A characterization of Prüfer v-multiplication domains in terms of polynomial grade

Hirohumi Uda
(Received December 25, 1984)
(Revised April 18, 1985)

Prüfer v-multiplication domains, abbreviated to PVMD's, have among their special cases a variety of notions, including Prüfer domains, Krull domains, GCD domains, etc. Many interesting characterizations of PVMD's are given by several authors (see [2], [3], [5], [7], [8], [11]). The main purpose of this paper is to give a characterization of PVMD's in terms of polynomial grade (cf. Theorem 2 and Remark 3). This characterization makes the situation of PVMD's in the class of P -domains clearer.

Moreover, we shall examine some properties of PVMD's by making use of Theorem 2 and Remark 3. First, we shall give some characterizations of PVMD's in the class of intergrally closed domains (cf. Theorem 5 and Proposition 7). In particular, Theorem 5 is a generalization of Theorem 3.4 of [5]. Next, we shall give a necessary and sufficient condition for an FC domain to be integrally closed (cf. Proposition 11). Finally, in case A is a PVMD, we shall give a characterization of G_{2}-stableness of $A \subset B$, where B is an overring of A (cf. Proposition 12).

To give our results, we include the following notions and notations.
Throughout this paper, A and K denote an integral domain and its quotient field respectively. Moreover, we denote by X an indeterminate. For a fractional ideal I of A, we put $I_{v}=A:_{K^{\prime}}\left(A:_{K} I\right)$. We say that I is a v-ideal if $I=I_{v}$, and a v-ideal I is of finite type if there is a finitely generated fractional ideal J of A such that $I=J_{v}$. An integral domain A is called a Prüfer v-multiplication domain ($P V M D$), if the set of all v-ideals of A of finite type forms a group under the v-multiplication $I \cdot J=(I J)_{v}$, [3]. Let I be an ideal of A. We denote by $\operatorname{gr}(I)$ and $\mathrm{Gr}(I)$ the classical grade of I and the polynomial grade of I respectively, [6]. The following subsets of $\operatorname{Spec}(A)$ are needed for this paper.

$$
\begin{aligned}
& \mathfrak{P}(A)=\{P \in \operatorname{Spec}(A) \mid P \text { is minimal over } a: b \text { for some } a, b \in A\} . \\
& \mathfrak{G}(A)=\{P \in \operatorname{Spec}(A) \mid \operatorname{Gr}(P) \leqq 1\} .
\end{aligned}
$$

If A_{P} is a valuation ring for each $P \in \mathfrak{P}(A), A$ is called a P-domain, [5]. It is known that a PVMD is a P-domain, ([5], Corollary 1.4). Since $A=\cap\left\{A_{P} \mid P \in\right.$ $\mathfrak{P}(A)\}$ by Theorem E of [9] and $\mathfrak{B}(A) \subset \mathfrak{G}(A)$, we have $A \doteq \cap\left\{A_{P} \mid P \in \mathfrak{G}(A)\right\}$.

Let I be an ideal of $A[X]$. We denote by $c(I)$ the ideal of A generated by
all coefficients of all polynomials in I and we call it the content of I. Let $U=$ $\left\{f(X) \in A[X] \mid A:{ }_{K} c(f)=A\right\}$. Then U is a multiplicatively closed subset of $A[X]$ and $A[X]_{U}$ is a subring of $K(X)$.

We begin with the following lemma which can be proved easily.
Lemma 1. Let $Q \in \operatorname{Spec}(A[X])$ with $Q \cap U=\varnothing$. Then we have $c(Q) A[X] \cap$ $U=\varnothing$.

Theorem 2. For A, the following statements are equivalent.
(1) $A[X]_{U}$ is a Prüfer domain.
(2) A_{P} is a valuation ring for each $P \in \mathfrak{G}(A)$.

Proof. (1) $\Rightarrow(2)$. Let $P \in \mathfrak{G}(A)$. Then we have $P A[X] \cap U=\varnothing$ by Lemma 3.1 of [10]. Then $\left(A[X]_{U}\right)_{P A[X] v}$ is a valuation ring by the assumption. Therefore, $A_{P}=\left(A[X]_{U}\right)_{P A[X] U} \cap K$ is a valuation ring.
$(2) \Rightarrow(1)$. Let $P \in \operatorname{Spec}\left(A[X]_{U}\right)$ and put $Q=P \cap A[X]$. Then we have $P=Q A[X]_{U}$ and $Q \cap U=\varnothing$. Therefore, $c(Q) A[X] \cap U=\varnothing$ by Lemma 1. Since U is a multiplicatively closed subset of $A[X]$, there exists $Q_{1} \in \operatorname{Spec}(A[X])$ with the property that $Q_{1} \cap U=\varnothing$ and $c(Q) A[X] \subset Q_{1} . \quad$ Put $P_{1}=Q_{1} \cap A$. Then $c(Q) \subset$ P_{1} and $\operatorname{Gr}\left(P_{1}\right) \leqq 1$. Therefore, $A_{P_{1}}$ is a valuation ring by the assumption. Since $Q \subset P_{1} A[X]$, we have easily that $\left(A[X]_{U}\right)_{P}$ is a valuation ring. That is, $A[X]_{U}$ is a Prüfer domain.

Remark 3 (cf. [7], Theorem \& [2], Theorem 3.6). It is known that the following statements are all equivalent to (1) of Theorem 2.
(3) $A[X]_{U}$ is a Bezout domain.
(4) A is integrally closed and each prime ideal of $A[X]_{U}$ is the extension of a prime ideal of A.
(5) A is a PVMD.

Since $\mathfrak{P}(A) \subset \mathfrak{G}(A)$, Theorem 2 and Remark 3 imply that a PVMD is a P domain. Moreover, we have the following two characterizations of PVMD's.

Corollary 4. The following statements are equivalent.
(1) A is a PVMD.
(2) $A[X]$ is a PVMD.
(3) $A[X]_{P}$ is a valuation ring for each prime ideal P of $A[X]$ with $\mathrm{gr}(P) \leqq 1$.

Proof. (2) $\Leftrightarrow(3)$. This equivalence follows easily from Proposition 3.4 of [10].
(2) $\Rightarrow(1)$. Assume that $A[X]$ is a PVMD and let $P \in \mathfrak{G}(A)$. Then $P A[X] \in$ $\mathfrak{G}(A[X])$. By Theorem 2 and Remark $3, A[X]_{P A[X]}$ is a valuation ring. Therefore, $A_{P}=A[X]_{P A[X]} \cap K$ is a valuation ring. This implies that A is a PVMD.
$(1) \Rightarrow(2)$. Assume that A is a PVMD and let $Q \in \mathfrak{G}(A[X])$. If $Q \cap A=(0)$ and $Q \neq(0)$, then we have $Q K[X]=f(X) K[X]$ for some irreducible polynomial $f(X) \in K[X]$. Therefore, $A[X]_{Q}=K[X]_{f(X) K[X]}$ is a valuation ring.

Next, assume that $Q \cap A=P \neq(0)$. Then we have $\operatorname{Gr}(P)=1$. Moreover, since $Q \cap A \neq(0), Q \cap U=\varnothing$ by Lemma 3.1 of [10]. Therefore, $A[X]_{Q}=$ $\left(A[X]_{U}\right)_{Q A[X]_{U}}$ is a valuation ring by Theorem 2 and Remark 3. That is, $A[X]$ is a PVMD.

Theorem 5 (cf. [5], Theorem 3.4). Let A be integrally closed. Then the following statements are equivalent.
(1) A is a PVMD.
(2) Let $P \in \mathfrak{P}(A[X])$ and $P \neq(0)$. If $P \cap U=\varnothing$, then $P \cap A \neq(0)$.

Proof. (1) $\Rightarrow(2)$. Assume that A is a PVMD. Let $P \in \mathfrak{P}(A[X])$ and $P \neq(0)$. Suppose that $P \cap U=\varnothing$. Then $P A[X]_{U}$ is a prime ideal of $A[X]_{U}$. Therefore, $P A[X]_{U}$ is the extension of a prime ideal of A by Remark 3. That is, we have $P \cap A \neq(0)$.
$(2) \Rightarrow(1)$. Let $Q \in(\mathfrak{G}(A)$ and $Q \neq(0)$. Then we have $Q A[X] \cap U=\varnothing$ by Lemma 3.1 of [10]. Let P be a prime ideal of $A[X]$ contained in $Q A[X]$. Suppose that $(P \cap A) A[X] \neq P$ and take $f(X) \in P-(P \cap A) A[X]$. Then there exists $P_{1} \in \mathfrak{P}(A[X])$ such that $f(X) \in P_{1} \subset P$. Since $P_{1} \subset Q A[X], P_{1} \cap U=\emptyset$. Therefore, we have $P_{1} \cap A \neq(0)$ by the assumption. Thus, $P_{1}=\left(P_{1} \cap A\right) A[X]$ and $P_{1} \cap A \in \mathfrak{P}(A)$ by Corollary 8 of [1]. Since $P_{1} \subset P, f(X) \in P_{1} \subset(P \cap A) A[X]$. This is a contradiction. Hence, we have $P=(P \cap A) A[X]$. Since A is integrally closed, A_{Q} is a valuation ring by Theorem (19.15) of [3]. Therefore, A is a PVMD by Theorem 2 and Remark 3.

Given an extension of integral domains $A \subset B$ and $P \in \operatorname{Spec}(A)$, we say the extension satisfies INC at P if distinct comparable prime ideals of B do not contract to P, [8]. If $W \subset \operatorname{Spec}(A)$, we say that the extension satisfies INC on W if it satisfies INC at each $P \in W$, [8]. If $A \subset B$ satisfies INC on $\operatorname{Spec}(A)$, then as usual we say $A \subset B$ satisfies INC. Given an extension of integral domains $A \subset B$, we say that an element u in B is super-primitive over A, if u is the root of a polynomial $f(X) \in A[X]$ with $A:{ }_{K} c(f)=A$. The following proposition is a characterization of super-primitive elements.

Proposition 6 (cf. [8], Corollary 2.2). Let $A \subset B$ be an extension of integral domains and assume that $u \in B$ is algebraic over A. Then u is super-primitive over A if and only if $A \subset A[u]$ satisfies INC on $\mathfrak{G (}(A)$.

Proof. Let $I=\operatorname{Ker}(A[X] \rightarrow A[u])$, where the homomorphism is the evaluation map.

First, assume that u is super-primitive over A. Then there exists $f(X) \in I$
such that $A:{ }_{K} c(f)=A$. Hence, $c(I) \not \subset P$ for each $P \in \mathfrak{G}(A)$ by Theorem 8 of Chapter 5 of [6]. Then $A \subset A[u]$ satisfies INC on $\mathfrak{G}(A)$ by Proposition 2.0 of [8].

Conversely, assume that u is not super-primitive over A. Then we have $\operatorname{Gr}(c(I))=1$ by Theorem 11 of Chapter 5 of [6]. Since $c(I) \neq A$, there exists $P \in \mathfrak{G}(A)$ with $c(I) \subset P$ by Theorem 16 of Chapter 5 of [6]. Therefore, $A \subset A[u]$ does not satisfy INC at P by Proposition 2.0 of [8]. That is, $A \subset A[u]$ does not satisfy INC on $\mathfrak{G}(A)$.

Therefore, we have easily the following proposition by Proposition 2.5 of [8] and Proposition 6.

Proposition 7 (cf. [8], Corollary 2.2 \& Proposition 2.5). Let Ω be the algebraic closure of K and assume that A is integrally closed. Then the following statements are equivalent.
(1) A is a PVMD.
(2) $A \subset A[u]$ satisfies INC on $\mathfrak{G}(A)$ for each $u \in K$.
(3) $A \subset A[u]$ satisfies $I N C$ on $\mathfrak{(b}(A)$ for each $u \in \Omega$.
(4) For each $u \in K$, u is super-primitive over A.
(5) For each $u \in \Omega, u$ is super-primitive over A.

Here, we shall give two conditions which imply that a P-domain is a PVMD.
Proposition 8. Let $\mathfrak{P}(A)$ be compact as a subspace of $\operatorname{Spec}(A)$ in the Zariski topology. Then A is a PVMD if and only if A is a P-domain.

Proof. By Lemma 3.1 of [8] and Theorem E of [9], $\mathfrak{P}(A)$ is compact if and only if given any ideal I of A with $\operatorname{Gr}(I)=1$, there exists $P \in \mathfrak{P}(A)$ such that $I \subset P$. Therefore, this proposition follows easily from Theorem 2 and Remark 3.

A partially ordered set is said to form a tree in case no two unrelated elements have a common upper bound.

Proposition 9. A is a PVMD if and only if it is a P-domain and $\mathfrak{G}(A)$ forms a tree.

Proof. By virtue of Theorem 2 and Remark 3, it is sufficient to prove the 'if' part. Assume that A is not a PVMD. Then, by Theorem 2 and Remark 3, there exists $P \in \mathfrak{G}(A)$ and exist two elements a, b in A such that $a: b \subset P$ and $b: a \subset$ P. Moreover, there exist $Q_{1}, Q_{2} \in \mathfrak{P}(A)$ such that $a: b \subset Q_{1} \subset P$ and $b: a \subset Q_{2} \subset P$. Since $Q_{1}, Q_{2} \in \mathfrak{P}(A)$, both $A_{Q_{1}}$ and $A_{Q_{2}}$ are valuation rings. Therefore, $b: a \not \subset Q_{1}$ and $a: b \not \subset Q_{2}$. That is, $Q_{1} \not \subset Q_{2}$ and $Q_{2} \not \subset Q_{1}$. This is a contradiction.

Recall that an integral domain A is said to be an $F C$ domain, in case $A a \cap A b$
is finitely generated for each $a, b \in A$.
Lemma 10. Let A be integrally closed and take $a, b \in A-\{0\}$. Assume that $a: b$ is finitely generated and put $I=(a: b)+(b: a)$. Then we have $A:_{K} I=A$.

Proof. Since $a: b$ is finitely generated, there exist $a_{1}, a_{2}, \ldots, a_{n} \in A$ such that $a: b=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$. Moreover, for $1 \leqq i \leqq n$, there exists $b_{i} \in A$ such that $a_{i} b=a b_{i}$. Then we have $b: a=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$. Assume that $x \in A:{ }_{K} I$. Put $x a_{i}=\alpha_{i}$ and $x b_{i}=\beta_{i}$ for $1 \leqq i \leqq n$. Then $\alpha_{i} \in A$ and $\beta_{i} \in A$. Moreover, we have $\alpha_{i} \in a: b$ for $1 \leqq i \leqq n$. Therefore, for $1 \leqq i \leqq n$, there exist $\lambda_{i j} \in A(1 \leqq j \leqq n)$ such that $\alpha_{i}=\sum_{j=1}^{n} \lambda_{i j} a_{j}$. Since $x a_{i}=\sum_{j=1}^{n} \lambda_{i j} a_{j}$ for $1 \leqq i \leqq n, x$ integral over A. On the other hand, A is integrally closed. Thus, $x \in A$. This implies that A : ${ }_{K} I=A$.

The following proposition contains the result of Theorem 2 of [11].
Proposition 11. Let A be an FC domain. Then the following statements are equivalent.
(1) A is integrally closed.
(2) $A:{ }_{K}((a: b)+(b: a))=A$ for each $a, b \in A-\{0\}$.
(3) A is a PVMD.

Proof. The implication (3) $\Rightarrow(1)$ is obvious. Moreover, the implication $(1) \Rightarrow(2)$ follows easily from Lemma 10.
(2) \Rightarrow (3). Let $P \in \mathfrak{G}(A)$ and assume that A_{P} is not a valuation ring. Then there exists $u \in K$ such that $u, u^{-1} \notin A_{P}$. Put $u=a / b \in A-\{0\}$. Since $u, u^{-1} \notin$ A_{P}, we have $a: b \subset P$ and $b: a \subset P$. Moreover, $A:{ }_{\kappa}((a: b)+(b: a))=A$ by the assumption. On the other hand, since A is an FC domain, $(a: b)+(b: a)$ is finitely generated. Therefore, we have $\operatorname{Gr}(P) \geqq \operatorname{Gr}((a: b)+(b: a)) \geqq 2$. This is a contradiction. Thus, A_{P} is a valuation ring for each $P \in \mathscr{G}(A)$. That is, A is a PVMD by Theorem 2 and Remark 3.

Let $A \subset B$ be an extension of integral domains. We say that $A \subset B$ is G_{2} stable if for each finitely generated ideal I of A with $\operatorname{Gr}(I) \geqq 2, \operatorname{Gr}(I B) \geqq 2$, [10]. It is obvious that if $A \subset B$ is flat, then $A \subset B$ is G_{2}-stable. But the converse is false as is seen in $\boldsymbol{Z}[\sqrt{5}] \subset \boldsymbol{Z}[1+\sqrt{5} / 2]$, where \boldsymbol{Z} is the ring of integers. As for overrings, we have the following

Proposition 12 (cf. [5], Proposition 5.1). Let A be a PVMD and B an overring of A. Then $A \subset B$ is G_{2}-stable if and only if $B=\cap\left\{A_{P} \mid P \in Y\right\}$ for some $Y \subset(\mathscr{G}(A)$. Moreover, in this case, B is also a PVMD.

Proof. Assume that $A \subset B$ is G_{2}-stable and let $Q \in \mathscr{G}(B)$. Put $P=Q \cap A$. Since $A \subset B$ is G_{2}-stable, we have $\operatorname{Gr}(P)=1$. Therefore, A_{P} is a valuation ring
by Theorem 2 and Remark 3. Since $A_{P} \subset B_{Q} \subset K, B_{Q}$ is a valuation ring. Hence, B is a PVMD by Theorem 2 and Remark 3. Moreover, we have $B_{Q}=A_{P}$ by Theorem 65 of [4]. Put $Y=\{Q \cap A \mid Q \in \mathfrak{G}(B)\}$. Then we have $Y \subset(\mathfrak{G}(A)$ and $B=\cap\left\{B_{Q} \mid Q \in \mathbb{G}(B)\right\}=\cap\left\{A_{P} \mid P \in Y\right\}$.

Conversely, assume that $B=\cap\left\{A_{P} \mid P \in Y\right\}$ for some $Y \subset(\mathfrak{G}(A)$. Let w be the $*$-operation induced by the valuation ring A_{P} for $P \in Y$. Suppose that I is a finitely generated ideal of A with $\operatorname{Gr}(I) \geqq 2$. Then we have $(I B)_{w}=\cap\left\{I A_{P} \mid P \in\right.$ $Y\}=\cap\left\{A_{P} \mid P \in Y\right\}=B$. Hence, we have $(I B)_{v}=B$ by Theorem (34.1) of [3]. That is, $B:_{K}\left(B:_{K} I B\right)=B$. Therefore, $B:_{K} I B=B:_{K}\left(B:_{K}\left(B:_{K} I B\right)\right)=B$. Then $\mathrm{Gr}(I B) \geqq 2$. This implies that $A \subset B$ is G_{2}-stable.

References

[1] J. W. Brewer and W. J. Heinzer, Associated primes of principal ideals, Duke Math. J., 41 (1974), 1-7.
[2] J. A. Huckaba and I. J. Papick, Quotient rings of polynomial rings, Manuscripta Math., 31 (1980), 167-196.
[3] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, INC. New York, 1972.
[4] I. Kaplansky, Commutative Rings, University of Chicago Press, 1974.
[5] J. L. Mott and M. Zafrullah, On Prüfer v-multiplication domains, Manuscripta Math., 35 (1981), 1-26.
[6] D. G. Northcott, Finite Free Resolutions, Cambridge University Press, 1976.
[7] I. J. Papick, A note on Prüfer v-multiplication domains, Bollettino U. M. I., (6) 1-A (1982), 133-136.
[8] I. J. Papick, Super-primitive elements, Pacific J. Math., 105 (1983), 217-226.
[9] H. T. Tang, Gauss' lemma, Proc. Amer. Math. Soc., 35 (1972), 372-376.
[10] H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J., 13 (1983), 357-377.
[11] M. Zafrullah, On finite conductor domains, Manuscripta Math., 24 (1978), 191-204.

Faculty of Education, Miyazaki University

