Non-triviality of some compositions of β-elements in the stable homotopy of the Moore spaces

Katsumi Shimomura and Hidetaka Tamura
(Received April 30, 1985)

§1. Introduction

Let S be the sphere spectrum and M the Moore spectrum modulo a prime $p \geqq 5$ given by the cofiber sequence $S \xrightarrow{p} S \xrightarrow{i} M \xrightarrow{\pi} \Sigma S$; and consider the stable homotopy rings $\pi_{*} S$ and $[M, M]_{*}$. Then, for $s \geqq 1$ and $t \geqq 2$, the β-elements
(1.1) $\quad \beta_{(s)}, \quad \beta_{(t p / p)}$ in $[M, M]_{*}$ and $\beta_{s}=\pi \beta_{(s)} i$,

$$
\beta_{t p / p}=\pi \beta_{(t p / p)} i, \quad \beta_{t p^{2} / p, 2} \text { in } \pi_{*} S
$$

are given by Smith [13] (see also [14], [16]) and Oka [7], [8].
Consider the Brown-Peterson spectrum $B P$ at p, the Hopf algebroid $(A, \Gamma)=\left(B P_{*}, B P_{*} B P\right)=\left(Z_{(p)}\left[v_{1}, v_{2}, \cdots\right], B P_{*}\left[t_{1}, t_{2}, \cdots\right]\right)$ and the Adams-Novikov spectral sequence:

$$
E_{2}=H^{*} A^{\prime}=\operatorname{Ext}_{\Gamma}^{*}\left(A, A^{\prime}\right) \Longrightarrow \pi_{*} M\left(\text { resp. } \pi_{*} S\right) \quad \text { for } \quad A^{\prime}=A /(p)(\text { resp. } A)
$$

Then, Miller-Ravenel-Wilson [4] proved the following:
(1.2) There are the β-elements

$$
\beta_{s}^{\prime} \text { in } H^{1} A /(p)\left(\text { resp. } \beta_{s}, \beta_{t p / p}, \beta_{t p^{2} / p, 2} \text { in } H^{2} A\right)(\text { see (2.4.6) })
$$

which converge to $\beta_{(s)} i$ in $\pi_{*} M$ (resp. the ones in $\pi_{*} S$ with the same notation).
The main purpose of this paper is to prove the following
Theorem A. In the E_{2}-term $H^{3} A /(p), \beta_{s}^{\prime} \beta_{t p^{2} / p, 2}=\beta_{s+t p(p-1)}^{\prime} \beta_{t p / p}$ holds, and $\beta_{s}^{\prime} \beta_{t p / p}=0$ if and only if $p \mid s t$.

Corollary B. In $[M, M]_{*}, \quad \beta_{(s)}\left(\beta_{t p^{2} / p, 2} \wedge 1_{M}\right), \quad \beta_{(s)}\left(\beta_{t p / p} \wedge 1_{M}\right)$ and $\beta_{(s)} \delta \beta_{(t p / p)}$ are all non-trivial if $p \nmid s t$. Here $\delta=i \pi$ is the generator of $[M, M]_{-1}$.

Corollary B is a consequence of Theorem A and is proved in Corollary 4.2. The equality and the triviality in Theorem A are in Theorem 2.7 which is valid for $p \geqq 3$ and can be proved easily by [4] and [9], and the non-triviality is in Theorem 4.1. We note that Theorems 2.7, 4.1 and Corollary 4.2 contain the (non-) triviality of some other compositions.

To show the non-triviality in Theorem 4.1, $\S 3$ is devoted to the study of $H^{1} M_{1}^{1}$ in the E_{2}-term of the chromatic spectral sequence [4] converging to $H^{*} A /(p)$, and forms the main part of this paper. By the change of rings theorem [3], we note that

$$
\begin{aligned}
& H^{1} M_{1}^{1}=\operatorname{Ext}_{\Sigma}^{1}\left(B, M_{1}^{1} \otimes_{A} B\right) \\
& \\
& \quad \text { for } \quad(B, \Sigma)=\left(Z_{(p)}\left[v_{1}, v_{2}, v_{2}^{-1}\right], B\left[t_{1}, t_{2}, \cdots\right] \otimes_{A} B\right) .
\end{aligned}
$$

Then, by using some results in [4] and [13], some calculations give us suitable elements in Σ which satisfy good relations in the cobar complex $\Omega_{\Sigma}^{*} B$ (Lemma 3.4), and we can find generators of $H^{1} M_{1}^{1}$ given in Proposition 3.8 and Theorem 3.10. Theorem 4.1 is proved by these results.

The authors would like to thank Professor M. Sugawara and the late Professor S. Oka for their useful suggestions.

§ 2. Triviality in the \boldsymbol{E}_{2}-term

Let p be an odd prime and BP the Brown-Peterson ring spectrum at p. Then, the following are due to Quillen [10] and Hazewinkel [2] (cf. also [1], [4]):

$$
\begin{align*}
& B P_{*}=\pi_{*} B P=Z_{(p)}\left[v_{1}, v_{2}, \cdots\right] \subset H_{*} B P=Z_{(p)}\left[m_{1}, m_{2}, \cdots\right], \tag{2.1}\\
& B P_{*} B P=B P_{*}\left[t_{1}, t_{2}, \cdots\right], \operatorname{deg} v_{n}=\operatorname{deg} m_{n}=\operatorname{deg} t_{n}=2\left(p^{n}-1\right), \text { and } \\
& v_{n}=p m_{n}-\sum_{i=1}^{n-1} m_{i} v_{n-i}^{(i)} \quad\left(u^{(i)} \text { denotes } u^{p^{i}} \text { in this paper }\right), \tag{2.1.1}
\end{align*}
$$

where $B P_{*} \subset H_{*} B P$ by the Hurewicz map. Furthermore,
(2.1.2) $\quad\left(B P_{*}, B P_{*} B P\right)=(A, \Gamma) \quad$ (this abbreviation is used hereafter)
is a Hopf algebroid (cf. [3]), whose left unit η_{L} is the inclusion, and right unit η_{R} (denoted simply by η): $A \rightarrow \Gamma$ and diagonal $\Delta: \Gamma \rightarrow \Gamma \otimes_{A} \Gamma$ are given respectively by

$$
\begin{equation*}
\eta m_{n}=\sum_{i=0}^{n} m_{i} t_{n-i}^{(i)}, \quad \sum_{i=0}^{n} m_{i} \Delta t_{n-i}^{(i)}=\sum_{i+j+k=n} m_{i} t_{j}^{(i)} \otimes t_{k}^{(i+j)} \tag{2.1.3}
\end{equation*}
$$

where $m_{0}=t_{0}=1$ and $v_{0}=p$.
For a Γ-comodule M with coaction $\eta_{M}: M \rightarrow M \otimes_{A} \Gamma$, we study the homology
(2.2) (cf. [3]) $H^{*} M=\operatorname{Ext}_{\Gamma}^{*}(A, M)$ of the cobar complex $\Omega_{\Gamma}^{*} M=\left(\Omega_{\Gamma}^{s} M, d_{s}\right.$: $\Omega_{\Gamma}^{s} M \rightarrow \Omega_{\Gamma}^{s+1} M$) given by $\Omega_{\Gamma}^{s} M=M \otimes_{A} \Gamma \otimes_{A} \cdots \otimes_{A} \Gamma$ (s factors of Γ) and

$$
\begin{aligned}
d_{s}(m \otimes x)= & \eta_{M} m \otimes x \\
& +\sum_{i=1}^{s}(-1)^{i} m \otimes x_{1} \otimes \cdots \otimes \Delta x_{i} \otimes \cdots \otimes x_{s}-(-1)^{s} m \otimes x \otimes 1
\end{aligned}
$$

for $m \in M, x_{i} \in \Gamma$ and $x=x_{1} \otimes \cdots \otimes x_{s}$.
In particular, consider the case $M=A$ with $\eta_{A}=\eta: A \rightarrow A \otimes_{A} \Gamma=\Gamma$. Then:
(2.3) In the cobar complex $\Omega_{\Gamma}^{*} A, \Omega_{\Gamma}^{0} A=A, \Omega_{\Gamma}^{1} A=\Gamma, \Omega_{\Gamma}^{2} A=\Gamma \otimes_{A} \Gamma$ and $d_{s}: \Omega_{\Gamma}^{s} A \rightarrow \Omega_{\Gamma}^{s+1} A$ for $s=0,1$ are given by

$$
\begin{gather*}
d_{0} u=\eta u-u \quad(u \in A) \text { and } \tag{2.3.1}\\
d_{1} x=\psi x-\Delta x, \quad \psi x=x \otimes 1+1 \otimes x \quad(x \in \Gamma) .
\end{gather*}
$$

Therefore, for any $u, v \in A$ and $x, y \in \Gamma$, we have the equalities

Thus, by (2.1.1-3) and [11; Th. 7-8] for ηv_{3} and Δt_{3}, and by considering
(2.3.3) the invariant ideal $J(n)=\left(p, v_{1}^{n}\right)$ of A,
direct calculations give us the following

$$
\begin{align*}
& d_{0} v_{1}=\eta v_{1}-v_{1}=p t_{1} ; \quad d_{0} v_{2}=\eta v_{2}-v_{2} \equiv v_{1} t_{1}^{p}-v_{1}^{p} t_{1} \bmod (p), \tag{2.3.4}\\
& d_{0}\left(v_{2}^{n}\right) \equiv\left(v_{2}^{(i)}+v_{1}^{(i)} t_{1}^{(i+1)}\right)^{s}-v_{2}^{n} \bmod \left(p^{j+1}, v_{1}^{(i+1)}\right) \\
& \text { if } n=s p^{i} \text { and } p^{j} \mid s \quad(i, j \geqq 0), \\
& d_{0}\left(v_{3}\right) \equiv v_{2} t_{1}^{(2)}+v_{1} t_{2}^{p}-t_{1} \eta v_{2}^{p}+v_{1}^{2} V \bmod J\left(p^{2}\right),
\end{align*}
$$

where $V=\left\{v_{1}^{p} t_{1}^{(2)}-v_{1}^{(2)} t_{1}^{p}+v_{2}^{p}-\left(v_{1} t_{1}^{p}-v_{1}^{p} t_{1}+v_{2}\right)^{p}\right\} / p v_{1}$

$$
\begin{align*}
& d_{1} t_{1}=\psi t_{1}-\Delta t_{1}=0, \quad d_{1}\left(t_{1}^{(i)}\right) \equiv p T^{(i-1)} \bmod \left(p^{2}\right) \quad \text { for } \quad i \geqq 1 ; \tag{2.3.5}\\
& d_{1} t_{2}=-t_{1} \otimes t_{1}^{p}-v_{1} T, \quad d_{1} \tau=-t_{1}^{p} \otimes t_{1}+v_{1} T \\
& \quad \text { for } \tau=t_{1}^{p+1}-t_{2} ; \\
& d_{1} t_{3} \equiv-g-v_{2} T^{p} \bmod J(1) \quad \text { for } g=t_{1} \otimes t_{2}^{p}+t_{2} \otimes t_{1}^{(2)},
\end{align*}
$$

where $T=d_{1}\left(t_{1}^{p}\right) / p=\left\{\psi\left(t_{1}^{p}\right)-\left(\psi t_{1}\right)^{p}\right\} / p$.
We now consider the elements $x_{i} \in v_{2}^{-1} A$ given by

$$
\begin{equation*}
x_{0}=v_{2}, \quad x_{i}=v_{2}^{(i)}-v_{1}^{(i)}\left(v_{2}^{-1} v_{3}\right)^{(i-1)}-v_{1}^{a_{i}-a_{i-1}} \bar{x}_{i} \quad(i \geqq 1), \tag{2.4.1}
\end{equation*}
$$

$$
\bar{x}_{1}=0, \quad \bar{x}_{2}=v_{2}^{1+c_{2}}+v_{1}^{p} v_{2}^{c_{2}-p} v_{3}, \bar{x}_{i}=\bar{x}_{i-1}^{p}+2 v_{1}^{a_{i-1}-p} v_{2}^{1+c_{i}} \quad(i \geqq 3),
$$

where $a_{0}=1, a_{i}=p^{i}+p^{i-1}-1$ and $c_{i}=p^{i}-p^{i-1}(i \geqq 1)$. Then:
(2.4.2) x_{i} is equal $($ resp. congruent $\bmod (p))$ to x_{i} in $[4 ;(2.4)]$ for $i=0,1$

$$
\begin{aligned}
& \text { (2.3.2) } \quad d_{0}(u v)=d_{0} u \eta v+u d_{0} v ; \quad d_{1}(x y)=d_{1} x \Delta y+\psi x d_{1} y \\
& -x \otimes y-y \otimes x, \\
& d_{1}(u y)=d_{0} u \otimes y+u d_{1} y, \quad d_{1}(x \eta v)=d_{1} x \Delta \eta v-x \otimes d_{0} v .
\end{aligned}
$$

(resp. $i \geqq 2$), and $[4 ;$ Prop. $5.4, \mathrm{~b})]$ says that in the cobar complex $\Omega_{\Gamma}^{*} v_{2}^{-1} A$,

$$
\begin{array}{r}
d_{0} x_{0} \equiv v_{1} t_{1}^{p} \bmod J(2), \quad d_{0} x_{i} \equiv \varepsilon_{i} v_{1}^{a_{i}} v_{2}^{c_{i}} t_{1} \bmod J\left(1+a_{i}\right) \\
\text { for } i \geqq 1 \quad\left(\varepsilon_{i}=\min \{i, 2\}\right) .
\end{array}
$$

Therefore, by considering the inclusion $A / J \subset v_{2}^{-1} A / J$ for $J=\left(p^{2}, v_{1}^{P}\right)$ or $J(j)$.
(2.4.3) $\quad x_{2}^{s}=v_{2}^{n} \in H^{0}\left(A /\left(p^{2}, v_{1}^{p}\right)\right) \quad$ for $s \geqq 1$ and $n=s p^{2} ; ~ a n d$
(2.4.4) x_{i}^{s} lies in $A / J(j)$ and $x_{i}^{s} \in H^{0}(A / J(j))$ for $(i, s, j) \in I$, where
(2.4.5) $\quad I=\left\{(i, s, j) \in Z^{3} \mid i \geqq 0, s \geqq 1\right.$ and $1 \leqq j \leqq a_{i}$, with $j \leqq p^{i}$ if $\left.s=1\right\}$.

In case of (2.4.4), we note that $x_{i}^{s}=x_{i+1}^{s^{\prime}}$ if $s=s^{\prime} p$. Thus, by using the boundary homomorphism δ_{k} (resp. $\delta_{j, k}^{\prime}$) associated to the exact sequence

$$
\begin{aligned}
0 \longrightarrow A \xrightarrow{p^{k}} A \longrightarrow A /\left(p^{k}\right) \longrightarrow 0 \\
\quad\left(\text { resp. } 0 \longrightarrow A /\left(p^{k}\right) \xrightarrow{v_{1}^{J}} A /\left(p^{k}\right) \longrightarrow A /\left(p^{k}, v_{1}^{j}\right) \longrightarrow 0\right),
\end{aligned}
$$

the β-elements in (1.2) can be defined (see [4; pp. 477-9]) by

$$
\begin{align*}
& \beta_{n / p, 2}=\delta_{2} \delta_{p, 2}^{\prime}\left(x_{2}^{s}\right)=\delta_{2} \delta_{p, 2}^{\prime}\left(v_{2}^{n}\right) \in H^{2} A \text { for } n=s p^{2}>0 \tag{2.4.6}\\
& \beta_{n / j}^{\prime}=\delta_{j, 1}^{\prime}\left(x_{i}^{s}\right) \in H^{1}(A /(p)), \beta_{n / j}=\delta_{1} \beta_{n / j}^{\prime} \in H^{2} A
\end{align*}
$$

for $n=s p^{i}$ with $(i, s, j) \in I$. We abbreviate $\beta_{n / 1}^{\prime}$ to β_{n}^{\prime} and $\beta_{n / 1}$ to β_{n}, which can be defined for any $n \geqq 1$.

Lemma 2.5. In $\Omega_{\Gamma}^{2} A$, the following hold $\bmod J(1)$ for $s \geqq 1$:

$$
\begin{align*}
& \beta_{n / p, k} \equiv s v_{2}^{n-p} T^{p} \quad \text { if } n=s p^{k} \quad \text { and } \quad k=1,2 \quad\left(\beta_{n / p, 1}=\beta_{n / p}\right) . \tag{2.5.1}\\
& \beta_{n} \equiv \bar{\beta}_{n}=\binom{n}{2} v_{2}^{n-2}\left(2 t_{2} \otimes t_{1}^{p}+t_{1} \otimes t_{1}^{2 p}\right)+n v_{2}^{n-1} T . \\
& \beta_{n / j} \equiv-s v_{2}^{c(i, s)} t_{1} \otimes \zeta \text { if } n=s p^{i}, j=a_{i}(s, i \geqq 2)
\end{align*}
$$

$$
\text { where } c(i, s)=s p^{i}-p^{i-1}
$$

$$
\zeta=v_{2}^{-p-1}\left(v_{2}^{p} t_{2}-v_{2} \tau^{p}-v_{3} t_{1}^{p}\right)\left(\equiv \zeta_{2} \text { in }[4 ; \text { p. 485] } \bmod (p)) \in v_{2}^{-1} \Gamma .\right.
$$

Proof. By (2.4.1), we see that
(2.5.4) $x_{i}^{s}=v_{2}^{n}$ in $A /\left(p^{i}, v_{1}^{p}\right)$ for $i=1,2, s \geqq 1$ and $n=s p^{i}$.

Therefore, the definition (2.4.6) and (2.3.2-5) imply directly (2.5.1). (2.5.2-3) are given in [9; Lemma 4.4 and the notice in §6]*).
q.e.d.

[^0]Lemma 2.6. In the cobar complex $\Omega_{\Gamma}^{*} v_{2}^{-1} A$, the following hold for $s \in \boldsymbol{Z}$:
(2.6.1) $\quad d_{1}\left(x_{0}^{s} \zeta^{p}\right) \equiv s v_{1} v_{2}^{s-1} t_{1}^{p} \otimes \zeta^{p} \bmod J(2) ;$ and for $i \geqq 1$,

$$
d_{1}\left(x_{i}^{s} \zeta^{(i+1)}\right) \equiv \varepsilon_{i} s v_{1}^{a_{i}} v_{2}^{c(i, s)} t_{1} \otimes \zeta^{(i+1)} \bmod J\left(1+a_{i}\right)\left(\varepsilon_{i}=\min \{i, 2\}\right) .
$$

(2.6.2) $\quad d_{1}\left(t_{1} \eta v_{2}^{s}-s v_{1} t_{2} \eta v_{2}^{s-1}\right) \equiv v_{1}^{2} \bar{\beta}_{s} \bmod J(3)$.
(2.6.3) $\quad d_{1}\left(v_{1} v_{2}^{s p} V\right) \equiv v_{1}^{p} v_{2}^{s p} T^{p}+s v_{1}^{1+p} v_{2}^{s p-p} t_{1}^{(2)} \otimes V \bmod J(2 p)$.

Proof. (2.6.1) is certified directly from (2.3.2), (2.4.2) and
(2.6.4) ([4; Prop. 3.18, c) $]) \quad d_{1} \zeta \equiv 0 \bmod J(1)$ in $\Omega_{\Gamma}^{*} v_{2}^{-1} A ;$
and so is (2.6.2) by (2.3.2-5). (2.6.3) is shown by calculating $d_{1}\left(p v_{1} v_{2}^{s p} V\right)$ using (2.3.2-5) in the range of the monomorphism $p: \Omega_{\Gamma}^{*} v_{2}^{-1} A / J(2 p) \rightarrow \Omega_{\Gamma}^{*} v_{2}^{-1} A /\left(p^{2}, v_{1}^{2 p}\right)$.
q.e.d.

Theorem 2.7. The Yoneda product $\beta_{m}^{\prime} \beta_{n / j, k} \in H^{3}(A /(p))=\operatorname{Ext}_{\Gamma}^{3}(A, A /(p))$ of the β-elements given in (2.4.6) satisfies the following:
(2.7.1) $\quad f_{m}^{\prime} \beta_{s, 2 / p, 2}=\beta_{m+s p(p-1)}^{\prime} \beta_{s p / p}$ for $s \geqq 1$ and $m \geqq 1$.
(2.7.2) $\quad \beta_{m}^{\prime} \beta_{s p / p}=0=\beta_{m}^{\prime} \beta_{n}$ if $p \mid m s$ for $s \geqq 1$ and $m \geqq 1$.
(2.7.3) In case $n=s p^{i}, j=a_{i}(i, s \geqq 2)$ and $m \geqq 1$,

$$
\beta_{m}^{\prime} \beta_{n / j}=0 \text { if } m=c(e, u)-c(i, s) \text { for some } e \geqq 1 \text { and } u \geqq 2 \text { with } p \nmid u .
$$

Proof. (2.5.1) shows $v_{2}^{m} \beta_{n / p, 2}=v_{2}^{m+n-n^{\prime}} \beta_{n^{\prime} / p}$ in $H^{2}(A / J(1))$, whose image under $\delta_{1,1}^{\prime}$ is (2.7.1).
$\beta_{m}^{\prime} \beta_{n / j}=\delta_{1,1}^{\prime}\left(v_{2}^{m} \beta_{n / j}\right)=\delta_{k+1,1}^{\prime}\left(v_{1}^{k} v_{2}^{m} \beta_{n / j}\right)$ by the definition of δ^{\prime}. When $n=s p$, $v_{1}^{p} v_{2}^{m} \beta_{n / p}=s v_{1}^{p} v_{2}^{m+n-p} T^{p}$ in $H^{2}(A / J(p+1))$ by (2.5.1), which is 0 if $p \mid s$ or $p \mid m$ by (2.6.3). By (2.5.2), $v_{2}^{m} \beta_{n}=0$ in $H^{2}(A / J(1))$ if $p \mid n$, and $v_{1}^{2} v_{2}^{m} \beta_{n} \equiv v_{1}^{2} \bar{\beta}_{n+m} \bmod J(3)$ if $p \mid m$, which is 0 in $H^{2}(A / J(3))$ by (2.6.2). In the last case, (2.5.3) and (2.6.1) show that

$$
v_{1}^{j} v_{2}^{m} \beta_{n / j}=-s v_{1}^{j} v_{2}^{m+c(i, s)} t_{1} \otimes \zeta=-s v_{1}^{j} v_{2}^{c(e, u)} t_{1} \otimes \zeta^{(e+1)}=0
$$

in $H^{2}\left(A / J(j+1)\right.$), because $\zeta^{(e+1)}$ is homologous to ζ in $\Omega_{\Gamma}^{1} v_{2}^{-1} A / J(1)$ by [4; Lemma 3.19].
q.e.d.

By considering the δ_{1}-image of the elements in (2.7.1-3), we see the following
Corollary 2.8 (cf. [9; Prop. 6.1]). For the product $\beta_{m} \beta_{n / j, k} \in H^{4} A=$ $\operatorname{Ext}_{\Gamma}^{4}(A, A)$, Theorem 2.7 holds by replacing β_{m}^{\prime} with β_{m}.

§3. $\boldsymbol{H}^{1} \boldsymbol{M}_{1}^{1}=\operatorname{Ext}_{\Gamma}^{1}\left(\boldsymbol{A}, \boldsymbol{M}_{1}^{1}\right)$

Hereafter, assume that p is a prime $\geqq 5$. For the Hopf algebroid $(A, \Gamma)=$ $\left(B P_{*}, B P_{*} B P\right)$ in (2.1.2), we recall the Γ-comodules N_{1}^{s} and M_{1}^{s} given in [4; §3], defined inductively by
(3.1.1) $\quad N_{1}^{0}=A /(p), M_{1}^{s}=v_{s+1}^{-1} N_{1}^{s}$ and the exact sequence

$$
0 \longrightarrow N_{1}^{s} \xrightarrow[\subset]{\stackrel{j}{\longrightarrow}} M_{1}^{s} \longrightarrow N_{1}^{s+1} \longrightarrow 0 .
$$

In this section, we compute $H^{1} M_{1}^{1}=\operatorname{Ext}_{\Gamma}^{1}\left(A, M_{1}^{1}\right)$ by using the following (3.1.2-6):
(3.1.2) [4; (3.10)] For $M_{2}^{0}=v_{2}^{-1} A /\left(p, v_{1}\right), \quad 0 \longrightarrow M_{2}^{0} \xrightarrow{1 / v_{1}} M_{1}^{1} \xrightarrow{v_{1}} M_{1}^{1} \longrightarrow 0$ is exact.
(3.1.3) [3; §3] We can identify $H^{*} M=\operatorname{Ext}_{\Gamma}^{*}(A, M)$ as

$$
H^{*} M=\operatorname{Ext}_{\Gamma}^{*}(A, M)=\operatorname{Ext}_{\Sigma}^{*}\left(B, M \otimes_{A} B\right) \quad \text { for } \quad M=M_{2}^{0} \quad \text { or } \quad M_{1}^{1}
$$

by the isomorphism induced from the natural map, where
(3.1.4) (B, Σ) is the Hopf algebroid with $B=Z_{(p)}\left[v_{1}, v_{2}, v_{2}^{-1}\right]$ acting $v_{n}(n \geqq 3)$ trivially and $\Sigma=B \otimes_{A} \Gamma \otimes_{A} B=B\left[t_{1}, t_{2}, \cdots\right] \otimes_{A} B$ such that the natural map $(A, \Gamma) \rightarrow$ (B, Σ) sending $v_{n}(n \geqq 3)$ to 0 is a map of Hopf algebroids. Thus, the relations in $\S 2$ for (A, Γ) are reduced to those for (B, Σ) by putting $v_{n}=0$ for $n \geqq 3$ and $\eta\left(v_{2}^{-1}\right) \eta v_{2}=1$ in Σ.
(3.1.5) [13; Th. 3.2] $H^{n} M_{2}^{0}$ is spanned as the $F_{p}\left[v_{2}, v_{2}^{-1}\right]$-vector space by

$$
h_{0}=t_{1}, h_{1}=v_{2}^{-1} t_{1}^{p} \text { and } \zeta \text { in (2.5.3) for } n=1 \text {, and }
$$

$$
\begin{gathered}
h_{0} \zeta=t_{1} \otimes \zeta, \quad h_{1} \zeta=v_{2}^{-1} t_{1}^{p} \otimes \zeta, \quad g_{0}=v_{2}^{-p} g \quad(g \text { in }(2.3 .5)) \text { and } \\
\\
g_{1}=v_{2}^{-1} g_{0}^{p} \quad \text { for } n=2 .
\end{gathered}
$$

(3.1.6) [4; p. 500] The image of $1 / v_{1}: H^{1} M_{2}^{0} \rightarrow H^{1} M_{1}^{1}$ induced by $1 / v_{1}$ in (3.1.2) is spanned by $h_{0} / v_{1}, v_{2}^{s p} h_{1} / v_{1}$ for $s \in \boldsymbol{Z}, v_{2}^{s} \zeta / v_{1}$ for $s \in \boldsymbol{Z}$ and

$$
v_{2}^{m} h_{0} / v_{1} \text { for } m=s p^{i}, i \geqq 0, s \in \boldsymbol{Z} \text { with } p \nmid s(s+1) \text { or } p^{2} \mid s+1 .
$$

Lemma 3.2. The following relations hold in Σ for $n \geqq 1$ and $i \geqq 0$:
(3.2.1) $\quad\left(v_{2}-v_{1}^{p} t_{1}\right) t_{1}^{(2)}+v_{1} t_{2}^{p}+v_{1}^{2} V-v_{2}^{p} t_{1} \equiv 0 \bmod J\left(p^{2}\right)$ for V in (2.3.4).
(3.2.2) $\quad v_{2} t_{n}^{(2)}+v_{1} t_{n+1}^{p}-v_{2}^{(n)} t_{n} \equiv 0 \bmod J(2)$.
(3.2.3) $v_{2}^{(i+n)} t_{n}^{(i)} \equiv v_{2}^{(i)} t_{n}^{(i+2)}$ and $v_{2}^{(i+2)} \tau^{(i)} \equiv v_{2}^{(i)} \tau^{(i+2)} \bmod J\left(p^{i}\right)$ for τ in (2.3.5).

$$
\begin{align*}
& \zeta^{(i)} \equiv\left(-v_{2}^{-1} \tau+v_{2}^{-p} t_{2}^{p}\right)^{(i)} \equiv \zeta^{(i+1)} \bmod J\left(p^{i}\right) \text { for } \zeta \text { in }(2.5 .3) . \tag{3.2.4}\\
& v_{2}^{(i+2)} T^{(i)} \equiv v_{2}^{(i+1)} T^{(i+2)} \bmod J\left(p^{i}\right) \text { for } T \text { in }(2.3 .5) . \tag{3.2.5}
\end{align*}
$$

Proof. Since $v_{3}=0$ in B, (3.2.1) follows from (2.3.4). (3.2.2) holds for $n=1$ by (3.2.1) and is proved by induction on n as follows. Note that $m_{n}^{\prime}=p^{n} m_{n} \in A$ and
(3.2.6) $\quad m_{1}^{\prime}=v_{1}$ and $m_{n}^{\prime} \equiv p m_{n-2}^{\prime} v_{2}^{(n-2)} \bmod \left(p^{n}, v_{1}^{(n-1)}\right)$ in $B(n \geqq 2)$,
by (2.1.1). Then, by (2.1.3), we see the following in $\Sigma \bmod \left(p^{n+2}, v_{1}^{p}\right)$:

$$
\begin{aligned}
& p^{n+1}\left(v_{1} t_{n+1}^{p}+v_{2} t_{n}^{(2)}\right)+\sum_{i=1}^{n} p^{n+1-i} m_{i}^{\prime} v_{2}^{(i)} t_{n-i}^{(i+2)} \equiv \sum_{j=0}^{n+2} p^{n+2-j} m_{j}^{\prime} t_{n+2-j}^{(j)} \\
& =\eta m_{n+2}^{\prime} \equiv \eta\left(p m_{n}^{\prime} v_{2}^{(n)}\right)=\left(p^{n+1} t_{n}+\sum_{i=1}^{n} p^{n+1-i} m_{i}^{\prime} t_{n-i}^{(i)}\right) \eta v_{2}^{(n)} .
\end{aligned}
$$

Here, by (2.3.4) for $d_{0}\left(v_{2}^{(n)}\right)=\eta v_{2}^{(n)}-v_{2}^{(n)}$ and the inductive hypothesis, we have

$$
t_{n} \eta v_{2}^{(n)} \equiv v_{2}^{(n)} t_{n} \bmod J(p), t_{n-1}^{p} \eta v_{2}^{(n)} \equiv v_{2}^{(n)} t_{n-1}^{p} \equiv v_{2}^{p} t_{n-1}^{(3)} \bmod \left(p^{2}, v_{1}\right)
$$

and $\quad t_{n-i}^{(i)} \eta v_{2}^{(n)} \equiv v_{2}^{(n)} t_{n-i}^{(i)} \equiv v_{2}^{(i)} t_{n-i}^{(i+2)} \bmod \left(p^{i}, v_{1}^{p}\right)\left(\subset\left(p^{i}, v_{1}^{2}\right)\right) \quad$ for $1 \leqq i \leqq n$.
Therefore, we see $m_{i}^{\prime} v_{2}^{(i)} t_{n-i}^{(i+2)} \equiv m_{i}^{\prime} t_{n-i}^{(i)} \eta v_{2}^{(n)} \bmod \left(p^{i+1}, v_{1}^{2}\right)(1 \leqq i \leqq n)$ by (3.2.6), which shows (3.2.2) since $p^{n+1}: \Sigma / J(2) \rightarrow \Sigma /\left(p^{n+2}, v_{1}^{2}\right)$ is monomorphic.
(3.2.2) implies (3.2.3-5) directly by definition.
q.e.d.

We now define the elements $Y_{s}, W_{s}, Z_{s}(s \in Z)$ and X in Σ as follows:

$$
\begin{equation*}
Y_{s}=s v_{2}^{s-1} \tau+(s-1) v_{2}^{s} \zeta^{p} / 2+\binom{s}{2} v_{1} v_{2}^{s-2} t_{1}^{p}\left(\tau+v_{2} \zeta^{p}\right)+s v_{1} v_{2}^{s-1} \bar{i}_{3}^{p} \tag{3.3.1}
\end{equation*}
$$

$$
W_{s}=v_{2}^{s p-1} t_{1}^{p}-v_{1} v_{2}^{s p-p}\left\{\xi_{1}^{\prime}-(s-1) v_{1}^{p-1} \xi_{2} / 2\right\}, Z_{s}=v_{1} W_{s}+v_{1}^{p-1} v_{2}^{s p-p}\left(v_{1}^{2} \xi_{2}-\xi_{3}\right),
$$

where $\bar{t}_{3}=v_{2}^{-p} t_{3}, \xi_{1}^{\prime}=V^{\prime}+v_{1}^{p-2} \bar{z}_{3}^{(2)}, V^{\prime}=\left(V+v_{2}^{p-1} t_{1}^{p}\right) / v_{1}$,

$$
\xi_{2}=v_{2}^{-1} \tau^{p}\left(2-v_{1} v_{2}^{-1} t_{1}^{p}\right)+v_{2}^{p-1} \zeta^{p}, \xi_{3}=v_{2}^{-p} t_{1}^{(2)}\left(v_{2} t_{1}^{(2)}+v_{1} t_{2}^{p}\right)-v_{1} t_{1}^{(2)} \zeta^{p} ;
$$

$$
\begin{equation*}
X=\left(t_{1}-v_{1}^{2} \xi_{1}\right) \eta_{1}-v_{1} v_{2}^{1-p^{2}} t_{2}^{(2)} \eta_{0}+v_{1}^{p} v_{2}^{-p} t_{1}^{2}+v_{1}^{p+2}\left(\xi_{4}+v_{2}^{-p} \xi_{5}\right), \tag{3.3.2}
\end{equation*}
$$

where $\quad \eta_{0}=v_{2}^{-p}-v_{1}^{p} v_{2}^{-2 p} t_{1}^{(2)}, \xi_{1}=v_{2}^{-p}\left(V+v_{1}^{p-1} \bar{i}_{3}^{(2)}\right)=-v_{2}^{-1} t_{1}^{p}+v_{1} v_{2}^{-p} \xi_{1}^{\prime}$,

$$
\begin{aligned}
& \eta_{1}=v_{2}^{1-p}+v_{1} v_{2}^{-(2)} t_{1}^{(3)}-v_{1}^{p} v_{2}^{-p} \sigma+v_{1}^{p+2} v_{2}^{-2 p} V, \sigma=2 t_{1}-v_{1} \zeta^{p}, \\
& \xi_{4}=v_{2}^{-2 p} t_{2}^{p}\left(2+v_{1} v_{2}^{-1} t_{1}^{p}\right), \xi_{5}=-\zeta^{2 p} / 2+\left(v_{2}^{-p} t_{2}^{p}\right)^{p+1}+v_{1} v_{2}^{-2 p} \tau^{p} V .
\end{aligned}
$$

Here, η_{0} and η_{1} satisfy the following by (2.3.4) for ηv_{2}, (3.2.1-2) and (2.3.2):

$$
\begin{equation*}
\eta_{\varepsilon} \equiv \eta v_{2}^{\varepsilon-p}, d_{1}\left(x \eta_{\varepsilon}\right) \equiv d_{1} x \Delta \eta_{\varepsilon}-x \otimes\left(\eta_{\varepsilon}-v_{2}^{\varepsilon-p}\right) \bmod J(2 p)(\varepsilon=0,1) \tag{3.3.3}
\end{equation*}
$$

Lemma 3.4. In the cobar complex $\Omega_{\Sigma}^{*} B$, we have the following:
(3.4.2) $\quad d_{1} W_{s} \equiv v_{1}^{p-1} v_{2}^{s p} g_{1}^{p}-(s-1) v_{1}^{p+1} v_{2}^{s p-1} g_{1} / 2 \bmod J(p+2)$.
(3.4.3) $\quad d_{1} Z_{s} \equiv v_{1}^{p-1} v_{2}^{s p-p} t_{1}^{(2)} \otimes \sigma-(s+1) v_{1}^{p+2} v_{2}^{s p-1} g_{1} / 2 \bmod J(p+3)$.
(3.4.4) $\quad d_{1} X \equiv-v_{1}^{2} g_{1}^{(2)}-v_{1}^{p+3} v_{2}^{-p} g_{1} \bmod J(p+4)$.

Proof. The calculations are based on (2.3.1-5) and Lemma 3.2. We have

$$
\begin{aligned}
d_{1} Y_{s} & \equiv s d_{0}\left(v_{2}^{s-1}\right) \otimes \tau+s v_{2}^{s-1} d_{1} \tau+(s-1) d_{0}\left(v_{2}^{s}\right) \otimes \zeta^{p} / 2 \\
& +\binom{s}{2} v_{1} v_{2}^{s-2}\left\{d_{1}\left(t_{1}^{p} \tau\right)+v_{2} d_{1}\left(t_{1}^{p} \zeta^{p}\right)\right\}+s v_{1} v_{2}^{s-1} d_{1}\left(t_{3}^{p}\right) \bmod J(2)
\end{aligned}
$$

by (2.6.4), which implies (3.4.1) since we see by (3.2.5) that

$$
\begin{equation*}
d_{1}\left(\tau_{3}^{p}\right) \equiv-v_{2} g_{1}-T \bmod J(1) \tag{3.4.5}
\end{equation*}
$$

$W_{s}=-v_{2}^{s p}\left\{\xi_{1}-(s-1) v_{1}^{p} v_{2}^{-p} \xi_{2} / 2\right\}$ by definition. By (2.6.3) for $s=-1$ and (3.4.5),

$$
\begin{align*}
-d_{1} \xi_{1} & \equiv v_{1}^{p-1}\left(-v_{2}^{-p} T^{p}+v_{1} v_{2}^{-2 p} t_{1}^{(2)} \otimes V+g_{1}^{p}+v_{2}^{-p} T^{p}\right) \tag{3.4.6}\\
& \equiv A_{1}=v_{1}^{p-1} g_{1}^{p}+v_{1}^{p} v_{2}^{-2 p} t_{1}^{(2)} \otimes V \bmod J(2 p-1)
\end{align*}
$$

Furthermore, we see that

$$
\begin{equation*}
d_{1} \xi_{2} \equiv 2 v_{2}^{-p} t_{1}^{(2)} \otimes V-v_{1} v_{2}^{p-1} g_{1} \bmod J(2) \text { and } \tag{3.4.7}
\end{equation*}
$$

$$
d_{1} W_{s} \equiv-s v_{1}^{p} v_{2}^{s p-p} t_{1}^{(2)} \otimes \xi_{1}+v_{2}^{s p} A_{1}+(s-1) v_{1}^{p} v_{2}^{s p-p} d_{1} \xi_{2} / 2 \bmod J(2 p-1)
$$

These imply (3.4.2). We see also (3.4.3) because

$$
\begin{aligned}
d_{1} \xi_{3} & \equiv-2 v_{2}^{-p}\left(v_{2}+v_{1} t_{1}^{p}\right) t_{1}^{(2)} \otimes t_{1}^{(2)}+v_{1} t_{1}^{(2)} \otimes \zeta^{p}-2 v_{1} v_{2}^{-p} t_{1}^{(2)} \otimes t_{2}^{p}+v_{1} v_{2}^{p} g_{1}^{p} \\
& \equiv-t_{1}^{(2)} \otimes \sigma+2 v_{1}^{2} v_{2}^{-p} t_{1}^{(2)} \otimes V+v_{1} v_{2}^{p} g_{1}^{p} \bmod J(4)
\end{aligned}
$$

Finally, we show (3.4.4). In the first place, we see that

$$
\begin{aligned}
& d_{1}\left(t_{1}-v_{1}^{2} \xi_{1}\right) \equiv-v_{1}^{2} d_{1} \xi_{1} \bmod (p) \text { and } t_{1}-v_{1}^{2} \xi_{1} \equiv B_{1}=v_{2}^{1-p} t_{1}^{(2)}+v_{1} v_{2}^{-(3)} t_{2}^{(3)} \\
& -v_{1}^{p} v_{2}^{-2 p} t_{1}^{(2)}\left(v_{2} t_{1}^{(2)}+v_{1} t_{2}^{p}+v_{1}^{2} V\right) \bmod J(2 p), \text { and so } \\
& d_{1}\left(\left(t_{1}-v_{1}^{2} \xi_{1}\right) \eta_{1}\right) \equiv d_{1}\left(t_{1}-v_{1}^{2} \xi_{1}\right) \Delta \eta_{1}-\left(t_{1}-v_{1}^{2} \xi_{1}\right) \otimes\left(\eta_{1}-v_{2}^{1-p}\right) \\
& \equiv v_{1}^{2} A_{1}\left(v_{2}^{1-p} \otimes 1+v_{1} v_{2}^{-(2)} \Delta t_{1}^{(3)}\right)+\left(t_{1}-v_{1}^{2} \xi_{1}\right) \otimes v_{1}^{p} v_{2}^{-p} \sigma-B_{1} \otimes\left(v_{1} v_{2}^{-(2)} t_{1}^{(3)}\right. \\
& \left.+v_{1}^{2+p} v_{2}^{-2 p} V\right) \equiv v_{1} v_{2}^{-(2)} A_{0}-v_{1}^{2} g_{1}^{(2)}+2 v_{1}^{p} v_{2}^{-p} t_{1} \otimes t_{1}-v_{1}^{2+p} v_{2}^{-2 p} V \otimes \sigma
\end{aligned}
$$

$+v_{1}^{2+p} v_{2}^{-2 p} C_{1} \bmod J(2 p)$,
where $A_{0}=-v_{2}^{1-p} t_{1}^{(2)} \otimes t_{1}^{(3)}+v_{1} v_{2}^{-(2)} t_{1}^{(3)} \otimes t_{2}^{(2)}+v_{1}^{p} v_{2}^{1-2 p} A^{\prime}, A^{\prime}=t_{1}^{(2)} \otimes \tau^{(2)}$
$+t_{1}^{2 p^{2}} \otimes t_{1}^{(3)}+t_{2}^{(2)} \otimes t_{1}^{(2)} \equiv t_{1}^{2 p^{2}} \otimes t_{1}^{(3)}-v_{2}^{(2)} t_{1}^{(2)} \otimes \zeta^{(2)}+v_{2}^{p+p^{2}} g_{1}^{p} \bmod J(p)$
(by (3.2.4)), $C_{1}=-\left(t_{2}^{p}+v_{1} V\right) \otimes \zeta^{p}+v_{2}^{2 p-p^{2}} g_{1}^{p} \Delta t_{1}^{(3)}+v_{2}^{-(2)} t_{1}^{(2)} t_{2}^{p} \otimes t_{1}^{(3)}$
$+v_{1} v_{2}^{-(2)}\left\{\left(t_{1}^{(2)} \otimes V\right) \Delta t_{1}^{(3)}+t_{1}^{(2)} V \otimes t_{1}^{(3)}-v_{2}^{p 2-p^{3}} t_{2}^{(3)} \otimes V\right\}$ and $2 v_{1}^{p} v_{2}^{-p} t_{1} \otimes t_{1}$
$\equiv-d_{1}\left(v_{1}^{p} v_{2}^{-p} t_{1}^{2}\right) \bmod J(2 p)$.
In the second place, we have

$$
\begin{aligned}
d_{1}\left(v_{2} t_{2}^{(2)} \eta_{0}\right) & \equiv\left\{d_{0} v_{2} \otimes t_{2}^{(2)}+v_{2} d_{1}\left(t_{2}^{(2)}\right)\right\} \Delta \eta_{0}-v_{2} t_{2}^{(2)} \otimes\left(\eta_{0}-v_{2}^{-p}\right) \\
& \equiv A_{0}+v_{1}^{1+p} v_{2}^{-2 p} B_{0} \bmod J(2 p),
\end{aligned}
$$

where $B_{0}=\left(v_{2}^{p-p^{2}} t_{2}^{(2)}-t_{1}^{p+p^{2}}-t_{2}^{p}-v_{1} V\right) \otimes t_{2}^{(2)}-t_{1}^{p} \otimes t_{1}^{(2)} t_{2}^{(2)}$.
Furthermore, $V \equiv-v_{2}^{p-1} t_{1}^{p}+v_{1} v_{2}^{p-2} t_{1}^{2 p} / 2 \bmod J(2)$ by definition. Thus

$$
\begin{align*}
d_{1} \xi_{4} \equiv v_{2}^{-2 p}\left\{-2 t_{1}^{p} \otimes t_{1}^{(2)}+\right. & \left.v_{1} v_{2}^{-1} d_{1}\left(t_{1}^{p} t_{2}^{p}\right)\right\} \tag{3.4.8}\\
& \equiv v_{2}^{-2 p} V \otimes \sigma-v_{1} v_{2}^{-p} g_{1} \bmod J(2)
\end{align*}
$$

since $d_{1}\left(t_{1}^{p} t_{2}^{p}\right) \equiv v_{2}^{p} t_{1}^{p} \otimes \zeta^{p}-v_{2}^{1+p} g_{1}-t_{1}^{2 p} \otimes t_{1}^{(2)}-2 t_{1}^{p} \otimes t_{2}^{p} \bmod J(p)$. Noting that $d_{1} \zeta^{p} \equiv 0 \equiv v_{1} d_{1} V \bmod J(p)$ by (2.6.3-4), we have also

$$
\begin{aligned}
d_{1} \xi_{5} \equiv \zeta^{p} \otimes \zeta^{p}+v_{2}^{-p-p^{2}} d_{1}\left(t_{2}^{p+p^{2}}\right) & +v_{1} v_{2}^{-2 p} d_{1}\left(\tau^{p} V\right) \\
& \equiv v_{2}^{-p-p^{2}} B_{0}-v_{2}^{-p} C_{1} \bmod J(2)
\end{aligned}
$$

by (3.2.1-4). These relations imply (3.4.4).
q.e.d.

To give generators of $H^{1} M_{1}^{1}=\operatorname{Ext} \frac{1}{2}\left(B, M_{1}^{1} \otimes_{A} B\right)$, we write each integer $m \neq 0$ as
(3.5.1) $m=s p^{\nu}$ by integers $v=v(m) \geqq 0$ and $s=s(m) \not \equiv 0 \bmod p$ uniquely, and define the integers $\bar{v}=\bar{v}(m), \varepsilon=\varepsilon(m), s_{m}, A(m)$ and $e(m)$ by
(3.5.2) $\bar{v}=\min \{v, 1\}$,

$$
\begin{aligned}
& \varepsilon=\left\{\begin{array}{ll}
0 & \text { if } s \not \equiv-1 \bmod p^{2}, \\
1 & \text { otherwise, }
\end{array} \quad s_{m}=(-1)^{v}(1+\bar{v})^{-1-\varepsilon}\binom{s+1}{2}^{1-\varepsilon,}\right. \\
& A(m)=2+\varepsilon p^{v}\left(p^{2}-1\right)+(p+1)\left(p^{v}-1\right) /(p-1), \\
& e(m)=m-\varepsilon p^{v}(p-1)-\left(p^{v}-1\right) /(p-1) .
\end{aligned}
$$

Furthermore, by using the elements in (3.3.1-2), we define the elements

$$
\begin{equation*}
y_{m} \text { and } \quad \bar{y}_{m} \text { in } \Sigma \text { with } y_{m}=v_{2}^{m} t_{1}+v_{1} \bar{y}_{m} \tag{3.5.3}
\end{equation*}
$$

for all integers $m=s p^{v} \neq 0$ in (3.5.1) inductively on $v \geqq 0$ as follows:

$$
\begin{aligned}
& \bar{y}_{s}=Y_{s} \text { and } \bar{y}_{s p}=-\left(v_{2}^{s p} \zeta^{(2)}+s Z_{s}\right) / 2 \quad \text { if } s \not \equiv-1 \bmod p^{2}, \text { i.e., } \varepsilon=0 ; \\
& y_{s}=W_{t}^{p}+v_{1}^{p 2-p-2} v_{2}^{s+1} X\left(\equiv v_{2}^{s} t_{1} \bmod J(1) \text { by }(3.2 .3)\right) \quad \text { if } s=t p^{2}-1 ; \\
& \bar{y}_{m p}=\left(\bar{y}_{m}^{p}-v_{1}^{q} \eta_{m}^{\prime}+s_{m} v_{1}^{A(m p)-p-2} W_{e(m)}\right) /(2-\bar{v}), \quad q=p^{v+1}-p-\bar{v},
\end{aligned}
$$

for $m=s p^{v} \neq 0$ with $v \geqq 1-\varepsilon$, where $\eta_{m}^{\prime} \in \Sigma$ is taken to satisfy

$$
\begin{equation*}
v_{1}^{q+p+1} \eta_{m}^{\prime} \equiv d_{0}\left(v_{2}^{1+m p}\right)-v_{2}^{m p}\left\{v_{1} t_{1}^{p}-(2-\bar{v}) v_{1}^{p} t_{1}\right\} \bmod J(A(m p)+p+1) \tag{3.5.4}
\end{equation*}
$$

(the existence is certified by (2.3.1-4) and (3.2.1)).
Lemma 3.6. $\quad d_{1} y_{m} \equiv-s_{m} v_{1}^{A(m)} v_{2}^{e(m)} g_{1} \bmod J(A(m)+1)$ in $\Omega_{\Sigma}^{*} B$.
Proof. The lemma for $m=s p^{v}$ with $v \leqq 1-\varepsilon$ is certified directly by (2.3.1-5), (2.6.4), (3.2.4) and (3.4.1-4), by noticing that $d_{1}\left(v_{2}^{m} t_{1}\right)=d_{0}\left(v_{2}^{m}\right) \otimes t_{1}, d_{1}\left(v_{2}^{m} \zeta^{(2)}\right) \equiv$ $d_{0}\left(v_{2}^{m}\right) \otimes \zeta^{p} \bmod J(2 p)$ if $\varepsilon=0=v-1$, and that if $\varepsilon=0=v, \varepsilon=0=v-1$ or $\varepsilon=1=$ $v+1$, then $s_{m}=\binom{s+1}{2},-2^{-1}\binom{s+1}{2}$ or $1, A(m)=2, p+3$ or $p^{2}+1$, and $e(m)=m$, $m-1$ or $m-p+1$, respectively.

For $m=s p^{\nu}$ with $v \geqq 1-\varepsilon$, we note by definition that

$$
\begin{aligned}
& v_{1}^{1+p}\left(\bar{y}_{m}^{p}-v_{1}^{q} \eta_{m}^{\prime}\right) \equiv v_{1} y_{m}^{p}-d_{0}\left(v_{2}^{1+m_{p}}\right)-(2-\bar{v}) v_{1}^{p} v_{2}^{m p} t_{1} \quad \text { and so } \\
& d_{1}\left(v_{1}^{p} y_{m p}\right) \equiv d_{1}\left(v_{1} y_{m}^{p}+s_{m} v_{1}^{4(m p)-1} W_{e(m)}\right) /(2-\bar{v}) \bmod J(A(m)+p+1) ; \\
& A(m p)=p A(m)-p+3, \quad e(m p)=p e(m)-1 \\
& \quad \text { and } \quad s_{m p} \equiv(e(m)-1) s_{m} / 2(2-\bar{v}) \bmod p .
\end{aligned}
$$

Then, (3.4.2) implies the lemma by induction on v, by noticing that $s^{p} \equiv s \bmod p$ and $v_{1}^{p}: \Omega_{\Sigma}^{*} B / J(n) \rightarrow \Omega_{\Sigma}^{*} B / J(n+p)$ is monomorphic.
q.e.d.

By virtue of Lemmas 3.6 and 2.6, we have the cycles

$$
\begin{equation*}
y_{m} / v_{1}^{j}(1 \leqq j \leqq A(m)), v_{2}^{s p} V / v_{1}^{j}(1 \leqq j<p), x_{n}^{s} \zeta^{(n+1)} / v_{1}^{j}\left(1 \leqq j \leqq a_{n}\right) \tag{3.7.1}
\end{equation*}
$$

in $\Omega_{2}^{1} M_{1}^{1} \otimes_{A} B$ for any $m, s \in Z$ and $n \geqq 0$; and we consider them the elements in $H^{1} M_{1}^{1}=\operatorname{Ext}_{\Sigma}^{\frac{1}{2}}\left(B, M_{1}^{1} \otimes_{A} B\right)$ by (3.1.3). Now, consider the exact sequence

$$
\begin{equation*}
\cdots \longrightarrow H^{n-1} M_{1}^{1} \xrightarrow{\delta} H^{n} M_{2}^{0} \xrightarrow{1 / v_{1}} H^{n} M_{1}^{1} \xrightarrow{v_{1}} H^{n} M_{1}^{1} \xrightarrow{\delta} H^{n+1} M_{2}^{0} \longrightarrow \cdots \tag{3.7.2}
\end{equation*}
$$

associated to the exact sequence in (3.1.2).
Proposition 3.8. $\delta: H^{1} M_{1}^{1} \rightarrow H^{2} M_{2}^{0}$ (the range is given by (3.1.5)) satisfies the following for any $m, s \in Z$ and $n \geqq 0$:
(3.8.1) $\delta\left(y_{m} / v_{1}^{A(m)}\right)=-s_{m} v_{2}^{(m)} g_{1}$ for s_{m} with $p \nmid s_{m}$ and $e(m)$ in (3.5.2).
(3.8.2) $\delta\left(v_{2}^{s p} V / v_{1}^{p-1}\right)=v_{2}^{s p} T^{p}=-v_{2}^{s p+p-1} g_{0}$.

$$
\delta\left(x_{n}^{s} \zeta^{(n+1)} / v_{1}^{a_{n}}\right)=\left\{\begin{array}{l}
s v_{2}^{s} h_{1} \zeta \quad \text { if } n=0, \tag{3.8.3}\\
\varepsilon_{n} s v_{2}^{c(n, s)} h_{0} \zeta \quad \text { if } n \geqq 1,
\end{array}\right.
$$

where $\varepsilon_{n}=\min \{n, 2\}$ and $c(n, s)=s p^{n}-p^{n-1}$.
Proof. We note that $d_{1}\left(v_{2}^{s p-1} t_{3}\right)=-v_{2}^{s p+p-1} g_{0}-v_{2}^{s p} T^{p}$ in $\Omega_{2}^{*} B /\left(p, v_{1}\right)$ by (2.3.1-5), which means the second equality in (3.8.2). By (3.1.3) and the definition of δ, the other equalities follow immediately from Lemma 3.6, (2.6.3) and (2.6.1).
q.e.d.

Lemma 3.9. In (3.7.2) for $n \geqq 1$, assume that a submodule $K \supset \operatorname{Im}\left(1 / v_{1}\right)$ of $H^{n} M_{1}^{1}$ is the direct sum of $\boldsymbol{F}_{p}\left[v_{1}\right]$-submodules $K_{\lambda}(\lambda \in \Lambda)$ isomorphic to $\boldsymbol{F}_{p}\left[v_{1}\right.$, $\left.v_{1}^{-1}\right] / F_{p}\left[v_{1}\right]$ and cyclic ones $K_{\mu}(\mu \in M)$ generated by k_{μ} such that $\left\{\delta k_{\mu} \mid \mu \in M\right\}$ is linearly independent. Then, $K=H^{n} M_{1}^{1}$.

Proof. By assumption, $H^{n} M_{2}^{0} \xrightarrow{1 / v_{1}} K \xrightarrow{v_{1}} K \xrightarrow{\delta} H^{n+1} M_{2}^{0}$ is exact, which together with (3.7.2) implies the lemma by [4; Remark 3.11]. In fact, for any $x=\sum_{\lambda} x_{\lambda}+\sum_{\mu} a_{\mu} k_{\mu}\left(x_{\lambda} \in K_{\lambda}, a_{\mu} \in F_{p}\left[v_{1}\right]\right)$, we have $x_{\lambda} \in v_{1} K_{\lambda}$ and $\delta\left(a_{\mu} k_{\mu}\right)=0$ if $v_{1} \mid a_{\mu}$, and so $\delta x=0$ implies $a_{\mu}=0$ for $v_{1} \nmid a_{\mu}$ and $x \in v_{1} K$. The other parts of exactness are seen easily.
q.e.d.

By these results, we have the following main result in this section:
Theorem 3.10. $H^{1} M_{1}^{1}=\operatorname{Ext}_{\Gamma}^{1}\left(A, M_{1}^{1}\right)=\operatorname{Ext}_{\frac{1}{2}}\left(B, M_{1}^{1} \otimes_{A} B\right)$ is the direct sum of
(3.10.1) the $\boldsymbol{F}_{p}\left[v_{1}\right]$-submodules $\boldsymbol{F}_{p}\left\{t_{1} / v_{1}^{j} \mid j \geqq 1\right\}$ and $\boldsymbol{F}_{p}\left\{\zeta^{(j)} / v_{1}^{j} \mid j \geqq 1\right\}$, which are both isomorphic to $\boldsymbol{F}_{p}\left[v_{1}, v_{1}^{-1}\right] / \boldsymbol{F}_{p}\left[v_{1}\right]$, and
(3.10.2) the cyclic ones $F_{p}\left[v_{1}\right]\langle x\rangle$ for $x=x^{\prime} / v_{1}^{b} \in \Lambda_{1} \cup \Lambda_{2} \cup \Lambda_{3}$, which are isomorphic to $\boldsymbol{F}_{p}\left[v_{1}\right] /\left(v_{1}^{b}\right)$, where

$$
\begin{aligned}
& \Lambda_{1}=\left\{y_{m} / v_{1}^{A(m)} \mid m=s p^{v}, v \geqq 0, s \in Z \text { with } p \nmid s(s+1) \text { or } p^{2} \mid s+1\right\}, \\
& \Lambda_{2}=\left\{v_{2}^{s p} V / v_{1}^{p-1} \mid s \in Z\right\}, \Lambda_{3}=\left\{x_{n}^{s} \zeta^{(n+1)} / v_{1}^{a_{n}} \mid n \geqq 0, s \in Z \text { with } p \nmid s\right\} .
\end{aligned}
$$

Proof. We see that the direct sum K of the submodules in (3.10.1-2) satisfies the assumption in Lemma 3.9 for $n=1$ by (3.1.6), (3.5.3) and Proposition 3.8. Therefore, the theorem holds by Lemma 3.9.
q.e.d.

§4. Non-triviality

Theorem A in the introduction is in (2.7.1) and the following (4.1.1):
Theorem 4.1. Let p be a prime $\geqq 5$. Then, the products $\beta_{m}^{\prime} \beta_{n / j} \in H^{3}(A /(p))$ $=\operatorname{Ext}_{\Gamma}^{3}(A, A /(p))$ in (2.7.2-3) are non-trivial in the following cases:
(4.1.1) $\quad \beta_{m}^{\prime} \beta_{s p / p} \neq 0$ if and only if $p \nmid m s$ for $s \geqq 1$ and $m \geqq 1$.
(4.1.2) $\quad \beta_{m}^{\prime} \beta_{n} \neq 0$ if $p \mid m+n$ and $p \nmid n$ for $n \geqq 1$ and $m \geqq 1$.
(4.1.3) In case $n=s p^{i}, j=a_{i}(i, s \geqq 2)$ and $m \geqq 1, \beta_{m}^{\prime} \beta_{n / j} \neq 0$ if and only if $m \neq c(e, u)-c(i, s)$ for any $e \geqq 1$ and $u \geqq 2$ with $p \nmid u$.

Proof. The 'only if' parts are in (2.7.2-3). Consider the homomorphisms

$$
H^{1} M_{1}^{1} \xrightarrow{\delta} H^{2} M_{2}^{0} \xrightarrow{1 / v_{1}} H^{2} M_{1}^{1} \stackrel{j_{*}}{\longleftrightarrow} H^{2} N_{1}^{1} \xrightarrow[\cong]{\delta^{\prime}} H^{3} N_{1}^{0}=H^{3}(A /(p)),
$$

where the first two are in (3.7.2) for $n=2, j$ is the inclusion map in (3.1.1) for $s=1$ and δ^{\prime} is the boundary associated to the exact sequence in (3.1.1) for $s=0$. Then, by the definition (2.4.6) and (2.5.4), $\left(1 / v_{1}\right)^{-1} j_{*} \delta^{\prime-1}\left(\beta_{m}^{\prime ;} \beta\right)=v_{2}^{m} \beta$ and so
(4.1.4) $v_{2}^{m} \beta \in \operatorname{Im} \delta=\operatorname{Ker}\left(1 / v_{1}\right)$ if $\beta_{m}^{\prime} \beta=0 \quad$ for $\quad \beta=\beta_{n / j} \in H^{2} A$.

Now, by (2.5.1), [9; Lemma 5.4] and (2.5.3), we have

$$
v_{2}^{m} \beta_{s p / p}=s v_{2}^{m+s p-p} T^{p},-v_{2}^{m} \beta_{n}=\binom{n}{2} v_{2}^{n+m} h_{1} \zeta+\binom{n+1}{2} v_{2}^{n+m} g_{1},
$$

and $v_{2}^{m} \beta_{n / j}=-s v_{2}^{m+c(i, s)} h_{0} \zeta$ in case of (4.1.3), respectively. Thus, the assumptions in (4.1.1-3) imply $v_{2}^{m} \beta_{n / j} \notin \operatorname{Im} \delta$ by Proposition 3.8 and Theorem 3.10, and so $\beta_{m}^{\prime} \beta_{n / j} \neq 0$ by (4.1.4).
q.e.d.

Corollary 4.2. On the compositions of the β-elements in (1.1) for $s \geqq 1$ and $t \geqq 2, \beta_{(s)}\left(\beta_{t p^{2} / p, 2} \wedge 1_{M}\right), \beta_{(s)}\left(\beta_{t p / p} \wedge 1_{M}\right)$ and $\beta_{(s)} \delta \beta_{(t p / p)}$ in $[M, M]_{*}$ are all non-trivial in $[M, M]_{*}$ if $p \nmid s t$, and so are $\beta_{(s)}\left(\beta_{s^{\prime}} \wedge 1_{M}\right)$ and $\beta_{(s)} \delta \beta_{\left(s^{\prime}\right)}\left(s^{\prime} \geqq 1\right)$ if $p \mid s+s^{\prime}$ and $p \nmid s^{\prime}$. Here $\delta=i \pi$.

Proof. Consider the Adams-Novikov spectral sequence with $E_{2}=H^{*} N_{1}^{0}$ $\left(N_{1}^{0}=A /(p)\right)$ converging to $\pi_{*} M$, and the induced map $i^{*}:[M, M]_{*} \rightarrow \pi_{*} M$. Then, (1.2) shows that $\beta_{s}^{\prime} \beta \in H^{3} N_{1}^{0}$ for $\beta=\beta_{t p^{2} / p, 2}, \beta_{t p / p}$ or $\beta_{s^{\prime}}$ converges to

$$
\beta_{(s)} i \beta=\beta_{(s)}\left(\beta \wedge 1_{M}\right) i=i^{*}\left(\beta_{(s)}\left(\beta \wedge 1_{M}\right)\right) \in \pi_{*} M \quad \text { for the corresponding } \beta \text { in } \pi_{*} S,
$$

and $\beta_{(s)} i \beta_{*}=i^{*}\left(\beta_{(s)} \delta \beta_{(*)}\right)$ if $\beta_{*}=\beta_{t p / p}$ or $\beta_{s^{\prime}}$ by (1.1). Thus, we have the corollary by the non-triviality of $\beta_{s}^{\prime} \beta$ in (4.1.1-2) and the sparseness of this spectral sequence.
q.e.d.

Remark. On the compositions $\beta_{(s)} \delta \beta_{\left(s^{\prime}\right)}$, we know some relations in [16; Th. 5.1] including

$$
\beta_{(s)} \delta \beta_{\left(s^{\prime}\right)}=0 \text { if } p \nmid s+s^{\prime} \text { and } p \mid s s^{\prime} .
$$

References

[1] J. F. Adams, Stable Homotopy and Generalised Homology, University of Chicago Press, Chicago, 1974.
[2] M. Hazewinkel, Constructing formal groups III: Application to complex cobordism and Brown-Peterson cohomology, J. Pure Appl. Algebra 10 (1977), 1-18.
[3] H. R. Miller and D. C. Ravenel, Morava stabilizer algebra and the localization of Novikov's E_{2}-term, \quad Duke Math. J. 44 (1977), 433-447.
[4] H. R. Miller, D. C. Ravenel and W. S. Wilson, Periodic phenomena in the AdamsNovikov spectral sequence, Ann. of Math. 106 (1977), 469-516.
[5] R. M. F. Moss, On the composition pariring of Adams spectral sequences, Proc. London Math. Soc. 18 (1968), 179-192.
[6] S. P. Novikov, The methods of algebraic topology from the viewpoint of cobordism theories, Math. USSR-Izvestija, 1 (1967), 829-913.
[7] S. Oka, A new family in the stable homotopy groups of spheres II, Hiroshima Math. J. 6 (1976), 331-342.
[8] S. Oka, Realizing some cyclic $B P_{*}$-modules and applications to stable homotopy of spheres, Hiroshima Math. J. 7 (1977), 427-447.
[9] S. Oka and K. Shimomura, On products of the β-elements in the stable homotopy of spheres, Hiroshima Math. J. 12 (1982), 611-626.
[10] D. G. Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298.
[11] D. C. Ravenel, The structure of $B P_{*} B P$ modulo an invariant prime ideal, Topology 15 (1976), 149-153.
[12] D. C. Ravenel, The structure of Morava stabilizer algebras, Inventiones Math. 37 (1976), 109-120.
[13] D. C. Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977), 187-197.
[14] L. Smith; On realizing complex cobordism modules, Amer. J. Math. 92 (1970), 793-856.
[15] H. Toda, p-primary components of homotopy groups IV, Mem. Coll. Sci. Univ. of Kyoto 32 (1959), 297-332.
[16] H. Toda, Algebra of stable homotopy of \boldsymbol{Z}_{p}-spaces and applications, J. Math. Kyoto Univ. 11 (1971), 197-251.
[17] N. Yamamoto, Algebra of stable homotopy of Moore spaces, J. Math. Osaka City Univ. 14 (1963), 45-67.

Department of Mathematics,
Faculty of Science,
Hiroshima University
and
Seiun High School, Nagata-ku, Kobe

[^0]: ${ }^{*}$) We must replace the expression of $\beta_{p / p}$ in [9; Lemma 4.4(ii)] by the one in (2.5.1). We note that the results in [9] are valid by this replacement.

