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Introduction

Let X be an //-space. Then a homotopy equivalence h: X-+X is called a

self //-equivalence of X with respect to a multiplication m: XxX-+X if hm~

m(hxh): XxX-+X (homotopic); and all the homotopy classes of such self

//-equivalences form the group

HE (X, m) (the notation gu (X, m) is used in the recent papers)

under the composition. In general, X has several multiplications and this group

depends on m. For example, the complex conjugate C: SU(n)^>SU(ή) of the

special unitary group is an //-map with respect to the usual multiplication, but

not so to some one on SU(ή) for n^3, as is proved by Maruyama-Oka [9].

In this note, we consider the group

HE (X) = Γ\m HE (X, m) (m ranges over all multiplications on X)

formed by all self //-equivalences of X with respect to any multiplication, and

study its basic properties. The main result is stated as follows:

THEOREM. Let X be the unitary group U(ή) (n^3), the special unitary

group SU(ή) ( n ^ l ) or the symplectic group Sp(ή) (n^ l ) . Then, any self

H-equivalence heHE(X) with respect to any multiplication induces the identity

map /ι*=id on π*(X)®Z(P)for a large prime p; and HE(Z) is a finite nilpotent

group.

We prove the basic equality on HE(X) in Proposition 1.4, and study it in

case that X is a product //-space in Theorem 2.4. Furthermore, by using the fact

that the localization Z ( p ) of X = SU(n) or Sp(ή) at a large prime p is homotopy

equivalent to the product space of the localizations of some odd spheres, we study

HE(Z ( p ) ) in Corollary 3.4; and the main result is proved in Theorem 4.1 and

Corollary 4.2 by a similar method to that used in [9].
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§ 1. Basic equality on HE(X)

Throughout this note, we assume that all spaces, maps and homotopies are

based and spaces have homotopy types of CW-complexes. A map/: X-*7and

its homotopy class / in the homotopy set [X, 7] are always denoted by a same

letter.

When X = (X, m) is an H-space, i.e., X admits a multiplication m: X x X->X

such that m\X v X = F (the folding map) in [_X v X9 X], we consider the set

(1.1.1) M (X)(c [X x X, XJ) of all homotopy classes of multiplications on X.

Then, using the sum + on [ , X~\ induced by m, we have easily a bijection

(1.1.2) [ I Λ I , I ] ^ M ( X ) by sending

α e [ l Λ l , I ] to mα = m + απeM(X),

where π: Xx X - > X X X / X V X = X Λ X is the collapsing map (cf., e.g., [11;

Th. 2.3]).

When Y=(Y, m') is also an H-space, / : (X, m)->(7, m') is an H-map if

fm = m'(f x /) in [X x X, 7], and such H-maps form the subset

(1.1.3) IX, m; 7, m']H c= [X, 7] ( m e M ( I ) , m'eM(7)).

By taking their intersection, we have also the subsets

(1.1.4) IX, 7 ] H = ΛMeM(x),ίM'eM(y) [*, m; £ m']H of [X, 7], and

HMap (JO = n m 6 M W [*, m; Z, m]H 3 [Z, Z ] H of [X, X] .

LEMMA 1.2. (i) [X, 7] H = [X, m; 7, m r]H n O [X, 7] for any m e M (X)

m' e M (7), wftβrβ O [X, 7] consists o/ allfe [X, 7] satisfying

(1.2.1) / * = 0: [XΛX, X] > [X ΛX, 7] and

(/A/)* = 0: [7Λ 7, 7] — [XΛX, 7].

(ii) HMap (X) = [X, m X, m]H n I (X) for any m e M (X), w/iere

(1.2.2) I (X) = {fe [X, X] I / * = (/ Λ / ) * : [X Λ X, X] —> [X Λ X, X]}.

PROOF. Take fe [X, m 7, m']^ Then, for mα = m + απ e M (X) (α e [X Λ

X,X]) and m'β = m' + 'βπeM(Y)(βelYΛ Y, 7]) in (1.1.2), the equality fm =

m'(J x /) implies the ones

=/m +'/απ,

Λ/)π
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in [XxX, Y]; and/e [X, ma; Y, m^]H means that these are equal to each other.
Therefore, [6; Th. 1.1] and the injectivity of π*: [ X Λ X , Y ] - > [ X X X , Y] imply
that

(1.2.3) fe [X, mα; Y, m^]H */ and only if fa = β(f Λ/) m [X Λ X, Y].

This shows the lemma by definition. q. e. d.

Now, for an H-space X, consider the group

(1.3.1) E(X) = {h\h: X -* X is a homotopy equivalence} (c[X, X]),

with group-multiplication given by the composition, and its subgroups

(1.3.2) HE(X, m) = E(X) f)ίX,m; X, m]H for each meM(X), and

(1.3.3) HE (X) = Γ\meM(X) HE (X, m) = E (X) n HMap (X).

Furthermore, consider the action of E (X) on [X Λ X, X] given by

(1.3.4) /ι*α = h-iφ A h) e \X A X, X] for ft e E (X) and α e [X Λ X, X].

Then, we have the isotropy subgroup and their intersection

(1.3.5) E (X)α = {ft 6 E (X) I ft*α = α} at α e [X Λ X, X] and

IE (X) = Γ\ΛeίX,XtX1 E (X)α = E (X) n I (X) (see (1.2.2)),

where IE (X) is a normal subgroup of E (X).
The following equalities play a basic role in our study.

PROPOSITION 1.4. For any H-space X, HE(X) is a normal subgroup of
E(X); and for each multiplications m and mαeM(X) (αe[XΛX, X], see
(1.1.2)), we have

(1.4.1) HE(X, m) n HE(X, mα) = HE(X, m) n E(X)α,

(1.4.2) HE (X) = HE (X, m) Π IE (X).

PROOF. If ft e E (X), then m' = h~ιm(h x ft) e M (X) and ft"1 HE (X, m)ft =
HE(X,m'). Thus, we see the first half. (1.2.3) for Y=X, m' = m and β=oc
means (1.4.1), and (1.4.2) follows from (1.4.1) and (1.3.5). q. e. d.

EXAMPLE 1.5 ([12; Th. 4.1]). IfX is S" (n = 3, 7) or the Eilenberg-MacLane
space K(π, ή)for an abelίan group π, then HE (X) = HE (X, m)for any m e M(X)
and

HE (SΛ) = 1, HE (K(π9 ή)) = aut π.
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Now, let p be a prime ^ 3 and consider

(1.6.1) the localization S = Sfa of the n-sphere S" ( n ^ l ) at p,

(1.6.2) the subring Z(p) = {s/φ, teZ,t>0, (t, p) = 1}

of the rational field Q, and

(1.6.3) the multiplicative group Zfp) consisting of all units in Z ( p ) .

Then, we can identify as follows (cf. D. Sullivan [14; 4.9, Cor.l]):

(1.6.4) πn(5) = Z ( p ) , [5, 5] = Horn (πn(S), πn(5)) = Z ( p ) as rings, and

Furthermore, J. F. Adams [1] proved the following

(1.6.5) S = Sfp)(n: odd) is an H-space with a homotopy commutative

multiplication m.

In this case, for any s/t in Z(p) = [5, 5], s and t are iϊ-maps in [S, m; 5, m] H , and

so is s/ί since (t, p) = 1. Thus, we see the following

(1.6.6) In case of (1.6.5), [S, m; S, m ] H = [S, S] = Z ( p )

Also, we denote the p-component of π^X) by π^X; p), and consider the subgroup

(1.6.7) Upr = 1 + p r Z ( p ) when r ;> 1 or Ut = Zfp) when r = 0

of Zfp) in (1.6.3).

PROPOSITION 1.7. For α prime p^3 and an odd integer n ^ l , let pr be the

largest order of elements in π2n(Sn;p). Then, ΉE(S)=Upr for the H-space

S = S»(p)in (1.6.5).

PROOF. Let S' = Sfp) (n'^ή). Then, we can identify as follows:

(1.7.1) [S', 5] = πn,(S»)®Z(p) = π ^ S - p) (n' > n), = Z(p) (nf = n).

Here the group structure is given by the suspended space S' of S^" 1, and is also

induced from m e M (5), and we see that t<xs = soct (s, t e Z) and so

(1.7.2) (xq = qoί = qΌc

for any q = s/teE (S') = E (S) = Zfp) and α e [S', 5 ] .

By (1.3.5) and (1.7.2), q e E (S) = Z(*J>) is in IE (S) if and only if
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α = q'1^ Λ q) = q α for any α e [5 Λ 5, 5] = π 2 n (S π p),

which is equivalent to q e C/pr by the definition of pr and [/̂ r. Thus, HE(S) =

Upr by Proposition 1.4 and (1.6.6). q. e. d.

§ 2. Product //-spaces

In this section, we consider

(2.1.1) //-spaces (Xk, mk) and their product //-space X = Πϋ=i -X* with

mx = {Y\mk)T: XxX*Y\(XkxXk)^X as multiplication

(T: the permuting homeomorphism).

Also, for any //-space (7, m), we consider the n-fold product //-space

(2.1.2) (7«, m») = (Πr*, ( Π mΛ)T) with (7fc, mk) = (7, m) for 1 ̂  fc ̂  n,

the iterated multiplication

(2.1.3) m: Yn -• 7, given inductively by m = m when n = 2 and

m = m(m x 1),

the obstruction h(m) for m to be an //-map (YΛ, mn)^(Y, m), i.e.,

(2.1.4) ^(m) e \_Yn A Yn, F ] with m(m x m) = lίifn" 4- h(m)π in [7W x Yπ, 7 ] ,

and the one c(m) or α(m) for m to be homotopy commutative or homotopy

associative, i.e.,

(2.1.5) φri) GIYΛY, 7] with

mT= m + c(m)n( = mc(m) in (1.1.2)) in IYXY, 7 ] ,

(2.1.6) α(m)e[7Λ7Λ7, 7] with

m(m x 1) = m(l x m) + α(m)π in [7 x 7 x 7, 7] .

By the fc-th inclusion and projection XkJjL>χJ%χk9 we define the maps

(2.1.7) IX, 7] JίU ΠZ=i[XΛ, 7] - ^ [X, Y] by i / = (/*!,..,Λ,)(/e [Z, 7]),

and consider the following subsets of Π D^*, 7 ] , where Iα(m) is given only when

n = 2:
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(2.1.8) H{mk; m} = {(/1?...,/π) \fke[Xk9 mk; Y, m]Hare if-maps},

h(m) = {(/lv..,/Λ) I h(rn)(ϊ*f) = 0 in [ X Λ X , Y]},

Ic(m) = {(Λ,...,/,,) I c(m)(/kA/i) = 0 in [ I k Λ l ί 5 Y]

α(m) (m(ft x fk) Λft Λ/ 2) = 0 in l(X1 x Xk) Λ Xt A X2, Y] and

<*O0C/i Λ/kΛ/J) = 0 in [Z x Λl k ΛZ ί 5 7], for k Φ 1}.

LEMMA 2.2. (i) 0OTi*l = l and i*leH{m fc; m} nlfe(m) (b = fc, c, α) i/ (Y, m)

(ii) i*0m=id, and by restricting i* and θm, we have the bijection

ί*: [X, mx; Y, m ] H £ H {mk; m} n IΛ(m) w/ίA 0mi* = id.

(iii) H {mk; m} n IΛ (m) is contained in lc (m), and coincides with

H{mk; m} nlc(m) //m is homotopy associative, and
H{mk; m} n Ic (m) n Iβ (m) if n = 2.

PROOF. Let Y=X and m = mx. Then 0mi*l = mϊ=l (T=Π iΛ), m(mxm)
(ϊ x ϊ) = m = mϊ(Π ^k)71= ̂ ( Π w(ik x ik))^= wm"(ϊ x ΐ), and mTV = mi', mi" =
m(mxm)i"9 etc. for i' = ikxih ί = i1xitxi2 (kφl). Thus we see (i).

Now, for any (Y, m), (i) shows that

(2.2.1) i/7e[Z, m*; Y, m]H, then

ΘJ*f=fand i*/eH{mk; m} nlb(m)(6 = ft, c, α),

because mfn=fmx and / commutes with the obstructions in (2.1.4-6), e.g.,
h(m)(f»Λf»)=fh(mx). Conversely, let (fk)=(fl9...Jn)eH {mk; m}. Then
m"(/x/)-(Πm(/ k x/ k ) )Γ=(Π/ k m k )Γ=K. Therefore, if (Λ)eIΛ(m) in ad-
dition, then

(2.2.2) m(m x m) (/ x /) = mmn(J x /) = m/m^ and so

Thus we see (ii). If (/k) € lc (m), then m(/Λ x /,) = m(/, x /k)Γ for k φ I Therefore,
by the definition of m", we can certify the first equality in (2.2.2) when m is homo-
topy associative, i.e., m(mx l) = m(l x m) in (2.1.3), or when so are several com-
positions of product maps of/k's and those of m's, e.g., when n = 2 and (/i,/2)e
la (m). Thus we see (iii). q. e. d.

We now consider the set of matrices

(2.3.1) M {mk} = {(α, k ) |a j k e [Zk, XJ] (1 ύjΛύn)}, with multiplication
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i ajibik)Δ) (Δ '• Xk-*(XkY is the diagonal map),

and the following maps and subsets of M {mk}:

(2.3.2) IX, * ] J t M {mk}±> IX, X], given by φ(f) = (Pjfik) (fe IX, XI),

Pjθ(ajk) = fnjdj, άj = Π* ajk e [_X, (*,)»], (ajk e ίXk, Xj])

(2.3.3) HM {mk} = {(ajk) \ ajk e \_Xk, mk Xj9 m^H i.e.

(an9...,ajn)eH{mk; mj}},

IfcM {mk} = {(ajj\(an,...9 ajn)elb(mj)} (b = h, c; and b = a for n = 2).

Then, Lemma 2.2(ii) implies the following

(2.3.4) φθ = id, and the restrictions of φ and θ give us the multiplicative

bίjection

φ: IX, mx; X, m x ] H ̂  HM {mk} ΠIΛM {mj with φ~ι = θ.

In fact, let fe [_X, mx X, m ̂ ] H . Then pjf= Pjθφ(f) = m/Πz Pjfld,

Pjfgik = rnj(ΠιPjfhPι9h)A and so φ(fg) = φ(f)φ(g) (g e [_X, XJ)

by the definition of the multiplication in (2.3.1). Therefore, we have the isomor-

phism

(2.3.5) φ: HE (X, mx) s HGL {mj n IΛM {mk} of the group in (1.3.2), where

HGL {mk} = {invertible matrices in HM {mk}} (cf. [12; Th. 3.8]).

By using the sets in (1.1.4), we define the following subsets of HM {mk}:

(2.3.6) HM = {(aJk)\ aJk e [_Xk, Xj]H (k Φj), akk e HMap (Xk)} = ΛHM {m'k}

ZD HGL = HGL {mk} Π HM = {invertible ones in HM} = ΛHGL {m'k},

where the intersections are taken over all multiplications mkeM(Xk) ( l^fc^n).

Then (2.3.5) and Lemma 2.2 imply the following theorem on the group

(2.3.7) HE (X) = HE (X, mx) n IE (X) (see Proposition 1.4):

THEOREM 2.4. Let Z = Πfc=i Xk be a product H-space in (2.1.1) ofH-spaces

(X* mk).
( i ) Then the restrictions of φ and θ in (2.3.2) give us the isomorphism

φ: HE (X) s HGL {mk} n IAM {mJ n φIE (X)

= HGL ΠIΛM {mj n φlE (X) with φ-1 = θ.
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(ii) φHE(X) = HGL Π φlE(X) if each mk is homotopy associative.

(iii) φ HE (X) = HGL n IαM {mj n φlE (X) if n = 2.

PROOF. It is sufficient to show that if heIE(X), then φ(h) = (pjhik)e

ICM {mfc}, which is shown by definition (1.3.4-5) as follows:

c(mj)(pjhik A pjhit) = PjC(mx)(h A h)(ik A it) = pjhc(mx)(ik A it) = 0 (fc < /).

q. e.d.

EXAMPLE 2.5. (i) Let Ybe a 2-connected H-space. Then,

HE (Sι x 7) ^ {(ε, h)\ ε = ± 1 e Z2 = HE (S1), h e HE (7)

wiί/i the following (2.5.1)} :

(2.5.1) (ε Λ h)* = h* on [S1 Λ Y, 7], (ε Λ h A h)* = h* on [S1 Λ Y A Y, 7 ] ,

(lΛ/ι)* = fc* on [S2AY, 7], (1Λ/IΛ/I)* = /I* on [ 5 2 A 7 A 7 , 7 ] .

In particular, UE(S1xSn) = Z2for n = 3, 7 ([12; Th. 4.3]).

(ii) For the Eilenberg-MacLane spaces K(G, k) and K(H, I) with k<l

and abelian groups G and H9

HE(X(G, k) x K(H, /)) s PHι(G, k;H)xsD (the semi-direct product),

where PHι(G9 k\ H) is the subgroup of all primitive elements in H\G, k; H),

D = {(g, h) e aut G x aut H \ (g A g)* = /ι* on Hι(K(G, k) A K(G, k) H)},

and s is given by ots(g, h) = h~1ccg for ocePHι(G, k; H) and (g, h)eD.

PROOF, (i) Since [S1, 7] = 0 = [ 7 , S1] by assumption, we have HGL =

H E ( 5 1 ) x H E ( 7 ) and HE (X) £ HGL n φlE (X) for X = SίxY by Theorem

2.4(iii). (2.5.1) for (ε, h) e HE (S1) x HE (7) means ε x h e IE (X) by definition,

since [ I Λ I , I ] = [ I Λ I J ] can be identified with JJδ [Λ ί i = 17;., 7] (δ =

(iii) Since [K(H9 ϊ)9 K(G9 fc)] = 0 (l>k) and [X(G, fe), K(H9 l)~]H = PHι(G9

k\ H)9 we have HGL =PH\G9 k; H) xs(aut G x aut H) and H E ( Z ) ^ HGL n

φlE (X) for X = K(G9 k) x K(H9 I). Since [_X Λ X J ] = Hι(K(G9 k) A K(G9

A:); if), we see that (x, (l,l))eφIE(X) for any xePHι(G,k;H) and that

(0, (#, A)) e φlE (X) (g e aut G9he aut # ) if and only if (g9 h) e D. q. e. d.

THEOREM 2.6. Let a simply connected CW-complex X be an H-space of rank

2. Then HE(X) is trivial unless X is homotopy equivalent to Sι x Sι (1 = 3, 7),

and

HE (Sι xSι)^H = {(ay) I flιy e Z (1 ̂  i, 7 ̂  2), det (fly) = 1, fly = δu mod 2fcf}
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for 1 = 3, 1 by the isomorphism φ in Theorem 2.4, where fc3 = 12 and fc7 = 120.

PROOF. In the first case, HE (X, m) = 1 for some or any m by [7], [8 Th. 4.1]

and [13; Th. 5.8]. Let m be the usual multiplication on Sι (1 = 3, 7). Then, by

[6; p. 176], [16], [13; p. 325] and [2; Prop. D] , we have

(2.6.1) π2l(Sι) = Zkι generated by c(m) and k^S1) = 0 (r = 2, 3, 4),

(2.6.2) IS1, m;Sι,m]H = {neZ\n2 = n mod2^} .

Thus, for X = SιxSι and Y=Sι, I c(m) = {(n1? n 2 ) | n 1 n 2 = 0mod fcj, H{mk;m} Π

I c ( m ) c l β ( m ) ( m 1 = rn2 = m) in (2.1.8) by (2.6.1-2) and so HE(Jf, mx) is isomor-

phic to

(2.6.3) {(atj) I det (au) = ± 1, α?, = α iy mod 2fc,, α^α^ = 0 mod kt}

= H [} {(αί7)| det(α i y) = - 1 , au = 1 - δ 0 mod2k ί }

by (2.3.5) and Lemma 2.2(iii) (cf. [12; Ex. 3.10]). Also, O [S', S ί] = {n|n = 0

mod/ίj} and so IS1, S / ] H = {n|n^0mod2/c z} by Lemma 1.2(i). Therefore, we

see that

(2.6.4) HGL in (2.3.6) for X = Sι x Sι is contained in H.

Now, we see φ: HE(X)^H by Theorem 2.4(i), (2.6.3^) and the following

(2.6.5) h = 0(αo ) for (au)eH satisfies

(hΛh)* = id = /!„: [ I Λ I J ] > [ I Λ I , I ] ,

because this shows h e IE (X). To prove (2.6.5), consider the exact sequence

0 >IS21AX, Sz] iEΔΏX [ I Λ I , S'] > [(5^ V S O Λ X , S f] > 0

and take any OLE{_X /\X, Sι~\. Then, by the sum + induced by in, we have

(2.6.6) α = αOΊp! Λ 1) + α(f2p2 A 1) + ω(π A 1) /or some ω e IS21 Λ X, S z ] .

Consider h = θ(aij) with Pjh = mdj, dj = ajί xaj2, for (ah)eH. Then, by (2.6.6)

and (2.6.2),

a(o,. Λ 1) = φιanp1 Λ 1) + oi(i2aj2p2 A 1) + ω((a y i Λ a y 2 )π Λ 1) = oeCi^ Λ 1),

since a f j = δ i 7 mod 2kt. Hence β(pjh A 1) = β(mijPj A 1) = j8(p7- Λ 1) (jβ e [S 1 Λ X,

). Also πh = π on [Z, S 2 ί ] since det(a o ) = l. Therefore, by (2.6.6), we have

α(Λ Λ 1) = ̂ (iiPih A 1) + oc(i2p2h A 1) + ω(π/ι Λ 1) = α, i.e.,

(fcΛl)* = id on
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Similarly (lΛ/i)*=id and so (ftΛ/ι)* = id on [ I Λ I , X]. We can prove that

h* =id by a similar way, considering [ , X] in addition to [ , S'] and noticing that

h is an iί-map with respect to mx by (2.6.3). Thus we see (2.6.5). q. e. d.

§ 3. Localizations of SU(n) and Sp(n)

The rest of this note is based on the following classical result due to J.-P. Serre:

(3.1.1) πn+k(Sn; p)(n: odd^39 p: odd prime) is 0 ifO<k<2p-3 and Zpr

We consider the case that Xk in Theorem 2.4 is the one in (1.6.5) stated as

follows:

(3.1.2) Let p be a prime^5 and N = (nί,...,nι) be a sequence of odd integers

with 1 ̂  nt < < ttj and

πnj(SnilP) = 0 (e.g. nj-ni<2p-3 by (3.1.1)) for any ί <j with nt > 1,

and consider the localizations and their product H-space

Si = Sfo in (1.6.5) and S = S(N) = Π U Sf in (2.1.1)

with multiplications m^M^i) and m = (Πwii)71eM(S), respectively, where

(3.1.3) mf is taken to be homotopy commutative and homotopy associative by

[1]

Then [Sj, S ( ]=0 (iφj), and (2.3.2-5) and Theorem 2.4(ii) imply the following

(3.1.4) HE(S, m) s HGL{mJ = Πί=i HE(S ί5 mf) = (Z?p))' (see (1.6.6)),

HE (S) s I (N) = HGL {mj n ψIE (S) (S=S(N)),

and a={aί a,) (αjeHE(Sj, m f)=Zfp)) belongs to φΐE(S) if and only if

(3.1.5) (θ(a)Λθ(a))*=θ(a)* on ISΛS,S] for θ(a) = Πa,eE(S).

Here, by (3.1.3), we can identify [S Λ S, S] with the direct sum of

(3.1.6) [Sδ, S,] = πN(i)(S->) ® Z ( p ) for l ^ i r g / and

^ = (i,,.. , δ2de{0, I} 2 ' with Σ} . i ^ # 0 ^ Σ'j-i δ,+J,

where S ,-Λί^Sy-Sgf^ ίS j+^Sy) and JV(ί)= Σ}-i «Λ (β;=^+ί |+y); and

by (1.7.2), we can identify (0(α)Λ0(α))* (resp. θ(α)#) with the multiplication by

the element

(3.1.7) a(δ) = Πί=i βf (resp. αj) in Zfp) on each summand ^ ( a ) ( S
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Thus, we see the following theorem, where (ii) follows from (i) and πn(Sn)®

THEOREM 3.2. Let S(N) be a product H-space in (3.1.2). Then:

(i) HE(S(N)) £ I(JV) c (Z(*p))' (Z*p) is ώe ̂ rowp 0iϊκn in (1.6.3)),

and ίhe subgroup I (iV) consists of all a = ( a l v . . , az)e(Zfp ))
z satisfying

(3.2.1) a(ε) a = af a in π(ε, i) = πN ( ε )(SΠ ί) <g) Z ( p ) /or any a e π(ε, i),

for each l^i^l and each ε = (ε l 5 . . . , εt)e{0, 1, 2}',

(3.2.2) a(ε) = nιj-iayeZfa and N(ε) =

(ii) //π(ε, i) = π i V ( ε )(SΠ i; p) = 0 /or any i and ε wiί/i N(έ)>ni9 e.g., i

—3/or n f >l by (3.1.1), in addition, then

(3.2.3) I(N) = {(a 1,...,a ί)e(Z* p )yμ i = a(ε) in Z*p) i/n f = N(ε)}.

Now, we consider the special unitary group or the symplectic group by

(3.3.1) putting (G(/), g) = (Sl/(/+1), 1) or (SKO, 2)
and taking a prime p > max {gl, 4}.

Then, the localization G(l\p) of G(/) at p is homotopy equivalent ( ^ ) to

SU(l)(p) x 5(%
+1 « Πί=i^(%+1 or Sp(l- l)ip) x ̂ f^1 « Πί=i ^ Γ 1 ' respectively,

(cf. Lemma 4.3 below); and so Theorem 3.2 implies that

(3.3.2) HE (G(/)(p)) £
/or JV, = (n1?..., nz) wiίfc nf = 2#i - ( -

since n I -n 1 = 2gf(/~l)<2p-3 by (3.3.1).

COROLLARY 3.4. (i) HE (SU(l + l ) ( p ) )cHE (SC/(/)(p))c HE (Sl/(5)(p))<=

l^5. Ifp>l(l + 2), then HE(SC/(/+l)(p)) is isomorphic to

(ii) HE(Sp(0 ( p )) <= HE(5p(/- l) ( p )) c HE(Sp(Ί\p)) c (Z( })
7

z/ p/2 > / ̂  8. // p > Z(2/ +1), then HE (Sp(/)(p)) is isomorphic to

Zfp) (/^13), (Z(*p))
14-< ( 1 2 ^ 1 0 ) , (Z( F ) ) " - ' (Z = 9, 8), (Zfp)y

PROOF. Take α = ( α l 5 . . . , α f)6l(iVz) for JV, in (3.3.2). Then, since n,=

2-3 + 2/-5 (0 = 1), = 2 ( 3 + 7)+ 4/-21 (g=2)9 the definition of I(iV) in (3.2.1-2)

shows that
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ax = flffl|_3 (g = U Z£5), = fl?αiέi|-5 (^ = 2, / £ 8 ) ,

and a' = ( α l v . . , a , - ! )e

and so l(Nι)c:J(Nι^1) by sending α to a'. Thus, the first halves in (i) and (ii)

hold.

Assume that p>l(gl + g-(-l)9)=Σini. Then 2 Σ / n i < π 1 + 2 p - 3 and so

(3.4.1) IίiVj) is 0ΐi?en fey (3.2.3) for N = Nh and

by Theorem 3.2(ii). This shows the second halves arithmetically as follows.

(i) Let g = l and ni = 2ϊ + l. Then the conditions for (aί9...9 aι)el(Nt) in

(3.2.3) are nothing when Z^4, and so I(JVj) = (Z(*p))'. They consist of a5 = aja2

when Z = 5, and

^ ί ^ Z ) and α f = a1a2ai-Ar (β=i^ϊ) when 1 = 6,1;

and so I ( N 5 ) ^ { ( α 1 ? α 2, α 3, a4)}, I(N6)*{(al9 a2, «4)} and l(N7)*{(al9 a2)}.

Also, they contain as = a\a5 = a1a2aA. when / = 8, andsoIίΛΓg)^!^!}, which shows

I(N Z )^Z ( * P ) for /^8 by the second half of (3.4.1) and the first half.

(ii) Let g = 2 and n,- = 4ι — 1. Then the conditions for {a ί,..., at) e I (Nt) are

nothing when l = l, and so I(ΛΓ/) = (Z(*p))
ί. They consist of a% = a\a\a<h when

Z = 8, and

^i — l), = aγa\a\ =

when 9 ^ / ̂  12; and so I ί N g ) ^ ! , . . . , α7)}, I(N9)*{(au a2, a3, a5, a6, aΊ)}9

I(N10)*{(al9 a29 α6, α7)}, I(Λrn)*{(*!, α2, α7)} and I(ΛΓ12)s{( f l l, α2)}. Also

they contain aί3 = ala2

ias = ala2a3aΊ when / = 13, and so I ίNia)^!^ !} which

shows IίJV^sZg,) for Z^13 by (3.4.1) and the first half. q.e.d.

Here, we remark on the rationalization X{0) of X. For the n-sphere

Sn (n: odd), we have

S?o) = K(Q> n), E(S(

rt

0)) = aut Q = Q* ( = β-{0} : the group of all units of Q)

and [5^ό}, ^ o ) ] = π^(S^o)) = 0 if nΦnr, =Q if n = ri. Thus, in the same way as

Theorem 3.2 and Corollary 3.4, we see the following

PROPOSITION 3.5. (i) For a sequence 1 ̂  nt < < nt of odd integers,

H E ( Π ! = 1 K(Q, n()) s I(Λ0 = (β*)',

where I (N) (JV=(n!,..., n,)) is fifiuen by (3.2.3) using Q* instead ofZfp).
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(ii) For the rationalizations SU(l+ΐ)(0) and Sp(ΐ){0), the conclusions of
Corollary 3.4 also hold by putting p = O and ZfO) = Q*.

In connection with Corollary 3.4, we note furthermore the following

EXAMPLE 3.6. (i) HE(Sl/(5)(p)) is isomorphic to (Z(*p))
4 if p>23,

{a\a2a\a\ = \ mod23} if p = 23, {aγaz = a\ and aγ =a\a\mo& 19} if p= 19,

{at = q1+i mod 17 (Igig4)/or some g eZf17)} if p = 17, ( i g 4 if 13 ^ p ^ 7,

{αfe £/5 ( l ^ i ^ 4 ) , axa3 = a\ = α4 and a^ = 1 mod25} if p = 5,

where { } consists of all (aί9...9 a4)e(Z*p>>)
4 with the relations contained in { },

(3.6.1) Up = 1 + pZ(p) = {q eZfp)\q = 1 modp} Ϊ5 ίfte group in (1.6.7), and

(3.6.2) <?! = ^f2modpr (qk = skltkeZfp)) means sxt2 = s2tt modpr ( r ^

(ii) HE(Sp(7)(p)) is isomorphic to (Z(*p))
7 i/p > 103,

{aj = Ul=ί a2i mod p} (2/ = 107-p) z/103 ^ p ^ 97,

{af = af-^Γ 1 ( l ^ i ^ 5 ) and a}0 = a\5ala^ mod 89} i/p = 89,

{ a ί Ξ a ϊ - f a Γ 1 ( l ^ ϊ ^ 7 ) and a\ Ξ ak

2

+9moάp) (2fc = jp —33)

and (L/p)
7 i /67^p^l7, where { } consists of all (a!,..., aΊ)e(Zfp))

Ί with the
relations in { }.

PROOF, (i) for p>23 and (ii) for p>103 are in Corollary 3.4.
Consider (3.2.1) for N = Nι-(nί,...i nt) and a prime p with

(3.6.3) I = 4, n, = 2i + 1 and 5^p^ 23, or

/ = 7, n, = 4i - 1 and 17 S P ^ 103.

Then Nι(ε)=Σj^njύ2Σjnj = 4S or 210 for any ε = (ε l s..., εz)e{0, 1, 2}' and
N^^ni except for the trivial case ε f =l and εy = 0 (jφϊ). Also, by Toda [16;
Th. 13.4],

(3.6.4) π(ε, i) = πN l ( β )(S"' p) (0<Nfa)-nt<2p(p-1)-2) is 0 except for

(3.6.5) Zp i/iV^ε) - nf = 2fc(p-l) - 1 (l^fe< jp) or 2fc(p-l) - 2 (n i/2<k< jp).

Further (3.6.2) is equivalent to hold ^i α = ̂ 2*α i n Zp* f° r anY 0LeZpr. Thus,

(3.6.6) I(N() = {(α1,...,α i)6(Zfp))'|

α, = Πy=i αj-'mod p i/ (3.6.5) holds} for p^Ί.
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This and (3.3.2) imply the results for jp^7 as follows, where = denotes = mod p.

(i) The case I = 4 and Πj = 2/ + 1 : Let p = 23, 19 or 17. Then (3.6.5) holds

when and only when N4(ε) = 48 and ι = 2, 7V4(ε) = 35 + ni and i ^ 3 , or N4(ε) =

31 + ni9 respectively; and so the condition in (3.6.6) consists of a2 = d( = ΓΓ/=i <ή)

and ax = άa2

2

= a\ and a1 = a\a$) if p = 19,

at = aia^e-i)-1 ( 2 £ / £ 4 ) , a% = a{a2a5.ι)-χ ( l = / ^ 3 ) and α, = ααj2

if p = 17. The relations for p= 17 are equivalent to

(3.6.7) α{ s flf-i^f Ξ fli^4"1 ( 2 ^ ϊ ^ / ) for some qeZfp),

and the last one α{q8 = l, which implies α1 =q8 by Fermat's theorem f̂p~1 = l.

Let p=13 or 7. Then we can take (N4(ε), i) = (26,1) or (32, 4) in (3.6.5),

and so

α± = αία2αl = α^α^ s αlα3α4, which imply (3.6.7), and α4 =

are in the condition in (3.6.6). These imply α\qη = \=α\q* and so q = at = l

( 1 ^ Ϊ ^ 4 ) since ^ 1 2 Ξ 1 . If jp=ll, then for (iV4(ε), 0 = (26, 3) or (42, 1), we have

similarly

a3 = a1a2al, (3.6.7) and aγ =aaΐ2, which imply

a\q5 = 1 Ξ a\q12 and so at = 1 ( l ^ ϊ ' ^ 4 ) .

Thus I(N4)=(C/P)4 for 13^/?^7, since ( t / ^ c l ^ ) is clear by (3.6.6).

(ii) The case / = 7 and n}=4/ - 1 : If p = 103, 101 or 97, (3.6.5) holds when

and only when ΛΓ7(ε) = 210 and i = (107—p)/2, and so the condition in (3.6.6)

consists of at = a ( = ΠJ=i a)). If p = 89, then we have N7(ε) =

_ί) for i ^ 4 in (3.6.5) and so

aaj1 ΞΞα2α 2α 6_ f(l^i^4), = a\a3a5^t (i = l, 2), = α i ^ α i ( i = l ) in (3.6.6).

These are equivalent to a^a^'1 ( l ^ i ^ 5 ) for some q and ala^a\q15 = \. If

p = 83, 79, 73 or 71, then we have iV7(ε) = 2/?-3 + ni = 210-(n 1 + n + nj+1^ for

iύ j 0 = 6, 7, 7 or 7, and n = n2 + n3, w2 + n4, n3 + n6 or n4 + n6, respectively) so

that the condition in (3.6.6) is equivalent to (3.6.7) and a{3q42 = aiqn (2n = 99-p)

(oa\qk+9 = l(2k = p- 33)) similarly.

If 6 7 ^ / ^ 5 9 , then for JV7(ε) = 134 and i = /( = (69-/0/2), we have daj1^

a1a5a^^a\a\a\aΛa5 and (3.6.7), which imply a\q2η~j = \, a$ = q3 and at = l

(1 = i ̂  7). If 53 ̂  p ̂  17, then we see α, s 1 (1 ̂  i ̂  7) by taking (ΛΓ7(ε), i) to be
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/ = 55-p) for 53^p = 43;

(86, 2), (170, 3) for p = 41; (86, 4), (146, 1) for p = 37;

(86, 7), (121, 1) for p = 31; (58, 1), (113, 1) for p = 29;

and (58,j), (54,7-1) ( 2 ^ 3 1 - p ) for 2 3 ^ p ^ l 7 . Thus I(iV7) = (C//,)
7 for

Finally, let p = 5, 1 = 4 and ni = 2ί + l. Then, in the same way as the case

p= 13 or 7 in (i), we see that the relations in (3.2.1) for π(ε, i) = Z5 are equivalent

to a{ = 1 (1 = i^4). On the other hand, by Toda [17; Th. 7.1-2],

(3.6.8) π(ε, 0 = πN 4 ( β )(S»'; 5) (n f <N 4 (ε)^48) is Z25 if (N4(ε), nf) = (43, 5),

(45, 7) or (48, 9), and Z5 or 0 otherwise.

Therefore, the relations in (3.2.1) for π(ε, ί) = Z25 consist of a2 = aa2~
1, a3 = daγί

and α 4 = αmod25, which are equivalent to a1a3=al = a4. and al = \moά25

since q20 = 1 mod 25. q. e. d.

§4. HE(G) for G=U(n),SU(n), Sp(n)

In this section, we prove the following

THEOREM 4.1. Let G be the (special) unitary group U(ή) (n = 3\ SU(n)

( n ^ l ) or the symplectic group Sp(n) (n — ϊ). Then, any /ieHE(G) satisfies the

following (1) and (2):

(1) The localization h(p): G(p)->G(p) of h at a prime p^gn is homotopic to

the identity map, where g = l when G=* U(ή) or SU(ή) and g = 2 when G = Sp(ή).

(2) fι* = id on the integral cohomology group H*(G; Z).

For example, when n^3, the complex conjugate C on ί/(n) or SU(ή) satisfies

C*^id, and so C is not an iί-map with respect to some multiplication on U(n)

or SU(n).

COROLLARY 4.2. The group HE(G) for G in Theorem 4.1 is finite and

nilpotent.

PROOF. If X is the fc-skeleton of G for any fc, then the group [_X, G] induced

by the usual multiplication m on G is nilpotent by [3]. Furthermore, we see by

induction on k that this group is finitely generated, since so are the homotopy

groups of G; and especially [G, G] satisfies the maximal condition for subgroups.

If ΛeHE(G), then \-h is of finite order in [G, G] by [5; Cor. 6.5], because

( 1 - / ^ = 0 for any p^gn by (1) of Theorem 4.1. Thus {l-h\heHE(G)} is

contained in a finite subgroup of [G, G] and so HE (G) is finite. (More generally,
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so is HE(G, m) by [2; Th. C].) On the other hand, the kernel of the natural

homomorphism E(G)-*aut H*(G; Z) sending h to h* is nilpotent by [18 Cor. 9.10]

and [15] and so is HE (G) by (2) of Theorem 4.1. q. e. d.

To prove Theorem 4.1, we use the following notations as in (3.3.1-2) and

(3.1.2):

(4.3.1) G(l) = SU(l+1) or Sp(l% with usual multiplication m, g = 1 or 2,

N, = (n l v . . , wO with ni = 2gi-(-iy9 p: a prime>max{gl, 4},

with (3.1.3), 5(iVz) = n ^ , m = (Πmi)ΓeM(S(ΛΓ/)).

LEMMA 4.3. There exist a multiplication rh on G(l) and a homotopy equi-

valence

(4.3.2) e: S(Nt)^G(/)(p) which is an H-map with respect to m and m^,

where m(p) is the multiplication on G(/)(p) induced from m.

PROOF. The characteristic map S/I/"1->G(/—1) of the principal bundle

G(l-l)J-+G(l)-USn> is proved by [4] to be of order p, where

p = / ! (^ = l), =(2/-l)!(flf = 2,/isodd), = 2((2/-l)!) (g = 29 I is even).

Thus, we have the bundle map

p: G(/-1) x Snι > G(l) which covers p = pcnι: Snι > Snι,

and these are p-equivalences since p>gl and so (p, jp)=l. Hence, a homotopy

equivalence e in (4.3.2) can be defined inductively by

(4.3.3) e = PUexPiP))'- S(Nι> = ^ iV^^x S,-> G(/- l ) ( p ) xS z ^

and we have the homotopy commutative diagram

SVp) = S,,

where i is the inclusion, p is the projection a n d / ' = / ( p ) for f=j or f̂.

On the other hand, for the generator sιeHnι(Sni; Z), we have

(4.3.5) H*(G(l);Z) = Λ(xu...,xι) with j*Xi = Xi (i</), xι = q*sι and

(l^ί^ΐ) are primitive with respect to the usual multiplication m;

and by taking the localization xf e H*(X(p); Z(p)) of x eH*(X; Z),
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(4.3.6) H*(G(l)ip)) = Λ(x'l9...9 x\) withj'*x\ = x\ (/</), x\ =

H*(S(Nd) =

and x'i and yt (l^i^l) are primitive with respect to m(p) and m in (4.3.1),

respectively, where the coefficient ring is Z ( p ).

Then yi = e*x'i ( l ^ i ^ O by (4.3.4), and x'i — e*~ίyi are also primitive with respect

to m' = em(e~ίxe~ί). Thus, by taking the rationalization X(0) = (X(p))(0), the

multiplications m ( 0 ) and m[0) on G(/) (0), induced from m ( p ) and m!, respectively,

give us the same Hopf algebra structure on //*(G(/) ( 0 ); Q); and so m ( 0 ) = m'(0).

Now, by [5; Cor. 5.13], we see immediately the following

(4.3.7) For a prime p, let p denote the set of all primes φp, and consider

also the localization Xp at p. For a simple finite CW-complex X, assume that

X(P) and Xp are H-spaces with multiplications m and m', respectively, and they

induce the same one w^o) = w(O) o n ^(O) = C^QO)(O) = C^P)(O) Then, X is an

H-space with a multiplication m with m^ = m on X^ and rhp = mf on Xp.

Apply this for m' and mp of above with mJO) = m ( o ) = (m ί ) ( O ) . Then

(4.3.8) em(e~x x e'1) = m! = m(p) and mp = mp for some m e M (G(/)).

The first equality means that e is an //-map with respect to m and m ( p ). q. e. d.

PROOF OF THEOREM 4.1. In the first place, we prove the theorem in case that

G = SU(ή) or Sp(n). If G = S\ SU(3) or Sp(2), then H E ( G ) = 1 by Example 1.5

and Theorem 2.6, and so the theorem is trivial. Therefore, we consider the

group

(4.4.1) G(l) in (4.3.1) for / ̂  3 by using the notations given in (4.3.1).

Take any heHE(G(/)). Then heHE(G(Z), rn) and so h*xf's are also

primitive with respect to m in (4.3.5), and we have

(4.4.2) h*Xi = ηfr in H*(G(l); Z) for some ηt = ± 1 ( l ^ i ^

Take a prime p>gl, and consider the localization /i' = / i ( p ) eHE (G(/)(p), ^n(p)) of

heUE(G(0, m) at p and e^h'eeHE(SiN^, m) by m and e in (4.3.2). Then

(4.4.3) there is α=(α 1 , . . . ,α z )€(Z ( * p ) )
ί = Π ί = i H E ( 5 i , m i )

with e-^h'e = θ(a) = Π U at in HE(5W), m),

by (3.1.2-4) since W f - n ! < 2 p - 3 . These together with (4.3.6) imply

(4.4.4) *, = !»,= ± 1 in Zfp) = HE(5 f , mf) /or 1 ^ i g / ,
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since aryt = m*yMer1h'e)*yi = e*hf*x't = e*(ηtx
f

i)^ηtyt in H%S(Nt); Z ( p )).
We now fix any i ( l^ ίg/) and any prime p>gl (and so p^5), and

(4.4.5) put n = Πi + 2p - 3 and take α e πw(SWi p) = [S?p), SJ of order p,

by (3.1.1). Furthermore, consider the multiplication

(4.4.6) mδ = m + i<xπδ on S(N^ for each δ = (δu...9 δ2l)e {0, 1}2Z

with n = Nι(δ) and Σi=i fy*0#Σy=i *ι+y,

where Nι(δ)=Σlj=ίεjnJ (εj = δj + δι+j), i: Sι^S(Nι) is the inclusion and

πδ: S(Nd x S(Nd — S, = Λ 4 j β l S y = S(-p) (S l + y = Sy)

is the projection. Then the assumption that α is of order p and (4.3.8) imply

( i - 1 x e"1))^) = (em^" 1 x e"1))^)

= (^(p))(0) = ^(0) = (^p)(0) O n

and so (4.3.7) implies that emδ(e~ι x e~1) = (τnδ)(p) for some mδeM(G(l)). Thus,

/ I G H E ( G ( / ) ) < = H E ( G ( / ) , m,), /i' = Λ ( p )eHE(G(ί) ( p ) ) ^ ( r ^ r 1 ) ) and

Πί =i ^ = θ(a) = e-Wee HE (S(ΛΓZ), ma) (cf. (4.4.3)).

For aδ= Aδj=ί^j' Sδ-^Sδ (aι+j = aj), this together with (4.4.6) and (1.4.1)

shows that

iaμπ = θ(a)i<xπ = i(xπ(θ(a) A θ(a)) = i<xaδπ in [S(iVz) Λ S(Nt), S(Nt)]

and so the injectivities of ΐ* and π* imply that

(4.4.7) aμ = aaδ in [5,, SJ = π.(S»' p).

Furthermore, by (4.4.5) and (1.7.2), this means the following

(4.4.8) If(εu..., εz)e{0, 1, 2}1 satisfies «f + 2/?-3 = Σy=i ^nj9 then

It = Ulj=iηεjJ where ηt =at= ± 1 in (4.4.2-4).

Now, this implies ηt = 1 for 1 ̂  i: <£ Z as follows, by noticing that yyf's are independent

of a prime p>gl; and we see the theorem by (4.4.2-4) and (4.3.2).

(i) The case g = ί9 n. = 2j+l and / ^ 3 : We can choose suitably a prime

p = 2q + l>l with p^2l + l (i.e. q^l) by the classical result due to Cebysev and

(εl9...9ει)e{09 l,2}1 with ni + 2p — 3='£j=iejnj a n d even εj for 7^1 so that

(4.4.8) shows the following equalities, which imply ηt= 1 inductively since ηt= ± 1:
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1i = ill *\i = nWq-i taking p ^ 7

η3 — γ\\ and ηA = r\\v\\ taking p = 5 for / ^ 4

*7i = Iiii-iil-i if 3 ^ i Φ q and i;, = ηtfi-tfl if i = q

taking /> ̂  11 for / ^ 5.

(ii) The case g = 2, n7- = 4/ — 1 and / ̂  3: In the same way, by taking a prime
p = 4q + r>2l ( r = ± l ) suitably with r = — l for /^9 and with jp<4/ (i.e., q^l,
and ^<Z if r = l ) for /^10, (4.4.8) shows the following equalities, which imply
f/f=l inductively:

= i/J taking p = 11 (1^5), = 23 (/^6), ι/2 = i f } ^ t a k i n g p = 1 9 >

= ifi+i taking p = 7 (/ = 3>, = 11 (/ = 4, 5), = 19 (1^6), for Z ^ 9;

\-* taking /? > 23 if r = - 1 ,

i-i if r = 1, for / ̂  iθ;

-1̂ 1-1 te<0 taking p > l l if r = - 1 ,

0' = ̂ ) taking /> > 17 if r = 1,

for 4 ^ i ^ /.

Finally, we prove the theorem when G = U(n) = Sίx SU(n) (n = 3). Take any

(ε, h) e HE (I7(n)) with ε = ± 1, h e HE (SL/(n)) and (2.5.1)

for y=Sl/(n) by Example 2.5(i). Then (εΛhΛh)* = h* on [ S U Y A Γ , Y] by
(2.5.1) and h(p)~l by the theorem for Y=SU(n), where jp^5 is a prime with
n^p<2n. Therefore (εΛlΛl)* = id on [(S X Λ 7 Λ 7) ( p ), 7(p)] and so on
[(S1

 Λ 5 3
 Λ S*-2

 Λ SP\P), Sfp)] = n2p+2(S5 p) = Zp. Thus ε = 1 and the theorem
for G = U(n) is proved. q. e. d.
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