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1. Introduction

In the n-dimensional euclidean space R*, we define the a-potential of a non-
negative (Radon) measure u by

Rou(x) =  Ri(x=3)dp0y),

where R (x)=|x|*"" if 0<a<n and R,(x)=log(1/]x]). Then it is easy to see that
|R u| # oo if and only if

S(1+ ly)*="du(y) < oo in case o < n,
@
Slog QC+lyDdu(y) < in case o = n.

Let h be a positive and nonincreasing function on the interval (0, o) such
that h(r)< const. h(2r) for r>0. In this paper, we first discuss the behavior of
h(]x|)~ 'R, u(x) at the origin, in connection with the growth of the mean value of
R,p over the open balls centered at the origin. In our discussions, the aim is to
find a criterion of the exceptional set E for which h(|x|)~ 'R, u(x) has limit zero or
remains bounded above as x tends to 0 outside E. Our results obtained below
will be similar to the characterizations of minimal thinness ([4]), minimal semi-
thinness ([S], [6]) and logarithmical thinness and semithinness ([7]).

The thinness can be defined in terms of the a-capacity, like the expression of
Wiener’s criterion (see e.g. Brelot [1] and Landkof [3]). In this paper, letting
B(x, r) denote the open ball with center at x and radius r, we define the a-capacity
of a set E in B(0, 2-1) by

C,(E) = inf u(R"),

where the infimum is taken over all nonnegative measures u with support in
B(0, 1) such that R u(x)=1 for every xe E.

The exceptional set E appeared in the discussion will satisfy the condition
that h7! 3%, h;min {a;, a;}C,(E;) is bounded or has limit zero as i—oco, where
h;=h(27), a;=2/" if a<n, a;=j if a=n and E;=E n B(0, 2-/)—B(0, 27i-1).
For particular choices of h, the condition means the a-thinness of E, the a-semi-
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thinness of E and so on.

Further we discuss the best possibility of our results as to the size of the
exceptional sets; that is, if E satisfies the above condition, then we find a non-
negative measure pu such that u satisfies the required properties but R u behaves
illon E. When we want to find y with finite energy, the above type condition only
is not sufficient. To do so, we require an additional condition on E and show the
existence of a nonnegative measure u satisfying

(i) | R < o0,

(ii)) R u(x) = h(|x]) for any xe S, (the support of )
and
(iii)) R u(x) = h(|x]) for any xeE.

By considering the inversion with respect to 0B(0, 1), our results will give a
generalization of the results in [8], which deal with the existence of equilibrium
measure of a closed set in the plane R2.

2. Behaviors at the origin of a-potentials

If u is a function integrable on B(0, r), then we define

_ 1
AW, 0,7) = TH T Smr) u(y) dy,

where |B(0, r)| denotes the n-dimensional Lebesgue measure of B(0, r).
The following result can be easily proved.

LeMMA 1. Let ¢(r)=R,(x) for r=|x|, and R, (x)=R(x—y). Then there
exist positive constants ¢, and c, such that

€1 min {¢a(r)a Ra(y)} é A(Ra,w 0, r) é C2 min {¢a(r)’ Ra(y)}
whenever r<1/2 and |y| £1/2.

Throughout this paper, we write a;=¢,(27/) for each integer j. First we
give the following result (cf. [5], [6], [7]).

THEOREM 1. Let h be a positive and nonincreasing function on the interval
(0, 00) such that h(r)<const. h(2r) for r>0, and let u be a nonnegative measure
on R* satisfying (1). Then the following statements are equivalent:

(i) ARy, 0,r)<const. h(r) for O0<r<1.

(ii) If1 £ p<n/(n—a), then A(JRu|?, 0, r)/? < const. h(r) for 0 <r < 1.

(i) There exists a sequence {x} such that lim;,, x) =0, [x)| <
const. |[xUtD| and R u(x) < const. h(|x|) for each j.
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(iv) For ¢ >0, there exists a set E = B(0, 2~1) such that
(@ X%, h;min{a;, a,}JC(E;) < eh,  for each k;
(6) limsup,-.o ez h(Ix) ' Ryu(x) < co,

where h;=h(277) and E;=E n B(0, 279)—B(0, 2777 1).

ProorF. We write R u=u+v, where

u@=|  R&x-)0),

B(0,1/2)

o) = | R,(x — y)du(y).

R"-B(0,1/2)

Then it follows from (1) that v(x) is continuous on B(0, 1/4). Hence it suffices
to prove the equivalence between (i) ~(iv) with R u replaced by u. By Lemma 1,
we have

erf,  min {90, RONKO) < 4w, 0, 7)
B(0,1/2)

e min {$,(r), R,(y)}du(y)
B(0,1/2)

for r<1/2.
By Holder’s inequality we have

A(u, 0, r) £ Awr, 0, r)Vr for r < 1/2,

if p=1. Conversely, we derive from Minkowski’s inequality,

Awr, 0, < ARE,, 0, Vrdu(y)
B(0,1/2)

< const. 3  min (4,0, R)}du(y)

B(0,1/2

for r<1/2 and p, 1<p<n/(n—a). Thus (i) and (ii) are equivalent.
Assume that (i) holds. Then

) > %y min {a;, a,}u(B;) < const. h; for each k,

where B;=B(0, 27/)—B(0, 279~1). Letting B;=B;_, UB;UB;,, and ¢>0, we
consider the sets

E, = {xeB,.; SB R (x—p)du(y) = e—lh,.} and E = U2, E,
J

Then it follows from the definition of C,(-) that

C(Ej) < ¢hj (B )
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In view of (2), E satisfies condition (a) of (iv). On the other hand,

S R, (x—y)du(y) < const. ¥ %, min {a;, a;}u(B;) < const. h,
B(0,1/2)-Bx »

whenever x € B,, and
f, RG=du) <y
k

for x € B, — E,, so that (b) of (iv) is fulfilled. Thus (i) implies (iv).
Assume that {x())} satisfies all the conditions in (iii), and define r;=|x(J)|.
By Lemma 1, we have

A(u, 0, r;) < const. u(x¥)) < const. h(r;) for large j.
Take M >1 such that r;< Mr;,, for each j, and note that
O, M~'r;] € U, [M~1r;, Mr;].

If M~'r;<r<Mrj, then Lemma 1 again gives

A(u, 0, r) < const. A(u, 0, Mr;) < const. h(r;) < const. h(r).

Consequently, we have proved that (iii) implies (i).
Finally assume that (iv) is true. Note that

c~laj! £ C(B)) £ caj!

for any j, where c is a positive constant. For e=c~!, take a set E satisfying
property (b) and

251 h;min {a;, a,}C(E;) < c"!h; for each k.

Then B;—E; is not empty. Letting x(/)e B;—E;, we see easily that (iii) holds
for {x()}. Thus (iv) implies (iii), and hence the proof of the theorem is complete.

THEOREM 2. Let h and u be as in Theorem 1. Then the following statements
are equivalent:

(i) lim, ;o h(r)"*A(Rpu, 0, r) = 0.

(ii) For 1= p<n/(n—a), lim,q h(r)~tA(Rw)?, 0, r)l/p = 0.

(iii) There exists a sequence {x)} such that lim;,,x) =0, [x()|=
const. |xU*D| for each j and lim;_, ,, h(|x()[)~R, u(x)) = 0.

(iv) There exists a set E < B(0, 27!) such that

(@) limy,, hi' 3%, h;min {a;, a;}C(E;) = 0;

(b) lim,o¢p h(IX))" 'R u(x) = 0.

Proor. Since the proof can be carried out in a way similar to that of Theorem
1, we shall give only a proof of the implication (i)—(iv). Assume that (i) holds.
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Then, as in the proof of Theorem 1, we obtain
3 limy_ o, hi* X%, min {a;, a,}u(B)) = 0.

Set &=h;;! T3, min {a;, a,}u(B), and find a sequence {b;} of positive numbers
such that b;<b;,,<2b;, b;<e;'/?,

J
2 7= bymin {a;, ak}ﬂ(ﬁj) < 2b; X7y min {a;, ak}”(gj)
for each k and lim,., b,=0c0 (see [7; Lemma 6]). Then (3) is fulfilled with
u(B,) replaced by b;u(B;). As in the previous proof, define
E; = {xeB;; [, R(:—y)du0) 2 b3'h,} and E = Ui,
/By

Then it is easy to see that (a) and (b) hold for this E, and hence (iv) holds. Thus
the proof of Theorem 2 is established.

REMARK 1. Let a>1. Then limsup, ;o h(r)~!A(Ru, 0, r)<oco (resp.=0)
if and only if lim sup, o h(r)~"1S(R,u, 0, r) < oo (resp. =0), where

_ 1
S(4,0.1) = 5GBO7) ony HIITO),

o denoting the surface measure on the boundary 0B(0, r).

ReMARK 2. If h=1 or if h(r)=max {¢,(r), 1}, then (a) of (iv) in Theorem 1
implies

721 a;CLE;) < o0,
which means that E is a-thin at 0 (cf. [1], [3]).

ReMARK 3. If h satisfies the additional conditions:
S’ h(s)s"~*~1 ds < const. h(r)r*~* and Sl h(s)s~ds < const. h(r)
0 r

for r<1, then (a) of (iv) in Theorem 1 can be replaced by
(@) a;C(E)<e for all j;
and (a) of (iv) in Theorem 2 is equivalent to
(a”) limj.,w ajCa(Ej) = 0.
If (a”) holds, then E is said to be a-semithin at O (cf. [6]). We note that
r-e(log (r +1))® for r<r,,
h(r) =
ry%(log (ro+1))? for r=r,,
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satisfies all the conditions mentioned above if 0<a<n—a, —c0<b<oo and r,
is chosen so that h is nonincreasing.

3. Thinness of sets

The proof of the implication (i)—(iv) in Theorem 1 shows the following:
We can find ¢y, ¢, >0 such that if 0<e<c, and E is a subset of B(0, 271) for
which there exists a nonnegative measure v satisfying

(i) AR, 0, 1) < eh(r) for 0<r<i1
and
(i) R,v(x) = h(lx|) for any x€E,
then
2%y hjmin {a;, a;}C(E;) < c,eh, for any k.

Conversely we establish the following result, which serves as showing the
best possibility of Theorem 1 as to the size of the exceptional sets.

PROPOSITION 1. Let h be a positive and nonincreasing function on the
interval (0, ) such that h(r)<Mh(2r) and Sr h(s)s"~1ds<Mh(r)r* for any
0

r>0, where M is a positive constant. Let E be a subset of B(0, 2~1) satisfying
(a) of Theorem 1, (iv) for some ¢>0. Then there exists a nonnegative measure
v with support in B(0, 1) such that

(i) ARy, 0,r)=<ceh(r) for O<r<1/2
and

(i) Ryv(x) = h(|x])  for any. x€E,
where c is a positive constant independent of ¢ and E.

Proor. By [3; Theorem 2.7], for each positive integer j we can find a
nonnegative measure v; such that S, < B;, v(B)<C/(E)+6; and R,vy(x)=1
for every x € E;, where {4,} is a sequence of positive numbers such that

2> 51 hjmin {a;, a;} [C(E;)+6;] < 2¢h, for each k.
Define
V=% by,

Then v is a nonnegative measure with support in B(O, 1) and
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S Ryv(x)dx = SRaxB,‘ dv < const. 27%" 3", h; min {a;, a;}v;(R")
B
=< const. & 27*"p,

where y, denotes the characteristic function of a measurable set A. Since
Sr h(s)s"~lds< Mh(r)r*, X 3,2 **h,<const. 27%"h,, so that (i) holds. Clearly,
0

R v(x)=h(|x|) for every xe E. Thus v satisfies all assertions in the proposition.
Theorem 2, (iv) is also best possible as to the size of the exceptional set.

PROPOSITION 2. Let h be as in Proposition 1. If E satisfies (a) of Theorem 2,
(iv), then there exists a nonnegative measure v with support in B(0, 1) such that

(i) 1lim,,o h(r)*A(Rp, 0, ) = 0;
() lim,,o e h(IX)71R¥(x) = o0.

ProOF. Let g=hi! 3%, h; min {a;, a,}C,(E;), and take a sequence {b;}
of positive numbers such that lim;_, , b;=00, b;<b;,,<2b;, b;<e;'/? and

2k bl CU(E)) = 2b; X3 ; i Co(Ey)
for any positive integer j (cf. [7; Lemma 6]). Then

As in the proof of Proposition 1, for each j take a nonnegative measure v; such
that S, = B;, v/(B))<C,E;)+9; and R,v/(x)21 for any xeE;, where {3,} is a
sequence of positive numbers satisfying (4) with C,(E;) replaced by C,(E;)+9;.
Define

V= 2‘?:1 bjhjvj‘

Then R,v(x)2 b;h;R,v{(x)2b;h; for x € E;, and

=Yj
S R(x)dx < const.27*" 3%, b:h;min {a;, a,}v(B)),
B

from which it follows that v satisfies (i) and (ii). Thus the proof of Proposition 2
is complete.

We here give several properties which are equivalent to the a-thinness. For
this purpose, denote by s# the family of functions h on (0, c0) which is positive
and nonincreasing on (0, o) such that h(r)¢,(r)~! is nondecreasing on (0, o0)
and lim, ;, h(r)= 0.

PROPOSITION 3. Let EcR". Then the following statements are equivalent.
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(i) E is a-thin at 0.

(ii) limy,, bt X%, hjmin {a;, a;}C(E)) =0  for any hes#.

(iii) >, hjmin {a;, a;}C(E;)<const. h,  for any positive integer k
whenever he 5#.

(iv) For any he s#, there exists a nonnegative measure v with compact
support such that

(@) lim,,o h(r)"tA(R,v, 0, 1) = 0;

(® RMx)=h(x|]) forany xeEnB(Q,1).

(v) For any hes#, there exists a nonnegative measure v with compact
support for which lim,_,, .. h(|x])"1R,v(x) = co.

Proor. First assume that E is a-thin at 0. For ¢>0, take j, such that
$=jo a;C(E;)<e. Since hy increases to infinity,

lim supy. o, ! %=1 hja;C(E;) = limsup,_, hy' X% ; h;a;C(E;

< limsupy.,, 2% a;C(E)) <.
On the other hand, since h;aj! is nonincreasing, we have
lim supy_, , hx! 3y h;ayCo(E)) = lim sup,_, ,, ayhi' X5 (hja;7Y)a;C(E;) = 0.

Thus (i) implies (ii). Clearly (ii) implies (iii). Since (iii) implies (i) by Remark 2
after Theorem 2, (i), (ii) and (iii) are equivalent to each other.

In view of Proposition 2, we infer that (ii) implies (iv) and (v). It follows
from Theorem 2 that (iv) implies (ii).

From [1; Theorem IX, 7] we see that E is a-thin at O if and only if there
exists a nonnegative measure v satisfying (1) and

lim,_, o xeg Ro(%)™'R,v(x) > v({0}).
Since ¢, € 5, (v) implies (i), and hence the proof of Proposition 3 is complete.

REMARK. Let E be a closed set in B(0, 2-1). Then the following statements
are equivalent (cf. Wu [9; Theorems 1 and 2]):

(i) Eis a-thin at 0.

(ii) For any h e s#, there eixsts a nonnegative measure v with support in
E such that

(a) lim, o h(r)"1A(Rv, 0, r) = 0;

(b) R,v(x) = h(|x]) for any xe E except those in a set with vanishing
a-capacity.

(iii) For any h e 57, there exists a nonnegative measure v with support in E
such that lim, ¢ reg- 4 h(|x[)"*R,v(x) = co, where C,(4)=0.

Denote by s#* the family of all positive and nonincreasing functions h on
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(0, oo) satisfying the following conditions:
(a) h(r) £ Mh(2r) for r>0;

(b) S h(s)s~ids < Mh(r)  for r> 0;
© SO h(s)s"+~1ds < Mh(ryr"=s  for r> 0,

where M is a positive constant.

PROPOSITION 4 (cf. [6; Theorem 2]). Let EcR". Then the following state-
ments are equivalent:

(i) E is a-semithin at 0.

(i) limg,, hy' X% hjmin{a;, a;}C(E;) =0  for any hes#*.

(ili) For any he #*, there exists a nonnegative measure v with compact
support such that

(a) lim,,o h(r)~tA(R,v, 0, r) = 0;

(b) lim,,q,rex h(Ix)7'R¥(x) = 0.

This proposition can be proved in a way similar to the proof of Proposition 3,
so we omit its proof (cf. Remark 3 after Theorem 2).

4. a-potentials with finite energy

We say that a nonnegative measure yu has finite a-energy if

s o = SRaﬂdu < o0;
in case n=2, u is assumed to have compact support.

THEOREM 3. Let pu be a nonnegative measure with support in B(0, 1) such
that {u, py,< oo and

AR, 0, 1) S h(r)  forany r >0,

where h is a function on (0, o) as in Theorem 1. Then for any ¢>0, there exists
a set Ec B(0, 271) possessing the following properties:

(@) X% h;jmin{a;, a,}C,(E;) S ehy  for any k.

(b) X Fk=1h;h,min {a;, a,}C(E;)C(E,) < co.

(©) limsup,.ox¢x h(Ix[)7'Rpp(x) < oo.

This theorem can be proved in the same way as the implication (i)—(iv) of
Theorem 1; so we omit its proof.

ReMARK. By Theorem 3 one can find ¢,, ¢, >0 such that if 0<e<c, and E
is a subset of B(0, 2~!) for which there exists a nonnegative measure v in B(0, 1)
satisfying
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(i) mv,<oo, _

(ii) A(R,v, 0, r) £ eh(r) forany r>0
and

(ii) R,¥(x) = h(]x]) for any xe€E,
then E satisfies

(@) X% h;min{a;, a;}C(E)) < c,ehy for.any k
and

(b) X k=1 hjhymin {a;, a,}C(E;)C,(E,) < c0.

We do not know whether Theorem 3 is best possible as to the size of the
exceptional set or not. We shall prove only the following result.

PROPOSITION 5. Let E be a subset of B(0, 271) satisfying (a) in Theorem 3
for some ¢>0 and

®) TR hICLE) < .
Then there exists a nonnegative measure v with support in B(0, 1) such that
v, vy, <00 and

me*O,er h(lxl)_lRav(x) = 0.

ReMARK 1. If E satisfies (a) and (b’), then it also satisfies (b). In case
{a;/h;} is bounded above, (b’) implies (a) for any £ <0; but, in general, the converse
is not true.

REMARK 2. Let hj=a’ for p>0. If f<1, then we can find a positive
constant ¢ such that

2 %1 h;min {a;, a,}C,(E;) < ch for any k&,
whenever E<B(0, 271); if <1/2, then (b’) holds for any set E < B(0, 2-1).

PROOF OF PROPOSITION 5. Let E be as in the proposition. Then, in view of
[7; Lemma 6], we can construct a sequence {b;} of positive numbers such that
limj_,w bj= oo, bkébk+1§2bk’

%) 251 bjh;jmin {a;, a,}C(E;) < const. bh,
and
(6) % b3h3C(E;) < 0.

Take a sequence {9;} of positive numbers which satisfies (5) and (6) with C,(E;)
replaced by C,(E;)+6;. By [3; Theorem 2.7], for each j we can find a nonnegative
measure v; such that SVJCE 5 vi(B)<CJE)+5;, R,v(x)21 for any x e E; and
R,vi(x)=2"= for every x € R". Define
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v= > bhy;.
Then R,v(x) = bl R, vi(x)=b.h, for x e E, and
R(x) = X%, bjh;R,v(x) < const. { T2} b;h,av(B)) + TktL_; bjh;
+ X% +2 bhjav (B} < const. bhy

for x € B;,. Hence it follows that lim,_, ¢ ,.g B(|x])"1R¥(x)=co0 and
(% V9 = Ties bie | Rovdv, < const. T2, bihin(B,) < co.

Thus v satisfies all the conditions required in the proposition, and the proposition
is proved.

5. Gauss variation

Throughout this section, let f be a continuous function in R*— {0} such that
™ supg, [f| < const.infy,_ |f],

where B;=B(0, 27/)—B(0, 27/-!) as before. Define

Ji = supg, ||

and

h; = max {fy,..., f;} .

By (7), hj<h;,<const. h; for any positive integer j.
Our main result in this section is the following.

THEOREM 4. Let E be a subset of B(0, 21) possessing the following pro-
perties:

(@ X% hjmin{a;, a;}C,(E;) < const.hy for each k;

(b) X7y hiC(E)) < oo,
where a;=¢(277) and E;=E N B; as before. Then there exists a nonnegative
measure yu with support in B(0, 1) such that

(i) Ryux)2f(x) forany xeE —{0};

(ii) Ru(x) =f(x) forany xeS,—{0};

(i) <u, Wo = JRpdp < co.

Without loss of generality, we may assume that h;>0 for any j. Let h be a
nonincreasing and continuous function on (0, co) such that h(2=/)=h; for each j.

Proor orF THEOREM 4. Since C,(-) is an outer capacity, there exists an open
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set G such that E— {0} cG<B(0, 2-1)—- {0} and (a), (b) in Theorem 4 hold for
E=G. Denote by U(G) the family of all nonnegative measures y such that S,cG
and {u, w,<oo. Define

V() = by wye — 2 fdu,
and consider
a = inf{V(p); p € U(G)}.

Take a nonnegative measure v as in Proposition 5 with E replaced by G. Here
we may assume that S, B(0, 4-!). Then we obtain for u € U(G),

[ xDduc) < M § Ry <27 (Qu wy + M2, 930),

which implies that

V(ﬂ) ;. - M2<V, v>a ’
where M is a positive constant. Hence the quantity a is finite. Take a sequence
{u;} of nonnegative measures in U(G) such that lim;,, V(u;)=a. Then it is

easy to see that {{u;, u;»,}, and hence {S h(lx)dpu(x)}, is bounded. It follows

that {#;(G)} is bounded, and hence we may assume that {y;} converges vaguely
to a nonnegative measure py. Note here that (i, po), < 0, and hence p({0})=0.
For r>0, define

A(r) = inf {h(|x|)"*Rv(x); xe G n B(0, r)}.
By assumption, lim,,;, A(r)=00. Let i, be a continuous function on R" such

that ,=1 on B(0, r/2), ¥,=0 outside B(0, r) and 0=<y,<1 on R". Then we have

| D) — (L1 - vl | < @Y Ravy

B(O,

for r sufficiently small. Since lim, ;, A(r)= o0 and { S R, vdu j} is bounded,

it follows that

B(0,2-1)

tim, o | B0 = | hlxduo(x) < oo.
In a similar manner, noting that | f| < h, we obtain

lim, .., S fdu; = Sfd;zo .

On the other hand,
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a = V((uj+w)/2) = V() + V()12 — <uj— o 1j— tio/4
for any positive integers j and k, so that
liInj'-wo <ﬂ’j — Hos Hj — ”0>a =0.

Moreover it follows that V(ug)=a.
If pe U(G) and t>0, then u;+tu e U(G), which yields

® [ Rasodu 2 { s

Similarly, since (1 —#)u; € U(G) for 0<t<1, we establish

S Rauodpo = Sfdllo .

Let x°e G. By taking as p the unit uniform surface measure on the boundary
0B(x°, r) and letting r | 0 in (8), we derive

Rpo(x°) 2 f(x).
Thus it follows that R,uo= fon G. We next let x°e S, —{0} and suppose
Rapo(x%) > f(x).
Since R,u, is lower semicontinuous, there exists r >0 such that
R uo(x) > f(x) for any xeB(x% r).

Let ¢ be a continuous function on R” such that Y =1 on B(x°, r/2), Y =0 outside
B(x° r) and 0S¢ =<1 on R". Then, since u;+tyu;e U(G) for —1<t<1, we
obtain

[ Rato—powduo = 0.

Thus a contradiction follows, and hence R, uq(x®)=<f(x°). The proof of the
theorem is now complete.
In the same way we can prove the next theorem.

THEOREM 5. If E is as in Theorem 4, then there exist a number y and a
nonnegative measure u with support in B(0, 1) such that W(R")=1, R,u=f+y
on S,—{0}, R,u2 f+7y on E—{0} and {u, pu)y,<oo.

We also establish the following results with a slight modification of the
proof of Theorem 4.

THEOREM 4'. Let K be a compact set in R* containing the origin and



598 Yoshihiro Mizuta

satisfying (a), (b) in Theorem 4 with E replaced by K. Then there exists a
nonnegative measure u supported by K such that R,u< f on S,—{0}, R,u=f
on K except for a set of vanishing a-capacity and {u, pp,< .

THEOREM 5'. If K is as in Theorem 4', then there exist a number y and a
nonnegative measure u supported by K such that W(K)=1, {u, up, <0, R,u=
f+yonS,—{0} and R,u2 f+y on K except for a set of vanishing a-capacity.

ReMARK 1. If limsup,.q R (x)?|f(x)|<oo for some B with 0<f<1/2,
then the conclusions of Theorems 4, 5, 4’ and 5’ remain true in view of Proposition
5 and its Remark 2.

REMARK 2. Let h be as in Theorem 1 and p be a nonnegative measure on
B(0, 1). If R,u<H on §,, then R,u<MH on R", where M is a positive constant
independent of u and H(x)=h(r) for |x|=r.

For a proof of this fact, let h;=h(2"/) and p;|, where Bj={xeR";277"1<
|x|£277}. Since Ru;<M,h;on S, , we see that

R.p; < 2" *M h; on R~
where M, is a positive constant so chosen that H(x)<Mh; for xe B;. If xe Bj,
then
R (x) = Rpui(x) + M, 34 ;min {a;, a,}u(B,),
so that
Ropj = 2" *{Mh; — My 34 ;min {a;, a,}u(By)} ,
where M, is a positive constant and B;=B(0, 27/)—B(0, 277~!). Hence it
follows that
Ru(x) < Ryptj—1(x) + Rty 1(%) + Rouf(x) + M3 ¥ iy min {a;, a,}u(By)
< 277 2My(hj-y+hjsq) + M4h; < MsH(X)

for x € B;, where M3, M, and M are positive constants. Thus the conclusion
of the remark follows by noting that the constants M, ~Mjs are determined

independently of u.
Finally it is noted that the next statements are equivalent:

(i) X5y a%C(E) < oo.
(ii). There exists a nonnegative measure u with support in B(0, 1) such that
R,u(0) < oo and

limx-'O,er Ra(x)— lRaﬂ(x) = 0.
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(iii) There exists a nonnegative measure u with support in B(0, 1) such that

R, u(0) < o0, R,u(x) = R(x) on E n B(0, 271) and R, u(x) < R,(x) on S,.

In fact, (i) implies (ii)) by Lemma 3; (iii) follows from (ii) in view of the proof

of Theorem 3; (iii) implies (i) by Proposition 6.

Further (i), (ii) and (iii) are equivalent to

(iv) There exist a nonnegative measure u with support in B(0, 1) and unit

mass and a number y such that R u(0) < o0, R,u(x) = R,(x) +y on En B0, 27%)
and Ru(x) S R, (x)+yonS,.

In case a=n=2, this result gives Theorem 3 in [8] by considering the inver-

sion with respect to the surface 6B(0, 1).
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