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§ 1. Introduction

Let S be the sphere spectrum and M the Moore spectrum modulo a prime

p^5 given by the cofiber sequence S-^US-UM-^ΣS; and consider the stable

homotopy rings π*S and [M, M ] * . Then, for s ^ 1 and t^2, the j^-elements

(1.1) βia)9 β(tp/p) in [M, M ] * and βs = πβ{s)ί9

βtp/p = πβ(tp/P)U βtp2/P,2 in π^S

are given by Smith [13] (see also [14], [16]) and Oka [7], [8].

Consider the Brown-Peterson spectrum BP at p, the Hopf algebroid

(A, Γ) = (BP*, BP*BP) = (Z(p)[vu ι;2Γ ] 5 BP*[tl9 t2,~ J) and the Adams-Novikov

spectral sequence:

E2 = H*A' = Ext? (A, Ar) = > π*M (resp. π^S) for A' = Aj{p) (resp. ,4).

Then, Miller-Ravenel-Wilson [4] proved the following:

(1.2) There are the β-elements

β's in H'AI(p) (resp. βs, βtp/p, βtp2/Pt2 in H*A) (see (2.4.6))

which converge to J8(s)i in π*M (resp. the ones in π*S with the same notation).

The main purpose of this paper is to prove the following

THEOREM A. In the E2-term H3A/(p), P3tpVPil = ̂ tp{p-^tplp holds, and

β'sβtpIp = O if and only if p\st.

COROLLARY B. In [M, M ] * , β(s)(βtp2/p>2 A 1 M ) , β(s)(βίp/p Λ 1 M ) and

β(s)δβ(tp/P)
 a r e all non-trivial if pjfst. Here δ = iπ is the generator of [M, M\-v

Corollary B is a consequence of Theorem A and is proved in Corollary 4.2.

The equality and the triviality in Theorem A are in Theorem 2.7 which is valid

for p ^ 3 and can be proved easily by [4] and [9], and the non-triviality is in

Theorem 4.1. We note that Theorems 2.7, 4.1 and Corollary 4.2 contain the

(non-) triviality of some other compositions.
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To show the non-triviality in Theorem 4.1, §3 is devoted to the study of

H1M\ in the ϋ^-term of the chromatic spectral sequence [4] converging to

H*A/(p), and forms the main part of this paper. By the change of rings theorem

[3], we note that

IPM\ = Exti (B, M\®AB)

for (B, Σ) = (Z(p)lvu v29 v^l, B\tu t2,"Ί®AB).

Then, by using some results in [4] and [13], some calculations give us suitable

elements in Σ which satisfy good relations in the cobar complex Ω%B (Lemma 3.4),

and we can find generators of /PM} given in Proposition 3.8 and Theorem 3.10.

Theorem 4.1 is proved by these results.

The authors would like to thank Professor M. Sugawara and the late Professor

S. Oka for their useful suggestions.

§ 2. Triviality in the J

Let p be an odd prime and BP the Brown-Peterson ring spectrum at p.

Then, the following are due to Quillen [10] and Hazewinkel [2] (cf. also [1],

[4]):

(2.1) BP* = π*BP = Z{p)\υu ι?2, . ] c H*BP = Z{p)[mu m2,. ] ,

BP*BP = BP*[tu ί 2 , . . ] , degu, = degmπ = degίn = 2(jp»-l), and

(2.1.1) vh = pmn - Σ?=ί mΛ^i (w(ί) denotes upi in this paper),

where BP*<=:H*BP by the Hurewicz map. Furthermore,

(2.1.2) (BP*, BP*BP) = (A, Γ) (this abbreviation is used hereafter)

is a Hopf algebroid (cf. [3]), whose left unit ηL is the inclusion, and right unit

ηR (denoted simply by η): A^Γ and diagonal A: Γ-+Γ®ΛΓ are given respectively

by

(2.1.3) ηmn = ΣWniΆ ΣUmMβi = Σi^u^m^ ® t[i+J\

where m0 = t0 = 1 and v0 = p.

For a Γ-comodule M with coaction ηM: M-+M®AΓ, we study the homology

(2.2) (cf. [3]) H*M = Extf (A, M) of the cobar complex ΩfM = (Ωs

ΓM, ds:

ΩS

ΓM-+ΩS

Γ

+1M) given by ΩS

ΓM = M®AΓ®A~®AΓ (s factors of Γ) and

ds(m®x) = ηMm ® x

+ Σ i = i ( - l ) f ^ ® ^i ®'"® Axi®'"® xs - (-ϊ)sm®x® 1
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for meM, x feΓ and x = x1® ®xs.

In particular, consider the case M = Λ with ηΛ = η: A-*A®AΓ = Γ. Then:

(2.3) In the cobar complex ΩfA, Ω$A = A, Ω^A = Γy Ω}A = Γ®ΛΓ and

ds: Ωs

ΓA^ΩγxA for s = 0, 1 are given by

(2.3.1) dou = ηu - u (ueA) and

dxx = φx - Ax, ψx = x®l + l®x (XEΓ).

Therefore, for any u, veA and x, y eΓ, we have the equalities

(2.3.2) do(uυ) = douηv + udov; d^xy) = dxxΔy + φxd^

— x ® y — y ® x,

dι(uy) = dou ® y + wrf̂ , d^xηv) = dxxAr\v — x ® dot;.

Thus, by (2.1.1-3) and [11; Th. 7-8] for ηv3 and Jί 3, and by considering

(2.3.3) the invariant ideal J(n) = (p, t J) of A,

direct calculations give us the following

(2.3.4) dov^ = ηvt - i^ = p ^ ; doι?2 = ^ί;2 - v2 = vxtl - vp

1tί mod(p),

- vn

2mod(pJ+\ v[i+1))

if n = spf and pJ" | s (i, j '^0),

- ί i ^ + vlVmod J(p2),

where 7= Mίi2)-υ[2)t\ + vp

2-(υrf-v^t, + t;2)
p}/]7ί;1

(2.3.5) d^i = φtί - Jί x = 0, dβi0) s pT^"1) mod(p2) for i ^ 1;

for τ = ί ϊ + 1 - ί 2 ;

dtt3 = - g - v2T
p mod J(l) for ^ = ίt ® if + t2 ® ί(!2),

where Γ= dM)/p = {̂ (ί?) - (̂ rί
We now consider the elements Xιev2

ιA given by

(2.4.1) xo = v2, x^υψ-vψίυϊH^-V-υV-o

5c1=0, 3c2 = vι

2

+c> + υ\vγ-Pv2, xt = x?^ + Iv

where αo = l, α ^ p ' + p 1 " 1 - ! and ci = pi-pi~1 ( i^l) . Then:

(2.4.2) X; is equal (resp. congruent mod(p)) to xf in [4; (2.4)] for i = 0, 1
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(resp. Ϊ '^2) , and [4; Prop. 5.4, b)] says that in the cobar complex

doxo =Ξ vxtl mod J(2), dox f = εivfiv^t1 mod J(l + at)

for i ^ 1 (εf = min {ί, 2}).

Therefore, by considering the inclusion A/Jczv^A/J for J = (p2

9 vp

x) or J(j).

(2.4.3) xs

2 = v n

2 e H ° ( A I ( p 2 , v p

ί ) ) f o r s ^ l a n d n = s p 2 ; a n d

(2.4.4) xf lies in A/J(j) and x? e H°(A/J(j)) for (ί, 5, y) e /, where

(2.4.5) / = {(/, s,y)eZ 3 | ϊ ^ 0 , j ^ l and l^j£ai9 with y ^ p ' if 5 = 1}.

In case of (2.4.4), we note that x? = xf+1 if s = s'p. Thus, by using the boundary

homomorphism δk (resp. δ'jk) associated to the exact sequence

0 > A -£-> A >A/(pk) > 0

(resp. 0 —> A/(pk) J±+ A/(pk) —+ A/(p\ υ{) —> 0),

the j8-elements in (1.2) can be defined (see [4; pp. 477-9]) by

(2.4.6) βnίp>2 = WP,2(xs2) = δ2δ'Pt2(v»2)eH2A for n = sp2 > 0;

β'n/j = δ'JΛ{x\)eIP(AI(p)), βn/j = δ^jelPA

for n = spi with (ί, s,j)el. We abbreviate j?ή/i t o β'n a n < i î π/i t o ΛJ which can
be defined for any n ̂  1.

LEMMA 2.5. In Ω2

ΓA, the following hold mod J(l) for s = l :

(2.5.1) βn/Ptk = sv»2-
pT*> if n = spk and k = 1, 2 (βnIpΛ = β n / p ) .

(2.5.2) /ί, = ft,

(2.5.3) βn/j = - svϊi>sHί ® C if n = sp', j = α, (s, i = 2),

c(i, s) = sp1' —

C = ^ - K ^ - ^ - ^ ί ) ( Ξ C 2 in [4; p. 485]

PROOF. By (2.4.1), we see that

(2.5.4) xi = υn

2 in Aj{p\ v{) for i = 1, 2, s ^ 1 and n = spf.

Therefore, the definition (2.4.6) and (2.3.2-5) imply directly (2.5.1). (2.5.2-3) are

given in [9; Lemma 4.4 and the notice in §6]*>. q.e.d.

*) We must replace the expression of /3P/P in [9; Lemma 4.4(ii)] by the one in (2.5.1). We
note that the results in [9] are valid by this replacement.



Some compositions of β-elements 125

LEMMA 2.6. In the cobar complex Ωfv^A, the following hold for se Z:

(2.6.1) dγ(xs

oζp) = svxυ
s

2-H\ ® ζp mod J(2); and for ί ^ 1,

mod J(l + αf) (ε—minίi, 2}).

(2.6.2) d1(t1ηvs

2-sv1t2ηvs

2-
ί) = v2JsmodJ(3).

(2.6.3) d^υfV) = v\v\pTp + si?l+pt?|p-J>ί(

1

2) ® Fmod J(2p).

PROOF. (2.6.1) is certified directly from (2.3.2), (2.4.2) and

(2.6.4) ([4; Prop. 3.18, c)]) d^^Omoά J(l) in Ωfv^A;

and so is (2.6.2) by (2.3.2-5). (2.6.3) is shown by calculating d^pv^/V) using

(2.3.2-5) in the range of the monomorphism p: Ωfv2

ίAIJ(2p)-^Ωfv2

ίAI(p2

9 v\p).

q.e. d.

THEOREM 2.7. The Yoneda product β'mβn/J>k e H\Aj{p)) = Extf (A, A/(p))

of the β-elements given in (2.4.6) satisfies the following:

(2.7.1) Γ J s * ι P , 2 = β'm+sP(P-i)βsp/P f o r s ^ l a n d m ^ 1 .

(2.7.2) β ' J s p l p = 0 = β'mβn if p \ m s f o r s ^ l a n d m ^ 1 .

(2.7.3) In case n = spι, j = a{ (ί, s^2) and m ^ 1,

m̂ĴΛ/y = 0 if m — c(e, u) — c(i, s) for some e ^ 1 and u ^ 2 with pjfu.

PROOF. (2.5.1) shows v2

nβnlp2 = v2

n+n-n'βnΊp in H2(A/J(1))9 whose image

under δ'ίtί is (2.7.1).

O»/ i = ̂ ' u W = ^ u ( Ψ 2 A / i ) by the definition of δ\ When n = sp9

vp

ίv'ξβn/p = svp

1v2

n+n-pTp in H2(^l/J(p+1)) by (2.5.1), which is 0 if p\s or p\m by

(2.6.3). By (2.5.2), v>ξβn = O in H2(A/J(1)) if p|n, and v\υΐβn = v\βn+m mod J(3)

if jp|m, which is 0 in H2(A/J(3)) by (2.6.2). In the last case, (2.5.3) and (2.6.1)

show that

C = ~ ^{uS(e'M)ίi ® C ( β + 1 ) = 0

in H2(A/J(; + 1)), because C ( e + 1 ) is homologous to ζ in QfujM/Jil) by [4;

Lemma 3.19]. q. e. d.

By considering the δί-image of the elements in (2.7.1-3), we see the following

COROLLARY 2.8 (cf. [9; Prop. 6.1]). For the product βmβn/jtkeH*A =

Ext£ (A, A), Theorem 2.7 holds by replacing β'm with βm.
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§3. H1M{=Ext1

Γ(A9 M\)

Hereafter, assume that p is a prime ̂ 5 . For the Hopf algebroid (A9 Γ) =

( £ P * , BP+BP) in (2.1.2), we recall the Γ-comodules JVf and M\ given in [4 ; §3],

defined inductively by

(3.1.1) JV? = Al(p)9 M\ = υ~^N\ and the exact sequence

0 —>N S

1 - J -^M\ — > N\+1 — > 0.

In this section, we compute H1M\ = Extf (A, M\) by using the following (3.1.2-6):

(3.1.2) [4; (3.10)] For M°2 = v2

ιA/(p9 v±)9 0 • M\ i / % M} -ϋ±-> M\ > 0

is exact.

(3.1.3) [ 3 ; §3] We can identify H*M = Ext? (A, M) as

H*M = Ext? (A, M) = Extf (β, M®AB) for M = M°2 or M}

by the isomorphism induced from the natural map, where

(3.1.4) ( £ , Σ) is the Hopf algebroid with B = Z ( p ) [ ι ? 1 , t?2, i^I1] acting !?„ ( n ^ 3 )

trivially and Σ = B®AΓ®AB = B[tli t2,'~]<8>AB s u c h that the natural map (A, Γ)->

(β, Γ) sending t;n (n ̂  3) to 0 is a map of Hopf algebroids. Thus, the relations in

§2 for (A9 Γ) are reduced to those for (B, Σ) by putting vn = 0 for n ^ 3 and

η(v2ί)ηv2 = l in I1.

(3.1.5) [13; Th. 3.2] HnM% is spanned as the Fp[υ29 i ^ - v e c t o r space by

h0 = tl9 ht = υlγt\ and ζ in (2.5.3) for n = 1, and

hoζ = tί®ζ, hιζ = υ2H
p

ι®ζ9 go = v2

pg (gin (23.5)) and

0i = ̂ 2^o for π = 2.

(3.1.6) [4; p. 500] The image of 1/^: H^M^H^Ml induced by l / ^ in

(3.1.2) is spanned by /lo/ î* v2P^ίlvί f°Γ s e Z, ι;|C/ î for s e Z and

^2^0/^1 f°Γ m = 5Pf» 1 ̂  0, s e Z with p )( s(s+1) or p21 s + 1.

LEMMA 3.2. The following relations hold in Σ for n^l and Ϊ ^ O :

(3.2.1) (ι>2-*?iΊ)ί(i2) + v{tp

2 + i f F - t;?^ = Omod J(p2)for V in (2.3.4).

(3.2.2) ι;2e> + ι;1ί; + 1 - υ<?\ = Omod J(2).

(3.2.3) 4i+">ί^> = 4 ί ) ί^ + 2 > tfnrf 4 ί + 2 ) τ ( ί ) = 4 i ) τ ( ί + 2 ) m o d J(p f) /or τ in

(2.3.5).
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(3.2.4) C(0 = (-v2h + v2

ptp

2)^ s ζ<i+1> mod J(pι) for ζ in (2.5.3).

(3.2.5) v2

i+2)Tω = 4 i + 1 ) Γ ( ί + 2 ) mod J(pj)for Tin (2.3.5).

PROOF. Since v3 = 0 in B, (3.2.1) follows from (2.3.4). (3.2.2) holds for
n = l by (3.2.1) and is proved by induction on n as follows. Note that
m'n = pnmneA and

(3.2.6) mi = !>! and m'n = pmf

n.2v
(

2

n-2) mod(pn, t^"-1*) in B (n^2),

by (2.1.1). Then, by (2.1.3), we see the following in Σ mod (pπ + 2, υξ):

P \vlτn+l + ϋ2 rn ^ + Z*i=l P ^ i ^ 2 Γn-i = 1^ j=0 P mjln + 2-j

= ι w +2 Ξ rj(pmf

nv2

n)) = (/;«+1/n + Σ?=i ^" + 1 " l ^ί ί i l i | )^ i " )

Here, by (2.3.4) for do(t;^n)) = ̂ 4 w ) ~ 4 n ) and the inductive hypothesis, we have

tnηv(

2

n) = v2

n)tn mod /(^), t^ηυ^ = v^t'^ = vp

2t^\ mod (p2, v,)

and ^Λ.f7i?2

Λ) = v(

2

n)t(βi = ϋio^tfi 2 ) mod (p1, ^ ( ^ ( P 1 " , ^i)) for 1 ^i^n.

Therefore, we see m^h^p = m[t{jltfv{

2

n) moά(pi+\ v2) ( l ^ i ^ n ) by (3.2.6),
which shows (3.2.2) since pn+ί: Σ/J(2)-^ΣI(pn+2

9 v
2) is monomorphic.

(3.2.2) implies (3.2.3-5) directly by definition. q. e. d.

We now define the elements Ys, Ws, Zs (s e Z) and X in Σ as follows:

(3.3.1) Ys = sυ2-H + (s-iy2C
p/2 4-

Ws = vf-Hl - ^t ;r p {^i-(5-lM-^2/2}, Zs = VίWs

where ϊ 3 = t?^i3, ξ[ = F' + »J-2ϊ?>, F' =

(3.3.2) X= (t.-vlξ^η, -

where ιy0 = v2

p - v{v2

2pt{2\ ξ^Ό^XV+vl'1!^) = - v2U
p +

tP - vpv2

pσ + vp+2v2

2PV, σ = 2tx- v^p,

tΊ), ξ5 = - C2p/2 + (v2

ptp

2y
+ί + Vlv2

2pTpV.

Here, f/0 and ηt satisfy the following by (2.3.4) for ηv2, (3.2.1-2) and (2.3.2):

(3.3.3) ηε = ηvΓp, dx(xηj s d^Ji,, - x ® (iJe-»S"p) mod J(2p) (ε = 0, 1).

LEMMA 3.4. In the cobar complex Ω$B, we have the following:
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(3.4.1) ί j . s - s»Γ »/f ® h

(3.4.2) dx Ws Ξ Γf-M'βϊ " (s

(3.4.3) rfjZ, s rf- pj'-'f J2) ® σ - (s + l)t?p+V/-ιgj2 mod J(p + 3).

(3.4.4) dγX Ξ - t>?0<2> - p?+3fίp01 mod J(p+4).

PROOF. The calculations are based on (2.3.1-5) and Lemma 3.2. We have

dtYs s sdoivΓ1) ® τ + sβj-^τ + (s-l)do(»5) ® C/2

^ { ^ O W + ̂ ^iCϊC)} + s ^ Γ 1 ^ ^ ) mod J(2)

by (2.6.4), which implies (3.4.1) since we see by (3.2.5) that

(3.4.5) dtff) = - v201 - Γmod J(ί).

Ws= -if2

p{ξι-{s-i)vp

ίΌ2Pξ,2β} by definition. By (2.6.3) for s = - l and
(3.4.5),

(3.4.6) -d& = v^i-v^T"

= Aγ = v\-ιg\ + υlϊftψ ® Fmod J(2p-1).

Furthermore, we see that

(3.4.7) dtξ2 s 2υ2

pt[2) ® V - v^^gy mod J(2) and

These imply (3.4.2). We see also (3.4.3) because

mod

Finally, we show (3.4.4). In the first place, we see that

dΛh-vlξJ = -v\d,ξy mod 0») and tx-v\ξx = Bt =

^ Λ ) mod J(2p), and so
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1 mod/(2/?),

where Ao = -υ\-*tψ> ® ί(

1

3) + t;1ϋj ( 2 )ί (

1

3 ) ® t^ + v\v\-lpA\ A' = t[2) ® τ(2>

+ t\p2 ® tφ + tφ ® tψ = t\p2 ® t^-vψtψϊ ® C(2) + vp

2

+p2gp

t mod J(p)

(by (3.2.4)), Cί = -( f j + ui *0 ® Cp + "f"'a^f-dίi3> + i7jtt>fia>ίf ® 4 3 )

+ u1ι^( 2 ){(*(i2 ) ® V)AtP + t[2)V® t[3)-vp

2

2-p3ti3) ® V} and 2υ\ v2

pt1 ® t,

= - d^ΌlΌi'tl) mod J(2p).

In the second place, we have

= Ao + ϋ}+pϋ2 2 p 5 0 mod J(2p),

where B o = ( ^ " p 2 4 2 ) - 1 \ + p l - t p

2 - v ί V ) ® t 2

2 ) - t \ ® # > # > .
Furthermore, F Ξ - ^ { + ϋi»5"2ί?p/2mod J(2) by definition. Thus

(3.4.8) rf^4 Ξ ^ 2 p {

= v2

2PV®σ-υίv2

pgί mod /(2),

since diίίξίf) = v\t\ ® ζp-v2

ΛPgί-t2

ί

p ® ί (

1

2 ) -2ί?®^ mod J(p). Noting that
dtζ

p = 0 = v^^mod J(p) by (2.6.3-4), we have also

= v2

p-p2B0 - v2

pC1 mod J(2)

by (3.2.1-4). These relations imply (3.4.4). q. e. d.

To give generators of H1M\ = Ext|(JB, M\®AB), we write each integer m # 0

as

(3.5.1) m = spv by integers v = v(m) ^ 0 and s = s(m) ψ Omodp uniquely,

and define the integers v = v(m), ε = ε(m), sm, A(m) and e(m) by

(3.5.2) v = min{v, 1},

0 if s ψ - 1 mod p2,

ε =
1 otherwise,

A(m) = 2 + εp\p2-\) + (p +1) Q>v - l)/(p -1),

e(m) = m —

Furthermore, by using the elements in (3.3.1-2), we define the elements
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(3.5.3) ym and ym in Σ with ym = v'£tί + vjm

for all integers m = spv^0 in (3.5.1) inductively on v^O as follows:

ys = 7S and ysp = - ( ι ; | ^ ( 2 ) + sZs)/2 if s φ - 1 mod/?2, i.e., ε = 0;

ys = WP + ι^2-p-2ι^+1X (Ξtfί*! mod J(l) by (3.2.3)) if s = tp2 - 1;

>W = ( Λ - »ίv; + vf ( m p ) - p - 2 ^ W ) )/(2-v), « = P V + 1 - P - v,

for m = spvφ§ with v ^ 1 — ε, where ^ e Z is taken to satisfy

(3.5.4) i;?^1*/;, s do(i?ί+-") - ^'{vtf - ( 2 - v M

(the existence is certified by (2.3.1-4) and (3.2.1)).

LEMMA 3.6. d1ym = - smvi(m)v^gί mod J(A(m) +1) in

PROOF. The lemma for m = spv with v ^ 1 - ε is certified directly by (2.3.1-5),

(2.6.4), (3.2.4) and (3.4.1-4), by noticing that dί(vψ1) = do(v^)®tu d^VξζM)^

d0(vf)®ζPmodJ(2p) if ε = 0 = v - l , and that if ε = 0 = v, ε = 0 = v - l or ε = l =

v + 1, then sm = (s +1\ -2-^ +lλ or 1, A(m) = 2, pH-3 orp 2 + l, and e(m) = m,

m — l o r m — p + 1 , respectively.

For m = spv with v ^ 1 — ε, we note by definition that

v{+p(yp

m-vlη'J = vιy

p

m-do(υ\+mp) - ( 2 - v ) ι ; ? ^ ί i and so

A(mp) = pA(m) - p + 3, e(mp) = pe(m) - 1

and sMp = (e(m) - l)sm/2(2 - v) mod p.

Then, (3.4.2) implies the lemma by induction on v, by noticing that sp = smodp

and v[: Ω%B/J(n)-*Ω$B/J(n + p) is monomorphic. q. e. d.

By virtue of Lemmas 3.6 and 2.6, we have the cycles

(3.7.1) yjvί (l£j£A(m))9 vs

2

pV/v{ (l£j

in Ω\M\®AB for any m, se Z and n^O; and we consider them the elements in

HXM\ = Exti (J5, M}®^β) by (3.1.3). Now, consider the exact sequence

(3.7.2) ••• > Hn~iM\ - ^ HnM°2

 λ-^> HnM\ -^-> HnM\ -*-+ Hn+1M°2 > •••

associated to the exact sequence in (3.1.2).

PROPOSITION 3.8. δ: HXM\-^H2M^ {the range is given by (3.1.5)) satisfies

the following for any m, se Z and n ^ O :
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(3.8.1) δ(yjvi^) = - smve

2wgι for sm with pfsm and e(m) in (3.5.2).

(3.8.2) divfV/v^1) = vfTP = - υf+p-^0.

{ svs

2h£ if n = 0,

εnsvc

2(
n^h0ζ if n ^ l ,

where επ = min {n, 2} and c(n, s) = spn — pn~ί.

PRCX)F. We note that dι(υ2

p-ίt3)=-vf+f-igo-vfT* in ΩfB/(p, υt) by

(2.3.1-5), which means the second equality in (3.8.2). By (3.1.3) and the de-

finition of δ, the other equalities follow immediately from Lemma 3.6, (2.6.3)

and (2.6.1). q.e.d.

LEMMA 3.9. In (3.7.2) for n^l, assume that a submodule K^lm^/v^ of

HnM\ is the direct sum of Fplv^-submodules Kλ(λeA) isomorphic to Fp[vί9

vJ^IFp^v^ and cyclic ones Kμ{μeM) generated by kμ such that {δkμ\μeM} is

linearly independent. Then, K = HnM\.

PROOF. By assumption, HnM^^^K-^^K-^Hn+ίM^ is exact, which

together with (3.7.2) implies the lemma by [4; Remark 3.11]. In fact, for any

x=Σλxλ+Σμaμkμ (xλeKλ, aμe F^D, we have xλevίKλ and δ(aμkμ) = 0
if t>i|αμ, and so <5x = 0 implies aμ = 0 for vx)(aμ and xeυxK. The other parts of

exactness are seen easily. q. e. d.

By these results, we have the following main result in this section:

THEOREM 3.10. i ^ M } = Extf (A, M}) = Extl(£, M\®AB) is the direct sum

of

(3.10.1) the Fplv^-submodules F^tjv^j^l} and Fp{ζ^jv{\j^\}, which are

both isomorphic to Fp[vί9 vϊ^/Fplv^, and

(3.10.2) the cyclic ones F^v^^x} for x = x'jυ\eA1 U A2 U A3, which are

isomorphic to FP\Ό{\I(ΌX), where

V = sp\ v ^ 0, se Z with pjfs(s + l) or p2\s + 1},

Λ2 = {vs

2

pVjv\-i\s e Z}, A3 = {xjC(w+1)M"|n ^ 0, s e Z with pjfs} .

PROOF. We see that the direct sum K of the submodules in (3.10.1-2) satisfies

the assumption in Lemma 3.9 for n = l by (3.1.6), (3.5.3) and Proposition 3.8.

Therefore, the theorem holds by Lemma 3.9. q. e. d.
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§4. Non-triviality

Theorem A in the introduction is in (2.7.1) aΐid the following (4.1.1):

THEOREM 4.1. Let p be a primed5. Then, the products β'mβn/J e H3(AI(p))

= Έxt}(A, Aj{p)) in (2.7.2-3) are non-trivial in the following cases:

(4.1.1) β'Jsplp Φ 0 if and only if p X ms for s ^ 1 and m ^ 1.

(4.1.2) β'mβn φ 0 if p\m + n and pj(nfor n ^ 1 and m ^ 1.

(4.1.3) In case n = sp\ j = at (i, s^2) and m <£ 1, β'mβn/j Φ 0 if and only
if m Φ c(e, u) — c(i, s)for any e ^ 1 and u ^ 2 with p \ u.

PROOF. The 'only i f parts are in (2.7.2-3). Consider the homomorphisms

HιM{ -^-> H2M°2 1^> H2M\ J±- H2N\ - C H*N<1 = H3(A/(p)),

where the first two are in (3.7.2) for n = 2,j is the inclusion map in (3.1.1) for s = 1

and δf is the boundary associated to the exact sequence in (3.1.1) for s = 0. Then,

by the definition (2.4.6) and (2.5.4), iMv^j^δ'-^β^^υ^β and so

(4.1.4) t;5j8eIm(5 = Ker(l/ί;1) if β'Jβ = 0 for β = βn/jeH2A.

Now, by (2.5.1), [9; Lemma 5.4] and (2.5.3), we have

and vjfin/j= —sv^+c(i>s)hoζ in case of (4.1.3), respectively. Thus, the assumptions

in (4.1.1-3) imply vjβ^jφlmδ by Proposition 3.8 and Theorem 3.10, and so

β'mβn,j*0 by (4.1.4). q.e.d.

COROLLARY 4.2. On the compositions of the β-elements in (1.1) for s ^ l

and t^2, β(s)(βtp2/Pt2 A 1M), β(s)(βtp/pA 1M) and β{s)δβ{tplp) in [M, Af]* are a//

non-trivial in [M, M],,, if pj(st, and so are β(s)(βs> Λ 1 M ) and β(S)δβ(sΊ (s'^1) if

p\s + s' and P ^ ' . Here 5 = ίπ.

PROOF. Consider the Adams-Novikov spectral sequence with E2=H*N°X

(N*l = AI(p)) converging to π*M, and the induced map i*: [M, Mj^-^π^M.

Then, (1.2) shows that ftjίe/PJV? for β = βtp2/Pi2, βtp/P or ^ converges to

0(s)ijS = J?(s)(j? Λ lM)i = i*(βis)(β Λ 1M)) e π*M for the corresponding j8 in π*S,

and β(S)iβ* = i*(β(S)δβw) if β* = βtp/p or j?s, by (1.1). Thus, we have the corollary

by the non-triviality of β'sβ in (4.1.1-2) and the sparseness of this spectral sequence.

q.e.d.
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REMARK. On the compositions β^δβ^, we know some relations in [16;
Th. 5.1] including

β(S)δβ(s>) = 0 if- pfs + s' and p\ss'.
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