Corrections to the papers on finite H-spaces

Yutaka Неммі

(Received September 5, 1985)

1. In [2], Proposition 4.3 is incorrect in case that $H^*(X; Z)$ has torsions, e.g., $X = G_2$ (the exceptional Lie group). To correct [2], we must add the assumption (*) and Theorem 1.4 in [2] should be replaced by the following

THEOREM 1.4'. For a 3-connected finite H-space X, assume that (*) $H^*(X; Z)$ has no 2-torsion,

(1.5) $H^*(X; G)$ are primitively generated for $G = Z_2$ and Q, and

(1.6) the indecomposable module $QH^n(X; \mathbb{Z}_2)$ vanishes for n=15.

Then, X has the homotopy type of $(S^7)^l$ for some $l \ge 0$.

(We note that (*) and (1.5) for G=Q imply (1.5) for $G=Z_2$, which can be proved by using Theorem 2.2 of Hodgkin [11] in the references of [2].)

Corollary 1.7 in [2] is valid by the proof given in [2; p. 56], because (*) for \tilde{X} is proved there and so Theorem 1.4' can be applied to \tilde{X} .

We can prove Theorem 1.4' by correcting $[2; \S\S2, 4-5]$ as follows: In Lemma 2.4 and §4, the assumption (*) should be added. In §§4-5,

 $K^*()$ and Z in the coefficient should be replaced by $K^*() \otimes Z_{(2)}$ and $Z_{(2)}$,

respectively, $(Z_{(2)})$ is the ring of integers localized at 2), $K^*() \otimes Q$ in line -5 of p. 60 by $K^*() \otimes Z_{(2)}$, and the isomorphism in line -4 of p. 60 by

 $F_{2p-1}K^{1}(X) \otimes Z_{(2)}/F_{2p}K^{1}(X) \otimes Z_{(2)} \cong H^{2p-1}(X; Z_{(2)});$

and the Adams operation ψ^n in Proposition 4.5 and Lemma 4.7 (i) should mean the one $\psi^n \otimes id$ localized at 2. Furthermore, 'integers A and B' in line -5 of p. 62 and 'A is even or add' in §5 should mean 'coefficients A and B in $Z_{(2)}$ ' and ' $A \equiv 0$ mod 2 or not', respectively.

2. In [1], Lemma 7.8 is incorrect (see (b) below); and it should be replaced by the following

LEMMA 7.8'. Let $m \ge 2$ and E be an exponential sequence with $|E| = 2p^m(p-1)$ and $E \ne p^m \Delta_1$. Then

$$r_E \equiv \sum r_{E_s} \theta_s \mod (p^2, v_1, v_2, \cdots),$$

where $\theta_s \in BP^*BP$, and E_s satisfies (1) for $m \ge 2$ and (2) in Proposition 7.7.

PROOF. Let $E = (e_1, e_2, \dots)$ satisfy $|E| = 2 \sum e_i(p^i - 1) = 2p^m(p-1)$. Then, $e_i = 0$ (i > m) and $e_m < p$; and $e_m = p-1$ if and only if $E = E_0 = \Delta_1 + (p-1)\Delta_m$. Since $(p-2)(p^m-1) + \sum_{i=1}^{m-1}(p^i-1) < p^m(p-1)$, these show that

(a) E_0 is the least one, and $e_t \ge 2$ for some $1 \le t < m$ if $E \ne E_0$.

Now, put $E_1 = 2\Delta_1$, $E_2 = p\Delta_{m-1}$, $F = E_1 + E_2 + (p-2)\Delta_m$, $F_s = F - E_s$ (s = 1, 2), $b_2 = (p+2)(p+1)/2$ and $b_m = 1$ if $m \ge 3$. Then (7.4) in [1] shows that $r_{E_1}r_{F_1} \equiv b_m r_F + (p-1)r_{E_0}$ and $r_{E_2}r_{F_2} \equiv b_m r_F \mod (v_1, v_2, \cdots)$. Thus, we see the following (b) which is the lemma for $E = E_0$:

(b) $r_{E_0} \equiv r_{E_1}\theta_1 + r_{E_2}\theta_2 \mod (p^2, v_1, v_2, \cdots)$ where $\theta_s = (-1)^s (p+1)r_{F_s}$.

When $E \neq p^m \Delta_1$ and $E \neq E_0$, according to (a) and (b), we see Lemma 7.8 in [1] by the proof given in [1; pp. 466–7] where t should be taken to satisfy (a) so that $|2\Delta_t| < 2p^m$ and the two $(2\Delta_1)$ in line -1 of p. 466 should be replaced by $(2\Delta_t)$. Q. E. D.

References

- Y. Hemmi, On finite H-spaces given by sphere extensions of classical groups, Hiroshima Math. J. 14 (1984), 451–470.
- [2] Y. Hemmi, On 3-connected finite H-spaces, Hiroshima Math. J. 15 (1985), 55-67.

Department of Mathematics, Faculty of Science, Kochi University