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§ 1. Introduction

We shall be concerned with a connection problem for the fourth order
Fuchsian differential system (hypergeometric system)

(1.1) (t-B) = Ax (ίeC),

where B is a 4 by 4 diagonal matrix of the form

B = diag[Λ0, λ0, λl9 λ2~]

and A = [ajk] is a 4 by 4 matrix similar to a diagonal matrix of the form

diag[μl9 μi9 μ2, μ2]

with <212 = α2ι=0.
Obviously, (1.1) has only four regular singularities at t = λt (/ = 0, 1, 2) and

t = oo in the whole complex plane.

Denoting the diagonal elements a^ of A by pj O' = l, 2, 3, 4), we here assume
the following :

[A0] There are no straight lines through all finite singularities λθ9 A t and λ2.
[Aj : Generic condition] None of the quantities

PP PJ - Pk, μp, μi - μ2 (Λ fc=i, 2, 3, 4,jVfe; P=I, 2)

is an integer. This implies that there exist no logarithmic solutions.
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[A2 : Irreducible condition] None of the quantities

PJ + p* - μ>ι - μ>2> PJ-VP O'=ι, 2;/?=ι, 2)
is an integer.
[A3] None of the quantities

= l, 2)

is an integer.
The hypergeometric system (1.1) corresponds to a section of the Appell func-

tion F3. In the paper [6] T. Sasai calculates the monodromy group of the above
hypergeometric system and then shows that the group is irreducible under the
condition [A2] We observe that, under the conditions [AJ and [A2], the
quantities

d0 = aί3a24 - a14a239 άγ = a31a42 - a32a4i

and all elements of A except α12 and a2ί never vanish.

Now the purpose of this paper is to evaluate explicit values of connection
coefficients between solutions near t = oo and the finite singularities t = λl

(/ = 0, 1, 2). The general theory of such connection problems for hypergeometric
systems is developed by M. Kohno [3] (see also [4]). This work is a quite
good example of his method.

In the later consideration, we may assume without loss of generality that

there hold

( arg (λι -λ0) < arg (A2 - A0) < arg (λ^ - λ0) + π,

J arg^o-^) > arg^-AJ > arg(A0-λι) - π,

[ arg (λ0 - λ2) < arg (λ± - λ2) < arg (A0 - A2) + π.

§ 2. Solutions near the finite singularities

2.1. Solutions near t = λ0

Near t = λ0, there exist two non-holomorphic solutions of (1.1) of the form

(2.1) *o/0 = (t-W' Σϊ=oβoXm)(ί-A0)* (\t-^\<R0;j = l, 2),

where R0 = mm(\λl-λQ\'9 / = !, 2). The coefficient vectors 60/m) (m^0;7 = l, 2)
are uniquely determined up to a constant factor by the recursion formulas

(β-Ao)(m + l + p;)60/(m + l) = (m + P/-^)(5o/(m) (m^O)
(2.2) {

(B-λo)p/?oX<>) = 0 (7 = 1,2).
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On the other hand, there exist holomorphic solutions of (1.1) of the form

*o(0 = Σ£=o G0(m)(f-λ0)« (|f-

where the coefficient vectors G0(m) (ra^O) are characterized by the recursion
formulas replacing m + pj by m in (2.2). In particular, G0(0) is characterized by

Pi 0 013 014 Ί
G0(0) = 0.

0 P2 023 024 J

Then there exist two linearly independent holomorphic solutions of (1.1) near

In order to seek the explicit forms of 60/
m) (w^0;j = l, 2) and G0(m)

(w^O), we regard m as a complex variable in (2.2). Then, eliminating the com-
ponents $1 J9 0$j and 0$jJ of <S0/ra) = [0g/w)]£=1

 in (2 2) to obtain the second
order linear difference equation for gj

oj and putting

(λ, - λo)«(A2 - λ0rΓ(m + 1 + Pj)Γ(m +

m + 1 = z

and

we can easily see that jJ

0j(z) satisfies the following second order linear difference
equation:

(2.3)

= 0

Taking account of the Fuchs' relation (trace relation) Σί=ι Pk = 2(

PJ + Pa - μi - M2 - i + PJ + p4 - μi - ^2 - 1 = 2py - PI - p2 - 2,

we can immediately see that (2.3) is just of the normal form of the so-called
hypergeometric difference equation [1; p. 69(103)]. P. M. Batchelder defines
six particular solutions and investigates their global behavior in great details.
Among them, we here choose suitable solutions so that they satisfy the initial
condition in (2.2) and moreover have no poles in the right half plane. As such
solutions we can first take the entire solutions of (2.3)



300 Toshiaki YOKOYAMA

where χ=l— (^2~^o)/(^ι~^o) and 2^ι α'
w denotes the hypergeometric

function. As to the asymptotic behavior of /Oj(z) for sufficiently large values of
z, P. M. Batchelder gives the following result:

-Si(z), 0 0 -π<argz<0 0 ,
.

Sί(z), 00 <argz < Θ0 + π,

where 00 = tair 1 {log 1 1 - χ|/arg (1 - /)} (tan~ 1 0 = 0) and Sί(z) (v = 1 , 2) are formal
solutions of (2.3) of the form

S'(z) = (λv-λ0)
zz-^ +p^^-^-^\sv + sf

vz-ί + '") (v = 1, 2).

Making use of /°J(z), we can now give explicitly the coefficient vectors
' = 1> 2) in (2.1) as follows:

In particular

(2.4) <

where βj denotes the j-th unit vector. Further, we can define the coefficient
vectors C70j (m) = [^r§/m)]ί=1 (y' = l, 2) of holomorphic solutions by

*) Throughout this paper we regard w and the generalized hypergeometric functionougou 2 ι w

(αiΛ a2β a* w) as single valued holomorphic functions of w in C/[l, oo).
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Γ(-μi)Γ(-μ2)Γ(Pj+l)

Then, in particular, the initial values G0/0) (j = l, 2) are given by

(2.5)

, . , ,
oj(m-Pj) ϋ - 1,

2pJ -p1-p2+l

f = l, 2) for sufficiently large values of

Θ0 - π < arg m < 00,

: 00 + π,

The growth orders of (j0/
m) and G0j(m)

m are as follows:

<30/m), G0/m) =

where y and γ' are suitable constants.

Now we put

which are holomorphic solutions of (1.1) near t = λ0. As will be seen in §4,

X0j(t) O' = l, 2) are linearly independent and then X0/0 0* = 1» 2) and ^oj (0
(7 = 1, 2) form a fundamental set of solutions of (1.1) near t = λ0.

We next take another solutions of (2.3), which are called the principal solutions

of the hypergeometric difference equation, of the form

_; \z-ι f

Γ(z)(λ2-λ0) -μ ι-μ 2, P3-J+P3-μι-

±

x r

I —
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with the asymptotic behavior

+ ε (3ε>0; v = l, 2).

Since these principal solutions have poles at z= — r (r = 0, 1, 2,...), they cannot
become solutions of (2.2), that is, the initial condition in (2.2) is not satisfied.
However they give the coefficient vectors Gol(m) = [g%l(m)']%=i (1 = 1,2) of holo-
morphic solutions of (1.1) as follows:

Γ(-μί)Γ(-μ2)

Γ(m-μl)Γ(m-μ2)
(λ, -

Here it is remarked that for each / ( / = !, 2), the vectors G0/(m) defined as above
by putting j = l and j = 2 are same ones. This fact is easily checked by means

of formulas satisfied by the hypergeometric function 2Fι\ πΛ The initial

values are as follows :

(2.6)

%9oι

Z -
901 Γ(p2+l-μι-μ2+l)
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where χί = l— χ~l and X2 = X~1- The growth orders of Gol(m) (/ = !, 2) for suf-
ficiently large values of m are as follows :

δoι(m) = 0((λι-λo)-mm7), |argm| < + e (3ε>0; / = !, 2),

where y is a suitable constant. Now we put

(2.7) Xol(t) = Σϊ=oC0,(m)(ί-A0)" (|ί-A0|<«0; / = !, 2),

and then obtain holomorphic solutions of (1.1) near i = λ0. As will be seen in §4,
Xoι(t) is holomorphic at t = λ3_l (1 = 1, 2), and moreover X0j(t) (7 = 1,2) and
X0/(f) (/ = !, 2) form a fundamental set of solutions of (1.1) near t = λQ.

2.2. Solutions near t = λl (I = 1 , 2)

Near ί = λz (/ = 1, 2), there exist a non-holomorphic solution and holomorphic
solutions of (1.1) of the form

(2.8)

and

Xι(f) =

respectively, where Rl = mm(\λ0 — λl\9\λί+λ2 — 2λl\). The coefficient vectors
Gj(ra) (m^O) are uniquely determined up to a constant factor by the recursion
formulas

and the coefficient vectors Gf(m) (m ̂  0) are characterized by the recursion formulas

replacing m + p2 + / by m m (2.9). In particular, G/(0) is characterized by

0) = 0 or {.a^a42a4r?>ρA}G2((ί) = 0.

Then there exist three linearly independent holomorphic solutions of (1.1) near

t=λ,
In order to seek the explicit forms of G^m) (m^O) and Gf(m) (m^O), we

again regard m as a complex variable in (2.9). Then, eliminating §\, §} and
§\~l of G/(m) = [^f(m)]ί=1 in (2.9) to obtain the third order linear difference
equation for cfi+l and putting

2+i(m\ =

1 ^m)

m + 1 = z
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and

we can easily see that jj*+l(z) satisfies the following third order linear difference

equation :

(2.10)

where

βv = P2 + ι~ Vv-2> αv = P2 + ι + Pv ~ Hi ~ 1*2 - 1 (v = l, 2)

and

. ΛO = /i + /2 — 2Aj, ΛI = A0 — Λ,/

We shall now investigate this difference equation. By the Mellin trans-
formation

the difference equation (2.10) is transformed into the following linear differential
equation:

This equation is the second order Fuchsian differential equation with three
singularities t = l0) λί and oo, whose solutions are expressed in terms of the
hypergeometric function 2FX. We here note that none of the quantities

αι-«2> α v (v = l, 2), βv(v=l, 2), βt + β2 - αλ - α2

is an integer under the assumptions [AJ, [A2] and [A3]. Hence we have the

solutions of (2.10) as follows:

(7 = 1,2),
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2αJ -α1-α2

t-1* (7 = 1,2)

and

(2.12)

where

and

Ψl2(0

are the solutions of (2.11). In the above integrals, we take the paths of integration
as the straight lines. As to the arguments of their integrands, we take argf =
arg30 and arg(ί — 30) = arg30 + π in 40j(z) (7 = 1,2), and argf^arg^ and
arg(ί —^1) = argA 1 +π in ^Ί(z). If argI0>argI1, we take arg(i — λ0) between
argl0 + π and arg^0 + 2π in ^Ί(z); if arg!0<arg^1, we take arg(ί —10) between
argl0 and arg^0 + π in ^Ί(z). In /(z), let argί go from arg^ to argί0 and if
arg!0>arg λί9 we take for arg(ί —10) the value which lies between arg^0 + π and
arg λQ + 2π, and for arg (t — 1 x) the value between arg 1 i and arg ί ί + π if arg 10 <
arg^ l5 we take for arg(ί—10) the value between argί0 and argA 0 + π, and for
arg (ί — ̂ i) the value between arg 11 + π and arg lί + 2π. When the above integrals
are divergent, we regard them as "the finite part of a divergent integral."

From the term wise integration, we can easily see that ^0/
z) O' = l> 2) and

/(z) are expressed in terms of the generalized hypergeometric function 3F2 as
follows:

1

7 J

f /(z) = (^-

/(z) = * ,

where ^=1— λ1/!0 = χι and the arguments of ί0 —^i an<l ^ι~^o in ^(z) are in

accordance with arg(ί — λ^ and arg(ί —ί0) in the integrand of (2.12), respectively.
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Here we see that /(z) is an entire solution of (2.10) and ^0/
z) O' = l> 2) have

poles at z = -r (r = 0, 1, 2,...).

As to the global behavior of ̂ 0/
z) O' = l» 2), A(z) and Λz) f°r sufficiently

large values of z, we have the following

PROPOSITION 1. For sufficiently large values of z,

(2.13) ^0/z)~S0/z), |argz|<|- + ε ( 3ε>0;y=l, 2)

(2.14) ^φ-SΛz), |argz |<- + ε (3ε<0),

where S0j(z) (j = l, 2) and SΊ(z) are the formal solutions o/(2.10) of the form

S0j(z) = ̂ -(

As to /(z), j/argl0>arg!1, then

(2.15) /(z) =

-y- ε < a r g z <

= y + β (3ε>0),

ί/ argl0<argl1,

~ - ε < a r g z <

(2.16)

^tan"1 {log |1— χ|/arg(l — %)} (tan""1 0 = 0) and y and y' are suitable
constants.

From this proposition, we see that Λ0j(z) (j = l, 2) and ^ι(z) are the principal
solutions of (2.10) in the right half plane. This proposition follows from the
next lemma, of which the proof is omitted here and referred to [5; p. 4] for

example :

LEMMA. Let ψ(ξ) be holomorphic in D = {ξ\ \Imξ\<η, Reξ<η'} (η, ηr>0),
and have the growth order

ψ(ξ) = O(£y) (7: a constant)

as ζ->oo, ξeD. Then the function Ψ(z) of a complex variable z defined by
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(Rez>0),

where the path of ίnteration C is the contour in D from oo along the negative
real axis, around ξ = Q in the positive sense and back to oo along the negative
real axis, and the argument of ξ goes from — πtoπ, has an asymptotic expansion

Ψ(z) ~ z-C+i) Σ,% _ - *"r

in the right half plane |argz|<π/2, where ψ(ξ)=Σ?=odrξ
r at ξ = Q.

PROOF of PROPOSITION 1. We here consider ^(z) only. For ^Oy(z) 0' = 1» 2),
we can have the similar discussions to obtain the above results. Putting t = λίτ
in ^Ί(z), we have

(z) = l\ τ*-χτ-
o

where 0ι2W = (τ-l)~(^1+^2~αι"α2+1)φ12(^ιτ). Putting τ = eξ again, we have

(2.17) ^i(z) = If Γ
J-oo

where

j f
J

and the path of integration and the value of arg ξ are the same in Lemma. We
observe that the above ψ(ξ) satisfies the conditions for ψ(ξ) in Lemma. Then,
in the right half plane |arg z| <π/2, ^ι(z) has an asymptotic expansion

of which the right hand side must be a formal solution of (2.10).

In (2.17), we put ξ = eiθζ (θe/?) Then we have

e~iθC

where z' = e ίθz and φ(ζ) = ψ(eiθζ). Now, if |θ| is sufficiently small, φ(ζ) satisfies
the condition for ψ(ζ) in Lemma and the integral
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Jc

is well-defined for |arg z'| <π/2. Moreover, from Cauchy's theorem,

f ez'

JC

holds for ze{|argz|<π/2} n {|argz'|<π/2}. Hence ^(z) has an asymptotic
expansion

in the half plane |argz'|<π/2, i.e., -π/2-0<argz<π/2-0. This proves (2.14).
As to /(z), there exist constants cί and c2, (c1? c2)/(0, 0), such that

Then, comparing the determining factors of the asymptotic expansions of ^0/
z)

O' = l, 2) and ^Ί(z), we have (2.15) and (2.16). Thus Proposition 1 is established.

Now, making use of the above /(z), we can give the coefficient vectors όt(m) =
[£Km)]t=ι in (2.8) as follows:

_ __
Γ(p2+l-μι)Γ(p2+l-μ2)

in particular,



A fourth order hypergeometric system 309

(2.18) = e2+l

Further, we can define the coefficient vectors Cj/1(m) =

morphic solution by

ί= of a holo-

Then, in particular, the initial value Ga(0) is given by

Xi

On the other hand, ^0/
z) (7 = l j 2 ) give the coefficient vectors Gl)l+j(rn)

[^?,n-Xm)]ί=ι 0 = 1> 2) of holomorphic solutions as follows:

Γ(m-μί)Γ(m-μ2)Joj(m+l-p2+l)
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In this definition, the initial values are as follows:

2+l (ft\ — a2+l,J
-

(2.20)
ρj-μί-μ2+l, 2pj-pί-p2+l

J_
X i

Π3-J (Γ)\ _ a2+l,Ja3-J,2+l _ 1
βiΛ+* ) 2pJ-Pl-p2 + l Γ(pJ-μl-μ2+l) χ,

0 = 1,2).

As to the growth orders of Gj(ra) (/ = !, 2) and GH(m) (/ = !, 2; i = l, 2, 3), noting
that if / = 1, then arg λ0 < arg lx if / = 2, then arg λ0 > arg λ 1? we have the following

results:

), Gu(m) =

G2(m), G21(m) =

O((A2-l1)~m'"ϊ'), - - - ε < arg m < θx

(3ε>0),

(3ε>0),

Gu+/m) = 0((Ao-A,)-"m'"), |argm| < - + ε (3ε>0;7 = l, 2; Z = l, 2),

where θ^tan-1 {log|l-χ,|/arg(l-χ,)} (tan'1 0=0;/=!, 2) and γ, j' and γ"

O((λ0 — λiY^mΊ), θί < arg m < — + ε

O((A0 -/ί2)-mm^), - -y - ε < arg m < 02

•i - A2)-mmy'), 02 < arg m < 4 + 'ε
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are suitable constants. Now we put

(2.21) X^t) = ΣZ=oGάm)(t-λjr (If-λ^Λ,; i = l, 2, 3),

which are holomorphic solutions of (1.1) near t = λl. As we will see in §4, XH(i)
(i = 1, 2, 3) and %ι(ί) form a fundamental set of solutions of (1.1) and, in particular,
XlΛ+j(t) O' = l, 2) are holomorphic at ί = A 3 _ ί (/ = !, 2).

§ 3. Solutions near t = oo

Near ί = oo, there exist four linearly independent solutions of (1.1), i.e., a
fundamental set of solutions of the form

; λ)(t-λ)-r

(|ί-λ|>max{μ l-A|; / = 0, 1, 2}; />, 0 = 1, 2),

where λ is an arbitrary complex number. The coefficient vectors Hpq(r\ λ)
(r^ 1 p, q = 1, 2) are determined in terms of the recursion formulas

(3.1) (r-μp + A)H*'(r , λ) = (r-l-μp)(B-X)H**(r-l 9 λ) (/>, q = l, 2)

subject to the initial conditions

(3.2) (A-μp)H'*(0; λ) = 0 Q>, g = 1, 2) .

For each p (p= 1, 2), since rank (̂ 4 — μ/7) = 2, we can choose as Hpq(Q; λ) (q = l, 2)
two linearly independent eigen-vectors of A. The explicit values of Hpq(0; λ)
(p, q = 1, 2) will be given in §4.2.

Now we shall prove the following

PROPOSITION 2. For λ'^λ, if H^(0; A /) = H^«(0; )̂ (p, q = l, 2), ί/ien we

; λ') = yp«(ί; A)

/or ίe{ί; |f-A'|>max{|A,-A'|; /=0, 1, 2}, |i-A|>max{|A,-A|; /=0, 1, 2},
|arg(ί-A)-arg(ί-r)|<π}.

PROOF. There exist cjk (j, k = \, 2) such that

in the above domain. However, by the assumption [Aj], i.e., μ^—μ^^ integer,
c3-f,k (k = ί, 2) must be zero. Hence we have

(t-λr»γ»(t , λ1) = Σί-i c^t-λr
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We here let t tend to infinity in the above domain, obtaining

Therefore, we have cpt3-q = Q and cpq=l. This completes the proof of Propo-

sition 2.

The above result will be used in the last stage of §4.

§ 4. Connection coefficients

4.1. Evaluation of the connection coefficients (the summary of M. Kohno's
paper [3])

Let λ be one of λl (/ = 0, 1, 2) and

be a solution of (1.1) near t = λ obtained in §2, where p is 0 or a diagonal element
of A and G(ζ) has the growth order

:γ + β (3ε>0)

Then X(f) is represented by the Barnes-integral as follows:

(4.1)

where the path of integration C is a Barnes-contour running along the straight
line ζ = — ia from + oo — la to 0— ia, a curve from — ia to ια and the straight line
ζ = ia from Q + ia to + 00 —ϊ'0 such that the points ζ = w(ra = 0, 1, 2,...) lie to the
right of C and the points ζ= -ρ + μp-r (r = 0, 1, 2,...; p = l, 2) lie to the left

of C. The constant # is taken as a >max {|Im (μp — p)\ p= 1, 2}. In fact, from
the growth order of G(Q, we easily see that if \t-λ\<R = min {\λ'-λ\, \λ"-λ\}9

then the integral (4.1) is absolutely convergent and equal to the sum of residues

at ζ = m (m = 0, 1, 2,...). Hence (4.1) holds for |f-λ|<jR.
Let ξ be an arbitrary negative number not being equal to Re( — p + μp — r)

(r = 0, 1, 2,... p= 1, 2). We take the positive integers Np (p = l, 2) such that

-(Np+l)<ξ + Re(p-μp)< -Np (p = l,2).

We now replace the path C in (4.1) by the rectilinear contour Lξ which runs first
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from + oo — ia to ξ — ίa, next from ξ — ia to ξ -f la, and finally from ξ + iato +00 +
ίa. Then we have

(4.2)

where the summation covers all poles in the domain encircled by Lξ and the curve

from -ia to ia of C. Since G(-r) = 0 (r = l, 2,...), ζ= -r (r = l, 2,...) are no
longer poles. Then the integrand in (4.1) has simple poles only at ζ=—p +
μp-r (r=0, 1, 2,..., JVp; p = l, 2). Hence we have

Σ Res
^ sinπζ

1 TNp

1 Zwr=o ,ζ-*-p+μp-r L sin

where

= lim

Now we shall show that the Hp(r) (r^O) satisfy the recursion formulas (3.1) and
(3.2). Since G(Q is holomorphic at ζ= — p + μp + l, we have

= lim [-

For r^l, we have

(r-μp + A)H*(r) = lim [_
ζ^-p+^p-i

= lim [-(B
p-r

A) lim

Hence there uniquely exist the constants T^« (p, q = l,2) such that

<ττ/?— πί(Mp— p)
(4'3) ~ - ^pω = Σi-i T> H»(r; λ) (rkO; /»=!, 2).
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We here apply the results of B. L. J. Braaksma [2; p. 271-278; Lemma 6 and
Lemma 6a] to the above integral : The integral

ξ + ioo

- - 7 -smπζ

is the analytic continuation of the integral in (4.4) for t which in view of the growth
order of G(Q, lies in the sector

(4.5) arg(Γ-λ) + e' = arg(ί-A) = arg(λ'-λ) + 2π - e',

ε' being an arbitrary small positive number. Moreover, for t in the sector (4.5),
we have

G(ζ)πe
v ' rsmπζ Af

where M = max {\λf — λ\9 \λ" — λ\} and K is a constant independent of t (but de-
pending on ε'). Hence X(t) is analytically continued into the sector (4.5), and
there we have

for|ί-λ|>M.

4.2. Results

The residues of G0/m) 0 = 1, 2) at m=-pj + μp (p=l, 2) et al. can be
calculated by their explicit forms obtained in §2. The residues of 60/

m) 0' = 1» 2)
at m= -pj + μp (p=l, 2), and those of G0/m) O' = l, 2) and G2)1+y (m) 0 = 1, 2)
at m = μp (p = l, 2) are equal to the vectors H5 / = [Λg/Jk]{=1 0 = 1, 2; p=l, 2)
defined by

(4.6)

— a4Ja3-J,4

- 2Pj-Pl-p2 +

pj-μp + l, pj + p4.-μ1-μ2+l
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2pJ-p1-p2+l

7 = 1 , 2 ; / 7 = 1 , 2 )

except for constant factors. For example,

lim
— Pj+μp

Γ(pJ+l)Γ(2μp-μί-μ2) _
l)Γ(pj-μ2+l)Γ(μp+l)Γ(-pj~+μp)

And the residues of GM+/m) (7 = 1,2) at m = μp (p=l, 2) are equal to the

vectors #δ' = [ίδklί=ι () = 1, 2; p = l, 2) defined by

Pj-μ,+ l,pj

Pj—μp+l,

except for constant factors. In fact, for instance,

Γ(2μp-μ1-μ2)_ _

Γ(-μι)Γ(-μ2)Γ(μp+l)Γ(Pj-μ3-p+l)
fipj

"<>

7 = 1,2^=1,2).
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Here one can easily verify that the vector HζJ is equal to HζJ (j = l, 2; p=l, 2)

by virtue of the well-known formula

β,<*
w-1

On the other hand, the residues of G^rri) (/ = !, 2) at m= —ρ2+ι + μp (p = l, 2)
and those of Gn(m) (1 = 1, 2) and δ0ί(m) (/ = 1, 2) at m=μp (p= 1, 2) are equal to

the vector //f = [/ιfjfc]£=1 (/ = !, 2; p = l, 2) defined by

(4.7)

— a v, 2+1 Xι

p2+l-μ3-p+l

(7=1,2; ^=1,2)

except for constant factors. For example,

(4.8) lim

Now we here apply the connection formula

Γ(/?-α)Γ(y)
iΓ ± |

α, α +1 —

(0<argw<2π)

to (4.7), obtaining
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,.1+M,-P,-P,+ .

-" '-"* ° ( ' 2 p-l 2>>
where we take argχ, = arg {(A0 - A3 _,)/(A, -A3_,)} (/ = !, 2).

Taking account of the above facts, we shall define the initial values /P«(0; A)

of the solutions y«(ί; λ) (p, q = ί, 2) of (1.1) near ί = oo, not depending on A,

by

(4.10) ; λ) =

The linear independence of HPΪ(0; A) (q = l, 2) for each p (p=l, 2) can be seen

from the non-vanishing of

043

where

* >ι(z) = 2F1

ω2(z) =

Now we are in a position to evaluate the connection coefficients. For

example, we consider the relation

According to the consideration in §4.1, for each p (p = l, 2) we have from (4.3)

lim

and replace the left hand side by (4.8) together with (4.9). Then the definition
(4.10) and the linear independence of Hζq (q = 1, 2) lead to

(-1).
sinπ(μp-p3)

Γ(
X

Γ(p3+l)Γ(Pl+p2-2pq)Γ(2μp-μ1-μ2)
Γ(μp - pq)Γ(p3_q

(Λ 9= 1,2).
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We here observe that the relation (4.11) holds for

-AO < arg(ί-Ai) < arg^-AJ + 2π.

This follows from the growth order of (^(m) obtained in §2.
By the similar calculations for the other solutions, we obtain the following

THEOREM. The solutions 10/0 (j = l, 2), XQJ(t) (j = l, 2), Xol(t) (/ = !, 2),

£,(0 (/ = !, 2), Xn(f) (1 = 1, 2) and XlΛ+j (/=!, 2; j = l, 2) siit/ecf to ίfcβ inίίifl/
values (2.4), (2.5), (2.6), (2.18), (2.19) and (2.20), respectively, are represented

by YPq(t;λ) (p9 q = l, 2; A = A0, λ^ or A2) subject to the initial values (4.10)
( = (4.6)) as follows:

A0)

arg(A 2-A 0)<arg(ί-A 0)<arg(A 1-A 0) + 2π 0 = 1,2),

^,=ιn?^^;^o)
arg (A, - A0) < arg (ί - A0) < arg (A, - A0) + 2π (1=1,2).

arg (A0 - A^ < arg (t - AJ < arg (A2 - AJ + 2π,

^,,=ι fS«ΓM(ί; A2), JΓ21(f) = ΣJ.β=ι ΓSfΓ^(ί, A2)

arg (Ax - A2) < arg (t - A2) < arg (A0 - A2) + 2π,

for arg(A 0-A /)<arg(ί-A /)<arg(A 0-A /) + 2π (/ = !, 2; j = l, 2),

connection coefficients are given by

πί(μp-Pj)
eΓ(Pj-μ3-p+l)Γ(μp+l)

Γ(pι + p2-2p9)Γ(2μf-μι-μ2)
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+ p2-2pq)Γ(p2+l-μ3_p+l)Γ(2μp-μi-μ2)
<*2+ι, q Γ(μp - ρq)Γ(μp - p2+l)Γ(p3_q + p2+l - μx - μ2)Γ( - μ3.p

X (e(λϊ-W -*>' (e(*-2l}niXιY>+μ2-pp-p"1 (P, ff, '=1,

= 0 (/?, 7,7 = 1,2)

Γ(2μp-μ1-μ2) (e^p-^))""* , ,

= arg{(A0-/l3_ ί)/(Az-A3_/)} (1 = 1, 2).

REMARK. X0/(0 (/ = !, 2) and Xu+/0 0 = 1, 2; / = !, 2) are holomorphic

at ί = A 3 _ z . This follows from the fact that the integrals in (4.4) for X0ι(t) and

Xlfί+j(t) 0* = 1, 2) are analytically continued in the domain which contains the

point /I 3_ z from the growth order of Gol(m) and Gu+J (m), respectively.

From the above Theorem, we immediately obtain the following result.

COROLLARY. Each set of [!0ι(0, ^o2(0, *oι(0, *o2(0], [*oι(0, ^o2(0,

^oι(0, ̂ 02(0] fl«^ [ ĵ(0, ^n(0, ̂ 2(0, ι̂3(0] α = l, 2) /orms α fundamental
set of solutions of (1.1).

PROOF. As to [*01(f), 102(0, ̂ oι(0, ^02(0] and [£0ι(0, ^02(0, *oι(0,
^02(0] > it is sufficient to show that the linear independence of X0ι(0 and ^02(0?

and ί0ι(0 an(i ^02(0» respectively.
The linear independence of ^Oι(0 an(i ^02(0 immediately follows from the
explicit values of ΓgJ (p, q, j = l,2) in Theorem. On the other hand, if X0ι(0

and ^02(0 are not linearly independent, then there exists a non-trivial entrie
solution of (1.1). This contradicts the assumption [AJ.

As to [̂ (0, Xn(t), Xι2(t), -X"/3(ί)], it is sufficient to show that Xn(t)9 Xl2(t)
and Xπ(i) are linearly independent. This follows from the non-vanishing of

which immediately follows from the explicit values of Tp

tf (p, q, 1 = 1,2; i = l, 2, 3)

in Theorem. Thus Corollary is proved.

By Proposition 2, taking suitable values for arg(A0 — λ^ and arg(A0 — λ2),

the connection matrices between fundamental sets of solutions of (1.1) near

t = λl and t = λk (I, fc = 0, 1, 2; IΦK) are calculated by means of connection coef-
ficients in Theorem.
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