## Quasi-artinian groups

Takanori SAKAMOTO (Received September 12, 1984)

## Introduction

Aldosray [1] introduced the concept of quasi-artinian Lie algebras generalizing those of soluble Lie algebras and artinian Lie algebras, that is, Lie algebras satisfying the minimal condition for ideals, and left an open question asking whether a semisimple quasi-artinian Lie algebra is always artinian. On the other hand, he introduced the concept of quasi-artinian groups in an analogous way and noted that the corresponding results mentioned in [1] hold for groups. Subsequently Kubo and Honda [2] provided a negative answer to the question above, and moreover gave a condition under which quasi-artinian Lie algebras are soluble (resp. artinian).

In this paper, following the paper [2] we construct a semisimple quasi-artinian group which is neither soluble nor artinian and give a condition under which quasi-artinian groups are soluble (resp. artinian).

We shall prove in Section 2 that the class of quasi-artinian groups is countably recognizable (Proposition 2.2) and that a subgroup with finite index in a quasi-artinian group is quasi-artinian under some conditions (Proposition 2.3). In Section 3 we shall prove that every residually ( $\omega$ )-central quasi-artinian group is soluble (Theorem 3.3) and that every residually commutable quasi-artinian group is hyperabelian (Theorem 3.7). The main result of Section 4 is that a quasi-artinian group G is artinian if and only if for each normal subgroup N of G G/N satisfies the minimal condition on abelian normal subgroups (Theorem 4.2). In Section 5 we shall give examples showing that the class of quasi-artinian groups is not E-closed (i.e. P-closed) and is not  $S_n$ -closed.

The author would like to express his gratitude to Professor S. Tôgô for his encouragement.

1.

Let G be a group. As usual,  $x^y = y^{-1}xy$  and  $[x, y] = x^{-1}y^{-1}xy$ , [x, y, z] = [[x, y], z] for  $x, y, z \in G$ . We write inductively

$$D^{1}(x_{1}, x_{2}) = [x_{1}, x_{2}],$$

$$D^{n+1}(x_{1}, ..., x_{2^{n+1}}) = [D^{n}(x_{1}, ..., x_{2^{n}}), D^{n}(x_{2^{n}+1}, ..., x_{2^{n+1}})] \quad (n \ge 1),$$

Let  $\mathfrak{X}$  be a class of groups. A subgroup H of a group G is called a  $\lhd^n\mathfrak{X}$ -subgroup (resp.  $\lhd^n$ -subgroup) of G if  $H \lhd^n G$  and  $H \in \mathfrak{X}$  (resp.  $H \lhd^n G$ ). Min, Min- $\lhd$  and Min- $\lhd^n\mathfrak{X}$  are the classes of groups satisfying the minimal condition for subgroups, normal subgroups and  $\lhd^n\mathfrak{X}$ -subgroups respectively. The groups in the class Min- $\lhd$  are called artinian groups.  $\mathfrak{F}$ ,  $\mathfrak{A}$  and  $\mathfrak{P}$  are the classes of finite, abelian and periodic groups respectively.  $\acute{E}(\lhd^n)\mathfrak{A}$  is the class of groups G which have an ascending abelian series of G subgroups of G, i.e., an ascending series  $1 = G_0 \lhd G_1 \lhd \cdots G_\alpha = G$  in which each factor  $G_{\beta+1}/G_{\beta}$  is abelian and each  $G_{\beta}$  is a G subgroup of G. In particular  $\acute{E}(G)\mathfrak{A}$  is called the class of hyperabelian groups.

For a class X of groups the classes

$$SX$$
,  $S_nX$ ,  $EX$ ,  $RX$ ,  $QX$ ,  $LX$ 

A group G is said to be semisimple if G has no non-trivial subnormal abelian subgroups.

Let H be a subgroup of a group G. We introduce a new notation:  $H \in \text{qmin-}G$  if for every descending chain  $N_1 \supseteq N_2 \supseteq \cdots$  of normal subgroups of G contained in H there exist  $r, s \in N$  such that  $[G^{(r)}, N_s] \subseteq N_n$  for any  $n \ge 1$ , or equivalently there exists  $m \in N$  such that  $[G^{(m)}, N_m] \subseteq N_n$  for any  $n \ge 1$ . Then we have a useful result.

LEMMA 1.1. Let H be a subgroup of a group G. If there exists  $m \in \mathbb{N}$  such that  $G^{(m)} = G^{(\omega)}$ , then the following are equivalent:

- (1)  $H \in \text{qmin-}G$ .
- (2) The set  $\{[G^{(m)}, N]: N \leq H \text{ and } N \triangleleft G\}$  satisfies the minimal condition.
- (3) For every descending chain  $N_1 \supseteq N_2 \supseteq \cdots$  of normal subgroups of G contained in H, the descending chain  $[G^{(m)}, N_1] \supseteq [G^{(m)}, N_2] \supseteq \cdots$  terminates.

Proof. Put  $M = G^{(m)}$ .

(1) $\Rightarrow$ (2): Let  $N_i$  be a normal subgroup of G contained in H for any  $i \ge 1$  and suppose that  $[M, N_1] \supseteq [M, N_2] \supseteq \cdots$ . Since  $H \in \text{qmin-}G$ , there exists an integer  $n \ge 1$  such that  $[G^{(n)}, [M, N_n]] \subseteq [M, N_i]$  for any i. By using the three subgroup lemma we have

$$[M, N_n] \subseteq [M, N_n, M] \subseteq [G^{(n)}, [M, N_n]] \subseteq [M, N_i] \quad \text{for any } i \ge n.$$

- $(2)\Rightarrow(3)$  is trivial.
- (3) $\Rightarrow$ (1): Let  $N_1 \supseteq N_2 \supseteq \cdots$  be a descending chain of normal subgroups of G contained in H. Then there exists  $n \in N$  such that  $[M, N_n] = [M, N_{n+1}] = \cdots$ . Therefore we have  $[M, N_n] = \bigcap_{i=1}^{\infty} [M, N_i] \subseteq \bigcap_{i=1}^{\infty} N_i$ .

A group G is said to be quasi-artinian if  $G \in \text{qmin-}G$ . We denote by  $\text{qmin-} \bowtie$  the class of quasi-artinian groups. We note that if G is quasi-artinian then there exists  $m \in \mathbb{N}$  such that  $G^{(m)} = G^{(\omega)}$ . Hence as a special case of Lemma 1.1 we obtain

COROLLARY 1.2. The following are equivalent:

- (1) G is quasi-artinian.
- (2) There exists  $m \in N$  such that  $G^{(m)} = G^{(\omega)}$ , and the set  $\{[G^{(m)}, N]: N \triangleleft G\}$  satisfies the minimal condition.
- (3) There exists  $m \in \mathbb{N}$  such that  $G^{(m)} = G^{(\omega)}$ , and for every descending chain  $N_1 \supseteq N_2 \supseteq \cdots$  of normal subgroups of G, the descending chain  $[G^{(m)}, N_1] \supseteq [G^{(m)}, N_2] \supseteq \cdots$  terminates.
- (4) There exists  $m \in \mathbb{N}$  such that for every descending chain  $N_1 \supseteq N_2 \supseteq \cdots$  of normal subgroups of G, the descending chain  $[G^{(m)}, N_1] \supseteq [G^{(m)}, N_2] \supseteq \cdots$  terminates.

The equivalence of (1), (3) and (4) in the statement of Corollary 1.2 was shown by Aldosray [1, Theorem 3.1] and the equivalence of (1) and (2) is a group analogue of [2, Proposition 1.1].

2.

In this section we shall state several results on quasi-artinian groups.

qmin
is q-closed ([1, Theorem 3.2(i)]) but is not E-closed (Example 5.1). However we know the following fact.

LEMMA 2.1 ([1, Theorem 3.2(ii)]). Let  $N \triangleleft G$ . Then  $G \in \text{qmin-} \triangleleft if$  one of the following holds:

- (a)  $N \in \text{qmin} \rightarrow and G/N \in \mathbb{E}\mathfrak{A}$ .
- (b)  $N \in \text{qmin-}G \text{ and } G/N \in \text{qmin-} \triangleleft$ .
- (c)  $N \in Min$  and  $G/N \in qmin$ .

Let  $\mathfrak{X}$  be any class of groups. We recall that  $L_{\aleph_0}\mathfrak{X}$  is the class of groups G such that every countable subset of G is contained in an  $\mathfrak{X}$ -subgroup of G.  $\mathfrak{X}$  is called countably recognizable if  $\mathfrak{X}$  is  $L_{\aleph_0}$ -closed, that is,  $\mathfrak{X} = L_{\aleph_0}\mathfrak{X}$ . It is well known that many interesting classes of groups which are not L-closed are  $L_{\aleph_0}$ -closed (cf. [6, pp. 104–110]). For example,  $E\mathfrak{A}$ ,  $\mathfrak{A}$ ,  $\mathfrak{M}$  ax,  $\mathfrak{M}$  ax- $\mathfrak{A}$ ,  $\mathfrak{M}$  in,  $\mathfrak{M}$  in- $\mathfrak{A}$ , etc. are countably recognizable. Though qmin- $\mathfrak{A}$  is not L-closed (Remark 3.9) we have

Proposition 2.2. qmin-⊲ is countably recognizable.

PROOF. Let  $G \in \text{qmin-} \lhd$ . It follows from Corollary 1.2 that for any  $m \in N$  there exists a descending chain  $N_1 > N_2 > \cdots$  of normal subgroups of G such that  $[G^{(m)}, N_i] > [G^{(m)}, N_{i+1}]$  for any  $i \ge 1$ . Choose  $x_i$  to be any element of  $[G^{(m)}, N_i] \setminus [G^{(m)}, N_{i+1}]$ . Now we can write  $x_i = \prod_j [y_{ij}, n_{ij}]^{\epsilon_{ij}}$  where  $y_{ij} \in G^{(m)}$ ,  $n_{ij} \in N_i$  and  $\epsilon_{ij} = \pm 1$ . Since  $G^{(m)} = \langle D^m(g_1, \dots, g_{2m}) \colon g_k \in G \rangle$  we can also write  $y_{ij} = \prod_k D^m(g_{ijk1}, \dots, g_{ijk2m})$ . Let X be a subgroup of G which contains the countable set  $\{n_{ij}, g_{ijkl}\}_{i,j,k,l}$ . Since  $x_i \in [X^{(m)}, X \cap N_i] \setminus [X^{(m)}, X \cap N_{i+1}]$ , we have  $[X^{(m)}, X \cap N_i] > [X^{(m)}, X \cap N_{i+1}]$  for any  $i \ge 1$ . Hence  $X \in \text{qmin-} \lhd$  by Corollary 1.2 and so  $G \in L_{\mathbb{N}_0}(\text{qmin-} \lhd)$ . It follows that qmin- $\lhd$  is countably recognizable.

The class of artinian groups Min- $\triangleleft$  is not s-closed and is not even  $s_n$ -closed (cf. [5, p. 153]). However Wilson showed that a subgroup with finite index in an artinian group is artinian (cf. [5, Theorem 5.21] or [7, 3.1.8]). Though qmin- $\triangleleft$  is not  $s_n$ -closed (Example 5.2), we shall show that a subgroup with finite index in a quasi-artinian group is quasi-artinian under some conditions.

DEFINITION. We say that a group G has the property (P) if  $[A, B] \cap [A, C] = [A, B \cap C]$  holds for any three normal subgroups A, B, C of G.

PROPOSITION 2.3. Let G be a quasi-artinian group and let H be a subgroup with finite index in G. If  $G/\operatorname{Core}_G H$  is soluble and  $\operatorname{Core}_G H$  has the property (P), then H is quasi-artinian.

**PROOF.** Suppose that  $H \in \text{qmin-} \triangleleft$ . Set  $C = \text{Core}_G H$ . Then C is of finite

index in G. Since H/C is soluble Lemma 2.1 implies that  $C \in \text{qmin-} \triangleleft$ . By hypothesis there exists  $m \in N$  such that  $G^{(m)} = G^{(\omega)} \subseteq C$ . Hence we have  $G^{(m)} = C^{(m)}$ , say N. Since  $C \in \text{qmin-} C$  it follows from Corollary 1.2 that there exists a minimal element [N, K] of the non-empty set  $\{[N, L]: L \triangleleft G, L \leq C \text{ and } L \in \text{qmin-} C\}$ .

Let  $\mathcal S$  be the set of all non-empty finite subsets X of G with the following property: if

$$K_1 > K_2 > \cdots \tag{1}$$

is a strictly descending chain of C-admissible subgroups of K such that  $[N, K_1] > [N, K_2] > \cdots$ , then

$$[N, K] = [N, K_i^X] \tag{2}$$

for all *i*. Let *T* be a transversal to *C* in *G*. Then G = CT. For any chain (1) the relation  $K_i \triangleleft C$  implies that  $K_i^T \triangleleft G$ . Also  $K_i^T \leq K$  since  $K \triangleleft G$  and so  $[N, K_i^T] \leq [N, K]$ . If  $[N, K_i^T] < [N, K]$ , then  $K_i^T \in \text{qmin-}C$  by minimality of [N, K] and therefore  $[N, K_j] = [N, K_{j+1}] = \cdots$  for some  $j \geq i$ , in view of Lemma 1.1. By this contradiction  $[N, K_i^T] = [N, K]$  for all *i*. Thus  $T \in \mathcal{S}$  and  $\mathcal{S}$  is not empty.

We now select a minimal element X of  $\mathscr{S}$ . If  $x \in X$ , then  $Xx^{-1} \in \mathscr{S}$  because N,  $K \triangleleft G$ . Therefore  $Xx^{-1}$  is a minimal element of  $\mathscr{S}$  containing 1. Hence we may assume that  $1 \in X$ . Now if  $X = \{1\}$ , the equation (2) shows that  $K \in \text{qmin-}C$ . It follows that X has at least two elements. Consequently the set

$$Y = X \setminus \{1\}$$

is non-empty. Therefore Y does not belong to  $\mathcal S$  by minimality of X. For any chain (1) we define

$$L_i = K_i \cap K_i^{\gamma}$$
.

Now  $K_i^g \triangleleft C^g = C$  for all g in G and so  $L_i \triangleleft C$ . Also  $L_i \ge L_{i+1}$  and  $[N, L_i] \ge [N, L_{i+1}]$ . Suppose that  $[N, L_i] = [N, L_{i+1}]$ . Since  $X \in \mathcal{S}$ , we must have  $[N, K] = [N, K_{i+1}^X]$  and

$$\begin{split} [N, K_{i}] &= [N, K_{i}] \cap [N, K_{i+1}^{X}] = [N, K_{i}] \cap [N, K_{i+1}K_{i+1}^{Y}] \\ &= [N, K_{i}] \cap ([N, K_{i+1}][N, K_{i+1}^{Y}]) = [N, K_{i+1}]([N, K_{i}] \cap [N, K_{i+1}^{Y}]) \\ &= [N, K_{i+1}][N, K_{i} \cap K_{i+1}^{Y}] \subseteq [N, K_{i+1}][N, L_{i}] = [N, K_{i+1}], \end{split}$$

using that C has the property (P). Thus  $[N, K_i] = [N, K_{i+1}]$ , which is not the case. Hence  $[N, L_i] > [N, L_{i+1}]$  for all i. Therefore  $[N, K] = [N, L_i^X]$  for all i, which shows that

$$[N, K_i] = [N, K_i] \cap [N, L_i^X] = [N, K_i] \cap ([N, L_i][N, L_i^Y])$$
$$= [N, L_i]([N, K_i] \cap [N, L_i^Y]) \subseteq [N, L_i].$$

Hence  $[N, K_i] = [N, L_i]$ . By definition of  $L_i$  it follows that

$$[N, K_i^Y] = [N, K_i^X] = [N, K]$$

for all i, and so  $Y \in \mathcal{S}$ , which is a contradiction.

3.

In this section we shall first give classes  $\mathfrak X$  of groups such that qmin- $\lhd \cap \mathfrak X = E\mathfrak A$ , and secondly give classes  $\mathfrak Y$  of groups such that qmin- $\lhd \cap \mathfrak Y \leq \acute{E}(\lhd)\mathfrak A$ .

A group G is said to be residually central if

$$x \in [G, x]$$

for each non-trivial element x of G. We denote by  $\Re$  the class of residually central groups.  $\Re$  is S, L and R-closed and every Z-group is residually central. So  $L\Re \leq \Re$ . Following [2], we generalize the notion of residually central groups.

DEFINITION. We say that a group G is residually  $(\omega)$ -central if

$$x \in [G^{(\omega)}, x]^G$$

for each non-trivial element x of G, and denote by  $\Re_{(\infty)}$  the class of residually  $(\omega)$ -central groups. It is clear that  $\Re_{(\infty)}$  is S and S-closed and that S S S S S But S S S0.

We first prove a simple result.

LEMMA 3.1. Let H be a subgroup of a group G and let Z be a subgroup of the centralizer of H in G. If x is an element in G such that  $x \in [H, x]^G Z \setminus Z$ , then there is a non-trivial element c of  $[H, x]^G$  such that  $c \in [H, c]^G$ .

PROOF. By hypothesis we can write x = cz where  $c \in [H, x]^G$  and  $z \in Z$ . Since  $x \notin Z$ , we see that  $c \ne 1$ . Let h be any element of H. Then

$$[h, x] = [h, z][h, c]^z = [h, c]^z.$$

Hence  $c \in [H, x]^G = [H, c]^G$ .

Since all free groups are residually nilpotent (cf. [7, 6.1.9]),  $\mathfrak{R}_{(\infty)}$  is not o-closed. However there is the following weak form of o-closedness.

**PROPOSITION 3.2.** Let G be a residually  $(\omega)$ -central group and let N be a

normal subgroup of G contained in the hypercentre of G. If there exists  $n \in N$  such that  $G^{(n)} = G^{(\omega)}$ , then G/N is residually  $(\omega)$ -central.

PROOF. Let  $Z_{\alpha} = \zeta_{\alpha}(G)$ . Since N is contained in the hypercentre of G, it is sufficient to prove that  $G/N \cap Z_{\alpha}$  is residually  $(\omega)$ -central for every ordinal  $\alpha$ . Suppose that  $\alpha$  is the first ordinal for which this is false. Then  $\alpha > 0$  and there exists an element x such that  $x \in [G^{(n)}, x]^G(N \cap Z_{\alpha})$  but  $x \in N \cap Z_{\alpha}$ . Assume that  $\alpha$  is not a limit ordinal. Then  $x(N \cap Z_{\alpha-1})$  does not belong to  $N \cap Z_{\alpha}/N \cap Z_{\alpha-1}$  which is a subgroup of the centre of  $G/N \cap Z_{\alpha-1}$ , but it does belong to

$$[(G/N\cap Z_{\alpha-1})^{(\omega)},\,x(N\cap Z_{\alpha-1})]^{G/N\cap Z_{\alpha-1}}(N\cap Z_{\alpha}/N\cap Z_{\alpha-1}).$$

Lemma 3.1 may therefore be applied to the group  $G/N \cap Z_{\alpha-1}$  and we conclude that this group is not residually  $(\omega)$ -central. By this contradiction  $\alpha$  is a limit ordinal and  $x \in [G^{(n)}, x]^G(N \cap Z_{\beta})$  for some  $\beta < \alpha$ . But  $G/N \cap Z_{\beta}$  is residually  $(\omega)$ -central, and so  $x \in N \cap Z_{\beta} \leq N \cap Z_{\alpha}$ , our final contradiction.

Now we shall give the first of main results in this section, which is a group analogue of [2, Theorem 2.3].

Theorem 3.3. qmin- $\lhd \cap \mathfrak{X} = \mathsf{E} \mathfrak{A}$  for any class  $\mathfrak{X}$  of groups such that  $\mathsf{E} \mathfrak{A} \leq \mathfrak{X} \leq \mathfrak{R}_{(\infty)}$ .

PROOF. It is sufficient to prove that  $q\min \neg \neg \cap \Re_{(\infty)} \leq \mathbb{N}$ . Suppose that there exists a group G such that  $G \in q\min \neg \neg \cap \Re_{(\infty)} \setminus \mathbb{N}$ . Put  $N = G^{(\infty)}$ . Then  $1 \neq N = G^{(n)}$  for some  $n \in \mathbb{N}$ . Since N is perfect we have  $\zeta_1(N) = \zeta_2(N) < N$ , owing to the Grün's lemma. We note that  $x \in [N, x]^G \zeta_1(N)$  for any  $x \in N \setminus \zeta_1(N)$ . In fact, if  $x \in [N, x]^G \zeta_1(N)$  then since  $\zeta_1(N) \leq C_G(N)$  it follows from Lemma 3.1 that there exists a non-trivial  $c \in [N, c]^G$ , which implies that G is not residually  $(\omega)$ -central. Now take  $x_1 \in N \setminus \zeta_1(N)$ . As  $\zeta_1(N) = \zeta_2(N)$  we have  $\zeta_1(N) < [N, x_1]^G \zeta_1(N)$ . Next we take  $x_2 \in [N, x_1]^G \zeta_1(N) \setminus \zeta_1(N)$ . Then we also have  $\zeta_1(N) < [N, x_2]^G \zeta_1(N)$ . By repeating this procedure, we can find a sequence  $(x_i)_{i=1}^\infty$  of elements of  $N \setminus \zeta_1(N)$  such that for any integer  $i \geq 1$ 

$$x_i \in [N, x_i]^G \zeta_1(N)$$
 and  $x_{i+1} \in [N, x_i]^G \zeta_1(N)$ .

Put  $N_i = [N, x_i]^G \zeta_1(N)$ . Then  $N_i \lhd G$  and  $N_i > N_{i+1}$  for any  $i \ge 1$ . Since G is quasi-artinian, there exists  $m \in N$  such that  $[N, N_m] \subseteq N_{m+1}$ . Using the three subgroup lemma we obtain that

$$[N, x_m]^G \subseteq [N, x_m, N]^G \subseteq [N_m, N] \subseteq N_{m+1}$$
.

Therefore  $N_m = [N, x_m]^G \zeta_1(N) \subseteq N_{m+1}$ , which is a contradiction.

Corollary 3.4. (1) qmin- $\triangleleft \cap \Re \leq E \mathfrak{A}$ .

(2) Min- $\triangleleft \cap \Re_{(\infty)} \leq E \mathfrak{A}$ .

REMARK 3.5. As a finite residually central group is nilpotent (cf. [6, p. 7]) we see that qmin- $\triangleleft \cap \Re < E \mathfrak{A}$ . By considering an infinite cyclic group we also see that Min- $\triangleleft \cap \Re_{(\infty)} < E \mathfrak{A}$ .

Corollary 3.4 indicates that every locally nilpotent quasi-artinian group is soluble. But locally soluble quasi-artinian groups need not be soluble. In fact, McLain [3] constructed a locally soluble artinian group which is not soluble. However we shall later obtain that a locally soluble quasi-artinian group is hyperabelian. To do this we need the following

LEMMA 3.6 (Baer). A group G is hyperabelian if and only if given two sequences  $x_0, x_1,...$  and  $y_0, y_1,...$  of elements of G such that

$$x_{i+1} = [x_i, y_i, x_i],$$

there is an integer  $m \ge 0$  such that  $x_m = 1$ .

PROOF. See [5, Theorem 2.15].

A group G is said to be residually commutable if given a pair of non-trivial elements a and b, there exists a normal subgroup N of G which contains [a, b] but does not contain both a and b. We denote by  $\Re_0$  the class of residually commutable groups.  $\Re_0$  is s, R and L-closed and every SI-group is residually commutable. So  $LE\mathfrak{A} \leq \Re_0$ . It is well known that a residually commutable artinian group is hyperabelian (cf. [6, Theorem 8.15]). Now we can strengthen this result. Namely we show the second of main results in this section.

Theorem 3.7. A residually commutable quasi-artinian group is hyperabelian.

**PROOF.** Let G be residually commutable and quasi-artinian. Suppose that G is not hyperabelian. By making use of Lemma 3.6 we see that there exist two sequences of elements of  $G x_0, x_1,...$  and  $y_0, y_1,...$  such that

$$1 \neq x_{i+1} = [x_i, y_i, x_i]$$

for each integer  $i \ge 0$ . It is easily seen that  $x_i \in G^{(i)}$  for any  $i \ge 0$ . Let  $N_0 = G$  and  $N_1 = G^{(1)}$ . Suppose that for  $i \ge 1$  we have constructed a normal subgroup  $N_i$  of G containing  $x_i$  such that

$$N_i \subseteq [G^{(i-1)}, N_{i-1}].$$

Now, since each  $x_j \neq 1$ , we see that  $[x_i, y_i] \neq 1$ . Since G is residually commutable, there is a normal subgroup N of G such that  $x_{i+1} = [x_i, y_i, x_i] \in N$ , but N does not contain both  $x_i$  and  $[x_i, y_i]$ . On the other hand, we also have  $x_{i+1} \in [G^{(i)}, N_i]$ . So, set  $N_{i+1} = [G^{(i)}, N_i] \cap N$ . Then  $x_{i+1} \in N_{i+1}$  and  $N_i > N_{i+1}$ 

since either  $x_i$  or  $[x_i, y_i]$  belongs to  $N_i \setminus N$ . This construction produces an infinite descending chain of normal subgroups

$$\cdots \supseteq [G^{(i-1)}, N_{i-1}] \supseteq N_i \supseteq [G^{(i)}, N_i] \supseteq N_{i+1} \supseteq [G^{(i+1)}, N_{i+1}] \supseteq \cdots$$

Consequently  $([G^{(i)}, N_i])_{i=1}^{\infty}$  does not terminate. This is impossible by Corollary 1.2.

As mentioned in the paragraph after Remark 3.5 we obtain the following

COROLLARY 3.8. A locally soluble quasi-artinian group is hyperabelian.

REMARK 3.9. Hyperabelian groups need not be quasi-artinian. In fact, let  $G_i$  be a soluble group with derived length i for all  $i \ge 1$ . Set  $G = \operatorname{Dr}_{i=1}^{\infty} G_i$ . Then G is hyperabelian and locally soluble (so locally quasi-artinian). But since  $G^{(1)} > G^{(2)} > \cdots$  we see that G is not quasi-artinian.

Robinson showed that  $\acute{E}(\vartriangleleft^2)\mathfrak{A}\cap\mathfrak{P}\cap Min-\vartriangleleft^2\mathfrak{A}\leq E\mathfrak{A}\cap Min$  ([4, Theorem E]). Hence we have the following

Corollary 3.10. qmin- $\triangleleft \cap \Re_0 \cap \Re \cap \text{Min-} \triangleleft^2 \mathfrak{A} = E\mathfrak{A} \cap \text{Min.}$ 

4.

In this section we shall present classes  $\mathfrak X$  of groups such that qmin- $\lhd \cap \mathfrak X = \text{Min-}\lhd$ .

For any class  $\mathfrak X$  of groups, let  $\mathfrak X^Q$  denote the largest Q-closed subclass of  $\mathfrak X$ . It is easy to see that for a group  $G, G \in \mathfrak X^Q$  if and only if  $N \triangleleft G$  implies  $G/N \in \mathfrak X$ .

It is obvious that

$$Min - \triangleleft \leq (Min - \triangleleft E\mathfrak{A})^Q \leq (Min - \triangleleft \mathfrak{A})^Q \leq (Min - \triangleleft (\mathfrak{A} \cap \mathfrak{P}))^Q.$$

For the first and second inclusions we obtain the following

Proposition 4.1. Min- $\triangleleft < (Min-\triangleleft E\mathfrak{A})^Q = (Min-\triangleleft \mathfrak{A})^Q$ .

We state the main result in this section.

Theorem 4.2. qmin- $\lhd \cap \mathfrak{X} = M$ in- $\lhd$  for any class  $\mathfrak{X}$  of groups such that Min- $\lhd \leq \mathfrak{X} \leq (M$ in- $\lhd \mathfrak{A})^Q$ .

Proposition 4.1 and Theorem 4.2 are group analogues of the results on Lie algebras (Propositions 3.1, 3.2 and Theorem 3.3 in [2]) and their proofs can be carried over quite similarly. So we omit the proofs.

Robinson showed that LEU  $\cap$  Min- $\triangleleft$   $\cap$  Min- $\triangleleft$   $^2$ U  $\leq$  EU  $\cap$  Min ([4, Theorem E\*]). Hence we have the following

Corollary 4.3. Let  $\Omega \cap \text{qmin} \rightarrow \Omega \cap (\text{Min} \rightarrow 2\mathfrak{U})^Q = \mathfrak{U} \cap \text{Min}$ .

REMARK 4.4. There exists a group G such that

$$G \in \text{gmin} \rightarrow \bigcap (\text{Min} \rightarrow (\mathfrak{A} \cap \mathfrak{P}))^Q \text{ but } G \notin \text{Min} \rightarrow G$$

(Example 5.3). Hence by Theorem 4.2 we see that

$$(Min \multimap \mathfrak{A})^Q < (Min \multimap (\mathfrak{A} \cap \mathfrak{P}))^Q$$
.

5.

In this section we shall present several examples in connection with the results in Sections 2 and 4.

EXAMPLE 5.1. Let S be a non-abelian simple group and let Z be the additive group of all integers. Put  $G = Z \sim S$ , that is, the standard wreath product of Z with S. Let B be the base group of G. Then  $B = \bigoplus_{x \in S} Z_x$  where  $Z_x \cong Z$  for each  $x \in S$  and  $G = B \bowtie S$ . For each integer  $i \ge 1$  we put  $N_i = \bigoplus_{x \in S} 2^i Z_x$ . Obviously  $N_1 > N_2 > \cdots$ . We note that

$$[ax, b] = [a, b]^x[x, b] = (b^{-1})^x b$$
 for  $a, b \in B$  and  $x \in S$ .

Let  $1_y$  denote the element of  $\mathbb{Z}_y$  which is the isomorphic copy of 1. Now take any element b of  $N_i$ . Then we can write  $b = \sum_{y \in S} 2^i n_y \cdot 1_y$  where  $n_y \in \mathbb{Z}$  for each  $y \in S$ . From the note above we have

$$\begin{split} [ax, b] &= (\Sigma 2^i (-n_y) \cdot 1_y)^x + \Sigma 2^i n_y \cdot 1_y \\ &= \Sigma 2^i (n_y - n_{yx^{-1}}) \cdot 1_y \in N_i. \end{split}$$

Hence  $[G, N_i] = [S, N_i] \subseteq N_i$ , which shows that  $N_i \triangleleft G$  and  $[G^{(m)}, N_i] = [S, N_i]$  for all  $m \ge 0$  and  $i \ge 1$ . Now put  $b = 2^i \cdot 1_y \in \mathbb{Z}_y \cap N_i$ . Then for a non-trivial element x in S

$$[x, b] = 2^{i}(-1_{yx}) + 2^{i} \cdot 1_{y} = 2^{i}(1_{y} - 1_{yx}) \notin N_{i+1}.$$

Hence we have  $[S, N_i] > [S, N_{i+1}]$  for any  $i \ge 1$ . So for each  $m \ge 0$  we have

$$\lceil G^{(m)}, N_i \rceil > \lceil G^{(m)}, N_{i+1} \rceil$$
 for any  $i \ge 1$ ,

which implies by Corollary 1.2 that G is not quasi-artinian. However it is clear that B and G/B are quasi-artinian. Therefore qmin- $\triangleleft$  is not E-closed.

EXAMPLE 5.2. Let S be a non-abelian simple group and let  $S^*$  be an infinite simple group. Put  $G = S \sim S^*$ . Then  $G = B > S^*$  where  $B = \operatorname{Dr}_{x \in S^*} S_x$   $(S_x \cong S)$ . Clearly  $B^{(1)} = B$  and for every subset T of  $S^*$   $[B, \operatorname{Dr}_{x \in T} S_x] = \operatorname{Dr}_{x \in T} S_x$ . Let  $\{x_1, x_2, x_3\} = \operatorname{Dr}_{x \in T} S_x$ .

 $x_2,...$ } be a countable subset of  $S^*$ . Then for any integer  $n \ge 0$ 

$$[B^{(n)}, \operatorname{Dr}_{x \in S^* \setminus \{x_1\}} S_x] > [B^{(n)}, \operatorname{Dr}_{x \in S^* \setminus \{x_1, x_2\}} S_x] > \cdots$$

Hence by Corollary 1.2 we see that B is not quasi-artinian.

Next let M be a normal subgroup of G contained in G. Assume that  $M \neq 1$ . Since G is normal in G we can write G be G where G is a non-empty subset of G. If G is then choose an element G of G is a non-empty subset of G is

Now we shall show that B is the only non-trivial normal subgroup of G. Let N be a non-trivial normal subgroup of G. Assume that  $N \cap B = 1$ . Any element of N is expressed as z = ax where  $a \in B$  and  $x \in S^*$ . Then  $a = \prod_{x \in T} a_x$   $(a_x \in S_x)$  for some finite subset T of  $S^*$ . As  $T \neq S^*$  there exists an element y of  $S^* \setminus T$ . Choose  $1 \neq b_y \in S_y$ . Then we have

$$[z, b_v] = [a, b_v]^x [x, b_v] = (b_v^x)^{-1} b_v \in N \cap B.$$

Hence  $b_y^x = b_y$ , which implies that x = 1. Therefore  $N \subseteq B$  and so N = 1, a contradiction. Thus  $N \cap B \ne 1$ . Then since  $N \cap B \triangleleft G$  we have  $N \cap B = B$  by the previous paragraph, and  $N/B \not\supseteq G/B$ . Since G/B is simple we have N = B.

Consequently G is artinian and so quasi-artinian. Therefore qmin- $\triangleleft$  is not  $s_n$ -closed.

Example 5.3. There exists a group G satisfying the following conditions:

- (1)  $G \in \text{qmin-} \triangleleft \cap (\text{Min-} \triangleleft (\mathfrak{U} \cap \mathfrak{P}))^Q$ .
- (2) Every subgroup with finite index in G is quasi-artinian.
- (3)  $G \notin E \mathfrak{A} \cup Min \triangleleft$ .
- (4) G has no non-trivial soluble subnormal subgroups.

In fact, let  $Z_+$  be the set of all positive integers and let  $S_{\infty}$  be the group of all finitary permutations of  $Z_+$ , that is, all permutations which move only a finite number of the symbols. Then define S(n) to be the stabilizer in  $S_{\infty}$  of  $\{n+1, n+2,...\}$ . Clearly  $S_n \cong S(n)$ . Let A(n) be the image of  $A_n$  under the isomorphism. Then  $A(5) < A(6) < \cdots$  and  $A_{\infty} = \bigcup_{n \ge 5} A(n)$  is an infinite simple group. Also we have

$$A_{\infty} \leq S_{\infty} \leq \operatorname{Sym}(Z_{+}).$$

For any integer  $n \ge 3$  we put  $k(n) = 2 + 3 + \cdots + n$ , and define

$$\alpha = (1, 2)(3, 4, 5) \cdots (k(n) + 1, k(n) + 2, \dots, k(n+1)) \dots \in \text{Sym}(\mathbf{Z}_+).$$

Since  $A_{\infty}^{\alpha} = A_{\infty}$  we define t to be the automorphism of  $A_{\infty}$  induced by  $\alpha$ . Set  $G = A_{\infty} \bowtie \langle t \rangle$ . As  $\langle t \rangle$  is infinite we first see that  $G \in \text{Min-} \bowtie$ .

We now claim that every subnormal subgroup  $(\neq 1)$  of G contains  $A_{\infty}$ . Let

H be a subnormal subgroup  $(\neq 1)$  of G. Then there is a finite series  $(H_i)_{i\leq n}$  of subgroups of G such that  $H=H_n\lhd H_{n-1}\lhd\cdots\lhd H_0=G$ . By induction on i we show that  $A_\infty\subseteq H_i$ . It is trivial for i=0. Let  $i\geq 0$  and assume that  $A_\infty\subseteq H_i$ . Suppose that  $[A_\infty, H_{i+1}]=1$  and take any element  $h=\sigma t^m$   $(\sigma\in A_\infty)$  in  $H_{i+1}$ . Then  $\sigma\in A(k(n))$  for some  $n\geq 3$  and put  $l=\max\{|m|+2,n\}$ . For an element  $\tau=(k(l)+1,\ k(l)+2,\ k(l)+3)\in A_\infty$  we have

$$1 = [\tau, h] = [\tau, t^m] [\tau, \sigma]^{t^m} = \tau^{-1} \tau^{t^m}.$$

Hence  $\tau = \tau^{t^m}$  and we may assume that  $m \ge 0$ . Considering that  $k(l) + m + 3 \le k(l+1)$  we have

$$\alpha^m$$
:  $k(l) + i \longmapsto k(l) + m + i$  for  $i = 1, 2, 3$ .

Therefore (k(l)+1, k(l)+2, k(l)+3)=(k(l)+m+1, k(l)+m+2, k(l)+m+3), which implies m=0. So  $H_{i+1}\subseteq A_{\infty}$  and  $H_{i+1}\subseteq \zeta_1(A_{\infty})=1$ , a contradiction. Hence we have  $[A_{\infty}, H_{i+1}]\neq 1$ . Since  $A_{\infty}\lhd H_i$  and  $H_{i+1}\lhd H_i$ ,  $[A_{\infty}, H_{i+1}]\lhd H_i\cap A_{\infty}=A_{\infty}$ . By the simplicity of  $A_{\infty}$  we have  $A_{\infty}=[A_{\infty}, H_{i+1}]\subseteq [H_i, H_{i+1}]\subseteq H_{i+1}$ .

We next prove that every soluble subnormal subgroup of G must be 1. Let H be a soluble subnormal subgroup of G and  $H \neq 1$ . Then  $A_{\infty} \subseteq H$  by the previous paragraph, which contradicts the simplicity of  $A_{\infty}$ .

Let  $N_1 \supseteq N_2 \supseteq \cdots$  be a descending chain of normal subgroups of G and  $N_i \neq 1$ . Since  $G^{(1)} = A_{\infty}$  and  $A_{\infty} \subseteq N_n$  for any  $n \ge 1$ , we have

$$[G^{(1)}, N_1] \subseteq [A_{\infty}, G] \subseteq A_{\infty} \subseteq N_n$$
 for any  $n \ge 1$ .

This says that G is quasi-artinian.

Let H be a subgroup with finite index in G. Since  $\operatorname{Core}_G H$  is of finite index in G we have  $1 \neq \operatorname{Core}_G H \triangleleft G$ , and so  $A_{\infty} \subseteq \operatorname{Core}_G H \subseteq H$ . Thus H is normal in G. For any three normal subgroups  $M_i \neq 1$   $(1 \leq i \leq 3)$  of H we obtain  $A_{\infty} \subseteq M_i$ , which plainly implies that

$$[M_1, M_2] = [M_1, M_3] = [M_1, M_2 \cap M_3] = A_{\infty}.$$

Hence H has the property (P). As G/H is abelian it follows from Proposition 2.3 that H is quasi-artinian.

We finally assert that  $G \in (\text{Min-} \lhd (\mathfrak{A} \cap \mathfrak{P}))^Q$ . It is trivial that  $G \in \text{Min-} \lhd \mathfrak{A} \subseteq M$  in  $- \lhd (\mathfrak{A} \cap \mathfrak{P})$ . Let  $1 \neq N \lhd G$ . Then  $A_{\infty} \subseteq N$ . If  $A_{\infty} \neq N$ , then  $1 \neq N/A_{\infty} \lhd G/A_{\infty} \cong \langle t \rangle$ . Hence  $G/N \in \mathfrak{F}$ . If  $A_{\infty} = N$ , then  $G/N \cong \langle t \rangle \in \text{Min-} \lhd (\mathfrak{A} \cap \mathfrak{P})$ . Therefore we obtain our assertion.

From Example 5.3 we deduce that there is a semisimple quasi-artinian group which does not satisfy the minimal condition for normal subgroups.

EXAMPLE 5.4. A group does not necessarily have the property (P). In fact, let  $Q_8$  be the group of Hamilton's quaternions. This is the group consisting of the symbols  $\pm 1$ ,  $\pm i$ ,  $\pm j$ ,  $\pm k$  where  $-1 = i^2 = j^2 = k^2$  and ij = k = -ji, jk = i = -kj, ki = j = -ik. Now clearly  $\langle i \rangle = \{\pm 1, \pm i\}$ ,  $\langle j \rangle = \{\pm 1, \pm j\}$ ,  $\langle k \rangle = \{\pm 1, \pm k\}$  and these are normal in  $Q_8$ . Since [i, j] = -1 we have  $[\langle i \rangle, \langle j \rangle] \supseteq \{\pm 1\}$  and similarly  $[\langle i \rangle, \langle k \rangle] \supseteq \{\pm 1\}$ . However

$$[\langle i \rangle, \langle j \rangle] \cap [\langle i \rangle, \langle k \rangle] > [\langle i \rangle, \langle j \rangle \cap \langle k \rangle]$$

because  $\langle j \rangle \cap \langle k \rangle = \{\pm 1\} = \zeta_1(Q_8)$ .

## References

- [1] F. A. M. Aldosray: On Lie algebras with finiteness conditions, Hiroshima Math. J. 13 (1983), 665-674.
- [2] F. Kubo and M. Honda: Quasi-artinian Lie algebras, Hiroshima Math. J. 14 (1984), 563-570.
- [3] D. H. McLain: Finiteness conditions in locally soluble groups, J. London Math. Soc. 34 (1959), 101-107.
- [4] D. J. S. Robinson: Finiteness conditions on subnormal and ascendant abelian subgroups,J. Algebra 10 (1968), 333-359.
- [5] —: Finiteness Conditions and Generalized Soluble Groups I, Springer, Berlin, 1972.
- [6] ——: Finiteness Conditions and Generalized Soluble Groups II, Springer, Berlin, 1972.
- [7] ---: A Course in the Theory of Groups, Springer, New York, 1982.

Department of Mathematics, Hiroshima University of Economics