Corrections to the papers on finite \boldsymbol{H}-spaces

Yutaka Hemmi
(Received September 5, 1985)

1. In [2], Proposition 4.3 is incorrect in case that $H^{*}(X ; Z)$ has torsions, e.g., $X=G_{2}$ (the exceptional Lie group). To correct [2], we must add the assumption (*) and Theorem 1.4 in [2] should be replaced by the following

Theorem 1.4'. For a 3-connected finite H-space X, assume that
(*) $H^{*}(X ; Z)$ has no 2-torsion,
(1.5) $H^{*}(X ; G)$ are primitively generated for $G=Z_{2}$ and Q, and
(1.6) the indecomposable module $Q H^{n}\left(X ; Z_{2}\right)$ vanishes for $n=15$. Then, X has the homotopy type of $\left(S^{7}\right)^{l}$ for some $l \geqq 0$.
(We note that (*) and (1.5) for $G=Q$ imply (1.5) for $G=Z_{2}$, which can be proved by using Theorem 2.2 of Hodgkin [11] in the references of [2].)

Corollary 1.7 in [2] is valid by the proof given in [2; p.56], because (*) for \tilde{X} is proved there and so Theorem 1.4^{\prime} can be applied to \tilde{X}.

We can prove Theorem 1.4^{\prime} by correcting [2; $\left.\S \S 2,4-5\right]$ as follows:
In Lemma 2.4 and $\S 4$, the assumption (*) should be added. In §§4-5,
$K^{*}()$ and Z in the coefficient should be replaced by $K^{*}() \otimes Z_{(2)}$ and $Z_{(2)}$, respectively, $\left(Z_{(2)}\right.$ is the ring of integers localized at 2$), K^{*}() \otimes Q$ in line -5 of p .60 by $K^{*}() \otimes Z_{(2)}$, and the isomorphism in line -4 of $p .60$ by

$$
F_{2 p-1} K^{1}(X) \otimes Z_{(2)} / F_{2 p} K^{1}(X) \otimes Z_{(2)} \cong H^{2 p-1}\left(X ; Z_{(2)}\right) ;
$$

and the Adams operation ψ^{n} in Proposition 4.5 and Lemma 4.7 (i) should mean the one $\psi^{n} \otimes$ id localized at 2. Furthermore, 'integers A and B ' in line -5 of p. 62 and ' A is even or add' in $\S 5$ should mean 'coefficients A and B in $Z_{(2)}$ ' and ' $A \equiv 0$ $\bmod 2$ or not', respectively.
2. In [1], Lemma 7.8 is incorrect (see (b) below); and it should be replaced by the following

Lemma 7.8'. Let $m \geqq 2$ and E be an exponential sequence with $|E|=$ $2 p^{m}(p-1)$ and $E \neq p^{m} \Delta_{1}$. Then

$$
r_{E} \equiv \sum r_{E_{s}} \theta_{s} \bmod \left(p^{2}, v_{1}, v_{2}, \cdots\right)
$$

where $\theta_{s} \in B P^{*} B P$, and E_{s} satisfies (1) for $m \geqq 2$ and (2) in Proposition 7.7.
Proof. Let $E=\left(e_{1}, e_{2}, \cdots\right)$ satisfy $|E|=2 \sum e_{i}\left(p^{i}-1\right)=2 p^{m}(p-1)$. Then, $e_{i}=0(i>m)$ and $e_{m}<p ;$ and $e_{m}=p-1$ if and only if $E=E_{0}=\Delta_{1}+(p-1) \Delta_{m}$. Since $(p-2)\left(p^{m}-1\right)+\sum_{i=1}^{m-1}\left(p^{i}-1\right)<p^{m}(p-1)$, these show that
(a) E_{0} is the least one, and $e_{t} \geqq 2$ for some $1 \leqq t<m$ if $E \neq E_{0}$.

Now, put $E_{1}=2 \Delta_{1}, E_{2}=p \Delta_{m-1}, F=E_{1}+E_{2}+(p-2) \Delta_{m}, F_{s}=F-E_{s}(s=1,2)$, $b_{2}=(p+2)(p+1) / 2$ and $b_{m}=1$ if $m \geqq 3$. Then (7.4) in [1] shows that $r_{E_{1}} r_{F_{1}} \equiv$ $b_{m} r_{F}+(p-1) r_{E_{0}}$ and $r_{E_{2}} r_{F_{2}} \equiv b_{m} r_{F} \bmod \left(v_{1}, v_{2}, \cdots\right)$. Thus, we see the following (b) which is the lemma for $E=E_{0}$:
(b) $r_{E_{0}} \equiv r_{E_{1}} \theta_{1}+r_{E_{2}} \theta_{2} \bmod \left(p^{2}, v_{1}, v_{2}, \cdots\right)$ where $\theta_{s}=(-1)^{s}(p+1) r_{F_{s}}$.

When $E \neq p^{m} \Delta_{1}$ and $E \neq E_{0}$, according to (a) and (b), we see Lemma 7.8 in [1] by the proof given in [1; pp. 466-7] where t should be taken to satisfy (a) so that $\left|2 \Delta_{t}\right|<2 p^{m}$ and the two ' $2 \Delta_{1}$ ' in line -1 of p .466 should be replaced by ' $2 \Delta_{t}$ '.
Q.E.D.

References

[1] Y. Hemmi, On finite \boldsymbol{H}-spaces given by sphere extensions of classical groups, Hiroshima Math. J. 14 (1984), 451-470.
[2] Y. Hemmi, On 3-connected finite H-spaces, Hiroshima Math. J. 15 (1985), 55-67.

> Department of Mathematics, Faculty of Science,
> Kochi University

