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1. Introduction

In the n-dimensional euclidean space Rn, we define the α-potential of a non-
negative (Radon) measure μ by

where Ra(x) = \x\a~n if 0<α<« and /*„(*)=log (l/|x|). Then it is easy to see that
\Raμ\ ψ oo if and only if

(1)

\ (1 + \y\)a~ndμ(y) < oo in case oc < n,

\ log (2 + \y\)dμ(y) < oo in case α = n.

Let h be a positive and nonincreasing function on the interval (0, oo) such
that h(r)^ const. h(2r) for r>0. In this paper, we first discuss the behavior of
h(\x\)~ίRaμ(x) at the origin, in connection with the growth of the mean value of
Raμ over the open balls centered at the origin. In our discussions, the aim is to
find a criterion of the exceptional set E for which h(\x\)~ιRaμ(x) has limit zero or
remains bounded above as x tends to 0 outside E. Our results obtained below
will be similar to the characterizations of minimal thinness ([4]), minimal semi-
thinness ([5], [6]) and logarithmical thinness and semithinness ([7]).

The thinness can be defined in terms of the α-capacity, like the expression of
Wiener's criterion (see e.g. Brelot [1] and Landkof [3]). In this paper, letting
B(x, r) denote the open ball with center at x and radius r, we define the α-capacity
of a set £ in £(0, 2"1) by

where the infimum is taken over all nonnegative measures μ with support in
B(0, 1) such that RΛμ(x)^ 1 for every xeE.

The exceptional set E appeared in the discussion will satisfy the condition
that hj1 Σ£=i hj min {ai9 a^CJJLj) is bounded or has limit zero as ί-»oo, where
hj = h(2-J), aj = V'<»-«> if α<n, aj=j if α = n and Ej = EnB(0, 2~J')-B(0, 2-^).
For particular choices of h, the condition means the α-thinness of E, the α-semi-
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thinness of E and so on.

Further we discuss the best possibility of our results as to the size of the

exceptional sets; that is, if E satisfies the above condition, then we find a non-

negative measure μ such that μ satisfies the required properties but Raμ behaves

ill on E. When we want to find μ with finite energy, the above type condition only

is not sufficient. To do so, we require an additional condition on E and show the

existence of a nonnegative measure μ satisfying

(i)

(ii) Raμ(x) ^ Λ(|JC|) for any xeSμ (the support of μ)

and

(iii) Raμ(x) ^ Λ(|x|) for any xeE.

By considering the inversion with respect to dB(09 1), our results will give a

generalization of the results in [8], which deal with the existence of equilibrium

measure of a closed set in the plane R2.

2. Behaviors at the origin of α-potentials

If u is a function integrable on B(0, r), then we define

A(u, 0, r) = | A ? m x, \ u(y) dy,

where \B(0, r)\ denotes the n-dimensional Lebesgue measure of B(09 r).

The following result can be easily proved.

LEMMA 1. Let φΛ(r) = Ra(x) for r=|x | , and Ray(x) = Ra(x-y). Then there

exist positive constants ct and c2 such that

c± min {φa(r)9 Ra(y)} ^ A(Ra>y, 0, r) ^ c2 min {φΛ(r\ Ra(y)}

whenever r ^ l / 2 and |j/|^l/2.

Throughout this paper, we write aj = φa(2~j) for each integer j . First we

give the following result (cf. [5], [6], [7]).

THEOREM 1. Let h be a positive and nonincreasing function on the interval

(0, oo) such that h(r)^const. h(2r) for r>0, and let μ be a nonnegative measure

on Rn satisfying (1). Then the following statements are equivalent:

( i ) Λ(Raμ, 0, r) ^ const. h(r) for 0 < r < 1.

(ii) Ifl^P< nl(n-0L)9 then Λ(\Raμ\P, 0, r)1^ g const. Λ(r) for 0 < r < 1.

(iii) There exists a sequence {xU)} such that limj^^ xU) = Ό, \xU)\ ^

const. |x^'+1)| and RΛμ(xU)) ^ const. h(\χW\)for each].
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(iv) For ε > 0, there exists a set E c B(0, 2"1) such that

(a) Σ?=i hj min {α,, ak}Ca(Ej) ^ eftk /or eαcft k;

(b) lim supx_0,x#E Λ ( l ^ l ) " 1 ^ ^ ) < °°>
ft, = h(2~J) and Ej = E(] B(0, 2'J) -

PROOF. We write Raμ=u + v, where

Then it follows from (1) that v(x) is continuous on 5(0, 1/4). Hence it suffices

to prove the equivalence between (i)~(iv) with Raμ replaced by w. By Lemma 1,

we have

cx \ min {φa(r), Ra(y)}dμ(y) ί A(u, 0, r)
Jβ(O,l/2)

min {φa(r), Ra(y)}dμ(y)
JB(O,l/2)

for r < 1/2.

By Holder's inequality we have

A(u, 0, r) ^ ^ ( I I P , 0, ryiP for r < 1/2,

if p ^ l . Conversely, we derive from Minkowski's inequality,

A{*9 0, y S [
JB(0,l/2)

S const. \ min {φa(r)9 Ra(y)}dμ(y)

for r < l / 2 and p, l^p<n/(n — α). Thus (i) and (ii) are equivalent.

Assume that (i) holds. Then

(2) Σ*=i m i n {̂ 7> ^k}KBj) ^ const. ftfe for each fc,

where Bj = B(0,2-j)-B(0, 2-J-1). Letting Bj = BJ_ί\j Bj\j Bj+1 and ε>0, we
consider the sets

J Λ«(x-^Ai(y) ^ ε"1^] and £ = wy=2£y

Then it follows from the definition of Cα( ) that
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In view of (2), E satisfies condition (a) of (iv). On the other hand,

[ RΛ(x-y)dμ(y) ^ const. Σ*=i min {ap ak}μ{Bj) ^ const. hk[
jB(0,l/2)-δk

whenever x e Bk, and

\ Ra(x-y)dμ(y)<ε-ihk

for x e Bk — Ek9 so that (b) of (iv) is fulfilled. Thus (i) implies (iv).

Assume that {x(j)} satisfies all the conditions in (iii), and define rj = \x^J')\.

By Lemma 1, we have

A(u, 0, rj) ^ const. u(x<j)) ^ const, hirj) for large j .

Take M > 1 such that rj^Mrj+ί for each,/, and note that

(0, M-VJ c wjLi [M-V,., Mrj-].

If M~1rj^r<MrJ, then Lemma 1 again gives

A(u, 0, r) ̂  const. A(u9 0, Mrj) ̂  const. h(rj) ̂  const. ft(r).

Consequently, we have proved that (iii) implies (i).

Finally assume that (iv) is true. Note that

c~'aγ ^ Ca(Bj) ̂  Caγ

for any j , where c is a positive constant. For ε = c~1, take a set E satisfying

property (b) and

Σf=ι hj min {ap ak}Ca(Ej) < c~xhk for each fc.

Then Bj — Ej is not empty. Letting χ(J)eBj — Ej9 we see easily that (iii) holds

for {x ( 7 ) }. Thus (iv) implies (iii), and hence the proof of the theorem is complete.

THEOREM 2. Let h and μ be as in Theorem 1. Then the following statements

are equivalent:

( i ) limrioΛ(r)-1i4(Λjι,0,r) = 0.
(ii) For 1 S P < n/(n-α), limr i0 h{r)^A{{Raμ)P, 0, r)1/* = 0.
(iii) There exists a sequence {xU)} such that limj_

const. |x<'+1>| for each j and lirn,.^ h(\x^\)-ιRaμ(χθΊ) = 0.

(iv) There exists a set E cz 5(0, 2"1) SMC/I ί/iαί

(a) l i m ^ hi1 Σ?=i hj min {α, , ak}Ca(Ej) = 0;

(b) lim

PROOF. Since the proof can be carried out in a way similar to that of Theorem

1, we shall give only a proof of the implication (i)->(iv). Assume that (i) holds.
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Then, as in the proof of Theorem 1, we obtain

(3) liπifc^ Λ*1 ΣjS-i min {aj9 ak}μ(Bj) = 0.

Set εk = hlι Σ?=i m i n iap ak}lAPj)> and find a sequence {bj} of positive numbers
such that bj<*bj+1S2bj, fc^ej1'2,

Σ?-* bj min {aj9 ak}μ{Bj) ^ 2bk Σf=k min {aj9 ak}μ(Bj)

for each k and limk_oob fc=oo (see [7; Lemma 6]). Then (3) is fulfilled with

μ(Bj) replaced by bjμHβj). As in the previous proof, define

and E = \JJmlEs.

Then it is easy to see that (a) and (b) hold for this E, and hence (iv) holds. Thus

the proof of Theorem 2 is established.

REMARK 1. Let α > 1. Then lim supr 10 h(r)~ 1A(Raμ, 0, r) < oo (resp. = 0)

if and only if limsup r i 0 Kr)~ίS(Raμ, 0, r)<oo (resp. =0), where

σ denoting the surface measure on the boundary dB(0, r).

REMARK 2. If h = 1 or if /ι(r) = max {φa(r)9 1}, then (a) of (iv) in Theorem 1

implies

which means that E is α-thin at 0 (cf. [1], [3]).

REMARK 3. If h satisfies the additional conditions:

Γ /i(s)sn-a"1 ds ^ const. h{r)rn~Λ and Γ h{s)s'xds ^ const. h(r)
Jo Jr

for r < 1, then (a) of (iv) in Theorem 1 can be replaced by

(a') ajCa(Ej)<ε for all j ;

and (a) of (iv) in Theorem 2 is equivalent to

(a") hmj^ajCJiEj) = 0.

If (a") holds, then E is said to be α-semithin at 0 (cf. [6]). We note that

f r-*(log(r+l))* for r < rθ9

h(r) =
[ ( l ( l))ft for r^rθ9
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satisfies all the conditions mentioned above if 0 < α < n — α, — oo<b<oo and r0

is chosen so that h is nonincreasing.

3. Thinness of sets

The proof of the implication (i)->(iv) in Theorem 1 shows the following:

We can find cί9 c2>0 such that if 0 < ε < c 1 and £ is a subset of B(0, 2'1) for

which there exists a nonnegative measure v satisfying

(i) A{Rav9 0, r) ^ εh(r) for 0 < r < 1

and

(ii) RΛv(x) ^ fc(|x|) for any xeE,

then

Σ7=i hj min {aj9 ak}Ca(Ej) ^ c2εhk for any k.

Conversely we establish the following result, which serves as showing the

best possibility of Theorem 1 as to the size of the exceptional sets.

PROPOSITION 1. Let h be a positive and nonincreasing function on the

interval (0, oo) such that h(r)^Mh(2r) and \ h(s)sn~1ds^Mh(r)rn for any
Jo

r>0, where M is a positive constant. Let E be a subset of B(0, 2"1) satisfying
(a) of Theorem 1, (iv)/or some ε>0. Then there exists a nonnegative measure

v with support in B(0, 1) such that

(i) A(Rav, 0, r) S cεh(r) for 0 < r < 1/2

and

(ii) Rav(x) ^ h(\x\) for any xeE,

where c is a positive constant independent of ε and E.

PROOF. By [3; Theorem 2.7], for each positive integer j we can find a

nonnegative measure Vj such that SVJaBj, Vj(Bj)<Ca(Ej) + δj and î αv

for every xeEj9 where {δj} is a sequence of positive numbers such that

Σ?=i hj min {aj9 ak} [Ca(Ej) + δj] ^ 2εhk for each k,

Define

Then v is a nonnegative measure with support in B(0, 1) and
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( Rxv(x)dx = \RxχBk dv ^ const. 2"*» Σ?-i hj min {α,, ak}vj(R»)

^ const, ε 2-knhk,

where χA denotes the characteristic function of a measurable set A. Since

h{s)sn~1ds^Mh{r)rn

9 Σt= si 2~knhkSconst. I'^h^ so that (i) holds. Clearly,
o

RΛv(x)^h(\x\) for every xeE. Thus v satisfies all assertions in the proposition.

Theorem 2, (iv) is also best possible as to the size of the exceptional set.

PROPOSITION 2. Let h be as in Proposition 1. IfE satisfies (a) of Theorem 2,
(iv), then there exists a nonnegative measure v with support in B(0, 1) such that

(i) limriofc(r

(ii) limx^OtXeE hQxir^RXx) = oo.

PROOF. Let εfc = /i^1 Σ^=i fy minία,., ak}Ca(Ej), and take a sequence
of positive numbers such that lini,..^ f>y=oo, bj^bj+1S2bj, bj^εjί/2 and

^ 26, Σ?=,

for any positive integer; (cf. [7; Lemma 6]). Then

(4) l i m ^ . Ki Σ?=i &Λ m i n ^ J ' "*}c«(£;) = 0.

As in the proof of Proposition 1, for each j take a nonnegative measure Vj such
that SVJczBj, Vj(Bj)<Ca(Ej) + δj and £αv/x)^l for any xeEp where {<5,.} is a
sequence of positive numbers satisfying (4) with Ca(Ej) replaced by Ca(Ej) + δj.
Define

Then Rav(x)^bjhjRaVj(x)^bjhj for xeE^, and

ί Rav(x)dx ^ const. 2~kn Σ"=i b j ^ min {α, , ak}vfβj),

from which it follows that v satisfies (i) and (ii). Thus the proof of Proposition 2
is complete.

We here give several properties which are equivalent to the α-thinness. For
this purpose, denote by 3tf the family of functions h on (0, oo) which is positive
and nonincreasing on (0, oo) such that HfiφJifjΓ1 is nondecreasing on (0, oo)
and lim r i 0 h{r) = oo.

PROPOSITION 3. Let E<=:Rn. Then the following statements are equivalent.
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( i ) E is oc-thin at 0.

(ii) ίhnk^hl1Σ?-ihjτmn{aJ,ak}CJίEj) = O for any

(iii) Σ*=i hjmin{aj9 ak}Ca(Ej)^const. hk for any positive integer k

whenever h e Jf.

(iv) For any h e Jf9 there exists a nonnegatίve measure v with compact

support such that

(a) limr;o h{r)-^A{Rav9 0, r) = 0;

(b) Rav(x) ^ h(\x\) for any xeEn 5(0, 1).

(v) For any heJf, there exists a nonnegative measure v with compact

support for which \imx^OxeE h(\x\)~ιRav(x) = oo.

PROOF. First assume that E is α-thin at 0. For ε>0, take j 0 such that

Σy=j0 cijCa(Ej)<ε. Since hk increases to infinity,

hΐ1 ΣU hjajCa(Ej) = limsup^^ h^ Σ)=johjajCa(Ej)

S Km sup^^ Σ)=jo "jCa(Ej) < ε.

On the other hand, since hjaj1 is nonincreasing, we have

lim s u p * ^ h,1 Σ7=k hjakCa(Ej) = lim sup^,, akh~^ Σf=k (hja^ajC^Ej) = 0.

Thus (i) implies (ii). Clearly (ii) implies (iii). Since (iii) implies (i) by Remark 2

after Theorem 2, (i), (ii) and (iii) are equivalent to each other.

In view of Proposition 2, we infer that (ii) implies (iv) and (v). It follows

from Theorem 2 that (iv) implies (ii).

From [1 Theorem IX, 7] we see that E is α-thin at 0 if and only if there

exists a nonnegative measure v satisfying (1) and

Since φa e Jf9 (v) implies (i), and hence the proof of Proposition 3 is complete.

REMARK. Let £ be a closed set in J3(0, 2"1). Then the following statements

are equivalent (cf. Wu [9; Theorems 1 and 2]):

( i ) E is α-thin at 0.

(ii) For any /ie«#", there eixsts a nonnegative measure v with support in

E such that

(a) \imrioh(r)-iA(RΛv90,r) = 0;

(b) Rav(x) ^ h(\x\) for any xeE except those in a set with vanishing

α-capacity.

(iii) For any h e Jf, there exists a nonnegative measure v with support in E

such that limx_0)JceE_A /ι(|x|)~1jRαv(x)=oo, where Ca(A) = 0.

Denote by 3ri?* the family of all positive and nonincreasing functions h on
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(0, oo) satisfying the following conditions:

(a) h(r) ^ Mh(2r) for r > 0;

^s ^ Mh(r) for r > 0;(b) Γ

(c) Γ -α- 1ds ^ Mh(r)rn~a for r > 0,
r

where M is a positive constant.

PROPOSITION 4 (cf. [6; Theorem 2]). Let EaRn. Then the following state-

ments are equivalent:

( i ) E is QL-semithin at 0.

(ii) lim^ hi1 Σ7-i hjΏUn{aJt ak}Ca(Ej) = 0 for any hejf*.

(iii) For any h e Jί?*9 there exists a nonnegative measure v with compact

support such that

(a) \imri0 h(r)~U(tfαv, 0, r) = 0;

(b) Umx^0tXeEh(\x\yiRΛv(x) = co.

This proposition can be proved in a way similar to the proof of Proposition 3,

so we omit its proof (cf. Remark 3 after Theorem 2).

4. α-potentials with finite energy

We say that a nonnegative measure μ has finite α-energy if

in case n = 2, μ is assumed to have compact support.

THEOREM 3. Let μ be a nonnegative measure with support in B(0, 1) such

that <μ, μ > α < 0 ° and

A(Raμ, 0, r) ^ h(r) for any r > 0,

where h is a function on (0, oo) as in Theorem 1. Then for any ε>0, ίftere exists

a set EcJB(0, 2"1) possessing the following properties:

(a) Σ ? = Λ min{α,., ak}Ca(Ej) ^ εhk for any fc.

(b) Σ?U=i hjhk min {αy, ak}CJίEj)CJίEJ < oo.

(c) lim sup^o,*** ftfl*!)"1*.^*) < oo.

This theorem can be proved in the same way as the implication (i)-»(iv) of

Theorem 1 so we omit its proof.

REMARK. By Theorem 3 one can find cl9 c2>0 such that if 0<ε<cί and E

is a subset of 5(0, 2"1) for which there exists a nonnegative measure v in J2(0, 1)

satisfying
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( i ) <v, v> α <oo,

(ii) A(Rav9 0, r) ^ εh(r) for any r > 0

and

(iii) Kαv(x) ^ fc(|x|) for any x e £ ,

then E satisfies

(a) Σ*=i fy m i n {<*./> ak}C<x(Ej) ^ C2£frfc f°Γ any ic
and

(b) Σ " * - i hjKmin {α, , ak}Ca(Ej)Ca(Ek) < oo.

We do not know whether Theorem 3 is best possible as to the size of the

exceptional set or not. We shall prove only the following result.

PROPOSITION 5. Let E be a subset of B(0, 2"1) satisfying (a) in Theorem 3

for some ε > 0 and

Then there exists a nonnegative measure v with support in B(0, 1) such that

<v, v>α<oo and

limje->0.x6E*(l^l)"%v(x) = oo.

REMARK 1. If £ satisfies (a) and (b')> then it also satisfies (b). In case

{aj/hj} is bounded above, (b') implies (a) for any ε < 0 ; but, in general, the converse

is not true.

REMARK 2. Let hj = a] for β>0. If β<l, then we can find a positive

constant c such that

Σ?-ihjmhL{aj9ak}CJtEj)£chk for any k,

whenever EczB(09 2" 1); if jS<l/2, then (b') holds for any set EcBφ, 2"1).

PROOF OF PROPOSITION 5. Let E be as in the proposition. Then, in view of

[7; Lemma 6], we can construct a sequence {bj} of positive numbers such that

(5) Σ J M I bjhj min {ap ak}Ca(Ej) ^ const. bkhk

and

(6) Σ?-i frJΛJC^) < oo.

Take a sequence {57 } of positive numbers which satisfies (5) and (6) with Ca(Ej)

replaced by Ca(Ej) + <57 . By [3 Theorem 2.7], for each j we can find a nonnegative

measure v7- such that SVJaBp Vj(Bj)<Ca(Ej) + δj, RaVj(x)^.l for any x e £ 7 and

RaVj(x) ^ 2"-*a for every x e Rn. Define
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y = Σ?-ibjhjVj.

Then Rav(x) ^ bkhkRavk(x) ^ bkhk for x e Ek and

RX*) = Σ?-i bjhjR.Vjix) ^ const. {Σί=? &A*Λ( f iy) + Σ J ϋ - i &Λ

+ Σ?=*+2 bjhjakv^Sj)} ^ const. ί>A

for x e £ Λ . Hence it follows that limJC->Oi*e£ h(\x\)~1Rav(x) = oo and

<v, v>α = Σ?=i bkhk J #αvrfvfc ^ const. Σ?- i ifΛ2v*(fi») < oo.

Thus v satisfies all the conditions required in the proposition, and the proposition

is proved.

5. Gauss variation

Throughout this section, let / be a continuous function in Rn — {0} such that

(7) supBj I/I ^ const, i n f ^ | / | ,

where Bj=B(0, 2~J) - B(0, 2~J-ι) as before. Define

fj = s\ιpBj I/I

and

By (7), hj^hj+ί^const, hj for any positive integer j .

Our main result in this section is the following.

THEOREM 4. Let E be a subset of B(0, 2"1) possessing the following pro-

perties :

(a) Σ7=i hj min {aj9 ak}Ca(Ej) ^ const.hk for each k;

(b) Σ?-ih2jCJtEj)< Co,

where aj = φ(2~s) and Ej = E(]Bj as before. Then there exists a nonnegative

measure μ with support in B(0, 1) such that

( i ) Raμ(x) ^f(x) for any xeE - {0}

(ii) Raμ(x)^f(x) for any xeSμ-{0};

(iii) (μ,μ>a==$Raμdμ<co.

Without loss of generality, we may assume that hj>0 for any j . Let ft be a

nonincreasing and continuous function on (0, oo) such that h(2"J) = hj for each /.

PROOF OF THEOREM 4. Since Cα( ) is an outer capacity, there exists an open
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set G such that £ - { 0 } c G c ΰ ( 0 } 2"1)~{0} and (a), (b) in Theorem 4 hold for

E=G. Denote by U(G) the family of all nonnegative measures μ such that SμczG

and <μ, μ>α<oo. Define

and consider

a = mf{V(μ);μeU(G)}.

Take a nonnegative measure v as in Proposition 5 with E replaced by G. Here

we may assume that S v c 5 ( 0 , 4"1). Then we obtain for μ e U(G),

h(\x\)dμ(x) ^ M J Kαvrfμ ^ 2 ^ «μ, μ>α + M2<v, v>α),

which implies that

V(μ)> -M 2 <v,v> α ,

where M is a positive constant. Hence the quantity a is finite. Take a sequence

{μj} of nonnegative measures in U(G) such that l im^^ V(μj) = a. Then it is

easy to see that {ζβj9 μy)α}» a n ^ hence {\h(\x\)dμj(x)}, is bounded. It follows

that {μ/G)} is bounded, and hence we may assume that {μj} converges vaguely

to a nonnegative measure μ0. Note here that <μ0, μo>α< oo, and hence μo({0}) = 0.

For r>0, define

i4(r) = inf {Λ(|x|)-%v(x); x e G n B(0, r)}.

By assumption, Iimrio^4(r) = cχ). Let ̂ r be a continuous function on Rn such

that ψr= 1 on J5(0, r/2), ^ r = 0 outside 5(0, r) and 0 ^ ^ Γ ^ 1 on Rn. Then we have

I W\x\)dμj(x) - ί [ l - Wx)]*dx|MAi/x) S A{r)-ι \ Ravdμj

for r sufficiently small. Since limr. 0 ΛCr) = oo and \ \ R-vdμΛ is bounded,
[jBiO,!-1) J)

it follows that

K\x\)dμj(x) =

In a similar manner, noting that |/ | g ft, we obtain

limj_>n^fdμj = ydμ0.

On the other hand,
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a ύ

for any positive integers j and k, so that

l i m ^ iμj - μ09 μ} - μo>« = 0.

Moreover it follows that V(μo) = a.

If μ e l/(G) and t >0, then μj + tμ e l/(G), which yields

(8)

Similarly, since (1 - t)μj e U(G) for 0 < t < 1, we establish

Let x° G G. By taking as μ the unit uniform surface measure on the boundary

dB(x°, r) and letting r | 0 in (8), we derive

Thus it follows that Raμ0^.f on G. We next let x°eSμo — {0} and suppose

Since Raμ0 is lower semicontinuous, there exists r > 0 such that

Rjh(x)>f(x) for any xeB(x°,r) .

Let φ be a continuous function on R" such that ι̂  = 1 on B(x°, r/2), ι/̂  = 0 outside

β(x°, r) and O ^ ^ ^ l on Λ". Then, since μj^-t\l/μjEJJ{G) for - l < ί < l , we

obtain

Thus a contradiction follows, and hence Raμ0(x°)^f(x°). The proof of the

theorem is now complete.

In the same way we can prove the next theorem.

THEOREM 5. // E is as in Theorem 4, then there exist a number γ and a

nonnegative measure μ with support in B(0, 1) such that μ(Rn)=l, Raμ^f+y

on Sμ-{0}, Raμ^f+γ on E-{0} and <μ, μ>α<oo.

We also establish the following results with a slight modification of the

proof of Theorem 4.

THEOREM 4'. Let K be a compact set in Rn containing the origin and
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satisfying (a), (b) in Theorem 4 with E replaced by K. Then there exists a

nonnegative measure μ supported by K such that Raμ^f on Sμ — {0}, Raμ^f

on K except for a set of vanishing ^-capacity and <μ, μ>α<oo.

THEOREM 5'. // K is as in Theorem 4', then there exist a number γ and a

nonnegative measure μ supported by K such that μ(K) = l, <μ, μ>α<oo, Raμ^

on Sμ — {0} and RΛμ^.f+y on K except for a set of vanishing en-capacity.

REMARK 1. If lim sup^ 0 Ra(x)~P\f(x)\ < oo for some β with 0</?<l/2,
then the conclusions of Theorems 4, 5, 4' and 5' remain true in view of Proposition
5 and its Remark 2.

REMARK 2. Let h be as in Theorem 1 and μ be a nonnegative measure on
B(0, 1). If Raμ^H on Sμ9 then Raμ^MH on Rn, where M is a positive constant
independent of μ and H(x) = h{r) for |x| = r.

For a proof of this fact, let hj = h(2-j) and μj\Ej, where Bj = {xeRn\ l-J'1^
\x\^2~j}. Since Rjij^M^j on Sμj9 we see that

Raμj ^ 2n-aMίhj on #",

where Mx is a positive constant so chosen that H(x)^M^ for x e Sy. If x e 5,-,

then

Raμ(x) ^ Raμj(x) + M2 ΣUΦJ min {aj9 ak}μ(Bk),

so that

^ 2«-α{M1/Ij - M2 Σ ^ y min {ap ak}μ(Bk)},

where M2 is a positive constant and Bj = B(0, 2~j)-B(0, 2~J~1). Hence it
follows that

Raμ(x) S

^ 2«-*M1(/i;_1 + /iy+1) 4- M4fcy ^ M5H(x)

for xeBj, where M3, M 4 and M5 are positive constants. Thus the conclusion
of the remark follows by noting that the constants Mt~M5 are determined
independently of μ.

Finally it is noted that the next statements are equivalent:

( i ) Σ?
(ii) There exists a nonnegative measure μ with support in B(0, 1) such that

Raμ(0) < oo and
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(iii) There exists a nonnegative measure μ with support in B(0, 1) such that

Raμ(0)< oo, Raμ(x) ^ RΛ(x) on E n B(0, 2"1) and Raμ(x) ^ RΛ(x) on Sμ.

In fact, (i) implies (ii) by Lemma 3; (iii) follows from (ii) in view of the proof

of Theorem 3; (iii) implies (i) by Proposition 6.

Further (i), (ii) and (iii) are equivalent to

(iv) There exist a nonnegative measure μ with support in B(0, 1) and unit

mass and a number γ such that RΛμ(0) < oo, RΛμ(x) ^ Ra(x) + γ on E Π B(0, 2"1)

and Raμ(x) ^ RΛ(x) '+ y on Sμ.

In case α = n = 2, this result gives Theorem 3 in [8] by considering the inver-

sion with respect to the surface dB(O, 1).
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