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Introduction

Let X be an H-space. Then a homotopy equivalence h: X—X is called a
self H-equivalence of X with respect to a multiplication m: X x X—»X if hm~
m(hx h): X x X—X (homotopic); and all the homotopy classes of such self
H-equivalences form the group

HE (X, m) (the notation &y (X, m) is used in the recent papers)

under the composition. In general, X has several multiplications and this group
depends on m. For example, the complex conjugate C: SU(n)—SU(n) of the
special unitary group is an H-map with respect to the usual multiplication, but
not so to some one on SU(n) for n=3, as is proved by Maruyama-Oka [9].

In this note, we consider the group

HE (X) = N, HE (X, m) (m ranges over all multiplications on X)

formed by all self H-equivalences of X with respect to any multiplication, and
study its basic properties. The main result is stated as follows:

THEOREM. Let X be the unitary group U(n) (n=3), the special unitary
group SU(n) (n=1) or the symplectic group Sp(n) (n=1). Then, any self
H-equivalence h € HE (X) with respect to any multiplication induces the identity
map hy=id on 1 (X)®Z,, for a large prime p; and HE (X) is a finite nilpotent
group.

We prove the basic equality on HE (X) in Proposition 1.4, and study it in
case that X is a product H-space in Theorem 2.4. Furthermore, by using the fact
that the localization X ,, of X=SU(n) or Sp(n) at a large prime p is homotopy
equivalent to the product space of the localizations of some odd spheres, we study
HE (X ;) in Corollary 3.4; and the main result is proved in Theorem 4.1 and
Corollary 4.2 by a similar method to that used in [9].
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§1. Basic equality on HE(X)

Throughout this note, we assume that all spaces, maps and homotopies are
based and spaces have homotopy types of CW-complexes. A map f: X—Y and
its homotopy class f in the homotopy set [ X, Y] are always denoted by a same
letter.

When X =(X, m) is an H-space, i.e., X admits a multiplication m: X x X—»X
such that m|X v X=F (the folding map) in [X v X, X], we consider the set

(1.1.1) M(X)(<=[X x X, X]) of all homotopy classes of multiplications on X.
Then, using the sum + on [ , X] induced by m, we have easily a bijection
(1.1.2) [XAX, X] =~ M(X) by sending

ae[XAX, X]to m,=m+areM(X),

where n: X xX>XxX/XvX=XAX is the collapsing map (cf.,, e.g., [11;
Th. 2.3]).

When Y=(Y, m’) is also an H-space, f: (X, m)—(Y, m’) is an H-map if
fm=m'(f x f)in [X x X, Y], and such H-maps form the subset

(1.1.3) [X,m, ,mly<[X,Y] (meM(X), meM(Y)).

By taking their intersection, we have also the subsets

(1.1.4) [X, Y]a = Nmemxymemery [X, m; ¥, m' ]y of [X, Y], and
HMap (X) = /\meM(X) [X, m; X, m]H o] [X, X]H Of [X, X] .

LemMa 1.2. () [X, Y]u=[X,m; Y, m]uynO[X, Y] for any meM(X)
and m' e M (Y), where O [X, Y] consists of all fe[X, Y] satisfying

(1.2.1) fx=0:[XAX,X]—[XAX,Y] and
fAf)*=0:[YAY,Y]—[XAX,Y].
(i) HMap(X) =[X, m; X, m]ynI(X) for any meM(X), where
(1.22) IX)={felX, X]|fs=(fAN*:[XAX,X]—[XAX, X]}.

Proor. Take fe[X,m; Y, m']y. Then, for m,=m+aneM (X)(xe[X A
X, X]) and mp=m'+'fre M (Y)(Be[YAY, Y]) in (1.1.2), the equality fm=
m'(f x f) implies the ones
fma =f(m+a7t) =fm +'fd7t,

my(f x ) = m'(f x f) +' Bn(f x f) = fm +' B(f Af)m
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in [X x X, Y]; and fe[X, m,; Y, mp]y means that these are equal to each other.
Therefore, [6; Th. 1.1] and the injectivity of n*: [X A X, Y]->[X x X, Y] imply
that

(1.23) fel[X,m,; Y, mgly if and only if fo=B(f Af) in [XAX, Y].
This shows the lemma by definition. q.e.d.

Now, for an H-space X, consider the group
(1.3.1) E(X)={h|h: X - X is a homotopy equivalence} (=[X, X]),
with group—multiplication given by the composition, and its subgroups
(132) HEWX,m)=EX)n[X,m; X, m]y foreach meM(X), and
(1.3.3) HE(X) = Npemexy HE (X, m) = E (X) n HMap (X).
Furthermore, consider the action of E (X) on [X A X, X] given by
(1.34) hva=ha(hAah)e[XAX,X] for heE(X) and ae[X A X, X].
Then, we have the isotropy subgroup and their intersection
(1.3.5) E(X), ={heE(X)|h*a=0a} at ae[XAX, X] and

IE(X) = Nuepxax,n B, = B NI(X) (see (1.2.2)),

where IE (X) is a normal subgroup of E (X).
The following equalities play a basic role in our study.

ProrosITION 1.4. For any H-space X, HE (X) is a normal subgroup of
E(X); and for each multiplications m and m,eM(X) (ae[X A X, X], see
(1.1.2)), we have

(1.4.1) HE (X, m) n HE (X, m,) = HE (X, m) n E(X),,
(1.4.2) HE (X) = HE (X, m) nIE (X).

Proor. If heE(X), then m'=h"'m(hx h)e M (X) and h~! HE (X, m)h=
HE (X, m'). Thus, we see the first half. (1.2.3) for Y=X, m'=m and f=«a
means (1.4.1), and (1.4.2) follows from (1.4.1) and (1.3.5). g.e.d.

ExaMPpLE 1.5 ([12; Th. 4.1]). If X is S* (n=3, 7) or the Eilenberg-MacLane
space K(n, n) for an abelian group =, then HE (X)=HE (X, m) for any me M (X)
and

HE(S*) =1, HE (K(zn, n)) = aut~.
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Now, let p be a prime =3 and consider
(1.6.1) the localization S = S¢,, of the n-sphere S" (n=1) at p,
(1.6.2) the subring Z,, = {s/t|s, teZ,t>0, (t, p) =1}
of the rational field Q, and
(1.6.3) the multiplicative group Z¢,, consisting of all units in Z,.
Then, we can identify as follows (cf. D. Sullivan [14; 4.9, Cor.1]):

(1.6.4) m,(S) = Z,, [S, S] = Hom (n,(S), n,(S)) = Z, as rings, and

E(S) = Z¢,.

Furthermore, J. F. Adams [1] proved the following

(1.6.5) S=S8%,)(n:o0dd) is an H-space with a homotopy commutative

multiplication m.

In this case, for any s/t in Z,,=[S, S], s and t are H-maps in [S, m; S, m]y, and
so is s/t since (¢, p)=1. Thus, we see the following

(1.6.6) In case of (1.6.5), [S, m; S, m]y =[S, S]1=Z,, and
HE (S, m) = E(S) = Z¢,,.
Also, we denote the p-component of 7 (X) by (X ; p), and consider the subgroup
(167 U,p=1+4+pZ, whenr=1or U, =2, when r=0
of Zt, in (1.6.3).

PRrROPOSITION 1.7. For a prime p=3 and an odd integer n=1, let p" be the
largest order of elements in m,,(S"; p). Then, HE(S)=U,. for the H-space
S§=S8¢, in (1.6.5).

PrOOF. Let S’=S¢,, (n'=n). Then, we can identify as follows:
(17.1) [S', 81 =m(SN®Z ) = me(S™; P) ('>n), = Zg, (w'=n).

Here the group structure is given by the suspended space S’ of S7,;!, and is also
induced from m e M (S), and we see that tas=sat (s, t € Z) and so

(172 ag=qa=gq-a
for any q =s[teE(S") =E(S)=Z{,) and ae[S’, S].

By (1.3.5) and (1.7.2), g € E(S)=2%, is in IE (S) if and only if
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a=qg7ldgrg)=q-a forany ae[SAS, S]=m,,(S";p),

which is equivalent to g € U,- by the definition of p" and U,-. = Thus, HE (S)=
U, by Proposition 1.4 and (1.6.6). g.e.d.

§2. Product H-spaces

In this section, we consider
(2.1.1) H-spaces (X;, m;) and their product H-space X = [ ], X, with

my ={JImJ)T: X x X ~ ] (X, x X;) » X as multiplication

(T': the permuting homeomorphism).
Also, for any H-space (Y, m), we consider the n-fold product H-space
(2.1.2) (Y, m") = (1Y, TIm)T) with (Y, m) = (Y, m) for 1<k =n,
the iterated multiplication
(2.1.3) m: Y > Y, given inductively by m = m when n =2 and
m=m(mx1),
the obstruction h(m) for m to be an H-map (Y”, m*)—(Y, m), i.e.,
(2.1.4) h(m)e[Y"AY", Y] with m(m x m) = mm" + h(m)x in [Y*"xY", Y],

and the one c¢(m) or a(m) for m to be homotopy commutative or homotopy
associative, i.e.,

(2.1.5) c(m)e[Y AY, Y] with
mT = m + c(m)n(=m,,y in (1.1.2)) in [Yx Y, Y],

(2.1.6) a(m)e[YAYAY, Y] with
mmx1)=m(lxm) + a(m)r in [YXYxY, Y].

By the k-th inclusion and projection X,—*,X_?%, X,, we define the maps
@L7) [X, Y15 [T [ X, Y1 - [X, Y] by i% = (fiy,... fi) (fE [X, YD),
om(flr--’fn) = mf, .f= ].—Ifke [X, Y"]a (fke [Xk’ Y]’ lékén)’

and consider the following subsets of ] [X;, Y], where 1,(m) is given only when
n=2:
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(2.1.8) H{my;m} = {(f1,.... /) | fu € [Xs» my; ¥, m]y are H-maps},
L (m) = {(fi,-, f) | K@ (FAf) =0 in [XAX, Y]},
L(m) ={(fi,-.. ) | em)(fiaf) =0 in [X, A X, Y] (k<D},
L(m)={(f,, /)|
am)(m(fyx foAfinfa) =0 in [(X;x X )AX;AX,, Y] and
am)(firfinf)=0 in [X,AX, AX, Y], for k+#1}.
LemMma 2.2. (i) 0,i*1=1 and i*1eH {m,; m} n1,(m) (b=h, ¢, a) if (Y, m)
=(X’ mX)'
(ii) i*@,,=id, and by restricting i* and 0,,, we have the bijection
i*: [X, my; Y, mly = H{m; m} nI,(m) with 6,i* =id.
(iii)) H {my; m} n1,(m) is contained in 1, (m), and coincides with
H{m,; m}nl . (m) if mis homotopy associative, and

H{m; m}nI.(m)nI,(m) if n=2.

PrOOF. Let Y=X and m=my. Then 0,i*1=mi=1 (i=I] i,), m(m x m)-
(IxD=m=mi([T m)T=m({ 1 m(, x i) T=mm"(ix7), and mTi'=mi’, mi"=
m(mx m)i”, etc. for i' =i, xi, i"=i, xi'xi, (k#1). Thus we see (i).

Now, for any (Y, m), (i) shows that

2.2.1) if fe[X, my; Y, m]y, then
0,i*f=f and i*feH {m; m} nI,(m)(b=h, c, a),

because mf"=fmy and f commutes with the obstructions in (2.1.4-6), e.g.,
h(m)(f* Af®)=fh(my). Conversely, let (f)=(fis.... .)eH {m; m}. Then
m*(f x f)=TTm(fe x f))T={1f,m)T=Ffmy. Therefore, if (f,)el,(m) in ad-
dition, then
(2.2.2) m(mxm)(f x f) = mm(f x f) = mifmy and so

om(ﬁc) = m]E [X’ my,; Y’ m]H'

Thus we see (ii). If (f}) € I. (m), then m(f; x f)=m(f; x f)T for k#1. Therefore,
by the definition of m®, we can certify the first equality in (2.2.2) when m is homo-
topy associative, i.e., m(# x 1)=m(1 x m) in (2.1.3), or when so are several com-
positions of product maps of f,’s and those of m’s, e.g., when n=2 and (fy, f,) €
I,(m). Thus we see (iii). q.e.d.

We now consider the set of matrices

23.1) M{m} ={@a)lapnelX;, X;3 (1=, k=n)}, with multiplication
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(a;)(bj) = (MIT,aby)d) (4: X~ (X" is the diagonal map),
and the following maps and subsets of M {m,}:
232) [X, X]-2M {m}-L.[X, X1, given by ¢(f) = (p,fi) (fe [X, X]),

pje(ajk) =m;d; d;= I a; € [x, (Xj)"], (ajke Xk, Xj]) >
(2.3.3) HM {m} = {(a;)laue [ X, m; Xj, mjly ie.
@1, aj) € H {my; mj}},

LM {m.} = {(a;)|(a;1,..., aj) €I, (mp} (b=h, c; and b=a for n=2).

Then, Lemma 2.2(ii) implies the following

(2.3.4) ¢0 =id, and the restrictions of ¢ and 6 give us the multiplicative
bijection
¢: [ X, my; X, myly = HM {m;} nNIM {m,} with ¢~ 1=0.
In fact, let fe [X, my; X, mx]H. Then p;f=p;06(f)=m;(I1, p;fi)),
pifgi, = m(I1, p;fipgix)4 and so ¢(fg) = ¢(f)(g) (9 € [X, X])

by the definition of the multiplication in (2.3.1). Therefore, we have the isomor-
phism

(2.3.5) ¢: HE(X, my) @ HGL {m,} nI,M {m,} of the group in (1.3.2), where
HGL {m,} = {invertible matrices in HM {m,}} (cf. [12; Th. 3.8]).
By using the sets in (1.1.4), we define the following subsets of HM {m,}:
(2.3.6) HM = {(ajk)lajk €[ X, X;lu (k#)), ai € HMap (X))} = "HM {m;}
> HGL = HGL {m,} n HM = {invertible ones in HM} = HGL {m;},

where the intersections are taken over all multiplications m} e M (X,) (1<k<n).
Then (2.3.5) and Lemma 2.2 imply the following theorem on the group

2.3.7) HE (X) = HE (X, my) nIE(X) (see Proposition 1.4):

THEOREM 2.4. Let X=]]}-, X, be a product H-space in (2.1.1) of H-spaces
(X my).
(i) Then the restrictions of ¢ and 0 in (2.3.2) give us the isomorphism
¢: HE (X) @ HGL {m;} n ;M {m,} n ¢IE (X)
= HGL nIL,M {m,} n ¢IE(X) with ¢~1=0.
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(ii) ¢HE(X) = HGL n ¢IE (X) if each m, is homotopy associative.
(iii) ¢ HE(X) = HGLnIM {m,} n¢IE(X) ifn=2.

Proor. It is sufficient to show that if helE(X), then ¢(h)=(p;hiy)e
I.M {m,}, which is shown by definition (1.3.4-5) as follows:

c(m;) (p;hi, A p;hiy) = pic(my) (h A B) (i A i) = pihe(my) (i AT) =0 (k<]).
q.e.d.

ExAMPLE 2.5. (i) Let Y be a 2-connected H-space. Then,

HE(S'xY) > {(s, h)|e= £1€Z, = HE(S!), he HE(Y)
with the following (2.5.1)} :

2.5.1) (eAh)*=h, on [S'AY, Y], (eAhAR*=h, on [SIAYAY, Y],
(1Ah)*=h, on [S2AY, Y], (1ANhARh*=h, on [S2AYAY,Y].

In particular, HE (S' x S")=Z, for n=3, 7 ([12; Th. 4.3]).
(ii) For the Eilenberg-MacLane spaces K(G, k) and K(H, l) with k<l
and abelian groups G and H,

HE (K(G, k) x K(H, l)) ~ PHYG, k; H) x,D (the semi-direct product),
where PHYG, k; H) is the subgroup of all primitive elements in HYG, k; H),
D ={(g, h)eautGxaut H| (g Ag)* = hy on H(K(G, k) A K(G, k); H)},

and s is given by as(g, h)=h"'ag for o € PHYG, k; H) and (g, h) € D.

Proor. (i) Since [S!, Y]=0=[Y, S!] by assumption, we have HGL =
HE (SY)xHE (Y) and HE (X)~HGL n ¢IE(X) for X=S'xY by Theorem
2.4(iii). (2.5.1) for (¢, h) e HE (S') x HE (Y) means ¢ x h e IE (X) by definition,
since [XAX,X]=[XAX,Y] can be identified with [I;[A;=1Y, Y] (6=
(015-,04)€{0,1}4, 0, +6,#0#065+0,, Y=Y,=S,Y,=Y,=7).

(iii) Since [K(H, I), K(G, k)]=0 (I>k) and [K(G, k), K(H, I)]y=PHYG,
k; H), we have HGL =PHYG, k; H) x(aut G xaut H) and HE (X)=~ HGL n
¢IE(X) for X=K(G, kyxK(H, ). Since [XAX, X]=H'K(G, k) AK(G,
k); H), we see that (x, (1,1))e ¢IE (X) for any xe PHYG, k; H) and that
(0, (g, h)) e 9IE (X) (g e aut G, h e aut H) if and only if (g, h) e D. q.e.d.

THEOREM 2.6. Let a simply connected CW-complex X be an H-space of rank
2. Then HE (X) is trivial unless X is homotopy equivalent to S'x S* (1=3, 7),
and

HE(S'xS") = H = {(a;)|a;;€ Z (15, j£2), det (a;;) = 1, a;; = &;; mod 2k;}
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for 1=3,7 by the isomorphism ¢ in Theorem 2.4, where k3;=12 and k,=120.

Proor. In the first case, HE (X, m)=1 for some or any m by [7], [8; Th. 4.1]
and [13; Th. 5.8]. Let m be the usual multiplication on S* (I=3,7). Then, by
[6; p. 176], [16], [13; p. 325] and [2; Prop. D], we have

(2.6.1) m,(SY) = Z,, generated by c¢(m) and kn,(SY) =0 (r=2, 3, 4),
(2.6.2) [S!, m; S, mly={neZ|n?=nmod2k,}.

Thus, for X=S8!'x S§! and Y=S%, I.(m)={(n,, n,)|n;n,=0mod k;}, H {m,; m} n
I, (m)cI,(m)(my=m,=m) in (2.1.8) by (2.6.1-2) and so HE (X, my) is isomor-
phic to

(2.6.3) {(a;)|det (a;;) = £ 1, a?; = a;;mod 2k, a;;a;, = 0mod k;}

by (2.3.5) and Lemma 2.2(iii) (cf. [12; Ex. 3.10]). Also, O[S}, S']={n|n=0
mod k;} and so [S', S']y={n|n=0mod 2k,} by Lemma 1.2(i). Therefore, we
see that

(2.6.4) HGL in (2.3.6) for X = S' x S! is contained in H.
Now, we see ¢: HE (X)=~ H by Theorem 2.4(i), (2.6.3—4) and the following
(2.6.5) h = 6(a;;) for (a;;)€ H satisfies
(hah)* =id = hy: [X A X, X]— [XAX, X],
because this shows heIE (X). To prove (2.6.5), consider the exact sequence
0—[S2AX,S]EADS X AX, ST — [(S'VS)HAX,S]—0
and take any a e [X A X, S']. Then, by the sum + induced by m, we have
(2.6.6) a=oa(i;p; A1)+ a(ip, A1) + o(m A1) for some we[S*AX, S].

Consider h=0(a;;) with p;h=mad;, d,=a;; X a;,, for (a;;)e H. Then, by (2.6.6)
and (2.6.2),

a(d@; A1) = olisajpy A1) + alizazpr A1) + o(aj Aaj)nAl) = a(ijp;A L),

since a;;=06;;mod 2k, Hence P(p;h A1)=p(mi;p;A1)=Pp(p;A1) (Be[S'AX,
§']). Also th=n on [X, §?!] since det (a;;)=1. Therefore, by (2.6.6), we have

awhAl)y=a(i;p;h A1) + a(i,p,h Al) + (mhAl) =a,ie.,
(ha)*=id on [X A X, S1].
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Similarly (1 A h)*=id and so (hAh)*=id on [ XA X, X]. We can prove that
h, =id by a similar way, considering [ , X] in addition to [ , S*] and noticing that
h is an H-map with respect to my by (2.6.3). Thus we see (2.6.5). q.e.d.

§3. Localizations of SU(n) and Sp(n)

The rest of this note is based on the following classical result due to J.-P. Serre:

(B.1.1) m, 4 (S"; p) (n: 0dd23, p: odd prime) is 0 if 0<k<2p—3 and Z,
(rz1) if k=2p-3.

We consider the case that X, in Theorem 2.4 is the one in (1.6.5) stated as
follows:

(3.1.2) Let p be a prime=5 and N=(n,,..., n;) be a sequence of odd integers
with 1=n,<---<n;and

n,(S"; p) =0 (e.g. n;—n;<2p—3 by (3.1.1)) for any i <j with n; > 1,
and consider the localizations and their product H-space
S; =8¢, in (1.6.5) and S = S(N) =[]}, S;in (2.1.1)

with multiplications m; e M (S;) and m=([Tm;)Te M (S), respectively, where

(3.1.3) m; is taken to be homotopy commutative and homotopy associative by

[1].

Then [S;, S;]=0 (i#j), and (2.3.2-5) and Theorem 2.4(ii) imply the following
(3.1.4) HE(S, m)  HGL {m;} = [1i-; HE(S;, m;) = (Z{,))" (see (1.6.6)),

HE (S) = I (N) = HGL {m;} n ¢IE(S) (S=S(N)),

and a=(ay,..., a;) (a;€ HE(S;, m))=Z2¢,)) belongs to ¢IE (S) if and only if

(3.1.5) (B(a)AB(a))*=0(a)y on [SAS,S] for 6(a)=TI,a;€E(S).

Here, by (3.1.3), we can identify [S A S, S] with the direct sum of

(3.1.6) [Sé, Si] = ﬂN(a)(Sm) ® Z(p) for 1 <i< 1 and
0 =(0y,...,02)€{0, 1}2* with 3L 16;#0# Xy dy4j,

where S6= A 51=1Sj=SFp()") (Sl+j= j) and N(5)= Z§=1 gin; (8j=5j+61+j); and
by (1.7.2), we can identify (6(a) A 0(a))* (resp. 8(a),) with the multiplication by
the element

(3.1.7) a(0) =TT!=y a* (resp.a;) in Z§, on each summand 7y ;) (S")®Z,.
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Thus, we see the following theorem, where (ii) follows from (i) and 7,(S")®
Zpy=Zy

THEOREM 3.2. Let S(N) be a product H-space in (3.1.2). Then:

(i) HE(S(N)) = I(N) = (Z¢,))! (Z%,, is the group given in (1.6.3)),
and the subgroup 1(N) consists of all a=(ay,..., a) €(Z{,))' satisfying
B21) a(e)-a=a;-a in n(e, i) = Ty(S")® Z, forany aen(, i),
for each 1Zi<1 and each e=(g,,..., &) € {0, 1, 2}!, where
(3.2.2) a(e) =I1i-,a%€Z, and N(g) = X' emn;

(ii) If n(e, i)=7ney(S™; p)=0 for anyiand e with N(e)>n;, e.g., if 23 n;
<n;+2p-3 for n;>1 by (3.1.1), in addition, then

(323)  I(N)={(@y-r a)E(Z) 10, = ale) in Z, if m= N()}.
Now, we consider the special unitary group or the symplectic group by

(3.3.1) putting (G()), g) = (SU(+1), 1) or (Sp()), 2)
and taking a prime p > max {gl, 4}.

Then, the localization G(I),, of G(I) at p is homotopy equivalent (=) to
SU() py X St = [Ti=ySE  or Sp(I— 1),y x SEt ~ [Th= SE;1, respectively,
(cf. Lemma 4.3 below); and so Theorem 3.2 implies that

(332)  HE(G()) = HE(S(N)) = I(N)
for N, =(ny,..., n) with n;=2gi —(—-1)¢ (1Zig]),

since n;—n; =2g(l—-1)<2p—13 by (3.3.1).
CoOROLLARY 3.4. (i) HE (SU(I+1),)) =HE (SU(l),)) cHE (SU(5),y) =
(ZE ) if p>125. If p>1(1+2), then HE (SU(I+1),) is isomorphic to
Zt)(128), (Zg,)°71 (12125), (Zg,)' (4zl1z)).
() HE(Sp(l))) = HE (Sp(I—1)(,)) = HE(Sp(7)(,)) = (Z(;))
if p/2>128. If p>1(2l1+1), then HE (Sp(l),) is isomorphic to
z8, (1213), (Zh)“ (1221210), (24,7 (1=9,8), (Z&)' (T212D).

Proor. Take a=(ay,...,a)el(N) for N, in (3.3.2). Then, since n;=
2-3421-5(g=1), =2(3+7)+41-21 (g=2), the definition of I(N) in (3.2.1-2)
shows that
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a = a%al—S (g=1, 125), = 0%0%01_5 (g=2’ 128)9
and a’ = (ay,...,a-1)€l(N,_y);

and so I(N)<I(N,_,) by sending a to a’. Thus, the first halves in (i) and (ii)
hold.

Assume that p>Il(gl+g—(—1)9)=>;n;. Then 23 ;n;<n;+2p—3 and so

(3.4.1) I(N) is given by (3.2.3) for N=N,, and (q™,..., q"")el (N} for
any q€Z,),
by Theorem 3.2(ii). This shows the second halves arithmetically as follows.

(i) Let g=1 and n;=2i+1. Then the conditions for (a,..., @) € I(N,) in
(3.2.3) are nothing when /<4, and so I(N))=(Z¢,)". They consist of as=ala,
when [=35, and

a;=a%a;_3 (55i<l) and a;=a,a,a;_, (65i<]) when I=6,7;
and so I(Ns)={(a;, as, as, a,)}, I(Ng)={(a,, a,, a,)} and I(N,)={(a,, a,)}.
Also, they contain ag=a?as=a,a,a, when [=8, and so I (Ng) = {a,}, which shows
I(N)=Z¢, for =8 by the second half of (3.4.1) and the first half.

(ii)) Let g=2and n;=4i—1. Then the conditions for (ay,..., a;) € I (N,) are
nothing when /<7, and so I(N,)=(Z{,)!. They consist of ag=a%a%a; when
1=8, and

a; = a%a%a,—_s (8§i§l), = a%a2a3ai_6 (9§i§l), = ala%a3a‘-_7 (10§i§1),

= alaya,a;_ ;= a}a3a;_, (11LiLl), = a,a3a2 = a,a,a3a, (i=1=12)
when 9 <1< 12; and so I (Ng)={(ay,..., a7)}, I(Ng)={(ay, a,, as, as, as, a;)},
I(Nyo)={(ay, a3, as, a7)}, L(Ny)={(ay, a,, a;)} and I(N,)={(a,, a;)}. Also
they contain a,;=a%a%ag=a%a,a;a, when =13, and so I(N,3)={a,} which
shows I1(N)=Z¢, for 1213 by (3.4.1) and the first half. q.e.d.

Here, we remark on the rationalization X, of X. For the n-sphere
S (n: odd), we have

%oy = K(Q, n), E(Sf,) = aut Q = Q* (=Q—{0}: the group of all units of Q) ;

and [S7,, St)]=m,(Sk))=0if n#n’, =Q if n=n". Thus, in the same way as
Theorem 3.2 and Corollary 3.4, we see the following

PROPOSITION 3.5. (i) For a sequence 1<n,<---<n; of odd integers,
HE ([Ti-; K(Q, n)) = I(N) = (%)},

where I(N) (N =(ny,..., n))) is given by (3.2.3) using Q* instead of Z{,,.
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(ii) For the rationalizations SU(l+ 1), and Sp(l)y, the conclusions of
Corollary 3.4 also hold by putting p=0 and Z{,=Q*.

In connection with Corollary 3.4, we note furthermore the following
ExAMPLE 3.6. (i) HE (SU(5),,,)) is isomorphic to (Z{,))* if p>23,
{a%aya3%a2=1mod 23} if p =23, {a,a;=a% and a,=a%aZmod 19} if p=19,
{a;=q"""mod 17 (1£i<4) for some qe Z¥,,)} if p=17, (U)*if13zp=7,
{a;eUs (15i<4),aia3 =a} =a,and a2 = 1mod 25} if p=5,
where { } consists of all (ay,..., a;)e(Z¢,))* with the relations contained in { },
(3.6.1) U,=1+ pZ,, ={qeZf,)lq =1mod p} is the group in (1.6.7), and
(3.6.2) q,; =q,mod p* (q,=5,/t, € Z{,)) means s t, = s,t; mod p" (r=1).
(i) HE(Sp(7),,) is isomorphic to (Z},))" if p > 103,
{a; = [1}-y a} mod p} (2j=107—p) if 103 = p 297,
{a; = a} 'ai" 1 (1£i<5) and al® = al’a%a? mod 89} if p = 89,
{a;=a} 'ai ' (1Zi<7) and a%¥ = ak*®mod p} Qk=p—33) if83=2p=71,

and (U,)" if 612p=17, where { } consists of all (ay,..., a;)e(ZE,))" with the
relations in { }.

ProoF. (i) for p>23 and (ii) for p>103 are in Corollary 3.4.
Consider (3.2.1) for N=N,=(n,,..., n;) and a prime p with

(3.6.3) l=4,n=2i+1 and 5<p<23, or
I=7n=4i—1 and 17 < p < 103.

Then Nfe)=3;en;<2 3% ;n;=48 or 210 for any e=(e,,..., &) e {0, 1, 2}' and
N(e)#n; except for the trivial case ¢;=1 and ¢;=0 (j#1i). Also, by Toda [16;
Th. 13.4],

(3.6.4) 7(e, i) = my,()(S™; p) (O<N (&) —n;<2p(p—1)—2) is 0 except for
(3.6.5) Z,if N(e) —n;=2k(p—1)— 1 (1=k<p)or 2k(p—1) — 2 (n;/2<k<p).
Further (3.6.2) is equivalent to hold q,-a=gq,-a in Z,. for any a€Z,.. Thus,

(3.6.6) I(N) = {(ay,..., a) € (Z%,)"|
a; = [T}, a¥ mod p if (3.6.5) holds} for p = 1.
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This and (3.3.2) imply the results for p=7 as follows, where = denotes = mod p.

(i) Thecase [=4 and n;=2j+1: Let p=23,19 or 17. Then (3.6.5) holds
when and only when N, (¢)=48 and i=2, N,(e)=35+n; and i<3, or N,(¢)=
31+n,, respectively; and so the condition in (3.6.6) consists of a,=ad (=114-; a?)
if p=23,

a; = d(a,a4—;)" 1 (1=5i<3) and a, = da3?
(«<>aa; =a3 and a, =a%al) if p=19,

a; = d(a,a6-;)"" (25i£4), a; = d(ayas-;)" ' (1Si<3) and a, = da3?
if p=17. The relations for p=17 are equivalent to
(3.6.7) a;=a;_19 =a,q""' (22iZ]) for some geZ},,

and the last one ajq®=1, which implies a, =¢® by Fermat’s theorem gP~1=1.
Let p=13 or 7. Then we can take (N,4(¢), i)=(26, 1) or (32, 4) in (3.6.5),
and so

a; = a,a,a2 = a,a3a, = a%aza,, which imply (3.6.7), and a, = d(asa,)™!

are in the condition in (3.6.6). These imply a}q’=1=ajq* and so g=a;=1
(1£i<4) since g12=1. If p=11, then for (N,(¢), i)=(26, 3) or (42, 1), we have
similarly

a; = aja,a}, (3.6.7) and a, =da7? which imply

aig® =1=ajq'? andso g;=1(15i<4).

Thus I(N,)=(U,)* for 132 p=7, since (U,)*<I(N,) is clear by (3.6.6).

(ii) The case I=7 and n;=4j—1: If p=103, 101 or 97, (3.6.5) holds when
and only when N,(¢)=210 and i=(107—p)/2, and so the condition in (3.6.6)
consists of a;=ad (=[1}-; a?). If p=89, then we have N,(e)=175+n;=210—
@2ny+n,+ng_;) for i<4 in (3.6.5) and so

daj! = alazae-; (15i£4), = alazas_; (i=1, 2), =a,a,a% (i=1)in (3.6.6).
These are equivalent to a;=a;9'~! (1<i<5) for some g and aZaZajq'’=1. If
p=83,79, 73 or 71, then we have N,(&)=2p—3+n;=210—(n +fi+n;,,_;) for
i<j(j=6,7,7o0r7, and i=n,+ns, n,+n,, ny+ng or ny+ ng, respectively) so
that the condition in (3.6.6) is equivalent to (3.6.7) and a}3q*?>=atq" (2n=99— p)
(«=alq**9=1 (2k=p—33)) similarly.

If 672p=59, then for N,(¢)=134 and i=j(=(69—p)/2), we have daj'=
a,asa?=a}a3a3a,as and (3.6.7), which imply a$¢?"- /=1, at=q3 and g;=1
(1<ig7). IfS53zp=17, then we see a;=1 (1<i<7) by taking (N,(¢), i) to be
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(106, j), (110, j+1) (2j=55—p) for 53 = p = 43;
(86, 2), (170, 3) for p = 41; (86, 4), (146, 1) for p = 37;
(86,7), (121, 1) for p=31; (58, 1), (113, 1) for p = 29;

and (58,)), (54,j—1) (2j=31—p) for 232p=17. Thus I(N,)=(U,)" for
67=p=117.

Finally, let p=5, I=4 and n;=2i+1. Then, in the same way as the case
p=13 or 7 in (i), we see that the relations in (3.2.1) for n(e, i)=Z are equivalent
to a;=1(1<i<4). On the other hand, by Toda [17; Th. 7.1-2],

(3.68) (e, ) =Tn, (oS3 5) (<N (S48) is Z,s5 if (N(®), n)=(43, 5),
(45, 7) or (48, 9), and Zs or O otherwise.

Therefore, the relations in (3.2.1) for n(e, i)=Z, consist of a, =da3', a;=dag!

and a,=dmod 25, which are equivalent to a,a;=a%=a, and a(=1mod25
since q2°=1 mod 25. q.e.d.

§4. HE(G) for G=U(n), SU(n), Sp(n)

In this section, we prove the following

THEOREM 4.1. Let G be the (special) unitary group U(n) (n=3), SU(n)
(n=1) or the symplectic group Sp(n) (n=1). Then, any h e HE (G) satisfies the
following (1) and (2):

(1) The localization h,: G,—G,, of h at a prime p=gn is homotopic to
the identity map, where g=1 when G=U(n) or SU(n) and g=2 when G=Sp(n).

(2) h*=id on the integral cohomology group H*(G; Z).

For example, when n = 3, the complex conjugate C on U(n) or SU(n) satisfies
C*#id, and so C is not an H-map with respect to some multiplication on U(n)
or SU(n).

COROLLARY 4.2. The group HE(G) for G in Theorem 4.1 is finite and
nilpotent.

Proor. If X is the k-skeleton of G for any k, then the group [X, G] induced
by the usual multiplication 7 on G is nilpotent by [3]. Furthermore, we see by
induction on k that this group is finitely generated, since so are the homotopy
groups of G; and especially [G, G] satisfies the maximal condition for subgroups.
If he HE (G), then 1—h is of finite order in [G, G] by [5; Cor. 6.5], because
(1=h),,=0 for any p=gn by (1) of Theorem 4.1. Thus {1—h|he HE (G)} is
contained in a finite subgroup of [G, G]; and so HE (G) is finite. (More generally,
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so is HE (G, m) by [2; Th. C].) On the other hand, the kernel of the natural
homomorphism E(G)—aut H,(G; Z) sending h to h, is nilpotent by [18; Cor. 9.10]
and [15]; and so is HE (G) by (2) of Theorem 4.1. q.e.d.

To prove Theorem 4.1, we use the following notations as in (3.3.1-2) and
(3.1.2):

4.3.1) G()=SU(l+1) or Sp(l), with usual multiplication m, g=1or 2,
N,=(ny,..., n)) with n;=2gi—(—1)¢, p:a prime>max {gl, 4},
S;=8¢,, m;e M(S;) with (3.1.3), S(N)=I1S;, m=([Tm;)Te M (S(N))).

LEMMA 4.3. There exist a multiplication wi on G(I) and a homotopy equi-
valence

(4.3.2) e: S(N)~G(1),, which is an H-map with respect to m and 1,
where 1, is the multiplication on G(l),, induced from r.

Proor. The characteristic map S™~!-G(I—1) of the principal bundle
G(1—-1)-4,G()-2,S™ is proved by [4] to be of order p, where

p=1(g=1), =QI-1D!(g=2,lisodd), =2((21-1)!) (g=2, lis even).
Thus, we have the bundle map
p:G(—1) x S — G(I) which covers p = p¢,,: S"t — S™,

and these are p-equivalences since p>gl and so (p, p)=1. Hence, a homotopy
equivalence e in (4.3.2) can be defined inductively by

(4.3.3) e= puyexpih): S(N) = S(N;—1) xS, = G(I—=1),y x S; = G(I) ) »
and we have the homotopy commutative diagram

S(Ny-y) 5 S(N)=S(N,_y) x S, 2 5,
(4.3.4) le 18 ”

G(l—-1) £, Gy L Sty =——= S,

where i is the inclusion, p is the projection and f'=f,, for f=j or q.
On the other hand, for the generator s, H"'(S™; Z), we have

4.3.5) H*(G(); Z)=A(xy,..., x;) with j*x;=x; (i<l), x;=q*s; and x;
(1=i=Z)) are primitive with respect to the usual multiplication m;

and by taking the localization x’ € H*(X,,; Z,)) of xe H¥(X; Z),
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(4.3.6) H*(G()(p) = A(xy,..., x) with j™*x; = x; (i<l), x; = q'*s},
H*(S(N)) = A(yy,---, y) Withi*y; = y; (i<l), y, = p*si,

and x; and y; (1Zi<]) are primitive with respect to m, and m in (4.3.1),
respectively, where the coefficient ring is Z .

Then y;=e*x; (1Zi<1) by (4.3.4), and x;=e*"1y, are also primitive with respect

to m'=em(e~! xe~!). Thus, by taking the rationalization X o)=(X(,)0) the

multiplications m, and m(g, on G(I).o), induced from m,, and m’, respectively,

give us the same Hopf algebra structure on H*(G(l),; Q); and so Mgy =mg,.
Now, by [5; Cor. 5.13], we see immediately the following

(4.3.7) For a prime p, let p denote the set of all primes+# p, and consider
also the localization X; at p. For a simple finite CW-complex X, assume that
X p) and X are H-spaces with multiplications m and m’, respectively, and they
induce the same one m(0)=m20) on X(0)=(X(p))(0)=(X‘—,)(0). Then, X is an

H-space with a multiplication m with w,=m on X, and mz=m' on X
Apply this for m’ and m; of above with m(gy=m)=(Mp)e) Then
(4.3.8) em(e"'xe”!)=m' =i, and my; =1, for some e M (G()).
The first equality means that e is an H-map with respect to m and (). q.e.d.

PrOOF OF THEOREM 4.1. In the first place, we prove the theorem in case that
G=SU(n) or Sp(n). If G=S3, SUQ3) or Sp(2), then HE (G)=1 by Example 1.5
and Theorem 2.6, and so the theorem is trivial. Therefore, we consider the
group

(4.4.1) G(l) in (4.3.1) for I = 3 by using the notations given in (4.3.1).

Take any he HE(G(l)). Then heHE(G(l), m) and so h*x;’s are also
primitive with respect to m in (4.3.5), and we have

(4.4.2) h*x;=nx; in H*(G(); Z) for some ;= +1 (1=2iZ)).

Take a prime p>gl, and consider the localization h’=h, € HE (G(l),), 1i(,)) of
h e HE (G(l), m) at p and e 'h’e e HE (S(N,), m) by 11 and e in (4.3.2). Then

(4.4.3) thereis a=(ay,...,a;)€(Zt,)) =11\, HE(S;,m;) = HE(S(N};),m)
with e 'h'e = 0(a) = [1}=; a; in HE(S(¥;), m),
by (3.1.2-4) since n,—n, <2p—3. These together with (4.3.6) imply

(4-4.4) ai = 11‘ = i’ 1 in th) = HE (Si’ mi) for 1 _S_ i é l,
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since a;- y,=6(a)*y,= (e~ h'e)*y,=e*h'*x; = e*(nxp) =my; in HHS(N); Z).
We now fix any i (1<i</) and any prime p>g! (and so p=5), and

(4.4.5) put n=n;+2p— 3 and take aen,(S"; p) = [Sf,, S;] of order p,
by (3.1.1). Furthermore, consider the multiplication
(4.4.6) ms; = m + ian; on S(N,) for each & = (d4,..., 0, € {0, 1}2!
with n = N(6) and X>'_;0;#0# 3 - 014,
where N(0)=3!_ en; (¢;=0;+;4;), i: S;=S(N)) is the inclusion and
ms: S(N) X S(N)) — S5 = As,=18; = St (S14;=5))
is the projection. Then the assumption that « is of order p and (4.3.8) imply
(emy(et x e™1)) gy = (em(e™! x 1)) g,
= (i) ) = Moy = (Mip)oy 0n G() o),

and so (4.3.7) implies that em(e™! x e~ 1) =(rit;),,,) for some ri; e M (G(I)). Thus,
h e HE (G(I)) =HE (G(1), i15), ' =h,, € HE (G(l),), ems(e™! x e~1)) and

[1i=1a;=0(a) = e *h’'ee HE (S(N)), m;) (cf. (4.4.3)).

For a;= As,=1a;: S;—8S;s (a;+;=a;), this together with (4.4.6) and (1.4.1)
shows that

iaan = 0(a)ian = ian(6(a) A 0(a)) = inasm in [S(N}) AS(NY), S(N)T;
and so the injectivities of i, and #* imply that
4.4.7) ao =aas; in [S;s S;]=mn,8"; p).
Furthermore, by (4.4.5) and (1.7.2), this means the following

(4.4.8) If (&y,..., )€ {0, 1, 2}! satisfies n;+2p—3 = Y}_, &;n;, then
n;=1IT4=1n% where n;=a;=+1 in (4.4.2-4).

Now, this implies ;=1 for 1 <i <1 as follows, by noticing that »,’s are independent
of a prime p>gl; and we see the theorem by (4.4.2-4) and (4.3.2).

(i) The case g=1, n;=2j+1 and I=3: We can choose suitably a prime
p=2q+1>1 with p<2I+1 (i.e. ¢<I) by the classical result due to éebyéev and
(615, &) €10, 1, 2}! with n;+2p—3=3"'_,¢;n; and even ¢; for j=i so that
(4.4.8) shows the following equalities, which imply #;=1 inductively since ;= +1:
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Ny =n2; Ny = nini_, taking p 2 7;
ns = n3 and n, = nin3 taking p=5 for/ £ 4;
M =MMi-Mz-1if3<i# q and ny =yn_niifi=gq
taking p = 11 for I = 5.

(ii) Thecaseg=2,n;=4j—1and [=3: In the same way, by taking a prime
p=4q+r>2l (r=+1) suitably with r=—1 for I<9 and with p<4l (ie., g=|,
and g<! if r=1) for 1=10, (4.4.8) shows the following equalities, which imply
n;=1 inductively:

n; = n% taking p =11 (I<5), =23 (126), n, =nin3n3 taking p = 19,
3 = N2y, taking p =7 (I1=3), =11 (I=4,5), =19 (I26), for 1<9;
N =n% My =nin3ni-2, N3 =mnmnini-3 taking p > 23 if r=-1,
Ny = Nindni-2, N2 =N3e1, M3 =mimdni-y ifr =1, for 1= 10;
M = ninani-oni-1 ((=q), =ninyng—ony-1ni-y (g <i) taking p>11 if r=—1,
N = ninani-ini-1 (#q), = ninyn;—sn} (i=q) taking p > 17 if r = 1,
for 4<i<|.

Finally, we prove the theorem when G=U(n)=S!x SU(n) (n=3). Take any
(e, e HE(U(n)) with e= + 1, he HE(SU(n)) and (2.5.1)

for Y=SU(n) by Example 2.5(0). Then (éAhAh)*=h, on [SIAYAY, Y] by
(2.5.1) and h(,,~1 by the theorem for Y=SU(n), where p=5 is a prime with
n<p<2n. Therefore (eAlAl)*=id on [(S'AYAY),, Y,] and so on
[(SYAS3ASP2ASP)y, Sipyl=72,+2(S%; p)=Z,. Thus e=1 and the theorem
for G=U(n) is proved. q.e.d.
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