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Introduction

Every finite-dimensional Lie algebra can be obtained as an extension of a

soluble Lie algebra by a semisimple Lie algebra. If we take off the restriction

of finite-dimensionality, we are in a different situation and we need a concept of

generalized solubility. A Lie algebra is called hyperabelian if it has an ascending

series of ideals whose factors are abelian. The class of hyperabelian Lie algebras

is a natural generalization of the class of soluble Lie algebras. Moreover every

Lie algebra is an extension of a hyperabelian Lie algebra by a semisimple Lie

algebra. Here by a semisimple Lie algebra we mean a Lie algebra which has

no non-zero soluble ideals. Accordingly it seems to be desirable for us to know

the properties of these Lie algebras. In this paper we investigate the class of

hyperabelian Lie algebras and present some of their properties. We shall also

study the hyper locally nilpotent Lie algebras and semisimple Lie algebras.

In [11] Kawamoto introduced the notion of prime ideals for Lie algebras

and investigated a connection between the prime radical and the soluble radical.

In Section 2 we shall characterize the hyperabelian Lie algebras by making use

of the notion of the prime ideals and certain special sequences. We shall es-

pecially show that the prime radical of a Lie algebra coincides with the hyperabelian

radical (Theorem 2.7). This generalizes [11, Theorem 7]. Furthermore,

concerning the problem of the existence of prime ideals in a Lie algebra we shall

show that a Lie algebra is hyperabelian if and only if it has no proper prime ideals

(Theorem 2.11).

In Section 3 we shall investigate further properties of hyperabelian Lie

algebras and especially of hyper abelian-and-finite Lie algebras. One of the

main results of this section is that the ω-th derived algebra of a hyper abelian-

and-finite Lie algebra is hypercentral, and in particular if the characteristic of

the basic field is zero, its derived algebra is hypercentral (Theorem 3.6). Therefore

if a Lie algebra is hyper abelian-and-finite, then its transfinite derived series

reaches to zero (Corollary 3.8). This is a generalization of [2, Lemma 8.1.1].

Section 4 is devoted to investigating the class of hyper locally nilpotent Lie

algebras. We shall show as a generalization of [2, Theorem 10.1.3] that every

infinite-dimensional hyper locally nilpotent Lie algebra has an infinite-dimensional

locally nilpotent ideal and further an infinite-dimensional abelian subalgebra
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(Corollary 4.3). We shall also show that there exists a locally soluble Lie algebra

with trivial Hirsch-Plotkin radical (Theorem 4.6).

In Section 5 we shall discuss about several semisimplicities and their inter-

relation.

The author would like to express his thanks to Professor S. Togo for his

encouragement in preparing this paper.

1. Preliminaries

We shall be concerned with Lie algebras which are not necessarily finite-

dimensional over an arbitrary field I unless otherwise specified. Throughout

this paper L will be a Lie algebra over ϊ.

We shall mainly use the notation and terminology of [2]. For the sake

of convenience we state here some terms which we shall use. By H c L (resp. H ^

L, i/<ιL, H ch L), we mean that H is a subset (resp. a subalgebra, an ideal, a

characteristic ideal) of L. Angular brackets < > denote the subalgebra generated

by their contents. For X, YcL, <Xy> is the smallest subalgebra of L which

contains X and is Y-invariant. For an ordinal α we denote by L ( α ) (resp. Lα,

£α(L)) the α-th term of the transfinite derived (resp. lower central, upper central)

series of L. If H, K ^ L and K<ι H then the centralizer of H/K in L is CL(HjK) =

We shall need some familiar classes of Lie algebras, g (resp. $r, 21, 91, 9lr,

E2I, 3» L ^ > LE2Ϊ) is the class of Lie algebras which are finite-dimensional (resp.

of dimension ^ r, abelian, nilpotent, nilpotent of class g r, soluble, hypercentral,

locally nilpotent, locally soluble). We say that L has Min-<i (resp. Min-π<ι)

if L satisfies the minimal condition for ideals (resp. n-step subideals). We use

the same notation for the classes of Lie algebras satisfying the corresponding

conditions. The classes Max-o and Max-π<i are similarly defined. For

two classes X, ?) of Lie algebras, we denote by ϊ ? ) the class of all Lie algebras

L with an 3E-ideal / such that L/I e ?). X is i-closed (resp. Q-closed) provided

every subideal (resp. quotient) of an X-algebra is always an 3£-algebra. L3£

consists of all of those algebras L such that every finite subset of L is contained

in an 3E-subalgebra of L. ΌX consists of all direct sums of E-algebras. ΈX

consists of all Lie algebras having an ascending ϊ-series. L is called hyper

ϊ-algebra if it has an ascending 3E-series of ideals, that is, there exists an ordinal

σ and a family {Lα}α^σ of ideals of L such that

( i ) Lo = 0, Lσ = U

(ii) La<LLa+ί and Lα + 1/Lαe3£ if α < σ,

(iii) LJ = \Ja<λ Lα if λ is a limit ordinal.

We denote by E(<J)3£ the class of all hyper ϊ-algebras. When we emphasize

the role of the ordinal σ in the definition of a hyper ϊ-algebra L we denote it by
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Let X be a Q-closed class of Lie algebras. For any Lie algebra L we denote

by χ(L) the sum of all X-ideals of L. The transίinite upper ϊ-radicals are defined

for all ordinals as follows:

( i )

(ii)

(iίi) χλ(L) = Wα < Aχα(L) for a limit ordinal λ.

χα(L) is called the OL-th upper X-radical. This ascending series terminates for

some ordinal α in the sense that from that ordinal onwards all terms are equal.

We call this terminal χa(L) the hyper X-radical of L and denote it by χ*(L).

It is clear that χ(L/χ*(L)) = 0.

When 3E = L91 (resp. 91, 91, E2I), we use the sign p (resp. α, v, σ) for χ. It can

be seen that α*(L) = v*(L) = σ*(L). Clearly α*(L) ̂  v*(L) ^ σ*(L). For an ordinal

/? we suppose that σβ(L)^(xγ(L) for some ordinal γ. Let / be an ideal of L such

that Hn)^σβ(L) for some positive integer n. Then it is easily seen that /(»-') ^

α y + i(L) by induction on ί. Thus we have J ^ α y + π ( L ) , and so σβ+ί(L)^(Xγ+ω(L).

By transfinite induction on β we get σ^L) ^ α^(L) for any ordinal β and hence

We state some characterizations of hyper 3E-algebras which will be often

used in this paper. First one is well known.

LEMMA 1.1 (cf. [10, Lemma 1.1]). Let L be a Lie algebra. Then L is a

hyper X-algebra if and only if χ(L/I)^0for any proper ideal I of L.

PROPOSITION 1.2. Let L be a Lie algebra. Then L is a hyper X-algebra

if and only if the hyper X-radical χ*(L) of L coincides with L.

PROOF. Let L G E ( < I ) Ϊ . If Lφχ*(L) then by Lemma 1.1 we have χ(L\

χJ | c(L))#0. This is a contradiction.

Conversely suppose that χ*(L) = L. For a proper ideal / of L, there exists

a minimal ordinal α such that χa(L)φI. It is clear that α is neither zero nor a

limit ordinal. There is an ideal X of L such that χα_ X ( L ) ^ X $ 1 and X/χa- χ(L) e

X. By the minimality of α we have χa_x(L)£L Then ( I + / ) / / ^ I / I n /

is a non-zero homomorphic image of Xlχa^1(L). Hence (X + I)/I is an X-ideal

of LI I and so /(L//)^0. Therefore by Lemma 1.1 L is a hyper X-algebra.

LEMMA 1.3. Let X be a {Q, ι}-closed class of Lie algebras. Then L is a

hyper X-algebra if and only if for a non-zero ideal I of a homomorphic image

H of L, there exists a non-zero X-ideal of H which is contained in I.

PROOF. Since έ(o)3E is Q-closed, we can see that the condition is necessary

by [10, Lemma 1.4]. Another implication is clear by Lemma 1.1.
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2. Prime ideal and the class έ(o)9I

In this section we investigate the class of hyperabelian Lie algebras by using
the notion of prime ideals and certain sequences of elements of Lie algebras.

Let L be a Lie algebra over any field. An ideal P of L is called prime if
whenever [/, J ] ^ P with /, J ideals of L then I^P or J^P. An ideal Q of L is
called semiprime if I2SQ with /<ιL implies JrgQ.

LEMMA 2.1 (cf. [11, Theorem 1]). (i) Let P be an ideal of a Lie algebra
L. Then the following conditions are equivalent:

(1) P is a prime ideal.

(2) //[<xL>, (yLy\ύPforx, yeL, then either xeP or ye P.

0) // [<*L>, y~\cP for x, yeL, then either xeP or yeP.

(ii) Let Q be an ideal of L. Then the following conditions are equivalent:

(1) Q is a semiprime ideal.

(2) If(xLy^QforxeLthenxeQ.

(3) Ifl{xLy,χ-]czQforxeLthenxeQ.

PROOF, (i) Suppose that [<xL>, χ]c:P. Then we have [<xL>, ίy, L]]c
[<xL>, y, L] + [<xL>, L, 3^]c[P, L] + [<xL>, y]cP. It is easily seen that
[<*L>> ly, iLJ]c:P by induction on i. Hence [<xL>, <>^L>]^P and therefore
the conditions (2) and (3) are equivalent.

Now let /, J be ideals of L such that [/, J]^P, I$P and J$P. Then
there exist xel and yeJ such that x,yφP. However [<xL>, <j> L>] ύ U> J] ̂  ̂ ?

which shows that (2) implies (1). It is clear that (1) implies (2).
The statement (ii) is similarly proved.

The intersection of all prime ideals of L is called the prime radical of L and
denoted by rad(L) or rL. In [11, Theorem 7] it is shown that σ(L):grad(L).
Hence if L is soluble, then L is the only prime ideal of L. We shall generalize
these results in Theorems 2.7 and 2.11. The latter gives a characterization of
hyperabelian Lie algebras. For that the following notion plays an important
role. We call a sequence x0, xl9... of elements of L a p-sequence if there exist
elements yl9 y2,~> of L and non-negative integers n(0), n(l),... such that 0=n(0)<
n(l)< and x i + 1 = [x,, j^o+i*..., Λ(i+i),*ι] for i = 0, 1,.... We call a p-
sequence {xn}n^0 vanishing if xn = 0 for some n, and otherwise we call it non-
vanishing. A similar notion in associative rings is considered in [12] and [13].

THEOREM 2.2. The following conditions are equivalent:

( i ) L has a proper prime ideal.

(ii) L has a proper semiprime ideal.

(iii) L has a non-vanishing p-sequence.
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PROOF. Since prime ideals are semiprime it is clear that (i) implies (ii).

Let β be a proper semiprime ideal of L and let x 0 e L\Q. Then [<x£>, x 0 ] ςt

Q. It is easy to see that there exist yl9...9 yn(ί)eL such that [x 0, yl9...9ynil)9 xo]<£

β. Put X! = [xo» yi9 '-> yn(i)> xo]- I n the same manner we obtain a sequence

*o> xu X29"' °f elements of L such that Xf+ie[<xf>, xj\6, which is a non-

vanishing p-sequence of L. Thus (ii) implies (iii).

Assume (iii) finally. Let {xn}n^0 ^ e a non-vanishing p-sequence of L and

let X = {xθ9 x 1 ? . . .}. Clearly X Π {0} = φ. By Zorn's lemma there exists an ideal

P of L maximal with respect to Jf Π P = 0 . Let x, y<£P to show that P is a prime

ideal. By the maximality of P, we have (P + (xL})ΓiXφφ and (P + O>L»Π

Xφφ. Since x fe<x^> for 7^1, there exists a positive integer i such that x f e

(P + <xL>)n(P + <)>L>). Now suppose that [<xL>, <>^L>]^P. Then x i + 1 e

[<^f>, ^ ] c [ ^ + <xL>, P + < y L > ] ^ P . This contradicts the fact that X[\P=φ.

Hence [<xL>, <^L>] ̂ P and therefore P is a prime ideal of L. Thus the con-

ditions (i), (ii) and (iii) are equivalent.

REMARK 1. From the proof of this theorem we can get the following equi-

valent conditions for x e L.

( i ) L has a prime ideal not containing x.

(ii) L has a semiprime ideal not containing x.

(iii) L has a non-vanishing p-sequence beginning with x.

REMARK 2. An intersection of semiprime ideals is always semiprime. Hence

rad (L) is a semiprime ideal. But it is not necessarily a prime ideal. For instance

let L be the direct sum of two non-abelian simple Lie algebras S x and 5 2 . Then

clearly each St (ί = l, 2) is a prime ideal of L and so rad(L) = 0. However 0

is not prime since [Su S 2 ] = 0 .

So in general a semiprime ideal is not necessarily a prime ideal (cf. [11,

Lemma 3(4) and Proposition 4]), but we can show that any proper semiprime

ideal Q is contained in a proper prime ideal P. In fact from the proof of the

above theorem we can deduce that there exists a non-vanishing p-sequence {xπ}

such that X Π Q = φ, where X = {x0, xl9...}. Let P be an ideal of L maximal with

respect to X Π P=φ and Q^P. Then as in the last paragraph of the same proof

we can see that P is a proper prime ideal of L.

Let π(L) be the set of elements x of L such that any p-sequence beginning

with x is vanishing. By Remark 1 we have the following

COROLLARY 2.3. rad (L) = π(L).

COROLLARY 2.4. rad(L) is the intersection of all the semiprime ideals of L.

The following lemma is easily seen.
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LEMMA 2.5. Let f be a homomorphism from L onto a Lie algebra L'.
For an ideal P' of L', P' is prime in L' if and only if f~\P') is prime in L.

A Lie algebra L is said to be semisimple (or σ-semisimple) if σ(L) = 0 or
equivalently α(L) = 0.

LEMMA 2.6. Let L be a semisimple Lie algebra. Then for any non-zero
ideal I of L, there exists a prime ideal P of L such that

PROOF. Let x0 e J\{0}. It is easy to see that [<x&>, x0] Φ0 since <Xσ><£9Ϊ
So we can find xίel and yu..., yn(ί)eL such that xi = lx0, }>i, .., JVo xo]τ*0.
Repeating this procedure we can get a non-vanishing p-sequence beginning with
x0. By Remark 1 L has a prime ideal P of L such that x o ^ P This completes
the proof.

Now we can show one of the main results of this section.

THEOREM 2.7. rad (L) = α*(L).

PROOF. First we show by induction on λ that αλ(L)^rad(L). This is
obvious for λ = 0. So let λ > 0 and assume that the assertion is true for all ordinals
less than λ. If A is a limit ordinal, evidently we have αA(L) = \Jμ<λ αμ(L) ̂  rad (L).
Suppose that λ is not a limit ordinal and so A —1 exists. Let xeccλ(L) and
{xn}n^o be a p-sequence beginning with x. Since <xL>^αλ(L) and «xL> +
α^^L^/α^.^I^eESl, we have <xL>(^')^αλ_1(L) for some positive integer j .
Therefore xjeotλ-ί(L)Srsid(L). By Corollary 2.3 {xn}n^j is a vanishing p-
sequence and so is {xn}n^0. By Corollary 2.3 again we have xerad (L), whence
αA(L) ̂  rad (L). Thus α^L) ̂  rad (L).

Now assume that α^ί/^radCL). Clearly L/α*(L) is semisimple. By
Lemma 2.6 there exists a prime ideal P/(x*(L) of L/α (̂L) such that rad (L) ̂ P .
By Lemma 2.5 P is a prime ideal of L and so rad (L) ̂  P. This is a contradiction.
Thus α*(L) = rad (L).

The following corollary is [11, Theorem 7].

COROLLARY 2.8. (i) σ(L)^rad(L).
(ii) // Le Max-<] ί/ien σ(L) = rad (L).

PROOF. In Section 1 we have shown that αs|e(L) = σ4c(L). Hence by Theorem
2.7 we have σ(L)^rad(L). If L satisfies the maximal condition for ideals,
then α*(L) = αn(L) for some positive integer n and αΛ(L) is soluble. Thus
σ(L) and therefore rad(L) = αs|e(L) = σ(L).

REMARK 3. (i) rad (L/rad (L))=0 over any field,
(ii) rad (L) ch L over any field of characteristic zero.
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In fact it is known that v(L) ch L over any field of characteristic zero (cf.

[2, Corollary 6.3.2]). By transfinite induction on β we can see that vβ(L) ch L.

Thus we have αHc(L) = v^(L) ch L.

Owing to Corollary 2.3 we have the following characterizations of hyper-

abelian Lie algebras. In group theory similar results are known (cf. [3, Satz 4.1]

and [4, p.360]).

COROLLARY 2.9. A Lie algebra L is hyperabelian if and only if any p-

sequence of L is vanishing.

COROLLARY 2.10. A Lie algebra is hyperabelian if and only if every

countable dimensional subalgebra is hyperabelian.

As another consequence of Theorem 2.7 we show the following theorem as

already announced.

THEOREM 2.11. Let L be a Lie algebra. Then L is hyperabelian if and

only if L has no proper prime ideals.

PROOF. By Proposition 1.2 and Theorem 2.7, L is hyperabelian if and only

if L=rad(L) . On the other hand, L has no proper prime ideals if and only if

L=rad(L).

3. The classes έ(<α)2ί and έ(<α) (21 Π S)

In this section we investigate further properties of hyperabelian Lie algebras

and those with finite-dimensional factors.

The following is a Lie analogue of [5, Lemma 4.1].

PROPOSITION 3.1. The following conditions for L are equivalent:

( i ) L is hyperabelian.

(ii) /// is a non-zero ideal of an epimorphic image H of L, there is an

abelian ideal A of H with O^A^I.

(iii) For any epimorphic image H of L, there exists an yί2-ideal N of

H such that CH(N) = ζί(N).

PROOF. By Lemma 1.3 the equivalence of (i) and (ii) is clear.

Assume (ii). Let H be an epimorphic image of L and A be a maximal

abelian ideal of H. If CH(A) = A, then (iii) is obviously satisfied. So we may

suppose that A^CH(A). Then by the assumption and Zorn's lemma there

exists a maximal abelian ideal N/A of H/A such that NjA^CH{A)jA. Then

A^NO CH(iV) = C1(iV)<]H. By the maximality of A we have A = ζί(N). Now

assume that A^CH(N). By the assumption again there is a non-zero abelian
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ideal B/A of H/A such that B^CH(N). Then (B + N)/A is an abelian ideal of
H/A and contained in CH{A)jA. By the maximality of N/A we have B^N Π
CH(N) = ζ1(N) = A. This contradicts the fact B/A^O. Therefore CH(N) = A =
ζ^N). Since N2^A, N is an $Π2-ideal of H. Thus (ii) implies (iii).

Assume (iii) finally. Let H be a non-zero epimorphic image of L. By the
assumption there exists an ideal N of H such that N2^ζt(N) = CH(N). Suppose
that ζx(N) = 0. Since N e 5R2 we have N = 0 and so H = CH(0) = d(0) = 0. This
is a contradiction and therefore ζχ(N) is a non-zero abelian ideal of H. By
Lemma 1.1 it follows that Leέ(o)$I. Thus (iii) implies (i). This completes
the proof.

As a consequence of this proposition we have the following corollary, which
can be also deduced from [2, Lemma 9.1.2].

COROLLARY 3.2. Let L be a hyperabelian Lie algebra. Then v(L)eg
if and only

PROOF. Let L be hyperabelian and let v(L)eJ5 Then by Proposition 3.1
there exists an 9i2'ideal N of L such that CL(N) = Ci(ΛΓ). Since v(L) e 3% we have
N e g. Thus L/CL(N) and CL(N) are finite-dimensional. It follows that Le % n
E3I. The converse is clear.

Now we construct a Gruenberg algebra which shows that the class E(O)21

is not L-closed and so forth. Another such example is seen in [15]. Let I
be any field and let F be the free Lie algebra over I with free generators xo,xu....
For each non-negative integer n, the subalgebra <x0, xu...9 xw> of F is a free
Lie algebra o n x 0 , x l v . . , xn and we denote it by Fn. F and Fn are graded with
deg(x() = l for i = 0, 1,.... Let R be the homogeneous ideal of F generated by
ΣT=ιF\+ί and let Qn (resp. Rn) be the homogeneous ideal of Fn generated by
F?+ — + F ; _ ! (resρ.F?-h +Fϊ + 1 ) for neN. Furthermore, let L = F/R9

Yn = Fn/Qn and Ln=YJY^+1^FJRn for neN. Then Lrt is a finite-dimensional
and nilpotent graded Lie algebra, whose every non-zero element has degree less
than n + 1. For a non-zero element x of a graded Lie algebra, the degree of
the leading component of x is called the degree of x.

For each neN, the natural injection Fn->F induces a graded homomorphism
φn: Ln-+L such that φn(xi + Rn) = xi + R (for O^i^n). We claim that φn is in-
jective. Suppose that KerφnΦQ and let x + KneKer $„ (xeFn\Rfl). Then we
have x e R Π Fπ. Since Ker φπ is homogeneous, we may assume that x is homo-
geneous and deg(x)^n. It follows that xeQζΓ\Fn. It is easy to see that
QζΓiFn = Qn. Then xeQn^Rn. This is a contradiction. Thus <£„ is injective
as claimed. We identify Ln with φn(Ln)=:(Fn + R)IR and regard Las \JfL0 U-

The algebra L is countable dimensional and locally nilpotent. Therefore L
is a Gruenberg algebra and by [1, Theorem 4.6] Le έ2l.
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Now we show that L has no non-zero bounded left Engel elements, which

implies that β(L) = 0 and L$έ E(<I)2I, where β(L) is the Baer radical of L. Assume

that L has a non-zero bounded left Engel element and let [F, mx]cz.R for some

xeF\R and m e N . Then there exists n e N such that xeFn. Put s = mn + 1 .

We note that YS=FJQS is the free product La_ !*<*,> of Ls^t and <xs>.

In fact, since Qs*zRs-ί9 the natural injection F S _ 1 ->F S induces a graded homo-

morphism / : Ls_ x -• Ys such that /(x f + Rs_ t ) = xf + Qs (0 ̂  i ̂  s - 1 ) . Then there

exists a graded homomorphism p : L s_1*<χ s>->7S such that p | L β _ 1 = / a n d p(:χ:s) =

Xs + Qs (cf. [6, Proposition 2.6.1]). Conversely let g: F s-»L s_1*<x s> be a

homomorphism such that g(xi) = Xi + Rs-1 ( O ^ i ^ s — 1) and ^(xs) = x s Since

2, = /^^!, we have Q s ^ K e r # . Hence 5f induces a graded homomorphism

q: y s-^L s_1*<x s> such that q(xi + Qs) = xi + Rs-1 ( O ^ i ^ s - 1 ) and ^(xs + e s ) = x5.

Then clearly we can see that pq (resp. qp) is the identity mapping of Ys (resp.

L s _ 1 *<x s ». It follows that 7 s ^L s _ 1 *<x s > as graded Lie algebras.

Lxs,m(x + Rs-1)] is a special basic monomial of x s and (x + Rs- x) in Ls_ !*<xs>

(cf. [6, p. 37]). By [6, Theorem 2.6.8], [x s > m x]#0 in Ys where x s = x s + β s ,

x = x + Qs. Since x + ReLn, we may have deg(x)^n and so deg([x s > m x])^

l+mn = s in Ys. It follows that [xs>mx]<£ Y|+ 1 and hence [ x s , m x ] £ # s . But by

the assumption [ x s , m x ] e R n F s and so [xs,mx] eQζ (]FS=QS^RS. This is a

contradiction.

We have proved the following

THEOREM 3.3. Over any field there exists a Gruenberg algebra with trivial

Baer radical.

COROLLARY 3.4. Over any field

(i) E ( ^ ) 2 1 < E 2 Ϊ ,

(ii) The class έ(<i)9l is not L-closed.

By Theorem 3.3 we have L E 9 1 ^ E ( < ] ) 2 Ϊ . But it is outstanding whether

every hyperabelian Lie algebra is locally soluble. However we can show the

following

PROPOSITION 3.5. Over any field

PROOF. Let L e έ ω + 1 0 α ) 2 ϊ and let {Lα}α^ω + 1 be an ascending Sϊ-series of

ideals of L. For any finitely generated subalgebra X = <x l 5 x2 5 > *π> °f ^> w e

have X2^Lω. There exists neN such that [xf, Xj] e L n for any i, je {1, 2,..., n}.

X 2 is spanned by elements of the form [x ί ( 1 ), *i(2)> > *»(*)] O'C7)eU> 2,..., n},

fc ^ 2). Since Ln-aL we have X2 ^ Ln and so X is soluble. Thus Le LE9I.

REMARK 1. In the category of restricted Lie algebras we have E 9 1 ^
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In fact let Le έSI and {Lα} be an ascending 2I-series of restricted subalgebras of L.

We assume transfinite inductively that LαeLE5l for cc<λ. If λ is a limit ordinal

or zero then evidently we have L A G L E 2 I . Suppose that λ — 1 exists and LA_X e

LE$1. Let X be a finitely generated restricted subalgebra of LA. Then XjX Π

LA_! aί(Jf+ LA_ 1)/L λ_ 1 e 5 Π SI. By [6, Corollary 2.5.2] we have X Π L λ _ t e (5.

Hence Z n LA_ x e E91 and s o l e ESI. Thus Le LESI.

Now we shall show some properties of the class of hyper abelian-and-finite

Lie algebras, which generalize [10, §2].

THEOREM 3.6. Let L be a Lie algebra over afield I.

(i) //LeE(<i)(2InS)^nL(ω)^p(L)e3.
(ii) //LeE(<i)(2I Π %r)for some reN then L^e^for some d^r2.
(iii) // Le E ( < 0 ( 9 1 n δ) and char I = 0 then L2e3.

PROOF. Let Le E(<])(SI n S). By [8, Proposition 6], we have έ(<])g Π L 9 1 =

3 Hence p(L) is hypercentral. Let {Lα}α^ff be an ascending (91 n g)-series of

ideals of L. Then for each α, L/CL(La+ίILa) is embedded in End f (Lα + 1/Lα)

and so L/CL(Lα + 1/Lα)eg ΠE^T. It follows that L«°>^n a < ( r CL(La+1/La).

Therefore {L(ω) Π L a} a^σ is an ascending central series of L ( ω ) and so L^ω) is

hypercentral. If L α + 1 / L α e 5 r f ° r every α then L ( d ) ^ Π α C L ( L α + 1 / L α ) for some

d^r2. Similarly L<d) has an ascending central series and hence L ( d ) is hyper-

central. We have now proved (i) and (ii).

Next we suppose charϊ = 0 to show (iii). Let n(α) = dim(Lα + 1/Lα). By

Lie's theorem, L induces simultaneously triangularizable endomorphisms of

L α + 1/La. Hence L 2 induces simultaneously nilpotent endomorphisms of La+1jLa

and therefore [ L α + 1 , n(μ)_1L
2']^LΛ. Refining each factor L 2 n L α + 1 / L 2 ΓlLα by

[ L α + 1 , iL
2~\ + {L2 f l L α ) ( l ^ k n ( α ) ) we obtain an ascending central series of L 2.

Thus L 2 is hypercentral. This completes the proof.

COROLLARY 3.7. Over any field of characteristic zero,

3 ύ έ(<0 (91 Π g) ^ 32Ϊ ^ E ( ^ ) 9 I .

PROOF. The first inequality follows from [8, Proposition 6]. The second

one is a straight consequence of Theorem 3.6 (iii). Let L e 3 $ ί Then L 2 e 3

and so {£α(L2), L} α ^ 0 is an ascending 9ί-series of ideals of L. Thus Le έ(<ι)9ί.

REMARK 2. In Corollary 3.7 the first inequality and the last one hold for

any field. But the second inequality does not always hold for a field of non-zero

characteristic. For example let char !=/?>() and V be a vector space over I

with basis {e0, β l 5..., ep_ x}. Considered as an abelian Lie algebra V has deri-

vations x, y such that efx = e i + 1 , £,•>> = ΐef (O^irgp — 1) where ep = e0. Then
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[x5 y]=χ and so <x, y} is a two-dimensional non-abelian subalgebra of Der(F).

Let L be the split extension V+(x y}. Then Leέ(<i)(9I n ftp) and it is easy to

REMARK 3. The two-dimensional non-abelian Lie algebra distinguishes

the class E(<I)(2Ϊ n ft) from 3 .

Let A be an infinite extension field of I and / be the regular representation of

A. Consider A as an abelian Lie algebra over I. Then we can form the split

extension L — A +f(A), where A^L and [a,f{b)~\ = ab for a, be A. This is

considered in [7, §2], where it is shown that every non-zero ideal of L contains

A. Therefore L has no non-zero finite-dimensional ideals of L and clearly L is

metabelian. Thus Le 33ί\έ(<α ){S& n ft).

There exists a perfect Fitting algebra (cf. [16, p. 96]) and so 39ί^έ(<])91.

Moreover this Lie algebra shows that the classes E(<α)(2ί Π ft), E(<])(9I Π ftr) are

not L-closed.

COROLLARY 3.8. If Le E(<I)(21 n ft) then L<α> = 0 for some ordinal α.

PROOF. By Theorem 3.6 (i) L ( ω ) is hypercentral. It is known that the

transfinite derived series of a 3-algebra reaches to zero (cf. [2, Lemma 8.1.1]).

Hence L ( α ) = 0 for some ordinal α.

The following is [10, Lemma 3.2 and Theorem 3.6].

LEMMA 3.9. Let L be a locally finite Lie algebra over I and let I be an

algebraic closure oft. Then the following are equivalent:

( i ) L is locally nilpotent.

(ii) Every subalgebra of L is serial.

(iii) Every 1-dimensional subalgebra of L is serial.

(iv) Every 2-dίmensional l-subalgebra of L®t\ is abelian.

As in the case of supersoluble Lie algebras, we can state the following

criterion for a hyperfinite Lie algebra (in particular a hyper abelian-and-finite

Lie algebra) to be hypercentral (cf. [10, Theorem 3.3]).

PROPOSITION 3.10. Let L be a hyperfinite Lie algebra over afield I and let

ϊ be an algebraic closure oft. Then the following are equivalent:

( i ) L is hypercentral.

(ii) Every subalgebra of L is ascendant.

(iii) Every subalgebra of L is serial.

(iv) Every 1-dimensional subalgebra of L is ascendant.

(v) Every 1-dίmensίonal subalgebra of L is serial.

(vi) Every 2-dimensional l-subalgebra of L®t\ is abelian.



612 Toshiharu IKED A

PROOF. The statement follows from [8, Proposition 6], [9, Corollary 3.3]

and Lemma 3.9.

4. The class E(<I)L5R

In this section we shall observe the class of hyper locally nilpotent Lie algebras

which contains the class of hyperabelian Lie algebras.

LEMMA 4.1. Let L be a hyper locally nilpotent Lie algebra and let {Hβ}β^σ

be an ascending series of ρ(L) such that H^L for any β. Then Γ\β<σCL

PROOF. Put C = r\β<σCL(Hβ+ί/Hβ) and let {Lα} be an ascending LSI-

series of ideals of L. Assume that C^p(L) and let α be the minimal ordinal with

respect to C ΓiLα^p(L). Then α is a non-limit ordinal and α —1 exists. Now

we prove that Cf lL α e L91. Let X be a finitely generated subalgebra of C n Lα.

Since LJLa.ίeL% there exists n e N such that Xn^La.ίf]C Hence Xn^

ρ(L) by the minimality of α. For any sequence xl9 x2,... of elements of X and

5 G N, there exists an ordinal β(s) minimal with respect to [xί9..., xn, xn+ ί9..., xn+J

e Hβ(s). Since each xt belongs to C we have β(s +1) < β(s) for any s e N. There-

fore β(t) = O for some ί e N . Then [xi,...,xπ + f] = 0. By [8, Proposition 5]

Xe3 Π (5^91. Thus C n La is an L$R-ideal of L and so C n La^ρ(L). This is

a contradiction.

From Lemma 4.1 we can deduce the following

THEOREM 4.2. Lβί L be a hyper locally nilpotent Lie algebra with finite-

dimensional Hirsch-Plotkin radical p(L). Then L is finite-dimensional and

soluble.

PROOF. By Lemma 4.1 we have CL(p(L))^p(L) and so CL(p(L)) is finite-

dimensional. Since L/CL(p(L)) is embedded in Der (p(L)) it is finite-dimensional.

Therefore Leftί) E ( < J ) L « = g n E91.

COROLLARY 4.3. Every infinite-dimensional U^<\)vSSl-algebra has an

infinite-dimensional L^l-ideal and further an infinite-dimensional abelian

subalgebra.

PROOF. The statement follows from Theorem 4.2 and [2, Theorem 10.1.3].

COROLLARY 4.4. έ(<i )L91 n Min-o 2 ^ g n E$1 .

PROOF. By [2, Lemma 8.1.3], if L satisfies the condition M i n - o 2 then p(L)

is finite-dimensional. Hence the assertion follows from Theorem 4.2.
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In Corollary 4.4 we cannot relax the condition Min-<ι2. In fact, there

exists an infinite-dimensional soluble Lie algebra which satisfies the condition

Min-<ι. For instance let V be a vector space with basis {e0, eu...} and let x

be the downward shift on V, that is, eox = 0 and e{x = ei-1 for all i > 0. Considering

F a s an abelian Lie algebra we can form the split extension L = F + < x > . Then

it is easy to see that L satisfies the condition Min-<ι.

But by using Lemma 4.1 we can show the following proposition which is

a generalization of Corollary 4.4.

PROPOSITION 4.5. Let Leέ(<])L9t n M i n - o . If p(L) has an ascending g-

series of ideals of L then L/p(L) e $ Π E51.

PROOF. Since ρ(L)e\M nέ(o)gf it is hypercentral by [8, Proposition 6].

Refining the given ascending g-series o f ρ(L) by the upper central series of p(L).

we obtain an ascending central series {Ha}a^σ of p(L) such that Ha<\L and

Ha+ίIHaG
<S for all α<σ. Put C = Λ α C L ( # α + 1 / i ί α ) . Then we have p(L)^C

and so p(L) = C by Lemma 4.1. Since LeMin-<3 there exist finite number of

ordinals α(l),..., α(n) such that C = n ? = 1 CL(Ha(i) + 1/Ha(i)). Then θ ? = 1 ( # α ( i ) + 1 /

Ha(i)) is a finite-dimensional faithful L/p(L)-module. Thus L/p(L)ejjnE(<])L91

Every non-zero soluble Lie algebra has a non-zero nilpotent ideal. Further-

more, if L (τ*0) is an L(g Π E9I)-algebra over a field of characteristic zero then

L2 is locally nilpotent by [2, Lemma 13.3.10] and so p(L)Φθ. It is reasonable

to ask whether every non-zero LE2I-algebra has non-zero Hirsch-Plotkin radical.

We give the negative answer to this problem in the following, which also shows

that the class E(<I)L91 is not L-closed.

THEOREM 4.6. Over any field there exists a non-zero locally soluble Lie

algebra with trivial Hirsch-Plotkin radical.

PROOF. Let Lt be any soluble Lie algebra. We construct an ascending

chain of soluble Lie algebras inductively. Now suppose that we have constructed

a soluble algebra Ln. Let U(Ln) be the universal enveloping algebra of Ln.

U(Ln) is a faithful Lπ-module under right regular representation of U(Ln). We

form the split extension U(Ln) + Ln of U(Ln) by Ln and call this new Lie algebra

L Λ + 1 . Clearly Ln+ί is soluble. Thus we obtain an ascending chain of soluble

algebras Lί^L2S" as desired.

Now let L be the direct limit of {Ln}. Then we have LGLE^I since each

Ln is soluble. Assume that ρ(L) Φ 0 and let 0 Φ a e ρ(L). Then there exists n e N

such that a e Ln. For the unit element ln of U(Ln), we have [1Λ, a~] = ae p{L)

where a is the element of U(Ln) corresponding to a. Then we have <α, α> e 91.

But \_a, ka~] = άk+1Φ0 for any keN. This is a contradiction.
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REMARKS. In general έ(<i)L9t^:E9ί. But countable dimensional

algebras are contained in έ5ί.

By [2, Corollary 16.3.11] K nέ(<ι)L9i = LW, where (E is the class of Engel

algebras.

In groups theory it is known that EL91 = E(<I)L91 (cf. [14, p. 59]). But for

Lie algebras it is an open question. We can only know that (LJ5 U (S) Π E L 9 1 ^

E(<I)L91 over any field of characteristic zero (cf. [2, Theorem 13.3.7 and 16.3.13]).

5. Semisimplicities

This final section is devoted to discussing several semisimplicities. It is

clear that σ(L/αHe(L)) = 0 for any Lie algebra L. So in a sense the theory of

Lie algebras is reduced to the theory of the hyperabelian Lie algebras and the

semisimple Lie algebras. But it is awkward that there is a semisimple and locally

nilpotent Lie algebra (see Theorem 3.3) unlike the theory of finite-dimensional

Lie algebras. Here we need to recall and define some classes of semisimple Lie

algebras. L e S if and only if L = 0 or L is non-abelian simple. When 0 ^

L e 6 we call briefly L simple. D S consists of all direct sums of simple Lie

algebras. Le (SS) (resp. (pSS), (RSS)) if and only if L has no non-zero 51 (resp.

L % LE«)-ideals. LG (CSS) if and only if CL(s(L)) = 0, where s(L) is the sum of

all simple ideals of L.

Concerning these classes we have the following

PROPOSITION 5.1. Over any field

D S < E(<i)<5 = έ S < (CSS) < (RSS) < (pSS) < (SS).

PROOF. If is clear that (ρSS)^(SS). By Theorem 3.3 there exists an L91-

algebra L such that α(L) = 0.

Evidently we have (RSS)^(ρSS). By Theorem 4.6 there exists an LE2I-

algebra L with p(L) = 0. Hence (RSS) < (pSS).

Let Le (CSS) and H be an LE$l-ideal of L. Since a minimal ideal of an LE$Ϊ-

algebra is abelian we have s(L) n H = 0. Hence H ^ CL(s(L)) = 0 and so Le (RSS).

Thus we have (CSS) ̂  (RSS). Now let F be a non-abelian free Lie algebra.

It is well known that every proper non-zero ideal of F is an infinitely generated

free Lie algebra (cf. [6, Corollary to Theorem 2.3.5]). Therefore s(F) = 0 and

F has no non-zero LE9ί-ideals. Thus F e (RSS)\(CSS).

It is shown in [9, Corollary 1.6] that E S = E ( < I ) 8 . Let Leέ(<3)<3 and

suppose that CL(s(L))Φ0. By Lemma 1.3 there exists a simple ideal Jsuch that

0^/^C L (s(L)). Then 0 # J 2 ^ [ s ( L ) , CL(s(L))] = 0, which is a contradiction.

Hence CL(s(L)) = 0 and so Le(CSS). Thus we have έS^(CSS). Now let K =

Drπ e N5M where each Sn is a simple Lie algebra. Then every element of Cr n e NS n
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induces a derivation of K. Let δ = (δn)eCrn€fiSn with δnφ0 for any weN.
We can form the split extension M = K + <£>. Then it is easy to see that s(M) = K
and CM(K)=0. But MjK is one-dimensional. Hence by Lemma 1.1 we have
M < £ E ( O ) S . ThusMe(CSS)\έ6.

By making use of Lemma 1.1 we have D<5^E(<I)6 . It is known that there
exists an έS-algebra L such that L ^ D ® (cf. [2, p. 266]). The proof is completed.

REMARK 1. Over any field of characteristic zero we have § Π(pSS) = § n
D S = D ( S Π 5) where ξ) is the class of neo-classical algebras (cf. [2, §13]).
Furthermore it can be seen that L(<])5 Π (SS) = D(<£ n %) where L(<3)5 is the class
of Lie algebras generated by finite-dimensional ideals.

REMARK 2. A Lie algebra L is said to be prime if 0 is a prime ideal of L.
If L is prime then L is semisimple. On the other hand every semisimple Lie
algebra is a subdirect sum of prime algebras.

If L is a prime algebra with s(L)#0 then Le (CSS), while L is not necessarily
an έS-algebra. For example let W be a Lie algebra over the real numbers field
R with basis {wr|reR} and multiplication [wΓ, ws] = (r — s)wr+s9 which is a
generalized Witt algebra and simple (cf. [2, p. 206]). Let T be a complementary
Q-subspace of the rational numbers field Q in R and δ be a derivation of W such
thatwr<5 = gwr for r = q + t (qeQ, teT). Now we can form the split extension
L=JF-j-<(5>. Then it is easy to see that Wis the unique non-trivial ideal of L
and s(L)= W. Hence L is prime, but L ^ έ S since L/Wis one-dimensional.

From now on we treat the class (CSS). It is characterized by the following

PROPOSITION 5.2. Let L be a Lie algebra over any field. Then L is a
(CSS)-algebra if and only if every non-zero ideal of L contains a simple ideal
ofL.

Proof. Let Le(CSS) and assume that there exists a non-zero ideal / of
L which contains no simple ideals of L. Then / Π s(L) = 0. Hence we have
0#/^CL(s(L)), which is a contradiction.

Conversely suppose that every non-zero ideal of L contains a simple ideal
of L. Then s(L)#0. If CL(s(L))^0 then CL(s(L)) contains a simple ideal /
of L. Since /gs(L) we have /2^[s(L), CL(s(L))] = 0. This is a contradiction.
Thus CL(s(L)) = 0 and so Le(CSS).

COROLLARY 5.3. E<5 is the largest Q-closed subclass o/(CSS).

PROOF. The result follows from Proposition 5.2 and Lemma 1.3.

REMARK 3. By Proposition 5.1 the class (CSS) is not Q-closed. But it can
be seen that (CSS) is i-closed. In fact let Le(CSS) and 7<iL. Then s(/)=/ Π
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s(L) and s(L) = s(I)®Sί where J f lS^O. If xeC/sί/)), we have [x, s(L)] =
[x, S J c / n SJL = 0. Hence x e CL(s(L)) = 0 and so C/sCJ)j = 0.

The following is a striking characterization of the class (CSS).

PROPOSITION 5.4. Le(CSS) if and only if there exist a Ό&-algebra S and
a Lie algebra U such that

Inn (S) ^ L' ^ Der (S) and L^U

where Inn (5) is the set of inner derivations of S.

PROOF. Let Inn(S)^LgDer(5) for some S G D S . Since Inn(S) is iso-
morphic to S and Inn(S)<iDer(S), we have Inn(S)^s(L). Let <5eCL(s(L)).
Then for any xeS we have ad(x<5) = [ad(x), <5] = 0. Since ζ1(5) = 0 it follows
that xδ = 0 and so <5 = 0. Thus we have CL(s(L)) = 0.

Now suppose that Le (CSS). We denote by ads(L)(L) the set of derivations of
s(L) induced by the elements of L. Then Inn (s(L)) ̂  ads(L)(L) ̂  Der (s(L)) and
ads(L) (L) is isomorphic to L since CL(s(L)) = 0. This completes the proof.

COROLLARY 5.5. Let L be a (CSS)-algebra over a field of characteristic
zero and let s(L)=θ?=i St where each St is an ($ (]<Z)-algebra or the Witt
algebra. Then L = S(L)GDS.

PROOF. It is not hard to show that Der (s(L)) = Inn(s(L)). Since CL(s(L)) = 0,
we have Inn (s(L)) = ads(L) (L) and so s(L) = L.

For two classes 3£, )̂ of Lie algebras, Le (έ(L)ϊ)^) means that L has an as-
cending series of ideals in which all the factors from the beginning are ϊ-algebras
and only the last factor is a ^-algebra.

PROPOSITION 5.6. Let X be a {Q, i}-closed class of Lie algebras. If LE

E(<I)(3£ U S) then Le (έ(L)ϊ)(CSS).

PROOF. Let χ*(L) be the hyper ϊ-radical of L and put L = Llχ*(L). To
show that Le(CSS) suppose that Cc(s(L))^0. Put C = CL(s(L)). L as well as
L itself has an ascending series {Lα} of ideals with La+1ILa e X U S. Let β be the
least ordinal such that C ί l L ^ O . Clearly β is a non-limit ordinal and /? — 1
exists. Put/ = Cf|L^. Since χ(L) = 0 and I^(I + Lβ_ί)/Lβ.ί^LβlLβ.1 eX U ©,
/ is a simple ideal of L. Then 0^/ 2^[s(L), C] = 0. This is a contradiction.
Thus C = 0 and therefore Le (CSS).

COROLLARY 5.7. Over any field of characteristic zero, if LeMin-<ι2 then
Le(E(L)2I)(CSS).

Proof. The statement follows from [2, Theorem 8.2.3] and Proposition 5.6.
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COROLLARY 5.8. Over any field of characteristic zero

Min-<i2n(SS)^(CSS).
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