Semilinear boundary value problems on a self-adjoint harmonic space with non-local boundary conditions

Dedicated to Professor Yukio Kusunoki on his sixtieth birthday

Fumi-Yuki MAEDA (Received April 15, 1985)

Introduction. In the previous paper [2], the author studied semilinear boundary value problems with respect to an ideal boundary on a self-adjoint harmonic space. When applied to the harmonic structure defined by a self-adjoint elliptic operator L on a bounded domain Ω in \mathbb{R}^n with smooth boundary $\partial\Omega$, our problem in [2] may be written as

(0.1)
$$\begin{cases} Lu(x) = F(x, u(x)) & \text{on } \Omega, \\ u(\xi) = \tau(\xi) & \text{on } \partial\Omega \setminus \Lambda, \\ \frac{\partial u}{\partial n}(\xi) = \beta(\xi, u(\xi)) & \text{on } \Lambda, \end{cases}$$

where F is a function on $\Omega \times \mathbf{R}$, Λ is a part of $\partial \Omega$, τ is a given function on $\partial \Omega$ and β is a function on $\Lambda \times \mathbf{R}$. The main existence theorem was proved by the so-called monotone-iteration method.

Recently, S. Zheng [3] applied the same method to the following boundary value problem with non-local boundary condition:

(0.2)
$$\begin{cases} Lu(x) = F(x, u(x)) & \text{on } \Omega, \\ u(\xi) = \text{const. (unknown)} & \text{on } \partial\Omega, \\ \int_{\partial\Omega} \frac{\partial u}{\partial n} d\sigma = 0. \end{cases}$$

The purpose of the present paper is to formulate a boundary value problem with respect to an ideal boundary on a self-adjoint harmonic space in such a way that both problems of type (0.1) and of type (0.2) are included as special cases and that the monotone-iteration method can be applied to obtain an existence theorem. In order to describe boundary conditions, we introduce the notion of "boundary behavior spaces". A choice of boundary behavior space gives a problem of the following type, which is a generalization of (0.2):

(0.3)
$$\begin{cases} Lu(x) = F(x, u(x)) & \text{on } \Omega, \\ u(\xi) = \tau(\xi) & \text{on } \Lambda_0, \\ u(\xi) = a_j \text{ (unknown constant) } \text{ on } \Lambda_j, \quad j \in J, \\ \int_{\Lambda_j} \frac{\partial u}{\partial n} \, d\sigma = \eta_j(a_j), \quad j \in J, \end{cases}$$

where $\{\Lambda_j\}_{j\in J}$ is a countable (finite or infinite) family of mutually disjoint components of $\partial \Omega$, $\Lambda_0 = \partial \Omega \setminus \bigcup_{j\in J} \Lambda_j$ and η_j , $j \in J$, are real functions on **R**.

§1. Preliminaries

As in [2], let (X, \mathscr{H}) be a self-adjoint *P*-harmonic space such that *X* is connected, has a countable base and $1 \in \mathscr{H}(X)$. Let G(x, y) be a symmetric Green function on *X* and $\sigma: \mathscr{R} \to \mathscr{M}$ be the canonical measure representation associated with *G* (see [1]). The image sheaf of \mathscr{R} by σ is denoted by \mathscr{M}_{C} .

We denote by Gv the G-potential of $v \in \mathcal{M}_{c}(X)$ when it exists. Let

$$\mathcal{M}_{BF} = \{ v \in \mathcal{M}_{C}(X) \mid G \mid v | \text{ is bounded, } |v|(X) < \infty \},$$
$$\mathcal{M}_{EF} = \{ v \in \mathcal{M}_{C}(X) \mid \int_{X} G \mid v \mid d \mid v \mid < \infty, \ |v|(X) < \infty \},$$
$$\mathcal{Q}_{ZF} = \{ Gv \mid v \in \mathcal{M}_{ZF} \}, \quad Z = B \text{ or } E.$$

 $(\mathscr{M}_{ZF} \text{ and } \mathscr{Q}_{ZF} \text{ are denoted by } \mathscr{M}_{ZFC} \text{ and } \mathscr{Q}_{ZFC} \text{ in [2].})$ Note that $\mathscr{M}_{BF} \subset \mathscr{M}_{EF}$ and $\mathscr{Q}_{BF} \subset \mathscr{Q}_{EF}$. If f = h + Gv with $h \in \mathscr{H}(X)$ and $v \in \mathscr{M}_{EF}$, then $\sigma(f) = v$.

For $f, g \in \mathscr{R}(X)$, the gradient measures $\delta_{[f,g]}$ and δ_f are defined in [1]. We write D[f] for $\delta_f(X)$ and D[f, g] for $\delta_{[f,g]}(X)$ when $\delta_f(X) < \infty$ and $\delta_g(X) < \infty$. Note that $D[f] < \infty$ for any $f \in \mathscr{Q}_{EF}$ (see [1]).

We consider a resolutive compactification X^* of X. Let $\omega = \omega_x$ be the harmonic measure on $\partial^* X = X^* \setminus X$ at $x \in X$. For $\varphi \in L^1(\omega)$, let $H_{\varphi}(x) = \int_{\partial^* X} \varphi d\omega_x$ $(x \in X)$. Then $H_{\varphi} \in \mathscr{H}(X)$. As in [2], we consider the linear spaces

$$\Phi_{D} = \{ \varphi \in L^{1}(\omega) \, | \, D[H_{\varphi}] < \infty \}, \quad \Phi_{BD} = \Phi_{D} \cap L^{\infty}(\omega),$$

which are closed under max. and min. operations. Obviously, constant functions belong to these spaces. We denote by \mathcal{N} the space of all signed measures on $\partial^* X$ which are absolutely continuous with respect to ω .

Given a space of functions or measures, the subset consisting of non-negative elements in the space will be indicated by the upper index +; e.g., Φ_{BD}^+ , \mathcal{M}_{BF}^+ , etc.

§2. Boundary behavior spaces

A subset Ψ of Φ_D will be called a *boundary behavior space* if it satisfies the following four conditions:

- (Ψ .1) Ψ is a linear subspace of Φ_D ;
- (Ψ .2) Ψ is closed under max. and min. operations;
- (Ψ .3) for each $\psi \in \Psi^+$, there is a sequence $\{\psi_n\}$ in $\Psi_B^+ \equiv \Psi^+ \cap L^{\infty}(\omega)$ such that $\psi_n \leq \psi$ for each $n, \psi_n \rightarrow \psi$ ω -a.e. on $\partial^* X$ and $D[H_{\psi_n} H_{\psi_n}] \rightarrow 0 \ (n \rightarrow \infty);$
- (Ψ .4) if $\psi_n \in \Psi$, $n=1, 2, ..., \psi_n \rightarrow \psi \in \Phi_D$ ω -a.e. on $\partial^* X$ and $D[H_{\psi_n} H_{\psi}] \rightarrow 0$ $(n \rightarrow \infty)$, then $\psi \in \Psi$.

Note that $(\Psi.3)$ follows from $(\Psi.2)$ if $1 \in \Psi$; we may take $\psi_n = \min(\psi, n)$ in this case.

EXAMPLE 2.1. Let Λ be an ω -measurable subset of $\partial^* X$ and write

$$\Phi_{D}(\Lambda) = \{ \varphi \in \Phi_{D} \mid \varphi = 0 \text{ ω-a.e. on } \partial^{*}X \setminus \Lambda \}.$$

Then $\Phi_D(\Lambda)$ is a boundary behavior space. In particular, Φ_D (the case $\omega(\partial^*X \setminus \Lambda) = 0$) and $\{0\}$ (the case $\omega(\Lambda) = 0$) are boundary behavior spaces. More generally, let $\psi_0 \in \Phi_{BD}$ and $\psi_0 \ge 0$ ω -a.e. on $\partial^*X \setminus \Lambda$. Then

(2.1)
$$\Psi = \Phi_D(\Lambda) + \mathbf{R}\psi_0 \equiv \{\varphi + c\psi_0 \mid \varphi \in \Phi_D(\Lambda), c \in \mathbf{R}\}$$

is a boundary behavior space. In fact, $(\Psi.1)$ is obvious and $(\Psi.4)$ is easily verified. To show $(\Psi.2)$ let $\psi = \varphi + c\psi_0$ with $\varphi \in \Phi_D(\Lambda)$ and $c \in \mathbb{R}$. If $c \leq 0$ then $\psi^+ \in \Phi_D(\Lambda) \subset \Psi$ and if c > 0 then $\psi^+ = \max(\varphi, -c\psi_0) + c\psi_0$ and $\max(\varphi, -c\psi_0) \in \Phi_D(\Lambda)$. Thus $(\Psi.2)$ holds. If $\psi = \varphi + c\psi_0 \geq 0$, then for $n > |c| ||\psi_0^-||_{\infty}$, $\psi_n = \min(\varphi, n) + c\psi_0 \in \Psi_B^+$ and $\{\psi_n\}$ has the properties stated in $(\Psi.3)$.

EXAMPLE 2.2. Let $\{\Lambda_j\}_{j\in J}$ be a finite or countably infinite family of mutually disjoint ω -measurable subsets of $\partial^* X$ such that $\omega(\Lambda_j) > 0$ and the characteristic function χ_j of Λ_j belongs to Φ_D for every $j \in J$. If J is a finite set, then let

$$\Phi_D^c(\{\Lambda_j\}_{j\in J}) = \{\sum_{j\in J} a_j \chi_j \mid a_j \in \mathbf{R}, j \in J\}.$$

If J is an infinite set, then we define

$$\Phi_D^c(\{\Lambda_j\}_{j\in J}) = \operatorname{Cl}\left\{\sum_{j\in J'} a_j\chi_j \mid a_j \in \mathbf{R}, j \in J', J': \text{finite} \subset J\right\},\$$

where Cl means the closure with respect to the convergence given in $(\Psi.4)$. Any element of $\Phi_D^{\epsilon}(\{\Lambda_j\}_{j\in J})$ is of the form $\sum_{j\in J} a_j\chi_j$, $a_j \in \mathbb{R}$. It is easy to see that $\Phi_D^{\epsilon}(\{\Lambda_j\}_{j\in J})$ is a boundary behavior space. (To verify $(\Psi.3)$, we may use [2; Lemma 2.3] and [1; Lemma 7.5] and show that $\psi \in \Phi_D^{\epsilon}(\{\Lambda_j\}_{j\in J})^+$ implies $\min(\psi, n) \in \Phi_D^{\epsilon}(\{\Lambda_j\}_{j\in J})^+$.)

Let $\Lambda' = \bigcup_{j \in J} \Lambda_j$ and $\Lambda_0 = \partial^* X \setminus \Lambda'$. For $\psi_0 = \varphi_0 + a_0$ with $\varphi_0 \in \Phi_{BD}(\Lambda_0)$ and $a_0 \in \mathbf{R}$ such that $\psi_0 \ge 0$ on $\partial^* X$,

(2.2)
$$\Psi = \Phi_D^c(\{\Lambda_i\}_{i \in J}) + R\psi_0$$

is a boundary behavior space. Note that in case $\chi_{A'}$ (the characteristic function of A') belongs to Φ_D (in particular, in case J is finite), we may write $\psi_0 = \varphi_0 + a_0 \chi_{A'}$.

Also, for an ω -measurable set $\Lambda \subset \Lambda_0$, $\Phi_D^c(\{\Lambda_j\}_{j \in J}) + \Phi_D(\Lambda)$ is a boundary behavior space.

§3. Problem setting

Given a subspace Σ of Φ_D , let

$$\mathscr{R}_{Z}(\Sigma) = \{H_{\varphi} + g \,|\, \varphi \in \Sigma, \, g \in \mathscr{Q}_{ZF}\}, \quad Z = E \text{ or } B.$$

We consider a mapping $F: \mathscr{R}_{Z}(\Sigma) \rightarrow \mathscr{M}_{ZF}$ and the equation

(3.1)
$$\sigma(u) + F(u) = 0 \quad \text{on} \quad X.$$

Given a mapping $\beta: \Sigma \to \mathcal{N}$, a function $\tau \in \Phi_D$ and a boundary behavior space Ψ , we consider the following boundary condition for $u = H_{\varphi} + g \in \mathscr{R}_{Z}(\Sigma)$:

(B)
$$\begin{cases} (B-1) \quad \varphi - \tau \in \Psi \\ \\ (B-2) \quad D[u, H_{\psi}] - \int_{X} H_{\psi} \, d\sigma(u) + \int_{\partial^* X} \psi d\beta(\varphi) = 0 \quad \text{for all } \psi \in \Psi_B, \end{cases}$$

where $\Psi_B = \Psi \cap \Phi_{BD}$.

The problem to find $u = H_{\varphi} + g \in \mathscr{R}_{\mathbb{Z}}(\Sigma)$ satisfying (3.1) and (B) will be denoted by $P_{\mathbb{Z}}(\Sigma, F, \beta, \tau, \Psi)$.

EXAMPLE 3.1. The problem discussed in [2] is $P_B(\Phi_{BD}, F, \beta, \tau, \Phi_D(\Lambda))$ with $\tau \in \Phi_{BD}$. More generally, if Ψ is given by (2.1), then condition (B) may be written as

(3.2)
$$\begin{cases} \varphi = \tau + c\psi_0 \quad \omega \text{-a.e. on } \partial^* X \setminus \Lambda \quad \text{for some } c \in \mathbf{R}, \\ a \text{ normal derivative of } u = \beta(\varphi) \quad \text{on } \Lambda \text{ (cf. [2])}, \\ D[u, H_{\psi_0}] - \int_X H_{\psi_0} d\sigma(u) + \int_{\partial^* X} \psi_0 d\beta(\varphi) = 0. \end{cases}$$

If $\psi_0 = \chi_{A'}$ for some ω -measurable subset A' of $\partial^* X$ such that $\omega(A' \setminus A) > 0$, then the last condition in (3.2) may be written as

$$\operatorname{Flux}_{A'} u = \int_{A'} d\beta(\varphi),$$

104

where

$$\operatorname{Flux}_{A'} u = -D[u, H_{\chi_{A'}}] + \int_{\chi} H_{\chi_{A'}} d\sigma(u) d\sigma(u)$$

In particular, if $\omega(\Lambda) = 0$ and $\psi_0 = 1$, then (3.2) is reduced to

$$\varphi = \tau + \text{const. (unknown)} \quad \omega \text{-a.e. on } \partial^* X,$$

Flux _{$\partial^* X$} $u = \int_{\partial^* X} d\beta(\varphi).$

EXAMPLE 3.2. Let $\{\Lambda_j\}_{j\in J}$ be as in Example 2.2. Let $\{\eta_j\}_{j\in J}$ be a family of real functions on **R** such that

(3.3)
$$\sum_{j\in J} \sup_{|t|\leq M} |\eta_j(t)| < +\infty \quad \text{for any} \quad M>0.$$

Let $\Sigma = \Phi_{BD}(\Lambda_0) + \Phi_D^c(\{\Lambda_j\}_{j \in J}) \cap \Phi_{BD} + R$, and for $\varphi = \varphi^{(0)} + \sum_{j \in J} a_j \chi_j + a$ with $\varphi^{(0)} \in \Phi_{BD}(\Lambda_0)$, $\sum_{j \in J} a_j \chi_j \in \Phi_D^c(\{\Lambda_j\}_{j \in J}) \cap \Phi_{BD}$ and $a \in R$ let

(3.4)
$$\beta(\varphi) = \sum_{j \in J} \frac{\eta_j(a_j + a)}{\omega_{x_0}(\Lambda_j)} \chi_j \omega_{x_0} \quad (x_0 \in X: \text{ fixed}).$$

By (3.3), β maps Σ into \mathcal{N} . If Ψ is given by (2.2) with $\psi_0 = \varphi_0 + a_0 \ge 0$ $(\varphi_0 \in \Phi_{BD}(\Lambda_0), a_0 \in \mathbb{R})$, and if $\tau = \tau_0 + b$ with $\tau_0 \in \Phi_{BD}(\Lambda_0)$ and $b \in \mathbb{R}$, then condition (B) is written as

$$\begin{cases} \varphi = \tau + c(\varphi_0 + a_0) \quad \omega \text{-a.e. on } \Lambda_0 \quad \text{for some } c \in \mathbf{R} ,\\ \varphi = a'_j \text{ (const.)} \quad \omega \text{-a.e. on } \Lambda_j \quad \text{for each } j \in J,\\ \sum_{j \in J} (a'_j - b - ca_0)\chi_j \in \Phi^c_D(\{\Lambda_j\}_{j \in J}),\\ \text{Flux}_{\Lambda_j} u = \eta_j(a'_j) \quad \text{for each } j \in J,\\ D[u, H_{\varphi_0}] - \int_X (H_{\varphi_0} + a_0)d\sigma(u) + a_0 \sum_{j \in J} \eta_j(a'_j) = 0. \end{cases}$$

In particular, in case $\psi_0 = 0$, the above boundary condition is reduced to

$$\begin{cases} \varphi = \tau \quad \omega \text{-a.e. on } \Lambda_0, \\ \varphi = a'_j \text{ (const.) } \omega \text{-a.e. on } \Lambda_j, \quad j \in J, \\ \sum_{j \in J} (a'_j - b)\chi_j \in \Phi_D^c(\{\Lambda_j\}_{j \in J}), \\ \text{Flux}_{A_j} u = \eta_j(a'_j), \quad j \in J. \end{cases}$$

Thus the problem $P_Z(\Sigma, F, \beta, \tau, \Phi_D^c(\{\Lambda_j\}_{j\in J}))$ with above Σ, β and τ is a problem of type (0.3).

§4. Comparison principle

By slightly modifying the proof of [2; Theorem 2.1], we obtain the following comparison principle.

THEOREM 1. Let Σ be a subspace of Φ_D , Ψ be a boundary behavior space and suppose $F: \mathscr{R}_Z(\Sigma) \to \mathscr{M}_C(X)$ and $\beta: \Sigma \to \mathscr{N}$ satisfy the following monotonicity conditions:

- (F.M) For any open set U in X, if $f_1, f_2 \in \mathscr{R}_Z(\Sigma)$ and $f_1 \leq f_2$ on U, then $F(f_1) \leq F(f_2)$ on U;
- $\begin{array}{ll} (\beta.\mathrm{M};\,\Psi) \quad For \ any \ \psi \in \Psi_{B}^{+}, \ if \ \varphi_{1}, \ \varphi_{2} \in \Sigma \ and \ \varphi_{1} \leq \varphi_{2} \ \omega \text{-a.e.} \ on \ \{\xi \in \partial^{*}X | \psi(\xi) > 0\}, \\ then \ \Big(\psi d\beta(\varphi_{1}) \leq \Big(\psi d\beta(\varphi_{2}). \end{array} \right)$

Suppose $u = H_{\varphi} + g \in \mathscr{R}_{Z}(\Sigma)$ and $v = H_{\tau} + q \in \mathscr{R}_{Z}(\Sigma)$ satisfy

(a) $\sigma(u) + F(u) \ge \sigma(v) + F(v)$ on X,

(b)
$$(\varphi - \tau)^- \in \Psi$$
,

(c)
$$D[u, H_{\psi}] - \int_{X} H_{\psi} d\sigma(u) + \int \psi d\beta(\varphi)$$

$$\geq D[v, H_{\psi}] - \int_{X} H_{\psi} d\sigma(v) + \int \psi d\beta(\tau) \quad \text{for all } \psi \in \Psi_{B}^{+}.$$

Then,

(i) in case $1 \notin \Psi$ or $1 \notin \Sigma$, we have $u \ge v$ on X;

(ii) in case $1 \in \Psi$ and $1 \in \Sigma$, we have either $u \ge v$ on X or v = u + c with a constant c > 0; the latter occurs only when F(u+c) = F(u) and $\int \psi d\beta(\varphi) = \int \psi d\beta(\varphi+c)$ for any $\psi \in \Psi_B$.

Outline of the proof: Put $f=(u-v)^-$ and $\varphi_0=(\varphi-\tau)^-$. By [2; Lemma 2.3], $f=H_{\varphi_0}+g$ with $g\in \mathcal{Z}_E$, where

$$\mathscr{Q}_{E} = \{ Gv \mid v \in \mathscr{M}_{C}(X), \ \int_{X} G|v|d|v| < \infty \}.$$

By assumption $\varphi_0 \in \Psi^+$. Hence by $(\Psi.3)$ there is a sequence $\{\varphi_n\}$ in Ψ_B^+ such that $\varphi_n \leq \varphi_0, \ \varphi_n \rightarrow \varphi_0 \ \omega$ -a.e. on $\partial^* X$ and $D[H_{\varphi_n} - H_{\varphi_0}] \rightarrow 0 \ (n \rightarrow \infty)$. Let $f_n = H_{\varphi_n} + \max(g, -H_{\varphi_n})$. We can easily see that $g_n = \max(g, -H_{\varphi_n})$ belongs to \mathcal{Q}_E for each *n*. Obviously, $0 \leq f_n \leq f$. Then, by the same arguments as in the proof of [2; Theorem 2.1], we obtain our theorem.

REMARK 4.1. Condition (β .1) in [2] implies condition (β .M; $\Phi_D(\Lambda)$) for $\Sigma = \Phi_{BD}$.

REMARK 4.2. In case $\Psi = \Phi_D^c(\{\Lambda_j\}_{j \in J})$ or $\Psi = \Phi_D^c(\{\Lambda_j\}_{j \in J}) + \mathbf{R}$, if β is given by $\eta_j: \mathbf{R} \to \mathbf{R}, j \in J$, as in Example 3.2, then $(\beta, \mathbf{M}; \Psi)$ is equivalent to the condition that every η_j is monotone non-decreasing.

COROLLARY. Let $\lambda \in \mathscr{M}_{C}^{+}(X)$, $\alpha \in \mathscr{N}^{+}$ and Ψ be a boundary behavior space. If $u = H_{\omega} + g \in \mathscr{R}_{E}(\Phi_{D} \cap L^{1}(\alpha))$ satisfies

(a)
$$\sigma(u) + u\lambda \geq 0$$
 on X,

(b) $\varphi^- \in \Psi$,

(c)
$$D[u, H_{\psi}] - \int_{X} H_{\psi} d\sigma(u) + \int \psi \varphi \, d\alpha \ge 0$$
 for all $\psi \in \Psi_{B}^{+}$,

then

- (i) in case $1 \notin \Psi$ or $\lambda \neq 0$ or $\alpha \neq 0$, we have $u \ge 0$ on X;
- (ii) in case $1 \in \Psi$, $\lambda = 0$ and $\alpha = 0$, we have either $u \ge 0$ on X or $u \equiv const. < 0$.

This corollary is obtained by applying the theorem with $\Sigma = \Phi_D \cap L^1(\alpha)$, $F(f) = f\lambda$, $\beta(\varphi) = \varphi \alpha$ and Z = E.

REMARK 4.3. For Theorem 1 and its corollary, condition (Ψ .4) for Ψ is not necessary.

§5. Linear problems

As in [2], we first give an existence and uniqueness theorem for linear problems. Let $\lambda \in \mathscr{M}_{BF}^+$ and $\alpha \in \mathscr{N}^+$ be given. For each $\varphi \in \Phi_D$ with $H_{\varphi} \in L^2(\lambda)$, there exists a unique $u \in \mathscr{R}(X)$ such that $\sigma(u) + u\lambda = 0$ on X and $u - H_{\varphi} \in \mathscr{L}_{EF}$ ([2; pp. 43-44]). This u is denoted by H_{φ}^{λ} . As in [2], we consider the space

$$\Phi_D^{\lambda,\alpha} = \{ \varphi \in \Phi_D \mid H_{\varphi} \in L^2(\lambda), \ \varphi \in L^2(\alpha) \}$$

and a semi-norm (a norm if either $\lambda \neq 0$ or $\alpha \neq 0$)

$$\|\varphi\|_{D,\lambda,\alpha} = \{D[H_{\varphi}^{\lambda}] + \int (H_{\varphi}^{\lambda})^2 d\lambda + \int \varphi^2 d\alpha\}^{1/2}$$

on $\Phi_D^{\lambda,\alpha}$. Note that $\Phi_{BD} \subset \Phi_D^{\lambda,\alpha}$.

THEOREM 2 (cf. [2; Theorem 3.1]). Let Ψ be a boundary behavior space and write $\Psi^{\lambda,\alpha} = \Psi \cap \Phi_D^{\lambda,\alpha}$. Suppose $\mu \in \mathscr{M}_{BF}$ and $\gamma \in \mathscr{N}$ satisfy

 $[\mu] \qquad \left| \int_X H_{\psi} d\mu \right| \leq a(\mu) \|\psi\|_{D,\lambda,\alpha} \qquad \text{for all } \psi \in \Psi^{\lambda,\alpha},$

$$[\gamma] \qquad \left| \int_{\partial^* X} \psi d\gamma \right| \leq b(\gamma) \|\psi\|_{D,\lambda,\alpha} \qquad \text{for all } \psi \in \Psi^{\lambda,\alpha}.$$

Then, given $\tau \in \Phi_D^{\lambda,\alpha}$, there exists a solution $u = H_{\varphi} + g \in \mathscr{R}_E(\Phi_D^{\lambda,\alpha})$ of the linear problem

$$\begin{cases} \sigma(u) + u\lambda = \mu \quad on \quad X, \\ \varphi - \tau \in \Psi, \\ D[u, H_{\psi}] - \int_{X} H_{\psi} d\sigma(u) + \int \psi \varphi d\alpha = \int \psi d\gamma \quad for \ all \quad \psi \in \Psi_{B}. \end{cases}$$

The solution is unique if either $1 \notin \Psi$ or $\lambda \neq 0$ or $\alpha \neq 0$; unique up to an additive constant if $1 \in \Psi$, $\lambda = 0$ and $\alpha = 0$. Furthermore,

$$D[u]^{1/2} \leq 2 \|\tau\|_{D,\lambda,\alpha} + (2 + \|G\lambda\|_{\infty}) D[G|\mu|]^{1/2} + a(\mu) + b(\gamma).$$

On account of condition (Ψ .4) for Ψ , we see that $\Psi^{\lambda,\alpha}$ is a Hilbert space with respect to the norm $\|\cdot\|_{D,\lambda,\alpha}$, in case $1 \notin \Psi$ or $\lambda \neq 0$ or $\alpha \neq 0$, and $\Psi^{\lambda,\alpha}/\mathbf{R} = \Psi/\mathbf{R}$ is a Hilbert space with respect to $\|\psi\|_D = D[H_{\psi}]^{1/2}$ in case $1 \in \Psi$, $\lambda = 0$ and $\alpha = 0$. In the latter case, $[\mu]$ and $[\gamma]$ imply that $\int_X d\mu = \int_{\partial^* X} d\gamma = 0$. Thus the above theorem can be proved in the same way as [2; Theorem 3.1].

§6. Existence theorem for semilinear problems I

Given Z, Σ , F, β , τ and Ψ as in §3, $v = H_{\varphi} + g \in \mathscr{R}_{Z}(\Sigma)$ is called a supersolution (resp. subsolution) of $P_{Z}(\Sigma, F, \beta, \tau, \Psi)$ if

$$\begin{cases} \sigma(v) + F(v) \ge 0 \text{ (resp. } \le 0) \text{ on } X, \\ (\varphi - \tau)^- \in \Psi \text{ (resp. } (\tau - \varphi)^- \in \Psi), \\ D[v, H_{\psi}] - \int_X H_{\psi} \, d\sigma(v) + \int \psi d\beta(\varphi) \ge 0 \text{ (resp. } \le 0) \text{ for all } \psi \in \Psi_B^+. \end{cases}$$

Now, we introduce a notion of Ψ -admissible space for a boundary behavior space Ψ .

A subset Γ of Φ_D will be said to be Ψ -admissible if it satisfies the following two conditions:

(A.1) Γ is a linear subspace of Φ_D containing Ψ , (A.2) $\varphi_1, \varphi_2 \in \Gamma$ and $\varphi_1^-, \varphi_2^- \in \Psi$ imply $(\varphi_1 + \varphi_2)^- \in \Psi$. Obviously, Ψ itself is Ψ -admissible.

EXAMPLE 6.1. For $\Psi = \Phi_D(\Lambda) + R\psi_0$ with $\psi_0 \in \Phi_{BD}$ such that $\psi_0 \ge 0$ ω -a.e. on $\partial^* X \setminus \Lambda$,

$$\Gamma = \{ \varphi \in \Phi_D \mid \varphi = a \psi_0 \text{ } \omega \text{-a.e. on } \{ \xi \in \partial^* X \setminus A \mid \psi_0(\xi) > 0 \} \text{ for some } a \in \mathbf{R} \}$$

is Ψ -admissible. In particular, Φ_D is $\Phi_D(\Lambda)$ -admissible. (If $\psi_0 \notin \Phi_D(\Lambda)$, then

108

 Φ_p is not Ψ -admissible).

EXAMPLE 6.2. Let $\{\Lambda_j\}_{j\in J}$ be as in Example 2.2. Then $\Phi_D(\Lambda_0) + \Phi_D^c(\{\Lambda_j\}_{j\in J})$ is $\Phi_D^c(\{\Lambda_j\}_{j\in J})$ -admissible. If $\chi_{A'} \in \Phi_D$, then $\Phi_D(\Lambda_0) + \Phi_D^c(\{\Lambda_j\}_{j\in J}) + \mathbf{R}\chi_{A'}$ is $(\Phi_D^c(\{\Lambda_i\}_{i\in J}) + \mathbf{R}\chi_{A'})$ -admissible.

As a generalization of [2; Theorem 4.1], we have the following

THEOREM 3. Let Ψ be a boundary behavior space, Γ be a Ψ -admissible subset of Φ_D , $F: \mathscr{R}_B(\Gamma_B) \to \mathscr{M}_{BF}$ and $\beta: \Gamma_B \to \mathscr{N}$, where $\Gamma_B = \Gamma \cap \Phi_{BD}$. Suppose

(F.L) for each M > 0, there is $\lambda_M \in \mathscr{M}_{BF}^+$ such that

$$|F(f_1) - F(f_2)| \le (f_2 - f_1)\lambda_M \quad on \quad X$$

whenever $f_1, f_2 \in \mathscr{R}_B(\Gamma_B)$ and $-M \leq f_1 \leq f_2 \leq M$; (β .L) for each M > 0, there is $\alpha_M \in \mathscr{N}^+$ such that

$$\left|\int \psi \, d\{\beta(\varphi_1) - \beta(\varphi_2)\}\right| \leq \int \psi(\varphi_2 - \varphi_1) \, d\alpha_M$$

for all $\psi \in \Psi_B^+$, whenever $\varphi_1, \varphi_2 \in \Gamma_B$ and $-M \leq \varphi_1 \leq \varphi_2 \leq M \omega$ -a.e.

Let $\tau \in \Gamma_B$ and suppose there exist a supersolution u_0 and a subsolution v_0 of $P_B(\Gamma_B, F, \beta, \tau, \Psi)$ such that $v_0 \leq u_0$ on X. Then there exist solutions u* and v* of $P_B(\Gamma_B, F, \beta, \tau, \Psi)$ such that

(i) $v_0 \leq v^* \leq u^* \leq u_0;$

(ii) if u is a solution of $P_B(\Gamma_B, F, \beta, \tau, \Psi)$ such that $v_0 \leq u \leq u_0$, then $v^* \leq u \leq u^*$.

Let us sketch the proof emphasizing the difference from that of [2; Theorem 4.1].

Let $M = \max(\sup_X u_0, -\inf_X v_0)$. If $1 \in \Psi$, F(f) = 0 for all $f \in \mathscr{R}_B(\Gamma_B)$ with $|f| \leq M$ and $\beta(\varphi) = 0$ for all $\varphi \in \Gamma_B$ with $|\varphi| \leq M$, then choose any $\lambda \in \mathscr{M}_{BF}^+$ with $\lambda \neq 0$. Otherwise, let $\lambda = \lambda_M + |F(0)|$. Put $\alpha = \alpha_M + |\beta(0)|$. Then either $1 \notin \Psi$ or $\lambda \neq 0$ or $\alpha \neq 0$.

Starting with the given u_0 , we define a sequence $\{u_n\}$ by induction as follows: Suppose $u_0, u_1, \ldots, u_{n-1}$ $(n \ge 1)$ are so chosen that each $u_j = H_{\varphi_j} + g_j$, $j = 1, \ldots, n-1$, is a supersolution of $P_B(\Gamma_B, F, \beta, \tau, \Psi)$ and $v \le u_{n-1} \le \cdots \le u_1 \le u_0$ for any subsolution v such that $-M \le v \le u_0$. As in the proof of [2; Theorem 4.1], we see that $\mu_n = -F(u_{n-1}) + u_{n-1}\lambda$ satisfies $[\mu]$ and $\gamma_n = \varphi_{n-1}\alpha - \beta(\varphi_{n-1})$ satisfies $[\gamma]$ in Theorem 2. Also, $\tau \in \Phi_{BD} \subset \Phi_D^{\lambda, \alpha}$. Hence, by Theorem 2, there is $u_n = H_{\varphi_n} + g_n \in \mathscr{R}_E(\Phi_D^{\lambda, \alpha})$ satisfying

Fumi-Yuki MAEDA

(6.1)
$$\begin{cases} \sigma(u_n) + u_n \lambda = -F(u_{n-1}) + u_{n-1}\lambda \quad \text{on} \quad X, \\ \varphi_n - \tau \in \Psi, \\ D[u_n, H_{\psi}] - \int_X H_{\psi} \, d\sigma(u_n) + \int \psi \varphi_n \, d\alpha = \int \psi \varphi_{n-1} \, d\alpha - \int \psi \, d\beta(\varphi_{n-1}) \\ \text{for all } \psi \in \Psi_B. \end{cases}$$

By virtue of (A.2) for Γ , we see that $(\varphi_{n-1}-\varphi_n)^- = (\varphi_{n-1}-\tau+\tau-\varphi_n)^- \in \Psi$. Hence, applying the corollary to Theorem 1 to $u_{n-1}-u_n$, we see that $u_n \leq u_{n-1}$. Similarly, if $v = H_\eta + q \in \mathscr{R}_B(\Gamma_B)$ is a subsolution of $P_B(\Gamma_B, F, \beta, \tau, \Psi)$ such that $-M \leq v \leq u_0$, then $(\varphi_n - \eta)^- = (\varphi_n - \tau + \tau - \eta)^- \in \Psi$, and hence using (F.L), $(\beta.L)$ and applying the corollary to Theorem 1 to $u_n - v$, we see that $v \leq u_n$; in particular $-M \leq u_n$. It follows that $\varphi_n \in \Phi_{BD}$. Since $\varphi_n - \tau \in \Psi$, $\varphi_n \in \Gamma$ by (A.1) for Γ . Therefore $\varphi_n \in \Gamma_B$. On the other hand, since u_n is bounded, (6.1) implies that $\sigma(u_n) \in \mathscr{M}_{BF}$, so that $u_n \in \mathscr{R}_B(\Gamma_B)$. Then, by (6.1), (F.L) and $(\beta.L)$, we see that u_n is a supersolution of $P_B(\Gamma_B, F, \beta, \tau, \Psi)$.

Thus, we obtain a sequence $\{u_n\}$ of supersolutions of $P_B(\Gamma_B, F, \beta, \tau, \Psi)$ such that $-M \leq u_n \leq u_{n-1} \leq u_0$ for all *n* and $v \leq u_n$ for any subsolution *v* such that $-M \leq v \leq u_0$.

Let $u^* = \lim_{n \to \infty} u_n$ and $\varphi^* = \lim_{n \to \infty} \varphi_n$. As in the proof of [2; Theorem 4.1], we see that $u^* = H_{\varphi^*} + g^*$ with

$$g^* = -\lim_{n\to\infty} G(F(u_n)) \in \mathcal{Q}_{BF}.$$

Also, with the help of the estimate of D[u] in Theorem 2, we see that $D[H_{\varphi_n} - H_{\varphi_m}] \rightarrow 0$ $(n, m \rightarrow \infty)$. Since $\varphi_n - \tau \in \Psi$, it follows from (Ψ .4) for Ψ that $\varphi^* - \tau \in \Psi$. Hence $\varphi^* \in \Gamma_B$ and $u^* \in \mathscr{R}_B(\Gamma_B)$. Then, again as in the proof of [2; Theorem 4.1], we see that $g^* = -G(F(u^*))$, so that $\sigma(u^*) + F(u^*) = 0$, and

$$D[u^*, H_{\psi}] - \int_X H_{\psi} d\sigma(u^*) + \int \psi d\beta(\varphi^*) = 0$$

holds for any $\psi \in \Psi_B$, which shows that u^* is a solution of $P_B(\Gamma_B, F, \beta, \tau, \Psi)$. Obviously, $u^* \leq u_0$ and $v \leq u^*$ for any subsolution v with $-M \leq v \leq u_0$.

Similarly, starting with v_0 , we obtain a solution v^* of $P_B(\Gamma_B, F, \beta, \tau, \Psi)$ such that $v_0 \leq v^*$ and $v^* \leq u$ for any supersolution u with $v_0 \leq u \leq M$. Thus, these u^* , v^* are the required solutions.

REMARK 6.1. In case $\Psi = \Phi_D(\Lambda)$ and $\Gamma = \Phi_D$, only the values of β on Λ are relevent in the boundary condition (B-2), so that condition (β .L) in this case may be replaced by

 $(\beta.L; \Lambda)$ for any M > 0, there is $\alpha_M \in \mathcal{N}^+$ such that

$$|\beta(\varphi_1) - \beta(\varphi_2)| \leq (\varphi_2 - \varphi_1)\alpha_M$$
 on Λ

110

whenever $\varphi_1, \varphi_2 \in \Phi_{BD}$ and $-M \leq \varphi_1 \leq \varphi_2 \leq M$. (Cf. [2; Theorem 4.1].)

REMARK 6.2. In case $\Psi = \Phi_D^c(\{\Lambda_j\}_{j \in J})$ and $\Gamma = \Phi_D(\Lambda_0) + \Phi_D^c(\{\Lambda_j\}_{j \in J})$, or in case $\chi_{A'} \in \Phi_D$, $\Psi = \Phi_D^c(\{\Lambda_j\}_{j \in J}) + R\chi_{A'}$ and $\Gamma = \Phi_D(\Lambda_0) + \Psi$, if β is given by (3.4) then condition (β .L) means that each η_j is Lipschitz continuous with Lipschitz constant $A_{M,j} \ge 0$ on the interval [-M, M] such that $\sum_{j \in J} A_{M,j} < \infty$ for each M > 0.

§7. Existence theorem for semilinear problems II

In this section we give some sufficient conditions for the existence of superand subsolutions.

THEOREM 4. Let Ψ be a boundary behavior space and Γ be a Ψ -admissible set containing constant functions. For $F: \mathscr{R}_{B}(\Gamma_{B}) \to \mathscr{M}_{BF}$ and $\beta: \Gamma_{B} \to \mathscr{N}$, suppose there exist $t_{0} \in \mathbb{R}$, $\mu_{0} \in \mathscr{M}_{BF}$, $\alpha_{0} \in \mathscr{N}$ and $\psi_{0} \in \Psi_{B}$ satisfying the following conditions:

(i) $F(f) \ge \mu_0$ (resp. $\le \mu_0$) for all $f \in \mathscr{R}_B(\Gamma_B)$ with $f \ge t_0$ (resp. $f \le t_0$),

(ii) $\int \psi d\beta(\varphi) \ge \int \psi d\alpha_0$ (resp. $\int \psi d\beta(\varphi) \le \int \psi d\alpha_0$) for all $\psi \in \Psi_B^+$ and for all

 $\varphi \in \Gamma_B \text{ with } \varphi \ge t_0 \text{ (resp. } \varphi \le t_0\text{)},$

(iii)
$$D[H_{\psi_0}, H_{\psi}] + \int_X H_{\psi} d\mu_0 + \int \psi d\alpha_0 \ge 0 \text{ (resp. } \le 0) \text{ for all } \psi \in \Psi_B^+.$$

Then, for any $\tau \in \Gamma_B$, there exists a supersolution u_0 (resp. a subsolution v_0) of $P_B(\Gamma_B, F, \beta, \tau, \Psi)$ such that $u_0 \ge t_0$ (resp. $v_0 \le t_0$).

PROOF (cf. the proof of [2; Theorem 4.2]). Given $\tau \in \Gamma_B$, let

 $a = \max(t_0, \sup \tau) + \sup \psi_0^- + \sup G\mu_0^+$

and put

 $u_0=a+H_{\psi_0}-G\mu_0.$

By assumption, $a + \psi_0 \in \Gamma_B$, so that $u_0 \in \mathcal{R}_B(\Gamma_B)$. Since

$$u_0 \ge a - H_{\psi_0^-} - G\mu_0^+ \ge t_0 \quad \text{and} \quad a + \psi_0 \ge t_0,$$

 $F(u_0) \ge \mu_0$ and $\beta(a + \psi_0) \ge \alpha_0$ by (i) and (ii). Hence

$$\sigma(u_0) + F(u_0) \ge -\mu_0 + \mu_0 = 0$$
 on X , $(a + \psi_0 - \tau)^- = 0 \in \Psi$

and

$$D[u_0, H_{\psi}] - \int_X H_{\psi} d\sigma(u_0) + \int \psi d\beta(a + \psi_0)$$
$$\geq D[H_{\psi_0}, H_{\psi}] + \int_X H_{\psi} d\mu_0 + \int \psi d\alpha_0 \geq 0$$

for all $\psi \in \Psi_B^+$, by (iii). Hence u_0 is a supersolution of $P_B(\Gamma_B, F, \beta, \tau, \Psi)$. Similar arguments hold for the existence of a subsolution $v_0 \leq t_0$.

REMARK 7.1. In case $1 \in \Psi$, condition (iii) in Theorem 4 implies

(7.1)
$$\int_X d\mu_0 + \int d\alpha_0 \ge 0 \qquad (\text{resp.} \le 0).$$

REMARK 7.2. If we can find $\mu_0 \in \mathscr{M}_{BF}$ and $\alpha_0 \in \mathscr{N}$ satisfying (i) and (ii) such that $\mu_0 \ge 0$ and $\alpha_0 \ge 0$ (resp. $\mu_0 \le 0$ and $\alpha_0 \le 0$), then (iii) is always satisfied with $\psi_0 = 0$.

REMARK 7.3. In case $\Psi = \Phi_D^c(\{\Lambda_j\}_{j=1}^k)$ (i.e., the case where J is a finite set in Example 2.2), if we write $\psi_0 = \sum_{j=1}^k a_j \chi_j$, then condition (iii) is equivalent to

(7.2)
$$\sum_{j=1}^{k} a_j D[h_j, h_m] + \int_X h_m d\mu_0 + \int_{A_m} d\alpha_0 \ge 0 \quad (\text{resp.} \le 0)$$
for all $m = 1, ..., k$

where $h_j = H_{\chi_j}$ (j = 1, ..., k). If $1 \notin \Psi$, then the matrix $\{D[h_j, h_m]\}_{j,m=1}^k$ is positive definite, and hence we can find $a_1, ..., a_k$ satisfying (7.2) for given μ_0 and α_0 . Therefore, (iii) in Theorem 4 is always satisfied in this case. If $1 \in \Psi$, then there exist $a_1, ..., a_k$ satisfying (7.2) if and only if (7.1) holds, so that condition (iii) is reduced to (7.1) in this case (cf. [3; Theorem 3]).

Combining Theorem 4 with Theorem 3, we obtain

COROLLARY 1 (cf. [2; Theorem 4.2]). Let Ψ , Γ be as in Theorem 4. Suppose $F: \mathscr{R}_{B}(\Gamma_{B}) \rightarrow \mathscr{M}_{BF}$ and $\beta: \Gamma_{B} \rightarrow \mathscr{N}$ satisfy (F.L) and (β .L) in Theorem 3, and (F.M) and (β .M; Ψ) in Theorem 1 with Z=B and $\Sigma=\Gamma_{B}$. If there are $t_{0}, t_{1} \in \mathbf{R}$ and $\psi_{0}, \psi_{1} \in \Psi_{B}$ such that

(7.3)
$$\begin{cases} D[H_{\psi_0}, H_{\psi}] + \int_X H_{\psi} dF(t_0) + \int \psi d\beta(t_0) \ge 0 \\ for all \quad \psi \in \Psi_B^+, \\ D[H_{\psi_1}, H_{\psi}] + \int_X H_{\psi} dF(t_1) + \int \psi d\beta(t_1) \le 0 \end{cases}$$

then $P_B(\Gamma_B, F, \beta, \tau, \Psi)$ has a solution for any $\tau \in \Gamma_B$; the solution is unique if $1 \notin \Psi$; the solution is unique up to an additive constant if $1 \in \Psi$.

In view of Remark 7.3, in case $\Psi = \Phi_D^c(\{\Lambda_j\}_{j=1}^k)$, condition (7.3) is always satisfied if $1 \notin \Psi$, and is reduced to

(7.4)
$$\int_{X} dF(t_0) + \int d\beta(t_0) \leq 0 \leq \int_{X} dF(t_1) + \int d\beta(t_1)$$

in case $1 \in \Psi$. Thus, in this special case, we can state

COROLLARY 2. Let $\Gamma = \Phi_D(\Lambda_0) + \Phi_D^c(\{\Lambda_j\}_{j=1}^k)$ $(\Lambda_0 = \partial^* X \setminus \bigcup_{j=1}^k \Lambda_j)$ and suppose $F: \mathscr{R}_B(\Gamma_B) \to \mathscr{M}_{BF}$ satisfies (F.L) and (F.M) with Z = B and $\Sigma = \Gamma_B$. Suppose $\eta_j: \mathbb{R} \to \mathbb{R}, j = 1, ..., k$, are monotone non-decreasing and locally Lipschitz continuous, and $\beta: \Gamma_B \to \mathscr{N}$ is given by (3.4). Let $\tau \in \Gamma_B$.

- (i) If $\omega(\Lambda_0) > 0$, then $P_B(\Gamma_B, F, \beta, \tau, \Phi_D^c(\{\Lambda_j\}_{j=1}^k))$ has a unique solution;
- (ii) If $\omega(\Lambda_0) = 0$, then $P_B(\Gamma_B, F, \beta, \tau, \Phi_D^c(\{\Lambda_j\}_{j=1}^k))$ has a solution if and only

(7.4)'
$$\int_X dF(t_0) + \sum_{j=1}^k \eta_j(t_0) \le 0 \le \int_X dF(t_1) + \sum_{j=1}^k \eta_j(t_1)$$

for some $t_0, t_1 \in \mathbf{R}$ $(t_0 \leq t_1)$; in this case the solution is unique up to an additive constant.

REMARK 7.4. By the continuity of the mapping $t \mapsto \int dF(t) + \sum_{j=1}^{k} \eta_j(t)$, condition (7.4)' is equivalent to

(7.4)"
$$\int_X dF(\tilde{t}) + \sum_{j=1}^k \eta_j(\tilde{t}) = 0 \quad \text{for some} \quad \tilde{t} \in \mathbf{R}$$

(cf. [3; Corollary to Theorem 3]).

References

- [1] F-Y. Maeda, Dirichlet integrals on harmonic spaces, Lecture Notes in Math. 803, Springer-Verlag, Berlin-Heidelberg-New York, 1980.
- [2] F-Y. Maeda, Semi-linear boundary value problems with respect to an ideal boundary on a self-adjoint harmonic space, Hiroshima Math. J. 14 (1984), 35-53.
- [3] S. Zheng, Nonlinear boundary problems with nonlocal boundary conditions, Chin. Ann. Math. 4B (1983), 177-186.

Department of Mathematics, Faculty of Science, Hiroshima University