd by assumption, this shows that

(5.5.4) $B(b, a, b; 2) \equiv 0 \mod 2^3$, and hence B(b, a, b; 3) is even,

by (5.5.3). Finally, taking mod 2², (5.3.7) for $y_a y_b$ implies that $2B(a, a, a; 2)A(a, b; 3) \equiv A(a, b; 3)B(b, a, b; 2) - A(a, b; 2)B(b, a, b; 3) \equiv 0$ mod 2² by (5.5.4) and (5.3.3). Thus

(5.5.5) B(a, a, a; 2) is even, since A(a, b; 3) is odd.

This contradicts (4.6.3); and the lemma is proved.

Q. E. D.

LEMMA 5.6. $t_2 = t_1$, i.e., there exists no y_i with deg $y_i = 12$.

PROOF. Compare the coefficients of y_j^2 in $\psi^2 \psi^3 y_i = \psi^3 \psi^2 y_i$ taking mod 2^3 for any $i \le t_1 < j$ by using (5.3.7), Lemma 5.4 and (5.3.3). Then, we see that

$$(5.7.1) \quad \sum_{t_1 < k} A(i, k; 3)B(k, j, j; 2) \\ \equiv \sum_{t_1 < k} A(i, k; 2)B(k, j, j; 3) + \sum_{k \le t_1} B(i, k, j; 2)A(k, j; 3) \\ + \sum_{k \le k' \le t_1} B(i, k, k'; 2)A(k, j; 3)A(k', j; 3) \mod 2^3.$$

We notice by (4.6.3) that

(5.7.2) $B(k, k', k''; 2) \equiv 1 \mod 2$ if and only if k = k' = k''.

Here, (5.7.1) implies firstly by taking mod 2^2 that $A(i, j; 3) \equiv 0 \mod 2^2$ and then

(5.7.3)
$$A(i, j; 3) \equiv 0 \mod 2^3 \text{ for any } i \leq t_1 < j.$$

Compare now the coefficients of y_j^2 in $\psi^2 \psi^3 y_j = \psi^3 \psi^2 y_j$ taking mod 2⁴ using (5.3.6). Then, by (5.7.2-3) and (5.3.3), we see that

$$(5.7.4) 36(36-1)B(j, j, j; 2) \equiv 0 \mod 24.$$

Thus B(j, j, j; 2) is even, which contradicts (5.7.2) if $j(>t_1)$ exists; and we have $t_2=t_1$. Q. E. D.

Now, we are ready to prove Proposition 4.8.

PROOF OF PROPOSITION 4.8. (i) is already proved by Lemma 5.6.

(ii) Suppose that (ii) is not valid, and let $r \ge 5$ be the least integer with $\sharp\{i \mid \deg y_i = 2^r\} \ne 0$. Consider the ideal I in T^3A generated by $\{y_i \mid \deg y_i \ge 2^{r+1}\}$. Then, by Lemma 4.7 (ii), we have a ψ -algebra T^3A/I , which is isomorphic to

$$T^{3}B = B/D^{3}B, B = Z[y_{1}, \dots, y_{s}], \text{ with } \deg y_{i} = 8 \text{ if } i \leq s_{1}, = 2^{r} \text{ if } i > s_{1},$$

In this ψ -algebra, (4.6.2) implies that

$$\begin{split} \psi^{n} y_{i} &\equiv n^{4} y_{i} + \sum_{s_{1} < k} A(i, k; n) y_{k} \mod D^{2}B \text{ for } i \leq s_{1}, \\ \psi^{n} y_{j} &= n^{r'} y_{j} + \sum_{k \leq k', k' > s_{1}} B(j, k, k'; n) y_{k} y_{k'} \text{ for } j > s_{1}, \end{split}$$

where $r' = 2^{r-1}$. Consider $\psi^2 \psi^3 y_j = \psi^3 \psi^2 y_j$ $(j > s_1)$. Then, by comparing the coefficients of $y_i y_j$ $(i \le s_1)$ taking mod $2^{r'}$, we see that

 $3^{r'}(3^4-1)B(j, i, j; 2) \equiv 0 \mod 2^{r'}$ and $B(j, i, j; 2) \equiv 0 \mod 2^{r+2}$,

since $r'-4 \ge r+2$. Therefore, by comparing those of y_i^2 taking mod 2^{r+2} , we have

66

$$3^{r'}(3^{r'}-1)B(j, j, j; 2) \equiv 0 \mod 2^{r+2}$$

in the same way as (5.7.4). Here, $3^{r'}-1 \equiv 2^{r+1} \mod 2^{r+2}$ by [2; Lemma 8.1]. Thus,

$$B(j, j, j; 2) \equiv 0 \mod 2,$$

which contradicts (4.6.3); and (ii) is valid.

Thus, the main results in §1 are proved completely as noted at the end of §4

References

- [1] J. F. Adams, On the non-existence of elements of Hopf invariant one, Ann. of Math. 72 (1960), 20-104.
- [2] J. F. Adams, Vector fields on spheres, Ann. of Math. 75 (1962), 603-632.
- [3] J. F. Adams and M. F. Atiyah, K-theory and the Hopf invariant, Quart. J. Math. Oxford (2) 17 (1966), 31-38.
- [4] A. Borel, *Topics in the Homology Theory of Fibre Bundles*, Lecture Notes in Math. **36** (1967), Springer, Berlin.
- [5] W. Browder, The cohomology of covering spaces of H-spaces, Bull. Amer. Math. Soc. 65 (1959), 140–141.
- [6] W. Browder, Torsion in H-spaces, Ann. of Math. 74 (1961), 24-51.
- [7] W. Browder, On differential Hopf algebra, Trans. Amer. Math. Soc. 107 (1963), 153-176.
- [8] W. Browder and E. Thomas, On the projective plane of an *H*-space, Illinois J. Math. 7 (1963), 492–502.
- [9] A. Clark, On π_3 of finite dimensional *H*-spaces, Ann. of Math. 78 (1963), 193–196.
- [10] D. L. Goncalves, Mod 2 homotopy associative H-spaces, Geometric Applications of Homotopy Theory I, Lecture Notes in Math 659 (1976), Springer, Berlin, 196–216.
- [11] L. Hodgkin, On the K-theory of Lie groups, Topology 6 (1967), 1-36.
- [12] J. R. Hubbuck, Generalized cohomology operations and *H*-spaces of low rank, Trans. Amer. Math. Soc. 141 (1969), 335-360.
- [13] R. Kane, The BP homology of H-spaces, Trans. Amer. Math. Soc. 241 (1978), 99-119.
- [14] J. P. Lin, Steenrod squares in the mod 2 cohomology of a finite H-space, Comment. Math. Helv. 55 (1980), 398-412.
- [15] J. P. Lin, Two torsion and the loop space conjecture, Ann. of Math. 115 (1982), 35-91.
- [16] J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.
- [17] E. Thomas, Steenrod squares and H-spaces: II, Ann. of Math. 81 (1965), 473-495.

Department of Mathematics, Faculty of Science, Hiroshima University

Q. **E**. **D**.