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§1. Introduction

We shall be concerned with a connection problem for the fourth order
Fuchsian differential system (hypergeometric system)

(1.1) (t—B)%it‘. — Ax (teC),

where B is a 4 by 4 diagonal matrix of the form
B = diag [4¢, 4¢s 41 4,]
and A=[a;] is a 4 by 4 matrix similar to a diagonal matrix of the form

diag [p1, My, B2y Ha]

with a,,=a,,=0.

Obviously, (1.1) has only four regular singularities at t=4, (I=0, 1, 2) and
t=o0 in the whole complex plane.

Denoting the diagonal elements a;; of A by p; (j=1, 2, 3, 4), we here assume
the following:
[Ao] There are no straight lines through all finite singularities 14, 4, and 4,.
[A;: Generic condition] None of the quantities

pj’ pj - pk’ /lp’ ﬂl - ﬂ2 (.]’ k=1, 2’ 3, 49J¢k, P=1, 2)

is an integer. This implies that there exist no logarithmic solutions.
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[A,: Irreducible condition] None of the quantities

pi+ps— U=t pi—, (J=1,2;p=12)

is an integer.
[A;] None of the quantities

Pr+ Py — 1y — My pr— Y, (k=3,4;p=1,2)

is an integer.

The hypergeometric system (1.1) corresponds to a section of the Appell func-
tion F;. In the paper [6] T. Sasai calculates the monodromy group of the above
hypergeometric system and then shows that the group is irreducible under the
condition [A,]. We observe that, under the conditions [A;] and [A,], the
quantities

do = G13054 — G14053, dy = A3,04; — 3,04,
and all elements of 4 except a,, and a,, never vanish.

Now the purpose of this paper is to evaluate explicit values of connection
coefficients between solutions near t=oo0 and the finite singularities t=J,
(I=0, 1, 2). The general theory of such connection problems for hypergeometric
systems is developed by M. Kohno [3] (see also [4]). This work is a quite

good example of his method.
In the later consideration, we may assume without loss of generality that

there hold
arg (A, —4o) < arg(A,—4o) < arg(A;—4o) + m,
arg(log—4,) > arg(A,—4,) > arg(ly—44) — 7,
arg (lo—4,) < arg (A, —4,) < arg(o—4,) + 7.

§2. Solutions near the finite singularities

2.1. Solutions near ¢ = 4,
Near t=41,, there exist two non-holomorphic solutions of (1.1) of the form

2.1 Xo;‘(t) = (t—40)" X -0 Go,‘(m)(t_lo)m (It=20l<Rg;j=1, 2),

where Ro=min(|4,—44|; I=1, 2). The coefficient vectors Goj(m) (m=0;j=1,2)
are uniquely determined up to a constant factor by the recursion formulas

2.2) {(B—)'O)(m+1+pj)GOj(m+l)=(m+pj—A)GOj(m) (m=0)
(B—20)p;Gof(0) =0 (j=1,2).
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On the other hand, there exist holomorphic solutions of (1.1) of the form
Xo(t) = Xm=0 Go(m)(t—2o)™ (lt—20|<Ry),

where the coefficient vectors Gy(m) (m=0) are characterized by the recursion
formulas replacing m+p; by m in (2.2). In particular, G,(0) is characterized by

{IH 0 a3 au

0 py ax; ax

}GO(O) =0.

Then there exist two linearly independent holomorphic solutions of (1.1) near
t=}.0.

In order to seek the explicit forms of Goj(m) (mz0;j=1, 2) and Gy(m)
(m=0), we regard m as a complex variable in (2.2). Then, eliminating the com-
ponents 43;, §§; and 435/ of Go;(m)=[g%;(m)]4-, in (2.2) to obtain the second
order linear difference equation for §§; and putting

A - I'(m+p;j—p)L(m+p;—p)
95,0 = G oy = Ty T (m + T+ p )L ¥ 1) g, (m)

m+1=z
and
g4;(m) = g4 (z—1) = §4(2),

we can easily see that §{ (z) satisfies the following second order linear difference
equation:

23) (+2+20,—p1—p2=2f(z+2)
— {41 =20+ (A= 20)}(z + D)+ (A1 — Ao+ p3 —py —p2—1)
+ (A2=20)(0j+pa— =12 —D1f(z+1) + (41— 2) (A, — 20)2f (2) =
(j=1,2).

Taking account of the Fuchs’ relation (trace relation) X 4_; pr,=2(u, + 1), i.e.,

pitps—py =My —1+pi+pi—p—pp—1=2p;—py —p—2,

we can immediately see that (2.3) is just of the normal form of the so-called
hypergeometric difference equation [1; p. 69(103)]. P. M. Batchelder defines
six particular solutions and investigates their global behavior in great details.
Among them, we here choose suitable solutions so that they satisfy the initial
condition in (2.2) and moreover have no poles in the right half plane. As such
solutions we can first take the entire solutions of (2.3)
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PitpPa—pi— 1

1-2z,
/%(z) = ('11_'10)2_12171( 5 X ) (=12),

Pj—P1— P2
o, Bl \¥ .
where y=1—(1,—40)/(A; —4¢) and ,F 1( ,y | w) denotes the hypergeometric

function. As to the asymptotic behavior of /%/(z) for sufficiently large values of
z, P. M. Batchelder gives the following result:
—8i(z), O,—n <argz <6,,
/%(z)~ '
Si(2), 0, <argz <0, +m,

where 0,=tan"! {log |1 —y|/arg (1 —x)} (tan~! 0=0) and Si(z) (v=1, 2) are formal
solutions of (2.3) of the form

S{(Z) = (lv-—lo)zZ—("”’”'"_”‘_“Z)(Sv+S;Z_l+ ) (v =1,2).

Making use of /%(z), we can now give explicitly the coefficient vectors
Go(m)=[g%,(m)1}=, (j=1, 2) in (2.1) as follows:

Al () — I'(pi+1)
G,(m) F(pj—u)l(p;—pa)
I(m+p;—p ) (m+p;—p,) j
X I =Ty Ra— Ty T+ T ppL (m ¥y <+ D
GEm) = oy | Aol — o) (= o)

(m+1+p))(m+1)
(m+p;—p)(m+p;—p,)

- {('13—,' —20)a13a24— ()'j - lo)al4azs}é5j(m)] s

g4j(m+1)

—1)Jtv . O
087 (m) = LoD as g s mhi(m) = a5, (m+ 20— p1 = )35 ()
(v=1,2;j=1,2).
In particular
2.4 GOj(O) = ¢€; (=12,

where e; denotes the j-th unit vector. Further, we can define the coefficient
vectors Go;(m)=[g&;(m)I¢=; (j=1, 2) of holomorphic solutions by

%) Throughout this paper we regard 2F,<a’7‘3 ‘ w) and the generalized hypergeometric function

,Fz(““él“"éz“ﬂw) as single valued holomorphic functions of w in C/[1, o).
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_ I(=pi+ DI (pij—p+ DI (pj—pp+1) ;

Go; = J ol d__2 Goi(m—p; =1, 2).
0s(m) T~ i)~ k)T (p; +1) ostm=py) G=1.2)
Then, in particular, the initial values G,;(0) (j=1, 2) are given by

2.5)

) Pjr PjtPa— UL — U2
96;(0) = (p;—u)(p;—p2)(Ay—Ag)?1, Fy

)

pitL pi+pa—pi—p+l

2pj—p1—p2

. Q43— 4P ;
g3;7(0) = 2p,-4—1pali:721-i-1 X(Az—lo)”QFl(

)
2p;—p1—p2t2

)

x) (=12).

pitlpjtpi—pi—p+1
93;(0) = a;;p ;(1—x)(A,— )P/, F;

2p;—p1—p2t+1
pitl pitpi—pi—p,

95;(0) = ay;p (4, ‘%)"’2171(

2p;—p1—pa2+tl

The growth orders of G, ;(m) and G, (m) (j=1, 2) for sufficiently large values of
m are as follows:
O((A;—4g)™m?), 6, — 7 <argm < 0,,
Goj'(m), Goj(m) = ,
O((Ay— o) ™m?"), Oy <argm <0y + m,
where y and y’ are suitable constants.
Now we put

Xoj(t) = Zm=0Goj(m)(t—40)" (lt—A0l<Ry;j=1,2),
which are holomorphic solutions of (1.1) near t=4,. As will be seen in §4,
Xo;(t) (j=1, 2) are linearly independent and then X,;(t) (j=1, 2) and Xoj @)
(j=1, 2) form a fundamental set of solutions of (1.1) near t=4,.

We next take another solutions of (2.3), which are called the principal solutions
of the hypergeometric difference equation, of the form

A% (z)

__ T(@)(s =) F(Pf“’r”l—#z’ P3=jtPa= =iz t] L)
F(z+pj+pa—pi—p)* ! 24P+ pa— iy — s x)

£%9(2)

_ T2y =) (Pj"‘Ps"lh_#z, P3—jtp3—pi—p+1 1_L>
F(z+pi+ps—py—p)*? z+pj+p3—u1—ﬁ2 X
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with the asymptotic behavior
£%(z) ~ Si(z), largz| < —2’1 +¢& (Fe>0;v=1,2).

Since these principal solutions have poles at z=—-r (r=0, 1, 2,...), they cannot
become solutions of (2.2), that is, the initial condition in (2.2) is not satisfied.
However they give the coefficient vectors Go(m)=[gk,(m)]¢-; (I=1, 2) of holo-
morphic solutions of (1.1) as follows:

Gl = 9,2+
T = RS (=)
y I(m—p)I (m—p,) Ay (m+1-p))
(A= Ao)mPi(Ay—Ao)" Pil (m+ 1) (m+1—p;) (A —40)? ’
~3_j _ 1 _ _ (m+1)(m+1—pj)
gari(m) = PP 6 Yy Py [do()q A0)(A2—4o) (m_#lr;l(m_‘uz)J

X {i{;,(m +1)— {(As—j"lo)alsazft—(ij—lo)al4a23}géz(m)J s

a31m) = {50 (a5 m = p)G3i(m) =, (m— p )b (m)
(v=1,2;1=1,2).

Here it is remarked that for each I (I=1, 2), the vectors G,,(m) defined as above
by putting j=1 and j=2 are same ones. This fact is easily checked by means

of formulas satisfied by the hypergeometric function ,F 1<cx,vﬁ |w> The initial

values are as follows:

51 (0) = aj,2+1
§0.(0) I(pae1—py—p+1)

(Pj+P2+z*#1—#z, P3-jtPari—H1—pat1
Xl

Xl>’

P21~ M— pa+1

o 1
2+1(0) =
§6:'(0) I(pyer— 11— 1)
(2.6) PrtPari— My — Ha, P2t Pori— Hi— Ha
X a1y X1 |
Pry1— U1 — U2
§3710) = as_,20:(1—x1)

T T(par— sy — pp+1)
( PrtpPavi—lHy— ot 1, prtpop—p—pa+1
X F

)

(=1,21=12),

Payi— M1~ M2t 1
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where y;=1—y"! and y,=x"!. The growth orders of Gy,(m) (I=1, 2) for suf-
ficiently large values of m are as follows:

Golm) = O((4=2o)™m?), largm| < - +¢ (%&e>0;1=1,2),

where y is a suitable constant. Now we put
2.7 Xolt) = Z=o Gol(m) (1= 20y (It—Ao| <Ro; I=1,2),

and then obtain holomorphic solutions of (1.1) near t=4,. As will be seen in §4,
Xo(t) is holomorphic at t=1;_, (I=1, 2), and moreover X, D (j=1,2) and
Xo(t) (1=1, 2) form a fundamental set of solutions of (1.1) near t=4,.

2.2. Solutions near t =21, (/=1, 2)

Near t=4, (I=1, 2), there exist a non-holomorphic solution and holomorphic
solutions of (1.1) of the form

(2.8) Xty = (=) T2 Gm)(t—A)" (It—A4|<R),
and
X = Zp=0 G(m) (t =)™ ([t—=A4l<R),

respectively, where R,=min (|]A,—4,|, |4; +4,—24,]). The coefficient vectors
G(m) (m=0) are uniquely determined up to a constant factor by the recursion
formulas

(B_)“l)(m+1+p2+l)él(m+1) = (m+p2+,—A)G,(m) (mz=0),

2.9)
(B=A)p2+ IGI(O) =0,

and the coeflicient vectors G(m) (m = 0) are characterized by the recursion formulas
replacing m+p, ., by min (2.9). In particular, G,(0) is characterized by

[a31a3,p3034]G(0) =0 or [a4,a4,a43p4]1G,(0) = 0.

Then there exist three linearly independent holomorphic solutions of (1.1) near
t=14.

In order to seek the explicit forms of G(m) (m=0) and G,(m) (m=0), we
again regard m as a complex variable in (2.9). Then, eliminating §}, 4§} and
437t of G(m)=[§4(m)]¢-, in (2.9) to obtain the third order linear difference
equation for §?*! and putting

A2+ — L(m+py—p)L(m+pory— ) 241
GEm) = o =Ty + 25— 22" T (m+ 1+ ppa F(m 51y 9 >

m+1=z
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and
§¥i(m) = §¥(z—1) = §#(2),

we can easily see that §?+!(z) satisfies the following third order linear difference
equation: '

2.10) (z+2+B8)(z+2+B,)f(z+2)

- [20{2(2"‘14'/31)(2"'1+Bz)"(°‘1+°‘2_1)(z+1)—/31/32_“1“2}

+ LG+ 1+a)z+1+a)]f(z+1)

+ AolAo(z+ 14+ B+ By —oy — )+ 2, {2z + D)+, 4+, —1}]zf(2)

— Az(z—-1)f(z—1) = 0,
where

By=pP2e1— M, =2, oy =pry+p,— M —p—1 (v=1,2)
and
Jo=Ai+ Ay =24, A =2 — A

We shall now investigate this difference equation. By the Mellin trans-
formation

1@ = {e=190at,

the difference equation (2.10) is transformed into the following linear differential

equation:

QA1) (t=2)Xt=21)¢" — (t= o) {(By + B — 1)t = 20) — (o1 + e — 1)(A; — A0)} ¢’
+ {B1Ba(t—2g)—a,05(A; — 20)}¢p = 0.

This equation is the second order Fuchsian differential equation with three

singularities t=4,, 4, and oo, whose solutions are expressed in terms of the
hypergeometric function ,F,. We here note that none of the quantities

oy — &y, a, (V=1, 2)’ ﬂv (V=1, 2)’ ﬂl + /32 — Xy — Xy

is an integer under the assumptions [A,], [A,] and [A;]. Hence we have the
solutions of (2.10) as follows:

aofe) = [ 190,00 (=12,

4@ = {1 g0,
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and
Ao
2.12) /@ =g
Ay
where
R O‘j_ﬂpaj—ﬁz t—1A4
¢o,-(t)=(t—io)“f2F1( i | U=12)
20, —oy —o,+1| 17 %0
and

A ~ Bi—oay+1, fr—o;+1
$12(2) = (t—10)“0"11)”’”’_“‘_“2“21"1(

t—1,
Ao—2y
are the solutions of (2.11). In the above integrals, we take the paths of integration
as the straight lines. As to the arguments of their integrands, we take argt=
argl, and arg(t—A,)=arglo+7n in 4,(z) (j=1,2), and argt=argl, and
arg (t—A,)=arg A, +7 in #£,(z). If argl,>argl,, we take arg(t—1,) between
arg 1,47 and arg 1,+ 27 in £,(2); if arg 1, <arg 1,, we take arg (t—1,) between
arg 1o and arg 2, +7 in #,(z). In /(2), let argt go from arg A, to arg A, and if
arg 1,>arg 1,, we take for arg (t—1,) the value which lies between arg 1o+ 7 and
arg 1o+ 2m, and for arg (t—1,) the value between arg 4, and arg 2, +x; if arg 2, <
arg 1,, we take for arg(t—J,) the value between arg 1, and arg l,+m, and for
arg (t—A,) the value between arg A, + mw and arg A, +2n. When the above integrals
are divergent, we regard them as “‘the finite part of a divergent integral.”’
From the termwise integration, we can easily see that 4,;(z) (j=1, 2) and
/(z) are expressed in terms of the generalized hypergeometric function 3F, as

follows:
1
2 E]

/(z) = (zo—il)ﬂ‘wz_a‘—“’“(zl—zo)azr(ﬁl"‘ﬂz‘“l—“z*‘z)

I'(e,+ DI (o, +1) -
X TR+ I (Bt 2) @

/)

where {=1—1,/Ao=y, and the arguments of 1,—1, and 1,—1, in /(2) are in
accordance with arg (t—1,) and arg (1— A,) in the integrand of (2.12), respectively.

Bi+Br—ay—a,+2

4oj(2) = (e"iio)“"r(“j+ 1)10'{_01'(2),

_ 1z-1 oc~+1,oc~—ﬂ,cx~-—ﬂ
40'(Z)=—).0_M_3F2 J ] b 2
J F(Z+1+a_,)

\ z+1+4aj, 20— —a,+1

1—z, 0041, ap+1
ﬂl +29 ﬂ2+2

/(z) = Z(z)_lst(
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Here we see that /(z) is an entire solution of (2.10) and #,,(z) (j=1, 2) have
poles at z=—r (r=0, 1, 2,...).

As to the global behavior of #£,;(z) (j=1, 2), #,(z) and /(z) for sufficiently
large values of z, we have the following

PROPOSITION 1.  For sufficiently large values of z,
(2.13) #£0j(z) ~ Soj(z), largz| < % +e (3&>0;j=1,2)

(2.14) £,(2) ~ Sy(z), largz| < % +¢ (Fe<0),

where S (z) (j=1, 2) and S(z) are the formal solutions of (2.10) of the form
Soi(2) = 232—(““)(50,"*‘361'2_1 +-) (j=1,2),
S,(2) = A2z~ BrHpa-ar~art2)(s 451z 14 .),
As to /(z2), if arg 2p>arg ,, then
0(Jzz?), — % —e<argz<®
(2.15) /(2) =
0(zz7), B <argz < % +e (3>0),

and if arg 2, <arg 1,, then

o(Jzz?), — % —e<argz <
(2.16) /(2) =
0(J3z7), O <argz < % +e& (3e>0),

where O=tan~! {log|1—%|/arg(1—%)} (tan~10=0) and y and y’ are suitable
constants.

From this proposition, we see that £,,(z) (j=1, 2) and #,(z) are the principal
solutions of (2.10) in the right half plane. This proposition follows from the
next lemma, of which the proof is omitted here and referred to [5; p. 4] for

example:

LEMMA. Let Y(&) be holomorphic in D={&; |Im &|<n, Reé<n'} (n, n'>0),
and have the growth order

Y(&) = 0(&") (y: a constant)

as E—»oo0, E€D. Then the function ¥(z) of a complex variable z defined by



A fourth order hypergeometric system 307

V() = oir | e eV Rez>0),

where the path of interation C is the contour in D from oo along the negative
real axis, around £=0 in the positive sense and back to oo along the negative
real axis, and the argument of £ goes from —m to m, has an asymptotic expansion

Y(z) ~ z7@tD) 3o ﬁz"

in the right half plane |arg z| <= /2, where Y(§)=> 2, d,&" at £€=0.

PROOF of PROPOSITION 1. We here consider #,(z) only. For #,,(z) (j=1, 2),
we can have the similar discussions to obtain the above results. Putting t=2,7
in #,(z), we have

A (1 ~
4(2) = 11 | o= D (o,

where @, ,(t)=(t—1)"Bi+thm—w2tDgy (7 7). Putting 7=e? again, we have

0

Q17)  4(2) = Zig _essgpmnant 1y () dg

= (e 2ri(Br+hr-ar—az) 1)—1,%& ez EEP 1B ai—aat Ly (E) dE,
C

where

W@ = (LT e = oamning L (e),

and the path of integration and the value of arg £ are the same in Lemma. We
observe that the above Y(¢) satisfies the conditions for Y(£) in Lemma. Then,
in the right half plane |arg z| <=#/2, #,(z) has an asymptotic expansion

/1(2) ~ Ziz_(ﬂl'*'ﬁZ_al_aZ"'z) ZSO=0 arz_",

of which the right hand side must be a formal solution of (2.10).
In (2.17), we put (=% (A€ R). Then we have

SC ezféﬁﬁ'ﬂz—dx—az*‘l!p(f)dé

= ei0(B1+h2—a1—a2+2) S e? [ Pithamas—art 1y (£) dL,

e~ifoC

where z'=e°z and JY({)=y(e®?). Now, if |0| is sufficiently small, ¥({) satisfies
the condition for Y({) in Lemma and the integral
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SC e?' (Pithamai=at 1 () dl
is well-defined for |arg z'| <m/2. Moreover, from Cauchy’s theorem,

e S BrHpamai—axt (L) d(
C

-i6

| ereprmmmarigyag = |

holds for ze{|argz|<n/2}n {|largz’|<m/2}. Hence #;(z) has an asymptotic
expansion

£,(2) ~ Azei0Bi+hamai=aat2) /= (Br+fr=o1=a2+2) 370 (pi0r d)z'r

=Ziz—(ﬂ1+ﬂ2—a1—a2+2) Z?;o a'z—r

in the half plane |arg z’| <=/2, i.e., —n/2—0<arg z<m/2—0. This proves (2.14).
As to /(z), there exist constants ¢; and ¢,, (¢;, ¢,)#(0, 0), such that

/(2) = (P m1¢ y(0yde = (" 15=1¢ p(oyde = (7 51 () de
N 0 0

= (¥ 1 erdor( + exdos(dr = [ 171600 dr
= ¢1#401(2) + c2402(2) — 41(2).

Then, comparing the determining factors of the asymptotic expansions of #;;(z)
(j=1, 2) and #,(z), we have (2.15) and (2.16). Thus Proposition 1 is established.

Now, making use of the above /(z), we can give the coefficient vectors G,(m)=
[g¥(m)]%-, in (2.8) as follows:

5 I'(pz41+1)

2+l(m) = 2+1
g1 m) F(pa1— )T (P21 — 12)

L(m+pye—p)L(MA+pari— 1) 7
X Co=2)" Oy + Iy =20y T (m+ DI (m+ 1+ pyer) /(m+1),

951 (m) = L [m= L pa = ) m = L4 sy 1)
i'(m) = 2+1 1 2+1— M2
gi~'m) ('13—1'{0)a2+l,5—l m+p,.

X g1 (m—1) = (o= MymgF(m)}

gi(m) = (=1)"*vdi'[as-y,3-,(m+ par+py— s — 1) 41+ (m)
— @a11,3-{(m+ pary+p,— = )G~ (m)
— (A +4;,=22)(m+1+p2)877 ' (m+ 1)} ]
v=1,2),

in particular,
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(2.18) G(0) = ez41.

Further, we can define the coefficient vectors G,;(m)=[g¥ (m)]t-, of a holo-
morphic solution by

Then, in particular, the initial value G;,(0) is given by

gH "' (0) = (P241— 1) (P21~ 12)
( Pa+1s Pa+1FPr—Hi—Has ParitPa— Uy — U
X3l

X >,
Pavi—Hi1s Pot1— U2
917'(0) = as_y 30121 (1 = x1)
(2.19) (P2+1+1, PoritPi—py—pat+ 1, paytpr—p—p+1
X3l

)
)

v=1,2).

Pari— M+, pry—py+1

911(0) = a, 41P241

<P2+z+1a PaitPyv— 1= Moy PasrtP3—y— U1 — Pa+1
X3l

Prai— M+l po—pa+1

On the other hand, #4,;(z) (j=1,2) give the coefficient vectors G, (m)=
[g¥,1+/(m)]i=1 (=1, 2) of holomorphic solutions as follows:

241 — p41,i(Ag— AP
98 M) = RS T (— )

L(m—p,)T(m—py)4oj(m+1—pyy)
(Ao—A)m P21 (Ay+ Ay =24 P21l (m+ 1) (m+1—pyyy)

1
=1 (m) =
ginh j(m) (A3-1—40)az41,5-1

X

x = Lo =12 0) g om—1) = (o= 2)(m = pa g s(m)}

gl1e(m) = (=)' di a5, 3 (m+p, — py ~ p2) g3y j(m)
— ai1,3-{(mM+py— gy — p3) g7k j(m)
— (A1 +4,—22))(m+ 1)gi ;(m+ 1)} ]
(v=12;j=12).
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In this definition, the initial values are as follows:

241 (0) = A2+1,
91.%4,(0) I'(pj—pui—u+1)

7

PreitPj— M=l Pj—pyt+ 1, pi—pat1
X3l

1
X’
1
X))’

pi—Mi—Ma+1,2p;—py—py+1

51 (0) = as—1,j (1_L>
91.1+5(0) IF'(pj—pi—p+1) X1

(Pz+t+Pj_ﬂ1_#z+1, pi—mt+l, pi—u+1
X3l

pi—Mi—pa+1,2p;—py—pr+1

(2.20)
; 1
911400 = T, == 1)
PositPi—Ri— a2 Pj— K1 Pj— M2 | |
X3 2 X— >
Pi—Hi— M 2p;—P1— P2 !
g?jljﬂ(o) — _92+1,j33-j,2+1 1 1

2p;=p1—p2+1 T(pj—pi—pa+1) 21

1
X1
(j=12).

As to the growth orders of G(m) (I=1, 2) and G,(m) (I=1, 2; i=1, 2, 3), noting
that if =1, then arg 1o <arg A, ; if |=2, then arg 1, >arg 1,, we have the following
results:

<P2+1+Pj_/11"ﬂ2+1a pi—m+1, pi—p+1
X 3L
pi—m— Mt 1,2p;—p —py+2

O((Ay—A)™m?), — % —eg<argm <0,
Gy(m), Gyy(m) = (3e>0),
O((Ao—A)™m?), 0, <argm < = +¢

2

O((Ag—2,) "m?), — % —e<argm<0,
Gz(m), Gyi(m) = ((e>0),

O((A,— ) ™m?"), 6, <argm < % +e

G 14+;m) = O((Ao—A)™™m?"), |argm| < % +&  (}>0;j=1,2;1=1,2),

where 6,=tan"! {log|1—y,|/arg(1—yx)} (tan~10=0; [=1,2) and 7, 7" and "
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are suitable constants. Now we put
(2.21) Xi(t) = Zm=0 Gu(m)(t =)™ ([t—4|<R;;i=1,2,3),

which are holomorphic solutions of (1.1) near t=4,. As we will see in §4, X (1)
(i=1, 2, 3) and X,(¢) form a fundamental set of solutions of (1.1) and, in particular,
X,1+,(t) (j=1, 2) are holomorphic at t=1;_, (I=1, 2).

§3. Solutions near = o0

Near t=o0, there exist four linearly independent solutions of (1.1), i.e., a
fundamental set of solutions of the form

YPa(t; ) = (1= 220 HPA(r; A)(1—2)7"
(lt_}'[>max {IAI_)'I, l=0, 1, 2}9 p, q=15 2),

where A is an arbitrary complex number. The coefficient vectors HP4(r; A)
(r=1; p, q=1, 2) are determined in terms of the recursion formulas

G.1)  (r—p+ADHP(r; ) = (r—1—p,)(B—HHP(r—1;7) (p, q=1,2)
subject to the initial conditions
(3.2 (A—p)HP0; 1) =0 (p, q=1,2).

For each p (p=1, 2), since rank (4 —pu,)=2, we can choose as H?%(0; 1) (9=1, 2)
two linearly independent eigen-vectors of A. The explicit values of H?9(0; 1)
(p, q=1, 2) will be given in §4.2.

Now we shall prove the following

ProrosITION 2. For A'#4, if HPY(0; A)=HP40; A) (p, q=1, 2), then we
have

Yra(t; ) = YP4(t; 1) (p,q=1,2)

for te{t; |t—A|>max {|}4—21|; I=0, 1, 2}, [t—A|>max {|A,—4|; [=0, 1, 2},
larg (t—A)—arg(t—A)| <m}.

PrOOF. There exist ¢ i« (J, k=1, 2) such that
YPaU(t; X) = 23 k=1 cix YIH(E5 2)

in the above domain. However, by the assumption [A,], i.e., u; —u, #integer,
¢3-px (k=1, 2) must be zero. Hence we have

(A=Y EeYPa(t; X) = S2oy cp(t— ) HoYPK(E; ).
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We here let ¢ tend to infinity in the above domain, obtaining
HP9(0; V') = 3% ¢, HP*(0; 2).

Therefore, we have ¢, ;_,=0 and c,,=1. This completes the proof of Propo-
sition 2.

The above result will be used in the last stage of §4.

§4. Connection coefficients

4.1. Evaluation of the connection coefficients (the summary of M. Kohno’s
paper [3])
Let A be one of 4, (I=0, 1, 2) and
X(1) = (1=2) X =0 G(m) (1 =)™

be a solution of (1.1) near t=4 obtained in §2, where p is 0 or a diagonal element
of A and G({) has the growth order

O =275, — - —e<arg{ <9,
G =
O =2)8"), 0 <argl < % +¢& (Fe>0)

Then X(¢) is represented by the Barnes-integral as follows:

1 —mif

(4.1) X() = = 50r | GO (=),
where the path of integration C is a Barnes-contour running along the straight
line {= —ia from + oo —ia to 0—ia, a curve from —ia to ia and the straight line
{=ia from 0+ia to + oo —ia such that the points {=m(m=0, 1, 2,...) lie to the
right of C and the points {=—p+pu,—r (r=0, 1, 2,...; p=1, 2) lie to the left
of C. The constant a is taken as a>max {|Im (u,—p)|; p=1, 2}. In fact, from
the growth order of G({), we easily see that if [t—Ai|<R=min {|A'—4|, |A"—A|},
then the integral (4.1) is absolutely convergent and equal to the sum of residues
at {=m (m=0, 1, 2,...). Hence (4.1) holds for [t—A|<R.

Let £ be an arbitrary negative number not being equal to Re(—p+pu,—7)
(r=0, 1, 2,...; p=1, 2). We take the positive integers N, (p=1, 2) such that

— (N,+1) <&+ Re(p—p) < —N, (p=1,2).

We now replace the path C in (4.1) by the rectilinear contour L, which runs first
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from + oo —ia to £ —ia, next from & —ia to &£+ ia, and finally from é+ia to + oo+
ia. Then we have

I R A e B
—mif +p
~ T Res| GO ZE-2 (1=,

where the summation covers all poles in the domain encircled by L, and the curve
from —ia to ia of C. Since G(—r)=0 (r=1, 2,...), {(=~-r (r=1, 2,...) are no
longer poles. Then the integrand in (4.1) has simple poles only at {=—p+
up,—r(r=0,1,2,.,N, p=1,2). Hence we have

" Res [G(C) UL ,1):+p]

sin 7{

= $2 Np : _ e~ it
= 3 X lim [(C+p—p 0GOS

(t —A)Cﬂ’]

_ 22 ZN e~ Ti(kp=p)
=22

p 2 —_ —r+p
r=0 sin n(u, — p) Hr(r)(e =2)7ree,

where

H"(r)=c lim  [({+p—p,+r)GQ)] (r20; p=1,2).

>=ptip—r
Now we shall show that the H?(r) (r=0) satisfy the recursion formulas (3.1) and
(3.2). Since G({) is holomorphic at {= —p+pu,+1, we have
(A—p,)H?(0) = b]ipngu [-C+p—ADC+p—n,)G()]

= lim [-({+p—p)B-A)(+1+p)G(+1)] =0.

{==—pthp

For r=1, we have
(=gt D) = lim  [—(C+p= A +p—py 1G]

= lim [—B=-AC+1+p)¢+p—p,+rGC+1)]

{>—pt+lp—r

=(-1-p)(B=D) _ lim [C+1+p—p,+r—1)G(C+1)]

+1->—p+up—(r—1)
= (r—1—p,)(B—A)H"(r—1).
Hence there uniquely exist the constants T?4 (p, g=1, 2) such that

4.3) — MHP(;) = >2_, TraH?(r; )) (r20;p=1,2)
. Sinﬂ(ﬂp—p) q=1 s =V H .
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We therefore obtain
(4.4) X(t) = 231 X2, TPa[(z = A)*» ZNey HPO(r; A) (2 —2)7"]

L eI a—ayrdr (-21<R.
Lg

T 2mi sin 7w

We here apply the results of B. L. J. Braaksma [2; p. 271-278; Lemma 6 and
Lemma 6a] to the above integral: The integral

L 60 20 - ayptea

27 Jemiw sin ©{

is the analytic continuation of the integral in (4.4) for ¢ which in view of the growth
order of G({), lies in the sector

4.5) arg(A"—A) + & Zarg(t—A) L arg(A’'—A) + 2r — ¢/,

¢’ being an arbitrary small positive number. Moreover, for ¢ in the sector (4.5),
we have

e 02 \erRes
i sinag Y pdC|<K< M ) ’

where M =max {|A'—A|, |[A"—A|} and K is a constant independent of ¢ (but de-
pending on ¢'). Hence X(f) is analytically continued into the sector (4.5), and
there we have

X(t) = X321 X2, TPIYP4(2; 1)
for |t—A|> M.

4.2. Results
The residues of Goi(m) (j=1,2) at m=—p;+pu, (p=1,2) et al. can be
calculated by their explicit forms obtained in §2. The residues of G, m((j=12)
at m=—p;+u, (p=1, 2), and those of Gy;(m) (j=1, 2) and G, ,,; (m) (j=1, 2)
at m=pu, (p=1, 2) are equal to the vectors HY =[h3i1t-, (j=1,2; p=1,2)
defined by
)

)

. B Pi—=Hp PjtPa—H1— U2
he!; = (p;— Ua—p) (A — Ao)?I~#e, F

20;—p1—pP2

pPi. = A4jA3—j,4 Ao — A YPi~Hp
0,3~ j 20;—p1—pa+1 (A2—20) X

Pi—Hptl, pi+pa—p—pa+1
(4.6) sz,< e ’ '

2pj—p1—py+2
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)

_ pi—kptl pjtpa—p—patl
h8l3 = a3 j(Ay—Ao)? 77 "r(1—x), F,

2pj—p1—p2+1

J

(=12;p=12)

, pPi—Hpt 1, pitpa—p— i,
hily = a4 j(Ay—Ao)Pi7 " e, Fy

2p;—p1—p2tl

except for constant factors. For example,

lim [+ p;~1)G0;(0)]

Lo=pythp

- F(Pl+1)r(2ﬂp — ls) HEI

(j=1,2; p=1,2).

And the residues of G, .;(m) (j=1,2) at m=p, (p=1, 2) are equal to the
vectors A5/ =[h5/ 4., (j=1, 2; p=1, 2) defined by
2l
x—=1 )

X
=1 p

_ Pj—Up Pjt+P3— U1 —
8 (pJ - u3—p)(ll _AO)P’ ﬂp

2p;—=p1—p2

hpi. = as3ja3—j,3 A —A)Pite X
037 2pj—p1—pat] (41 =4o) x—1

pi—tptl, pij+ps—py—p+1
X 24"

2pj—p1—p2+2
X
x=1 )

pi— M+ 1, pitps—p—pp+1
2F

—Upt Ll pitps—u—u,

~

; Pj
h§ls = az;(A— Ao)p’_”"zF1<

2p;—p1—p2tl

el
ox

= ag;(A1—Ao)?I e 1

X
x—1

(j=1,2;p=12)

2pj—p1—patl

except for constant factors. In fact, for instance,
lim [({— .up)Gl,1+j(C)]
{~Bp

= Lup=py = 1) (Ro—A) ™" Az
T(=m)T (=T (p+ DI (p;= B3+ 1) (= 20)"7 77 0

(G=12;p=12).
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Here one can easily verify that the vector A2’ is equal to HY (j=1,2; p=1, 2)
by virtue of the well-known formula

B, a
2F;
Y

“y=B|
w ) = (I—W)‘“2F1< FT) (larg (1—w)|<7).
?

On the other hand, the residues of G,(m) (I=1, 2) at m= —p, s+, (p=1,2)
and those of G;;(m) (I=1, 2) and Go(m) (I=1, 2) at m=py, (p=1, 2) are equal to
the vector HY=[h? ,J%-, (I=1, 2; p=1, 2) defined by

4.7)

W F(Pv"‘ﬂzu—m_ﬂz, Pa—ytPori— U1 —pat1
Iy = Ay, 24120

X1 ) (V=1,2),

Xt>,

<P1+P2+1_ﬂ1_#2+1, P2t pParr— i~ M2+ 1

P21~ M3-p+1

P1tPavi— Bi— Uz Pat+Povi— U1— U2
h} y = (P2+1_ﬂ3—p)2F1

Pr+1— H3-p

hf s = as—y,24i(1 —x)2F,

)

(I=1,2;p=1,2)

P21~ M3—pt+1

except for constant factors. For example,

(4.8) im [+ p2e—1,)Gi(0)]

{»=p2+1thp

— _ L1+ DT 2pup— py— p3) (Ag— A2+ "r
I'(ppe—pi+ DI (pry— u2+1)F( Pz+z+#p)r(#p+l)

(I=1,2; p=1,2).

)

Fe—pre) , B, B+1-vy
* T@ro-p ™ )"ZF‘( grla|”

(0O<argw <2n)

Now we here apply the connection formula

o Bl \_ r@-ore . .. . [eeti-y
2F1< . w 1)_ F(ﬂ)r(’))—a) (we )2F1 a_'_l_ﬂ

to (4.7), obtaining

- L(prri—p3—p+ DI (p1+p2—2p;)
4.9 HP = 3°2_ 2+1— H3-p 1 2 J
(4.9) ! VT Uy =P )T (P j+ P2vi— My — B2)
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(e(3_2’)ﬂixl)“1+“z"l’j—/72+1

az4g j(}-l_}-o)pf‘”p ng (l= l’ 2; p= 1’ 2)’

where we take arg y;=arg {(Ao—43-)/(A—4;_)} (I=1, 2).

Taking account of the above facts, we shall define the initial values H?%(0; 1)
of the solutions Y?4(t; 1) (p, g=1, 2) of (1.1) near t=o00, not depending on 4,
by

(4.10) H?4(0; 4) = Hg* (p, q=1, 2).

The linear independence of H?%(0; 1) (g=1, 2) for each p (p=1, 2) can be seen
from the non-vanishing of

aaa A, — A.)P1+P2=2kp
HEish2, — HEZshBly = 241942 (1 — ) (2= 160,05 - 010,10,

Pa—tpt 1, prtpa—pi— i,

where

Pr—Upt+ 1, prtpa—pi—
w,(z) = ,F,

p1—p2t+1

wy(2) = sz_p‘2F1<

Now we are in a position to evaluate the connection coefficients. For
example, we consider the relation

p2—pi1+1

(4.11) X0 = 2.a=1 2oy (t; Ay).

According to the consideration in §4.1, for each p (p=1, 2) we have from (4.3)

lim [(@+ps=)Gi(D] = —Sinm(kp—p3) 52 Frageeo; A

{~>—p3+ip e T Hp=P3)

and replace the left hand side by (4.8) together with (4.9). Then the definition
(4.10) and the linear independence of H5? (g =1, 2) lead to

Tre = __ne—"i(”’_pa) (-1 L(p3+ DT Qup—py— pa) (Ao—44)737"»
sin (@, — p3) F(ps—pi+DI(p3—p+ DI (= pa+p) I (1,+1)

L(p3—p3-p+ DI (p1+p2—2pg) (e™iyy)t+H2Pas
F(pp=p )T (p3-gt pari— B1— 12) a3q(Ay—Ao)Pa"e

1 T'(ps+D)I(p1+p2—2p) T Qup—p1 — 12)

as, I'(up—p)I(p3-g+p3—p1—u)l p,+1)

(€™ (Ag—A1))> 7" ( ni< _L))“‘*"z“’“"” -
X O = )P e™( 1 p (p, q=1, 2).
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We here observe that the relation (4.11) holds for
arg(Ag—4y) < arg(t—4y) < arg(A,—4,) + 2x.

This follows from the growth order of G,(m) obtained in §2.
By the similar calculations for the other solutions, we obtain the following

THEOREM. The solutions Xo(t) (j=1, 2), Xo,(t) (j=1, 2), Xo(® (I=1, 2),
X (=1, 2), X;;(t) (I=1, 2) and X145 (=1, 2; j=1, 2) subject to the initial
values (2.4), (2.5), (2.6), (2.18), (2.19) and (2.20), respectively, are represented
by YPa(t; 2) (p, q=1, 2; A=Ay, A; or A,) subject to the initial values (4.10)
(=(4.6)) as follows:

Roft) = 22 4=1 TEIYP4(t; o), Xoft) = 22,4=1 TEYPU2; Ao)

for arg(A,—Ap) <arg(t—4ip) <arg(l;—4y) +2n (j=1,2),
o)) = X2 =1 THIYP9(t; Ao)
for arg(A,—2Ay) <arg(t—Aip) <arg(d,—24y) + 2z (I=1,2).
X, = 2a=1 TRaY?4(t; 4y), Xp4(2) = 2=t TRIYPA(t; Ay)
for arg(io—4,) <arg(t—A,) <arg(d,—4,) + 2m,
Ro(0) = 32,021 TEYPU(t5 4g),  Xpu(2) = 22,421 THIYP(25 2y)
for arg(A,—2,) <arg(t—A4,) <arg(Ag—4,) + 27,
and
Xi14/0) = 22 =1 TP4 4 ;YP4t; Ay
for arg(lo—A) <arg(t—1) <arg(lo—24) +2n (=1, 2;j=1,2),

where the connection coefficients are given by

T8I = T4 =0 (p,j=1,2)

i — T(pi+ DI Qup—py— 1) _ .
PJ = J p 1 2 —Ri(Bp—Pj) -
T8 = T,y ¥ DTy 4 D © 2 i=12)

j L(=p;+1)LQ2p —H2) i ;

Pl — __ P 2 nip -
e G TEa] ¢ e R G
Tre = 1 L(p1+p2=2pg) L pp— py— 1y)

azit,qg T(Wp—p )T (P3-g+ P2vi— 1y — )T (— p3-p)
e—niﬂp

x (e(3=2Dmiy Yiitha=Pq=P2+1 (p,q,1=1,2)

(A= 20)"s

fra — 1 L(pr1+ DI (p1+p2—2p) T Cpp— py— 1)
i1, T(p—p )L (P3-g+ Posr—p1—p2) I (pnp+1)
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x {2 Qo BT (e-anmipuisrarans(p, g, 1=1,2)

TP = —1 T(=poi+DI(p1+p2—2p)L (P24~ B3—p+ DI 2pp— py— 1p)
ayi,g  TWp— )T (= pos )T (P3—gt Pai— s — 1) T (— p3_p)

x (eni(—l—o—éz)_);“p (6(3-—21)1:ixl)1l1+ﬂz—pp-'Pz+x (p, q, 1=1’ 2)
(A —Ag)Pate
Tf’?—:} =0 (P, lsj=1’ 2)

’

and

= IQup—p1— 1) (eri(Ao—Ap)) " -
Tthej= 2 p— ) l’ '—1’ 2 ’
b = Tty ¥ DT (— ) Gu= e (B HI=LD

where we take arg y,=arg {(1o— ;- )/(L—25_)} (I=1, 2).

ReMARK. X)) (I=1,2) and X145 (j=1,2; 1=1, 2) are holomorphic
at t=A;_;. This follows from the fact that the integrals in (4.4) for X,,(f) and
Xi1+;(t) (j=1, 2) are analytically continued in the domain which contains the
point A5 _, from the growth order of Gy(m) and G, 4 j(m), respectively.

From the above Theorem, we immediately obtain the following result.

CoROLLARY. Each set of [Xo:(1), X05(0), Xo1(t), X02(01, [X0:1(2), Xoa(t),
X010, Xo2(01 and [X(0), X11(1), X,5(), Xi3(0] (I1=1,2) forms a fundamental
set of solutions of (1.1).

5 PROOF. As to [Xo(f), Xo2(), Xo1(), Xo2()] and [Xoy(5), Xoa(t), Xo,(8),
Xo2(8)], it is sufficient to show that the linear independence of X,,(f) and X,(¢),
and X,,(¢) and X,,(t), respectively.
The linear independence of X,,(f) and X,,(¢f) immediately follows from the
explicit values of T34 (p, g, j=1, 2) in Theorem. On the other hand, if X,,(¢)
and X,,(f) are not linearly independent, then there exists a non-trivial entrie
solution of (1.1). This contradicts the assumption [A,].

As to [X (1), X,1(), X15(1), X,5(1)], it is sufficient to show that X,,(f), X,,(?)
and X ;(¢) are linearly independent. This follows from the non-vanishing of

12 11721 _ 11721
TIB(TIITIZ TIZTll)y

which immediately follows from the explicit values of T¥Z (p, g, I=1, 2;i=1, 2, 3)
in Theorem. Thus Corollary is proved.

By Proposition 2, taking suitable values for arg(i,—4,) and arg(iy—4,),
the connection matrices between fundamental sets of solutions of (1.1) near
t=A4 and t=4, (I, k=0, 1, 2; Is#k) are calculated by means of connection coef-
ficients in Theorem.
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