A characterization of Prüfer *v*-multiplication domains in terms of polynomial grade

Hirohumi UDA (Received December 25, 1984) (Revised April 18, 1985)

Prüfer v-multiplication domains, abbreviated to PVMD's, have among their special cases a variety of notions, including Prüfer domains, Krull domains, GCD domains, etc. Many interesting characterizations of PVMD's are given by several authors (see [2], [3], [5], [7], [8], [11]). The main purpose of this paper is to give a characterization of PVMD's in terms of polynomial grade (cf. Theorem 2 and Remark 3). This characterization makes the situation of PVMD's in the class of P-domains clearer.

Moreover, we shall examine some properties of PVMD's by making use of Theorem 2 and Remark 3. First, we shall give some characterizations of PVMD's in the class of intergrally closed domains (cf. Theorem 5 and Proposition 7). In particular, Theorem 5 is a generalization of Theorem 3.4 of [5]. Next, we shall give a necessary and sufficient condition for an FC domain to be integrally closed (cf. Proposition 11). Finally, in case A is a PVMD, we shall give a characterization of G_2 -stableness of $A \subset B$, where B is an overring of A (cf. Proposition 12).

To give our results, we include the following notions and notations.

Throughout this paper, A and K denote an integral domain and its quotient field respectively. Moreover, we denote by X an indeterminate. For a fractional ideal I of A, we put $I_v = A$: $_K(A: _KI)$. We say that I is a v-ideal if $I = I_v$, and a v-ideal I is of finite type if there is a finitely generated fractional ideal J of A such that $I = J_v$. An integral domain A is called a Prüfer v-multiplication domain (PVMD), if the set of all v-ideals of A of finite type forms a group under the v-multiplication $I \cdot J = (IJ)_v$, [3]. Let I be an ideal of A. We denote by gr (I) and Gr (I) the classical grade of I and the polynomial grade of I respectively, [6]. The following subsets of Spec (A) are needed for this paper.

 $\mathfrak{P}(A) = \{P \in \operatorname{Spec}(A) \mid P \text{ is minimal over } a \colon b \text{ for some } a, b \in A\}.$

$$\mathfrak{G}(A) = \{P \in \operatorname{Spec}(A) \mid \operatorname{Gr}(P) \leq 1\}.$$

If A_P is a valuation ring for each $P \in \mathfrak{P}(A)$, A is called a *P*-domain, [5]. It is known that a PVMD is a *P*-domain, ([5], Corollary 1.4). Since $A = \bigcap \{A_P | P \in \mathfrak{P}(A)\}$ by Theorem E of [9] and $\mathfrak{P}(A) \subset \mathfrak{G}(A)$, we have $A = \bigcap \{A_P | P \in \mathfrak{G}(A)\}$.

Let I be an ideal of A[X]. We denote by c(I) the ideal of A generated by

all coefficients of all polynomials in I and we call it the *content* of I. Let $U = \{f(X) \in A[X] | A: {}_{K}c(f) = A\}$. Then U is a multiplicatively closed subset of A[X] and $A[X]_{U}$ is a subring of K(X).

We begin with the following lemma which can be proved easily.

LEMMA 1. Let $Q \in \text{Spec}(A[X])$ with $Q \cap U = \emptyset$. Then we have $c(Q)A[X] \cap U = \emptyset$.

THEOREM 2. For A, the following statements are equivalent.

(1) $A[X]_U$ is a Prüfer domain.

(2) A_P is a valuation ring for each $P \in \mathfrak{G}(A)$.

PROOF. (1) \Rightarrow (2). Let $P \in \mathfrak{G}(A)$. Then we have $PA[X] \cap U = \emptyset$ by Lemma 3.1 of [10]. Then $(A[X]_U)_{PA[X]_U}$ is a valuation ring by the assumption. Therefore, $A_P = (A[X]_U)_{PA[X]_U} \cap K$ is a valuation ring.

 $(2)\Rightarrow(1)$. Let $P \in \operatorname{Spec}(A[X]_U)$ and put $Q=P \cap A[X]$. Then we have $P=QA[X]_U$ and $Q \cap U=\emptyset$. Therefore, $c(Q)A[X] \cap U=\emptyset$ by Lemma 1. Since U is a multiplicatively closed subset of A[X], there exists $Q_1 \in \operatorname{Spec}(A[X])$ with the property that $Q_1 \cap U=\emptyset$ and $c(Q)A[X] \subset Q_1$. Put $P_1=Q_1 \cap A$. Then $c(Q) \subset P_1$ and Gr $(P_1) \leq 1$. Therefore, A_{P_1} is a valuation ring by the assumption. Since $Q \subset P_1A[X]$, we have easily that $(A[X]_U)_P$ is a valuation ring. That is, $A[X]_U$ is a Prüfer domain.

REMARK 3 (cf. [7], Theorem & [2], Theorem 3.6). It is known that the following statements are all equivalent to (1) of Theorem 2.

- (3) $A[X]_U$ is a Bezout domain.
- (4) A is integrally closed and each prime ideal of $A[X]_U$ is the extension of a prime ideal of A.
- (5) A is a PVMD.

Since $\mathfrak{P}(A) \subset \mathfrak{G}(A)$, Theorem 2 and Remark 3 imply that a PVMD is a *P*-domain. Moreover, we have the following two characterizations of PVMD's.

COROLLARY 4. The following statements are equivalent.

- (1) A is a PVMD.
- (2) A[X] is a PVMD.
- (3) $A[X]_P$ is a valuation ring for each prime ideal P of A[X] with $gr(P) \leq 1$.

PROOF. (2) \Leftrightarrow (3). This equivalence follows easily from Proposition 3.4 of [10].

(2) \Rightarrow (1). Assume that A[X] is a PVMD and let $P \in \mathfrak{G}(A)$. Then $PA[X] \in \mathfrak{G}(A[X])$. By Theorem 2 and Remark 3, $A[X]_{PA[X]}$ is a valuation ring. Therefore, $A_P = A[X]_{PA[X]} \cap K$ is a valuation ring. This implies that A is a PVMD.

(1) \Rightarrow (2). Assume that A is a PVMD and let $Q \in \mathfrak{G}(A[X])$. If $Q \cap A = (0)$ and $Q \neq (0)$, then we have QK[X] = f(X)K[X] for some irreducible polynomial $f(X) \in K[X]$. Therefore, $A[X]_Q = K[X]_{f(X)K[X]}$ is a valuation ring.

Next, assume that $Q \cap A = P \neq (0)$. Then we have $\operatorname{Gr}(P) = 1$. Moreover, since $Q \cap A \neq (0)$, $Q \cap U = \emptyset$ by Lemma 3.1 of [10]. Therefore, $A[X]_Q = (A[X]_U)_{QA[X]_U}$ is a valuation ring by Theorem 2 and Remark 3. That is, A[X] is a PVMD.

THEOREM 5 (cf. [5], Theorem 3.4). Let A be integrally closed. Then the following statements are equivalent.

- (1) A is a PVMD.
- (2) Let $P \in \mathfrak{P}(A[X])$ and $P \neq (0)$. If $P \cap U = \emptyset$, then $P \cap A \neq (0)$.

PROOF. (1)=(2). Assume that A is a PVMD. Let $P \in \mathfrak{P}(A[X])$ and $P \neq (0)$. Suppose that $P \cap U = \emptyset$. Then $PA[X]_U$ is a prime ideal of $A[X]_U$. Therefore, $PA[X]_U$ is the extension of a prime ideal of A by Remark 3. That is, we have $P \cap A \neq (0)$.

 $(2) \Rightarrow (1)$. Let $Q \in \mathfrak{G}(A)$ and $Q \neq (0)$. Then we have $QA[X] \cap U = \emptyset$ by Lemma 3.1 of [10]. Let P be a prime ideal of A[X] contained in QA[X]. Suppose that $(P \cap A)A[X] \neq P$ and take $f(X) \in P - (P \cap A)A[X]$. Then there exists $P_1 \in \mathfrak{P}(A[X])$ such that $f(X) \in P_1 \subset P$. Since $P_1 \subset QA[X]$, $P_1 \cap U = \emptyset$. Therefore, we have $P_1 \cap A \neq (0)$ by the assumption. Thus, $P_1 = (P_1 \cap A)A[X]$ and $P_1 \cap A \in \mathfrak{P}(A)$ by Corollary 8 of [1]. Since $P_1 \subset P$, $f(X) \in P_1 \subset (P \cap A)A[X]$. This is a contradiction. Hence, we have $P = (P \cap A)A[X]$. Since A is integrally closed, A_Q is a valuation ring by Theorem (19.15) of [3]. Therefore, A is a PVMD by Theorem 2 and Remark 3.

Given an extension of integral domains $A \subset B$ and $P \in \text{Spec}(A)$, we say the extension satisfies INC at P if distinct comparable prime ideals of B do not contract to P, [8]. If $W \subset \text{Spec}(A)$, we say that the extension satisfies INC on W if it satisfies INC at each $P \in W$, [8]. If $A \subset B$ satisfies INC on Spec(A), then as usual we say $A \subset B$ satisfies INC. Given an extension of integral domains $A \subset B$, we say that an element u in B is super-primitive over A, if u is the root of a polynomial $f(X) \in A[X]$ with $A : {}_{K}c(f) = A$. The following proposition is a characterization of super-primitive elements.

PROPOSITION 6 (cf. [8], Corollary 2.2). Let $A \subset B$ be an extension of integral domains and assume that $u \in B$ is algebraic over A. Then u is super-primitive over A if and only if $A \subset A[u]$ satisfies INC on $\mathfrak{G}(A)$.

PROOF. Let $I = \text{Ker}(A[X] \rightarrow A[u])$, where the homomorphism is the evaluation map.

First, assume that u is super-primitive over A. Then there exists $f(X) \in I$

such that $A: {}_{K}c(f) = A$. Hence, $c(I) \not\subset P$ for each $P \in \mathfrak{G}(A)$ by Theorem 8 of Chapter 5 of [6]. Then $A \subset A[u]$ satisfies INC on $\mathfrak{G}(A)$ by Proposition 2.0 of [8].

Conversely, assume that u is not super-primitive over A. Then we have $\operatorname{Gr}(c(I))=1$ by Theorem 11 of Chapter 5 of [6]. Since $c(I)\neq A$, there exists $P\in \mathfrak{G}(A)$ with $c(I)\subset P$ by Theorem 16 of Chapter 5 of [6]. Therefore, $A\subset A[u]$ does not satisfy INC at P by Proposition 2.0 of [8]. That is, $A\subset A[u]$ does not satisfy INC on $\mathfrak{G}(A)$.

Therefore, we have easily the following proposition by Proposition 2.5 of [8] and Proposition 6.

PROPOSITION 7 (cf. [8], Corollary 2.2 & Proposition 2.5). Let Ω be the algebraic closure of K and assume that A is integrally closed. Then the following statements are equivalent.

- (1) A is a PVMD.
- (2) $A \subset A[u]$ satisfies INC on $\mathfrak{G}(A)$ for each $u \in K$.
- (3) $A \subset A[u]$ satisfies INC on $\mathfrak{G}(A)$ for each $u \in \Omega$.
- (4) For each $u \in K$, u is super-primitive over A.
- (5) For each $u \in \Omega$, u is super-primitive over A.

Here, we shall give two conditions which imply that a P-domain is a PVMD.

PROPOSITION 8. Let $\mathfrak{P}(A)$ be compact as a subspace of Spec(A) in the Zariski topology. Then A is a PVMD if and only if A is a P-domain.

PROOF. By Lemma 3.1 of [8] and Theorem E of [9], $\mathfrak{P}(A)$ is compact if and only if given any ideal I of A with Gr (I)=1, there exists $P \in \mathfrak{P}(A)$ such that $I \subset P$. Therefore, this proposition follows easily from Theorem 2 and Remark 3.

A partially ordered set is said to form a *tree* in case no two unrelated elements have a common upper bound.

PROPOSITION 9. A is a PVMD if and only if it is a P-domain and $\mathfrak{G}(A)$ forms a tree.

PROOF. By virtue of Theorem 2 and Remark 3, it is sufficient to prove the 'if' part. Assume that A is not a PVMD. Then, by Theorem 2 and Remark 3, there exists $P \in \mathfrak{G}(A)$ and exist two elements a, b in A such that $a: b \subset P$ and $b: a \subset P$. Moreover, there exist $Q_1, Q_2 \in \mathfrak{P}(A)$ such that $a: b \subset Q_1 \subset P$ and $b: a \subset Q_2 \subset P$. Since $Q_1, Q_2 \in \mathfrak{P}(A)$, both A_{Q_1} and A_{Q_2} are valuation rings. Therefore, $b: a \not\subset Q_1$ and $a: b \not\subset Q_2$. That is, $Q_1 \not\subset Q_2$ and $Q_2 \not\subset Q_1$. This is a contradiction.

Recall that an integral domain A is said to be an FC domain, in case $Aa \cap Ab$

is finitely generated for each $a, b \in A$.

LEMMA 10. Let A be integrally closed and take a, $b \in A - \{0\}$. Assume that a: b is finitely generated and put I = (a: b) + (b: a). Then we have A: $_{K}I = A$.

PROOF. Since a: b is finitely generated, there exist $a_1, a_2, ..., a_n \in A$ such that $a: b = (a_1, a_2, ..., a_n)$. Moreover, for $1 \le i \le n$, there exists $b_i \in A$ such that $a_i b = ab_i$. Then we have $b: a = (b_1, b_2, ..., b_n)$. Assume that $x \in A: {}_{\kappa}I$. Put $xa_i = \alpha_i$ and $xb_i = \beta_i$ for $1 \le i \le n$. Then $\alpha_i \in A$ and $\beta_i \in A$. Moreover, we have $\alpha_i \in a: b$ for $1 \le i \le n$. Therefore, for $1 \le i \le n$, there exist $\lambda_{ij} \in A$ $(1 \le j \le n)$ such that $\alpha_i = \sum_{j=1}^n \lambda_{ij}a_j$. Since $xa_i = \sum_{j=1}^n \lambda_{ij}a_j$ for $1 \le i \le n$, x integral over A. On the other hand, A is integrally closed. Thus, $x \in A$. This implies that $A: {}_{\kappa}I = A$.

The following proposition contains the result of Theorem 2 of [11].

PROPOSITION 11. Let A be an FC domain. Then the following statements are equivalent.

- (1) A is integrally closed.
- (2) $A:_{\kappa}((a:b)+(b:a)) = A \text{ for each } a, b \in A \{0\}.$
- (3) A is a PVMD.

PROOF. The implication $(3)\Rightarrow(1)$ is obvious. Moreover, the implication $(1)\Rightarrow(2)$ follows easily from Lemma 10.

(2) \Rightarrow (3). Let $P \in \mathfrak{G}(A)$ and assume that A_P is not a valuation ring. Then there exists $u \in K$ such that $u, u^{-1} \notin A_P$. Put $u = a/b \in A - \{0\}$. Since $u, u^{-1} \notin A_P$, we have $a: b \subset P$ and $b: a \subset P$. Moreover, $A: {}_{K}((a:b)+(b:a))=A$ by the assumption. On the other hand, since A is an FC domain, (a:b)+(b:a) is finitely generated. Therefore, we have $\operatorname{Gr}(P) \ge \operatorname{Gr}((a:b)+(b:a)) \ge 2$. This is a contradiction. Thus, A_P is a valuation ring for each $P \in \mathfrak{G}(A)$. That is, A is a PVMD by Theorem 2 and Remark 3.

Let $A \subset B$ be an extension of integral domains. We say that $A \subset B$ is G_2 stable if for each finitely generated ideal I of A with Gr $(I) \ge 2$, Gr $(IB) \ge 2$, [10]. It is obvious that if $A \subset B$ is flat, then $A \subset B$ is G_2 -stable. But the converse is false as is seen in $\mathbb{Z}[\sqrt{5}] \subset \mathbb{Z}[1+\sqrt{5}/2]$, where Z is the ring of integers. As for overrings, we have the following

PROPOSITION 12 (cf. [5], Proposition 5.1). Let A be a PVMD and B an overring of A. Then $A \subset B$ is G_2 -stable if and only if $B = \bigcap \{A_P | P \in Y\}$ for some $Y \subset \mathfrak{G}(A)$. Moreover, in this case, B is also a PVMD.

PROOF. Assume that $A \subset B$ is G_2 -stable and let $Q \in \mathfrak{G}(B)$. Put $P = Q \cap A$. Since $A \subset B$ is G_2 -stable, we have Gr(P) = 1. Therefore, A_P is a valuation ring by Theorem 2 and Remark 3. Since $A_P \subset B_Q \subset K$, B_Q is a valuation ring. Hence, *B* is a PVMD by Theorem 2 and Remark 3. Moreover, we have $B_Q = A_P$ by Theorem 65 of [4]. Put $Y = \{Q \cap A \mid Q \in \mathfrak{G}(B)\}$. Then we have $Y \subset \mathfrak{G}(A)$ and $B = \cap \{B_Q \mid Q \in \mathfrak{G}(B)\} = \cap \{A_P \mid P \in Y\}$.

Conversely, assume that $B = \cap \{A_P | P \in Y\}$ for some $Y \subset \mathfrak{G}(A)$. Let w be the *-operation induced by the valuation ring A_P for $P \in Y$. Suppose that I is a finitely generated ideal of A with $\operatorname{Gr}(I) \geq 2$. Then we have $(IB)_w = \cap \{IA_P | P \in Y\} = \cap \{A_P | P \in Y\} = B$. Hence, we have $(IB)_v = B$ by Theorem (34.1) of [3]. That is, B: $_{K}(B: _{K}IB) = B$. Therefore, B: $_{K}IB = B: _{K}(B: _{K}IB)) = B$. Then $\operatorname{Gr}(IB) \geq 2$. This implies that $A \subset B$ is G_2 -stable.

References

- J. W. Brewer and W. J. Heinzer, Associated primes of principal ideals, Duke Math. J., 41 (1974), 1-7.
- [2] J. A. Huckaba and I. J. Papick, Quotient rings of polynomial rings, Manuscripta Math., 31 (1980), 167–196.
- [3] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, INC. New York, 1972.
- [4] I. Kaplansky, Commutative Rings, University of Chicago Press, 1974.
- [5] J. L. Mott and M. Zafrullah, On Prüfer v-multiplication domains, Manuscripta Math., 35 (1981), 1–26.
- [6] D. G. Northcott, Finite Free Resolutions, Cambridge University Press, 1976.
- [7] I. J. Papick, A note on Prüfer v-multiplication domains, Bollettino U. M. I., (6) 1-A (1982), 133-136.
- [8] I. J. Papick, Super-primitive elements, Pacific J. Math., 105 (1983), 217-226.
- [9] H. T. Tang, Gauss' lemma, Proc. Amer. Math. Soc., 35 (1972), 372-376.
- [10] H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J., 13 (1983), 357-377.
- [11] M. Zafrullah, On finite conductor domains, Manuscripta Math., 24 (1978), 191-204.

Faculty of Education, Miyazaki University