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Introduction

Aldosray [1] introduced the concept of quasi-artinian Lie algebras gener-
alizing those of soluble Lie algebras and artinian Lie algebras, that is, Lie algebras
satisfying the minimal condition for ideals, and left an open question asking
whether a semisimple quasi-artinian Lie algebra is always artinian. On the other
hand, he introduced the concept of quasi-artinian groups in an analogous way
and noted that the corresponding results mentioned in [1] hold for groups.
Subsequently Kubo and Honda [2] provided a negative answer to the question
above, and moreover gave a condition under which quasi-artinian Lie algebras
are soluble (resp. artinian).

In this paper, following the paper [2] we construct a semisimple quasi-artinian
group which is neither soluble nor artinian and give a condition under which
quasi-artinian groups are soluble (resp. artinian).

We shall prove in Section 2 that the class of quasi-artinian groups is countably
recognizable (Proposition 2.2) and that a subgroup with finite index in a quasi-
artinian group is quasi-artinian under some conditions (Proposition 2.3). In
Section 3 we shall prove that every residually (w)-central quasi-artinian group is
soluble (Theorem 3.3) and that every residually commutable quasi-artinian group
is hyperabelian (Theorem 3.7). The main result of Section 4 is that a quasi-
artinian group G is artinian if and only if for each normal subgroup N of G G/N
satisfies the minimal condition on abelian normal subgroups (Theorem 4.2). In
Section 5 we shall give examples showing that the class of quasi-artinian groups
is not E-closed (i.e. P-closed) and is not s,-closed.

The author would like to express his gratitude to Professor S. T6g6 for his
encouragement.

1.

Let G be a group. As usual, x=y"!xy and [x, y]=x"1y ixy, [x, ¥, z]=
[[x, y1, z] for x, y, ze G. 'We write inductively

D!(xy, x3) = [x;, x,],

D"+1(x1,--., x2n+1) = [D"(xl,..., xz..), Dn(x2n+1,..., x2..+1)] (n 2 1),
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where each x;€G. For non-empty subsets X, Y, Z of G, we write XY=(x?:
xeX,yeY), [X,Y]={[x,yl:xeX,yeY), [X,Y, Z]=[[X,Y], Z]. We
also write H< G, H<G and H<"G if H is a subgroup, a normal subgroup and an
n-step subnormal subgroup of G respectively. We denote by Core; H the core
of H in G, that is, the largest normal subgroup of G contained in H. For an
ordinal « we denote by G®, {,(G) the a-th terms of the (transfinite) derived and
upper central series of G respectively. These are inductively defined by G(® =G,
Gt =[G®, G®] and GP=N,.,G*® for any limit ordinal 1; {,(G)=1,
{1(G)=the centre of G, {,+1(G)/{G)={1(G/{(G)) and {}(G)=\U,<;3{(G) for
any limit ordinal . The upper central series of G terminates and the terminal
subgroup is called the hypercentre of G.

Let X be a class of groups. A subgroup H of a group G is called a <"X-
subgroup (resp. <a"-subgroup) of G if H<"G and H € X (resp. H<"G). Min,
Min-< and Min-<1"X are the classes of groups satisfying the minimal condition
for subgroups, normal subgroups and <a"X-subgroups respectively. The groups
in the class Min-< are called artinian groups. &, U and P are the classes of
finite, abelian and periodic groups respectively. E(<a") is the class of groups G
which have an ascending abelian series of <a”-subgroups of G, i.e., an ascending
series 1=Gy<1G;<---G,=G in which each factor Gg.,/G; is abelian and each
Gy is a <a"-subgroup of G. In particular (<) is called the class of hyperabe-
lian groups.

For a class X of groups the classes

s¥X, s,X, X, RX, QX, LX

are defined as follows: G esX (resp. s,X) if G is a subgroup (resp. normal sub-
group) of an X-group. GeEX if G has a finite series 1=Gy<G,<--<G,=G
in which each factor G;,/G; belongs to X. G eRrX if to each non-trivial element
x of G there corresponds a normal subgroup N(x) not containing x such that
G/N(x)eX. GeqQX if G is a homomorphic image of an X-group. GelLX if
every finite subset of G is contained in an X-subgroup. In particular E is the
class of soluble groups and is also denoted by &. The groups in the class RX
(resp. LX) are called residually (resp. locally) X-groups. When A is one of s, s,
E, R, Q, L, we say that a class X of groups is A-closed if AX=X. P and H are also
used instead of E and Q respectively.

A group G is said to be semisimple if G has no non-trivial subnormal abelian
subgroups.

Let H be a subgroup of a group G. We introduce a new notation: He
gmin-G if for every descending chain N;2N,2.-- of normal subgroups of G
contained in H there exist r, se N such that [G", N,J=N, for any n>1, or
equivalently there exists m € NV such that [G™, N, ] N, for any n>1. Then
we have a useful result.
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LEMMA 1.1. Let H be a subgroup of a group G. If there exists me N
such that G™ =G, then the following are equivalent:

(1) Hegmin-G.

(2) Theset {{G™, N]: N<H and N<G} satisfies the minimal condition.

(3) For every descending chain N;2N,2--- of normal subgroups of G
contained in H, the descending chain [G™, N;]12[G™, N,]=--- terminates.

PrOOF. Put M=Gm.

(1)=(2): Let N; be a normal subgroup of G contained in H for any i>1
and suppose that [M, N,]J=2[M, N,]=:--. Since Heqmin-G, there exists an
integer n>1 such that [G™, [M, N,]]<[M, N,] for any i. By using the three
subgroup lemma we have

[M, N,] < [M, N,, M] = [G™, [M, N,]] < [M, N;] foranyi> n.

(2)=>(3) s trivial.

(3)=(): Let Ny2N,=2--- be a descending chain of normal subgroups of
G contained in H. Then there exists n € N such that [M, N,]=[M, N,,,]="---.
Therefore we have [M, N,]="\2, [M, NJJ=sN2, N,

A group G is said to be quasi-artinian if G eqmin-G. We denote by
gmin-<a the class of quasi-artinian groups. We note that if G is quasi-artinian
then there exists m € NV such that G(™ =G(), Hence as a special case of Lemma
1.1 we obtain

COROLLARY 1.2. - The following are equivalent:

(1) G is quasi-artinian.

(2) There exists me N such that G™ =G, and the set {[G"™, N]:
N<G} satisfies the minimal condition.

(3) There exists m € N such that G™ =G, and for every descending chain
N,2N,2--- of normal subgroups of G, the descending chain [G™, N,]=
[G™, N,]=-- terminates.

(4) There exists me N such that for every descending chain N2 N,2---
of normal subgroups of G, the descending chain [G™, N,]12[G™, N,]=2---
terminates.

The equivalence of (1), (3) and (4) in the statement of Corollary 1.2 was
shown by Aldosray [1, Theorem 3.1] and the equivalence of (1) and (2) is a group
analogue of [2, Proposition 1.1].

2.

In this section we shall state several results on quasi-artinian groups.
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gmin-<a is Q-closed ([1, Theorem 3.2(i)]) but is not E-closed (Example 5.1).
However we know the following fact.

LeMMA 2.1 ([1, Theorem 3.2(ii)]). Let N<aG. Then G eqmin-<a if one of
the following holds:

(@) N eqgmin-<1 and G/N eel.

(b) N eqgmin-G and G/N € qmin-<1.

(c) N eMin-< and G/N € gmin-<.

Let X be any class of groups. We recall that Ly X is the class of groups G
such that every countable subset of G is contained in an X-subgroup of G. X is
called countably recognizable if X is Ly -closed, that is, X=Ly X. Itis well known
that many interesting classes of groups which are not L-closed are Ly,-closed
(cf. [6, pp. 104-110]). For example, U, N, Max, Max-<a, Min, Min-<, etc.
are countably recognizable. Though gqmin-< is not L-closed (Remark 3.9)
we have

PROPOSITION 2.2. qmin-<a is countably recognizable.

Proor. Let G&qmin-<. It follows from Corollary 1.2 that for any
me N there exists a descending chain N;>N,>--- of normal subgroups of G
such that [G'™, N;]>[G™), N,,,] for any i>1. Choose x; to be any element
of [G™, NJ\[G™, N;,,]. Now we can write x;=II;[y;;, n;;]°v where y; e
G™, n;;eN; and ¢;=+1. Since G™={D™(g,,..., gm): g, €G) we can also
write y;;=II, D™(g;jx15---» gijkam). Let X be a subgroup of G which contains the
countable set {n;;, gijui}ijx,i- Since x;e [X™, X n NJ\[X™, X N N;i,], we
have [X™, X nN;]J>[X™, X N N;,,] for any i>1. Hence X&gmin-<a by
Corollary 1.2 and so G&Ly(qmin-<a). It follows that qmin-<t is countably
recognizable.

The class of artinian groups Min-< is not s-closed and is not even s,-closed
(cf. [S, p. 153]). However Wilson showed that a subgroup with finite index in
an artinian group is artinian (cf. [5, Theorem 5.21] or [7, 3.1.8]). Though qmin-
<a is not s,-closed (Example 5.2), we shall show that a subgroup with finite index
in a quasi-artinian group is quasi-artinian under some conditions.

DEerINITION. We say that a group G has the property (P) if [4, B]n[4, C]=
[4, B n C] holds for any three normal subgroups 4, B, C of G.

PROPOSITION 2.3. Let G be a quasi-artinian group and let H be a subgroup
with finite index in G. If G/Coreg H is soluble and Coreg; H has the property
(P), then H is quasi-artinian.

PrOOF. Suppose that H&qmin-<1. Set C=Coreg H. Then C is of finite
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index in G. Since H/C is soluble Lemma 2.1 implies that C&qmin-<a. By
hypothesis there exists m € N such that G™M=G@ <C. Hence we have G™ =
C™, say N. Since C&qmin-C it follows from Corollary 1.2 that there exists a
minimal element [N, K] of the non-empty set {[N, L]: L<xG, L<C and L&
gqmin-C}.

Let & be the set of all non-empty finite subsets X of G with the following
property: if

Kl > K2 > cer (1)

is a strictly descending chain of C-admissible subgroups of K such that [N, K,]>
[N, K,]> -+, then

[N, K] =[N, K¥] )]

for all i. Let T be a transversal to C in G. Then G=CT. For any chain (1)
the relation K;<a«C implies that KT<G. Also KT<K since K<1G and so
[N, KT]<[N, K]. If [N, KT]<[N, K], then KT e gmin-C by minimality of
[N, K] and therefore [N, K;1=[N, K;,]="-- for some j>i, in view of Lemma
1.1. By this contradiction [N, KT]=[N, K] for all i. Thus Te% and & is
not empty.

We now select a minimal element X of #. If xe X, then Xx~! € & because
N, K<G. Therefore Xx~! is a minimal element of & containing 1. Hence we
may assume that 1€ X. Now if X ={1}, the equation (2) shows that K € qmin-C.
It follows that X has at least two elements. Consequently the set

Y=Xx\{1}

is non-empty. Therefore Y does not belong to & by minimality of X.
For any chain (1) we define

Li=Ki ﬂ K‘Y.

Now K4<1C¢?=C for all g in G and so L;<<C. Also L;>L;,, and [N, L]]>
[N, L;;,]. Suppose that [N, L;]=[N, L;,,]. Since Xe€&, we must have
[N, K]=[N, K¥] and
[N, K]=[N, KIn[N, K¥,1=[N, K;In[N, K;,;K},4]
=[N, Kn([N, K;+,1[N, K¥;;])=[N, K;,+(J([N, K;] n[N, K¥;1])
=[N, K;+1][N, K; n K, 1[N, K; ([N, L]=[N, K441,
using that C has the property (P). Thus [N, K;]=[N, K;.], which is not the

case. Hence [N, L]J>[N, L;,] for all i. Therefore [N, K]=[N, L¥] for all
i, which shows that
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[N, K;1=[N, K n [N, L¥Y]=[N, K] n ([N, L;][N, L{])
=[N, LJ([N, K] n [N, LY]) €[N, L].
Hence [N, K;]=[N, L;]. By definition of L; it follows that
[N, KI1 =[N, K{] =[N, K]

for all i, and so Ye.%#, which is a contradiction.

3.

In this section we shall first give classes X of groups such that gmin-<t n X=
e, and secondly give classes %) of groups such that qmin-<a N Y < &(<)2.
A group G is said to be residually central if

x & [G, x]

for each non-trivial element x of G. We denote by ‘R the class of residually central
groups. R is s, L and R-closed and every Z-group is residually central. So
LN<R. Following [2], we generalize the notion of residually central groups.

DEerFINITION. We say that a group G is residually (w)-central if
x&[G@), x]¢

for each non-trivial element x of G, and denote by R, the class of residually
(w)-central groups. It is clear that R, is s and R-closed and that REA U R< R,
But R, is not L-closed (see the statement after Remark 3.5).

We first prove a simple result.

LeMMA 3.1. Let H be a subgroup of a group G and let Z be a subgroup of
the centralizer of H in G. If x is an element in G such that xe[H, x]°Z\Z,
then there is a non-trivial element ¢ of [H, x]° such that ce [H, c]°.

ProoF. By hypothesis we can write x=cz where ce[H, x]° and zeZ.
Since x& Z, we see that c#1. Let h be any element of H. Then

[h, x] = [h, z]1[h, c]* = [h, c]*.
Hence ce [H, x]9=[H, c]S.

Since all free groups are residually nilpotent (cf. [7, 6.1.9]), R, is not
Q-closed. However there is the following weak form of Q-closedness.

PROPOSITION 3.2. Let G be a residually (w)-central group and let N be a
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normal subgroup of G contained in the hypercentre of G. If there exists ne N
such that GM =G, then G|N is residually (w)-central.

Proor. LetZ,=(,(G). Since N is contained in the hypercentre of G, it is
sufficient to prove that G/N nZ, is residually (w)-central for every ordinal a.
Suppose that « is the first ordinal for which this is false. Then «>0 and there
exists an element x such that xe [G™, x]®(NNZ,) but x&cNNZ,. Assume that
o is not a limit ordinal. Then x(N nZ,_,) does not belong to NNZ,/NNnZ,_,
which is a subgroup of the centre of G/N n Z,_,, but it does belong to

[(G/NNZy— )@, X(N NZ,-)]9N"2=-((NNZ,/N N Z,_,).

Lemma 3.1 may therefore be applied to the group G/N n Z,_,; and we conclude that
this group is not residually (w)-central. By this contradiction « is a limit ordinal
and x € [G™, x]S(N n Z;) for some f<a. But G/N n Z; is residually (w)-central,
and so xe N NZz;< N n Z,, our final contradiction.

Now we shall give the first of main results in this section, which is a group
analogue of [2, Theorem 2.3].

THEOREM 3.3. qmin-<a N X=gWU for any class X of groups such that
EA<SX<SR ).

Proor. It is sufficient to prove that gqmin-< n R, <EA. Suppose that
there exists a group G such that Geqmin-<a N R,)\EA. Put N=G©. Then
1#N=G® for some neN. Since N is perfect we have {;(N)=(,(N)<N,
owing to the Griin’s lemma. We note that x& [N, x]9¢,(N) for any x € N\{;(N).
In fact, if x € [N, x]¢(,(N) then since {;(N)< C4(N) it follows from Lemma 3.1
that there exists a non-trivial ¢ €[N, ¢]%, which implies that G is not residually
(w)-central. Now take x; e N\{{(N). As {;(N)=(,(N) we have {;(N)<[N,
x,]1°¢,(N). Next we take x, € [N, x;1°,(N)\{;(N). Then we also have {,(N)<
[N, x,]J9¢,(N). By repeating this procedure, we can find a sequence (x;); of
elements of N\(;(N) such that for any integer i >1

X &[N, x;J°C(N) and x4, €[N, x;]J°,(N).

Put N,;=[N, x;]°¢,(N). Then N;<G and N;>N,;,, for any i>1. Since G is
quasi-artinian, there exists m e N such that [N, N,]J<N, ;. Using the three
subgroup lemma we obtain that

[N9 xm]G (= [Na Xms N]G == [Nm’ N] = Nm+l -
Therefore N,,=[N, x,,1°¢,(N)<N,,,, which is a contradiction.

COROLLARY 3.4. (1) qmin-<a N R<EW.
(2) Min-< n ‘.R(w) < EQI.
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REMARK 3.5. As a finite residually central group is nilpotent (cf. [6, p. 7])
we see that qmin-<a N R<eU. By considering an infinite cyclic group we also see
that Min-<a n R, <eW.

Corollary 3.4 indicates that every locally nilpotent quasi-artinian group is
soluble. But locally soluble quasi-artinian groups need not be soluble. In fact,
McLain [3] constructed a locally soluble artinian group which is not soluble.
However we shall later obtain that a locally soluble quasi-artinian group is hyper-
abelian. To do this we need the following

LEMMA 3.6 (Baer). A group G is hyperabelian if and only if given two
sequences Xg, Xq,... and yo, ¥1,... of elements of G such that

Xpv1 =[x Yo X1,
there is an integer m >0 such that x,,=1.

Proor. See [5, Theorem 2.15].

A group G is said to be residually commutable if given a pair of non-trivial
elements a and b, there exists a normal subgroup N of G which contains [a, b]
but does not contain both a and b. We denote by R, the class of residually com-
mutable groups. R, is s, R and L-closed and every SI-group is residually com-
mutable. So LEN<R,. It is well known that a residually commutable artinian
group is hyperabelian (cf. [6, Theorem 8.15]). Now we can strengthen this
result. Namely we show the second of main results in this section.

THEOREM 3.7. A residually commutable quasi-artinian group is hyper-
abelian.

ProoOF. Let G be residually commutable and quasi-artinian. Suppose that
G is not hyperabelian. By making use of Lemma 3.6 we see that there exist
two sequences of elements of G x,, X;,... and yg, yy,... such that

1# x40 = [X5 Yi» Xi]

for each integer i>0. It is easily seen that x;e GV for any i>0. Let Ny=G
and N,=GW. Suppose that for i>1 we have constructed a normal subgroup
N; of G containing x; such that

N; € [GU~Y, N;_,].

Now, since each x;#1, we see that [x;, y;]#1. Since G is residually commutable,
there is a normal subgroup N of G such that x;,,=[x;, y;, x;J€ N, but N does
not contain both x; and [x;, y;]. On the other hand, we also have x;,, €
[GD, N;]. So, set N;;=[GH, NIJnN. Then x;,,€N;;; and N;>N,,,



Quasi-artinian groups 229

since either x; or [x;, y;] belongs to N,\N. This construction produces an infinite
descending chain of normal subgroups

<=2 [GUD, Ny 12 N; 2 [GD, N2 Ny  2[GHD, Nyl 2---.

Consequently ([G9, N;])2, does not terminate. This is impossible by Corollary
1.2.

As mentioned in the péragraph after Remark 3.5 we obtain the following
COROLLARY 3.8. A locally soluble quasi-artinian group is hyperabelian.

REMARK 3.9. Hyperabelian groups need not be quasi-artinian. In fact, let
G; be a soluble group with derived length i for all i>1. Set G=Dr2, G;. Then
G is hyperabelian and locally soluble (so locally quasi-artinian). But since
G >G?P > ... we see that G is not quasi-artinian.

Robinson showed that E(<a2)? N PN Min-<?U<EA N Min ([4, Theorem
E]). Hence we have the following

COROLLARY 3.10. gmin-<a N Ry NP N Min-<2A=gA n Min.

4.

In this section we shall present classes X of groups such that qmin-<a n X=
Min-<.

For any class X of groups, let X2 denote the largest Q-closed subclass of X.
It is easy to see that for a group G, G € X if and only if N<G implies G/N € X.

It is obvious that

Min-< < Min-<seMW)? < Min-<aW)Q < (Min-<a(U n P))<.
For the first and second inclusions we obtain the following
PRrROPOSITION 4.1. Min-<a <(Min-<sgU)=(Min-<aA)Q.
We state the main result in this section.

THEOREM 4.2. gmin-<a N X=Min-<t for any class X of groups such that
Min-<a < X< (Min-<a )<,

Proposition 4.1 and Theorem 4.2 are group analogues of the results on Lie
algebras (Propositions 3.1, 3.2 and Theorem 3.3 in [2]) and their proofs can be
carried over quite similarly. So we omit the proofs.

Robinson showed that LEU N Min-<a N Min-<a?2A <A N Min ([4, Theorem
E*]). Hence we have the following
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COROLLARY 4.3. LEU N gmin-<a N (Min-<12A)Q=EgA N Min.
REMARK 4.4. There exists a group G such that
G eqmin-<a N Min-<a(A N P))? but G & Min-<
(Example 5.3). Hence by Theorem 4.2 we see that
(Min-<)Q < (Min-<a(A n PB))Q

5.

In this section we shall present several examples in connection with the
results in Sections 2 and 4.

ExAMPLE 5.1. Let S be a non-abelian simple group and let Z be the additive
group of all integers. Put G=Z~ S, that is, the standard wreath product of Z
with S. Let B be the base group of G. Then B=@®,.sZ, where Z,~ Z for each
xeS and G=B>S. For each integer i>1 we put N;=@®,s2'Z,. Obviously
N;>N,>:--. We note that

[ax, b] = [a, b]*[x, b] = (b~1)*b for a,beB and xeS.

Let 1, denote the element of Z, which is the isomorphic copy of 1. Now take any
element b of N;. Then we can write b=X,s2'n,-1, where n,e Z for each yeS.
From the note above we have

[ax, b] = (22}(—n,)-1)* + X2'n,-1,
= 22i(n,—n,.-1)-1,e N;.

Hence [G, N;]=[S, N;]€N,, which shows that N;<<G and [G™), N;]=[S, N,]
for all m>0 and i>1. Now put b=2/-1,€ Z,nNN;. Then for a non-trivial
element x in S

[x, b] = 2i(—=1,) + 2i-1, = 2(1,—1,)&N; 4.
Hence we have [S, N;]>[S, N;,.,] for any i>1. So for each m>0 we have
[G™, N;] > [G™, N;4,] forany i > 1,

which implies by Corollary 1.2 that G is not quasi-artinian. However it is clear
that B and G/B are quasi-artinian. Therefore gmin-<a is not E-closed.

ExaMPLE 5.2. Let S be a non-abelian simple group and let S* be an infinite
simple group. Put G=S~S*. Then G=B><S* where B=Dr, . S, (S,=S5).
Clearly B(") =B and for every subset T of S* [B, Dr,.r S,]=Dr,.r S,. Let {xy,
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X,,...} be a countable subset of S*. Then for any integer n>0
[B(")’ DrxeS"\(xl)Sx] > [B(")’ DrxeS*\(x,,xz} Sx] > e

Hence by Corollary 1.2 we see that B is not quasi-artinian.

Next let M be a normal subgroup of G contained in B. Assume that M #1.
Since M is normal in B we can write M =Dr, . S, where T'is a non-empty subset
of S*. If T#S* then choose an element y of S¥*\T. For an element x of T we
have S,=(S,)* 'S M, a contradiction. Therefore T==S*, that is, M=B.

Now we shall show that B is the only non-trivial normal subgroup of G.
Let N be a non-trivial normal subgroup of G. Assume that NNB=1. Any
element of N is expressed as z=ax where ae B and xe S*. Then a=II, ra,
(a, € S,) for some finite subset T.of S*. As T3 S* there exists an element y of
S*\T. Choose 1#b,eS,. Then we have

[z b,] = [a, b,I*[x, b,] = (b})"'b,e N n B.

Hence b}=b,, which implies that x=1. Therefore N=B and so N=1, a con-
tradiction. Thus N nB#1. Then since NN B<G we have NNB=B by the
previous paragraph, and N/B=2G/B. Since G/B is simple we have N=B.

Consequently G is artinian and so quasi-artinian. Therefore qmin-< is
not s,-closed.

ExaMPLE 5.3. There exists a group G satisfying the following conditions:
(1) Gegmin-<a N (Min-<a(U n P))Q

(2) Every subgroup with finite index in G is quasi-artinian.

(3) G&EAU Min-<.

(4) G has no non-trivial soluble subnormal subgroups.

In fact, let Z, be the set of all positive integers and let S, be the group of all
finitary permutations of Z,, that is, all permutations which move only a finite
number of the symbols. Then define S(n) to be the stabilizer in S, of {n+1,
n+2,...}. Clearly S,=S(n). Let A(n) be the image of 4, under the isomorphism.
Then A(5)<A(6)<--» and A,= U,>5 A(n) is an infinite simple group. Also
we have

A, < S, <Sym(Z,).
For any integer n>3 we put k(n)=2+3+-:-+n, and define
a=(1,2)3,4,5)(k(n)+1, k(n)+2,..., k(n+1))...eSym(Z,).

Since A%=A, we define ¢ to be the automorphism of 4, induced by «. Set
G=A,>(t). As {t) is infinite we first see that G& Min-<.
We now claim that every subnormal subgroup (#1) of G contains 4,,. Let
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H be a subnormal subgroup (#1) of G. Then there is a finite series (H,);<, of
subgroups of G such that H=H,<<H,_;<1---<sH,=G. By induction on i we
show that A, < H;. It is trivial for i=0. Let i>0 and assume that A < H,.
Suppose that [A,, H;,;]=1 and take any element h=ot™ (6€A4,) in H;,,.
Then o € A(k(n)) for some n>3 and put /=max {|{m|+2, n}. For an element
t=(k()+1, k(D)+2, k(I)+3)e A, we have

1 =1[z, h] = [z, ™][7, 6] = T~ 12'™

Hence 7=1"" and we may assume that m>0. Considering that k(/)+m+3<
k(I+1) we have

am: k() +i+— k() + m+i for i=1,23.

Therefore (k()+1, k(D+2, k(D+3)=kD+m+1, k()+m+2, k()+m+3),
which implies m=0. So H;,, <A, and H;,,<{,(A,)=1, a contradiction.
Hence we have [A,, H;.]#1. Since A,<H; and H;,,<H;, [A,, H;;,]<
H;nA,=A,. By the simplicity of A, we have A,=[A,, H;»1<[H;, H;+ ]S
Hi.y.

We next.prove that every soluble subnormal subgroup of G must be 1. Let
H be a soluble subnormal subgroup of G and H#1. Then A, < H by the previous
paragraph, which contradicts the simplicity of 4.

Let N;2N,=2--- be a descending chain of normal subgroups of G and N;#1.
Since GW=A4_ and A, <N, for any n>1, we have

[GW,N]<c[4,, Gl A, S N, forany n>1.

This says that G is quasi-artinian.

Let H be a subgroup with finite index in G. Since Cores H is of finite index
in G we have 1#Core; H<G, and so A, =Core;f HSH. Thus H is normal in
G. For any three normal subgroups M;#1 (1<i<3) of H we obtain 4, S M,,
which plainly implies that

[M19 Mz] = [Mp Ms] = [M19 M, ﬂM3] = A-

Hence H has the property (P). As G/H is abelian it follows from Proposition 2.3
that H is quasi-artinian.

We finally assert that Ge(Min-<a(2 nP))Q. It is trivial that Ge Min-<
EA<Min-<<(ANP). Let 1#N<G. Then A, ,=N. If A, #N, then 1#
N/A,<G/A,=(t). Hence G/Ne§ If A, =N, then G/N={t)eMin-<
(AN P). Therefore we obtain our assertion.

From Example 5.3 we deduce that there is a semisimple quasi-artinian
group which does not satisfy the minimal condition for normal subgroups.
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ExaMPLE 5.4. A group does not necessarily have the property (P). In
fact, let Qg be the group of Hamilton’s quaternions. This is the group consisting
of the symbols +1, +i, +j, +k where —1=i?=j2=k? and ij=k=—ji, jk=
i=—kj, ki=j=—ik. Now clearly (id>={+1, i}, {j>={x1, +j}, <k)>=
{+1, £k} and these are normal in Qg. Since [i, j]=—1 we have [{i), {j>]=2
{+1} and similarly [{i), <kD]=2{+1}. However

[<i>, <> n [Ki), <kD] > [Kid, <j> n <k>]
because {j) N<ky={£1}={;(Qs).
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