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§ 1. Introduction

According to the so-called Hunt theory, the complete maximum principle is
an essential property for a continuous kernel V on a locally compact space X to
possess a resolvent and further to be represented by a sub-markovian continuous

semi-group (Tf)r>0, that is, Vf=\ TJdt for any feCK(X) (see, for example, [2]
Jo

and [13]). While the logarithmic kernel on the 2-dimensional Euclidean space R2

does not have this property, it satisfies the "semi-complete maximum principle"
with respect to the Lebesgue measure £2 (see [4]). Furthermore the logarithmic
kernel possesses a resolvent and is represented by the 2-dimensional Gauss semi-
group in the following sense:

for any feCK(R2) with J/d<i;2 = O. Recently, generalizing the logarithmic kernel,
M. ltd [4]-[7] considered a real convolution kernel N of logarithmic type on
a locally compact abelian group G. By definition, N is "of logarithmic type"
if there exists a markovian convolution semi-group (a f) r>0 such that iV*/=
r oo

\ <xt*fdt for any feCK(G) with j /d£ = O, where £ is a Haar measure on G. He

showed in [4, Theoreme A] that a real convolution kernel N is of logarithmic
type if and only if

(L.O) N satisfies the semi-complete maximum principle with respect to £,
(L. 1) infxeG N*f(x) ^ 0 for any fe CK(G) with \fd£ = 0,
(L.2) N is non-periodic,
(L.3) lim,,.^ rjNXKn— — °°> where CKw)J?=i is an exhaustion of G and *iN,cKn

is the iV-reduced measure of N on CKn.

In this paper, taking the above fact into consideration, we investigate a real
continuous kernel V on a locally compact space X satisfying the semi-complete
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maximum principle with respect to a certain positive Radon measure m (see
Definition 2) and conditions (A), (B), and (C) (in Theorem 7) which correspond
to (L.I), (L.2) and (L.3). We shall construct a resolvent (Vp)p>0 satisfying

Vf=Vpf+pVpVf for any feC%(X,m)

(in section 3) and under some additional conditions, we shall also construct a
continuous semi-group (Tr)r>0 satisfying

Vf = r TJdt for any / e C#(X, m)
Jo

(in section 4). Here C£(X, m) = {fe CK(X); J/dm = 0}. The results in section 3
are slight generalizations of the result announced in [17]. Remark that the
resolvent associated with V is uniformly recurrent in the sense defined in [16].
We note in the final section that the Neumann kernel satisfies the semi-complete
maximum principle with respect to its invariant measure.

Our study is also closely related to that of conditions of kernels to be "weak
potential operators" for recurrent Markov processes in the probabilistic view
point (see, for example, [10], [11], [12], [14] and [15] in which strong Feller
kernels are studied).

§ 2. Definitions and preliminaries

Let I be a locally compact Hausdorff space with countable base. We
denote by C(X) the Frechet spece of real continuous functions on X with the
topology of compact convergence, by CK(X) the topological vector space of real
continuous functions on X which have compact support with the usual inductive
limit topology, by M(X) = CK(X)* the topological vector space of real Radon
measures on X with w*-topology (i.e., vague topology), by MK(X) = C(X)* the
subspace of M(X) consisting of measures with compact support. C+(X), C^(X)9

M+(X) and M^(X) denote their subsets of non-negative elements. We denote
by Cb(X) (resp. CO(X)) the subset of C(X) consisting of bounded functions (resp.
functions tending to zero at infinity). For meM+(X), put C%{X, m) = {fe
CK(X); jfdm = 0} and put M%X) = fcieMK(X); J ^ = 0}, Mb(X)= {fieM(X);
\d\ii\<oo), where |/i| is the total variation of \i. Naturally, if X is compact,
CK(X) = C0(X) = Cb(X)=C(X) and MK(X) = Mb(X) = M(X).

An operator V: CK(X)-+C(X) is called a real continuous kernel on X if it is
linear and continuous. If V is also positive, i.e., VfeC+(X) for feC^(X), we
simply call it a continuous kernel on X.

For a real continuous kernel F, we denote by V* its transposed operator
MK(X)->M{X\ which is defined by
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{fdV*fi={vfdn for feCK(X) and fieMK(X).

In general, a continuous linear operator from MK(X) into M(X) is called a real
diffusion kernel on X. Evidently, K* is a real diffusion kernel.

The identity operator / on CK{X) is trivialy a continuous kernel. For the
sake of simplicity, its transposed kernel /* will be again denoted by /.

For a real continuous kernel V on X, we put

D(V*) = [fieM(X); j |»y|d|ji|<oo for any

By the Banach-Steinhaus theorem, for each jueD(V*), CK(X)3f-+$ Vfdpt defines
a Radon measure, which is denoted by V*fi. We write D°(F*) = {jue D(F*);
$d\n\<oo and jd/x = O} and Z)+(F*) = D(F*) n M+(X).

We denote by sx the Dirac measure at xe X. Let (F*ex)
+ -(V*ex)~ be the

Jordan decomposition of V*ex. Then for any fe

x)± = sup { + Vg(x); g e

and hence x-+$fd\V*ex\ is a lower semi-continuous function on X. For a Borel
function u on X and xeX, we put Fu(x)= JHdF*ex and \V\u(x)= §ud\V*sx\
provided that they make sense. By an argument similar to that in [13, p. 176],
we see that Vu and |F|u, when defined, are Borel measurable. Furthermore
we can easily show

REMARK 1. Let u be a Borel function and fieD(V*). If J|F| |w|d|/i|<oo,
then

Let Vx and V2 be two real continuous kernels. We define the product oper-
ator VtV2 by V1V2f(x) = $V2fdV1[8x provided that it makes sense for any fe
CK(X) and any xeX.

A family (Vp)p>0 of continuous kernels is called a resolvent if for any p>0,
q>0, VpVq defines a continuous kernel and Vp—Vq = (q — p)VpVq. A family (Tt)t>0

of continuous kernels is called a continuous semi-group if for any f>0, s>0,
TtTs defines a continuous kernel, TtTs=Tt+s and for each/e CK(X), the mapping
[0, oo)Bt-+TtfeC(X) is continuous, where T0 = I. We say that (Vp)p>0 (resp.
(Tt)t>o) is markovian if for any p>0 and any x e X, p §dV*ex= 1 (resp. for any t >0
and any x e l , JdT*ex= 1).

DEFINITION 2. We say that a real continuous kernel K o n I satisfies the
semi-complete maximum principle with respect to m (e M+(X)) (resp. V satisfies
the complete maximum principle) if for any f e C%(X, m) (resp. for any/e CK(X))
and a e # , J/gtf on supp(/+) implies Vf^a on X.
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Here R is the set of all real numbers, supp (g) is the support of g a n d / + ( x ) =
max{/(x) , 0}.

LEMMA 3. Let V be a real continuous kernel on X and let m e M+(X).
(a) / / V satisfies the complete maximum principle, then V is positive,

that is, V is a continuous kerenl.
(b) / / V satisfies the semi-complete maximum principle with respect to m,

then for feC&X, m),

(c) / / there exists a markovian resolvent (Vp)p>0 such that for any fe
C%{X, m) (resp.for any feCK(X)), limp^0 Vpf=Vf in C(X), then V satisfies the
semi-complete maximum principle with respect to m (resp. Vsatisfies the complete
maximum principle).

(d) / / there exists a markovian continuous semi-group (Tt)t>0 such that

for any feC°K(X, m) (resp. for any feCK(X)), l i m , ^ \' TJds=Vf in C(X),
Jo

then the same conclusion as above is obtained.

In fact, (a) and (b) are clear from the definition. It is known that, for a
markovian resolvent (Vp)p>0, each Vp satisfies the complete maximum principle
(see, e.g., [2]). Let feC&x,m) (resp.feCK(X)) and aeR. If Vf^a on
supp ( / + ) , then for any s>0, there exists pe>0 such that Vpf^a + e on supp ( / + )
and so on X for any 0<p<p£. Letting p | 0 and e 1 0 we have (c). For (d),

rao
put Vp= \ e~ptTtdt (p>0). Then (Vp)p>0 is a markovian resolvent. Since

Vf(x) - Vpf(x) = Vf(x) -

e-»(Vf(x) - \l TJ(x)ds)dt
Jo

and since l im^^ \ Tsfds= Vf in C(X), for any compact set K in X and any e>0 ,
Jo

there exist T > 0 and M > 0 such that I T TJ(x)ds g M on K for any t>0 and

I (r TJ(x)ds-Vf(x) <eonK for any t^ T. Therefore

\Vf(x)-Vpf(x)\ ^

on K. Letting p^O and e^O, we see l i m ^ o Vpf= Vf uniformly on K, so that
(c) gives (d).
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In the same manner as in [4, Remarque 5 and Proposition 11], we obtain the
following

PROPOSITION 4. Let V satisfy the semi-complete maximum principle with
respect to meM+(X) and let c^O. Then we have:

(a) For any fsCl{X,m) and aeR, (V+cI)f^a on supp(/+) implies
Vf^a onX.

(b) V* + cI satifies the semi-balayage principle relative to V*; that is, for
any /ieM£(X) and any relatively compact open set 0)^0 in X, there exist fi^e

and a^eR such that
(SB.l) j i 4 = J<fo_
(SB.2) supp GO c co,
(SB.3) (K* + cJ)/4 + <&.Mm=7*ji in co,
(SB.4) (V* + cl)iir

m + a'atjn£V*iJi on X.

We say that ju^ (resp. a'^) is a semi-balayaged measure (resp. a semi-
balayage constant) of \i on co with respect to (V* + cI9 V*).

A real continuous kernel Von X is said to be strong Feller if for any bounded
Borel function g on X with compact support, Vg(x) = § gdV*ex is continuous.

REMARK 5. Let V, m and c be as in Proposition 4. Assume that Vis strong
Feller. Then for any bounded Borel function g with compact support and
J gdm = 0, and for any aeR, (V+cI)g^a on {x; #(x)>0} implies Vg^a on X.

In fact, if (V+cI)g^a on {x; #(x)>0}, Vg^a on the same set. Since Vg is
continuous for any e>0 there exists a relatively compact open set co8 such that
{x; g(x)>0}czcoE and Vg^a + e on coe. For xeX, let ef

XE and a'Xt8 be a semi-
balayaged measure and a semi-balayage constant of ex on coB with respect to (V*9

7*). Then we have

Vg+(x) =

= \ Vg+de'XfS + aX9B^g + dm ^ \(Vg~+a + e)de'X)£

;ie + <,Bm) + a + e g P^"(x) + a + e,

where g~ =g+ —g. Letting e I 0, we see Vg{x)^a for all x GX.

DEFINITION 6 (see [16, Definition 1]). We say that a resolvent (Vp)p>0 is
uniformly recurrent if there exist a family (up)p>0 in C(X) and po>0 satisfying
the following:

(a) up>0 on X for all p>0.
(b) limp_0 MP(X) = 0 for all xeX.
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(c) For any/e C\(X), (upVpf)Po>p>o forms a normal family on any compact
set in X.

(d) For any xeX, there exists/e C^(X) such that infPo>p>0 upVpf(x)>0.
We also say that a continuous semi-group (Tt)t>0 is uniformly recurrent

roo
if its resolvent defined by V=\ e~ptTtdt is uniformly recurrent.

Jo

§ 3. The resolvent associated with a real continuous kernel

The purpose of this section is to show the following theorems, which generalize
the result in [17].

THEOREM 7. Let m be a positive Radon measure on X whose support is
equal to X and let Vbe a real continuous kernel which satisfies the semi-complete
maximum principle with respect to m. We assume:

(A) There exists a constant cv such that for fieM%(X) and aeR,
V*fi^:am implies a^cv$d\jj,\.

(B) If(V* + cI)ii = amforiieD°(V*), c>0 and aeR, then JLI = O and a = 0.
(C) For any feCl(X) with /VO, l i m ^ Vf(x)= -oo , where S is the

Alexandrov point of X.
Then there exists a markovian resolvent (Vp)p>0 which has the following

properties:
(1) For any xeX and any p>0, V*ex=V*£x + pV*V*ex + ax>pm with some

constant ax>p. In particular,

Vf = Vpf + pVpVf for any fe C&X, m).

(2) (Vp)p>0 is uniformly recurrent.
(3) For any p>0, meD(V*) and pV*m = m. Furthermore if JLLED+(V*)

and pV*fi^fi9 then fi = cm with some constant c^O.

By the condition (B), a markovian resolvent (Vp)p>0 satisfying (1) is uniquely
determined. We call it the resolvent associated with V.

THEOREM 8. Let Vand m be as in Theorem 1 and let (Vp)p>0 be the resolvent
associated with V. Assume further that

(D) for anyfe C°K(X9 m\ Vfe C0(X).
Then for feCKX, m), we have:

(1) / / \ dm = oo, limpi0 Vpf=Vf uniformly on X.

(2) / / \ dm<oo, the above equality holds if and only if \ Vfdm = 0.

(3) IfX is compact, lim^o V^Vf-ddm)-1 {vfdm uniformly on X.
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REMARK 9. / / Vis strong Feller then the condition (B) is satisfied.

In fact, let c>0. Remark 5 and the proof of [11, theorem 5.1] show that for
any feCK(X), there exist a sequence (gn)™=i of bounded Borel functions with
compact support and j gndm = 0 and a sequence (an)™=l of constants such that
/ = limw^n ((F+ cl)gn + an) uniformly on X. Thus if (F* + c/)/i = am with J dfi = 0,
then

= l i m ^ a ̂  gndm = 0,

which implies JLL = O and hence a = 0.

REMARK 10. / / X is compact, then the conditions (A) and (B) are always
satisfied.

In fact, putting c^HFlH^, wehavea^J ldV*ju^cv Jd|/x|, and hence (A) is
satisfied. As for (B), in the same manner as in [12, Lemma 3.1] (considering
the space C%{X, m) in place of N(m) there) we see that for any fe C(X), there
exist geC%(X, m) and aeR such that f=(V+cI)g + a on X. Then, we obtain
(B) as in Remark 9.

EXAMPLE 11. Let Rn be the ^-dimensional Euclidean space and let £n be
the Lebesgue measure on Rn (n = l, 2). The real continuous kernels G l a , G2

and P defined by

Gi>af(x) = - y J d x -

G2f(x) = - J log |x - y|/(y)d«2(y), / e CK(R>),

P/W = - \log\x-y\f(x)d^(y)JeCK(R'),

satisfy the semi-complete maximum principle with respect to the Lebesgue measure
(see, e.g., [4] and [11]). Furthermore, they all satisfy the conditions (A), (B)
and (C). In fact, for (A), see [5, Theoreme 52'] (acturally we may take cv = 0).
Since they are all strong Feller, Remark 9 gives (B). (C) is clear. For another
examples, which are not convolution kernels, see [10] and the section 5 of this
paper.

To prove Theorem 7, we prepare the following

LEMMA 12. Let V be a real continuous kernel satisfying the semi-complete
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maximum principle with respect to meM+(X). Suppose that the condition (C)
in Theorem! is fulfiled. If fineD+(V*)f J d / i ^ l 0 = 1, 2,...), fin and F*/*M

converge vaguely to \i and v respectively as n->oo, then
(a) fieD+(V*)9

(b) Km^Jd/i^Jd^
(c) v=F*/x + flm for some constant a :gO.

PROOF. Let K be any compact set in X with non-empty interior and let
/ o e Q ( I ) with supp(/0)c=K and J/Odro = l. Since supp((PJ0)

+) is compact
(by (Q)

J/Odv = lin- o x J/Odv = l inw J^d^ ^ Jjftdji ^ J(F/0)
+^ < oo

and hence J \Vfo\dfK oo. By the continuity of F, there exists a constant cx>0 such
that max^ lPyCx^cJ / l l ^ for any/eCx(X) with supp(/)cX. We put af =
\fdm. Then

\Vf-V(aff0)\ ^ cMflU + la,] II/JIJ on K.

Since supp(/— aff0)czK and f—affoeC%(X, m), the semi-complete maximum
principle implies that the above inequality holds on X9 and hence

because jdfi^l and layl ̂  m(X)||/|| oo. Consequently we have (a).
Evidently, lim infn̂  „ J dfin ̂  f d/i. Let /0 e C{(^) with /0 # 0. Since (PJ0)

 + e
by (C),

^n = \(Vfo)
+dfin - ^Vfodpin —> fay dp - fav < oo (n-oo).

Hence there is M^O such that $(Vfo)~dfxn^M for all n. On the other hand, by
(C), for any e<0 there is a compact set Ke such that (Vfo)~(x)> 1/e for xe CKe.
Thus,

(Vfo)-(x)d»n+\ dfin^( f o ) ( ) » n \ fn^ i n f
CKB JKe JKS JKe

(n->oo).

Since e is arbitrary, it follows that lim supn_00 J dfin^§ dfi, which shows (b).
An argument as in the proof of (a) leads to v^F*/x. Since for any

fe C&X, m), Vfe Cb{X) (see Lemma 3 (b)), (b) shows

J/rfv = lim^^ Jjjfifa. = frfd/i = \fdV*».
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It follows from these facts that v = F*/z + am with some a^O. This completes
the proof.

Using the above lemma, we shall show the following, which is called the semi-
balayability in the case when Fis a convolution kernel (cf. [7]).

PROPOSITION 13. Let V and m be as in Theorem 1 and let c^O. Then for
any fieM^(X) and any open set co^0 in X, there exist fi[oeD+(V*) and a'^^eR
satisfying (SB.l), (SB.2), (SB.3) and (SB.4) in Proposition 4. / 4 and a'^ are
called a semi-balayaged measure and a semi-balayage constant of fi on co with
respect to (F* + c/, F*). Furthermore, a'^^lcy \d[i with cv given in condition
(A).

PROOF. We may assume that J d ^ = l . If co is relatively compact, the as-
sertion has already been shown in Proposition 4. Hence we may assume that X
is non-compact and co is not relatively compact. Let (con)^=1 be an exhausition
of co, that is, a sequence of relatively compact open sets in X satisfying conc:con+1

( n ^ l ) and \J™=lcon = co. By Proposition 4 there exist n'neM$(X) and ar
neR

such that Jd /4 = 1, supp(JA'H)Ccon, V*ju = (V* + cI)iill + a'nm in con and F * / ^
(V* + cI)fi'n + a'nm on X. Since (AO?=I *S vaguely bounded, we may assume
that lim^nPn exists in M+(X), which is denoted by /z«. Then supp (^)czco.
Since V*(fi — fi'n)^.a'nm and / i - ^ e M j ( I ) , condition (A) gives a'n%lcv for all
n ̂  1. Let fe C^{X) with \fdm = 1 and supp (/) <= cox. Then

a'n = \vfdii - J(K+cJ)/dAii ^ \vfdfi -

Since (Vf)+ e C£(X), (a'n)f=l is bounded below, so that it is bounded. Hence we
may assume that a'n converges to a0 (^2cy) and V*fi'n converges vaguely as
n-> oo. By Lemma 12, we see that J d^ = 1 = J d\i and limn_>^ F*/4 = F * ^ + am
with some agO. Putting â )£O = 0 + flo, we obtain that V*fi = (V* + cI)ii'(O + a'/lt(om
in co and F*/z^(F* + c/)/4 + ^}COm on X. Since a o ^ 2 c F and a^O, we have
a^>£O:g2cy = 2cK J d/z. Thus Proposition 13 is shown.

REMARK 14. If co = X, and c>0, then the condition (B) shows that /i'a and
a'p,a> are uniquely determined.

We shall turn to the proof of Theorem 7. From now on, let V and m be
the same as in Theorem 7. We devote ourselves to the case that X is
non-compact; the case X is compact is similar and simpler (note Remark 10).

Let p>0 be fixed. We can define a linear operator Vp on CK(X) by
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where e'XtP is the semi-balayaged measure of ex on X with respect to (V* + p~lI,
V*). We may write Vp^p-%^. Then p$dV*ex=l and (pV* + I)V*ex +
aX)Pm = V*ex with some constant axp^2cv. Thus, we have

LEMMA 15. (Vp)p>0 possesses property (1) in Theorem 7.

Furthermore we have

LEMMA 16. The mapping Vp is a continuous kernel on X.

PROOF. Clearly Vp is positive. Hence it is sufficient to show that Vpfe C(X)
for any feCK(X). It is then sufficient to see that for any (xn)f=1czX with

limn^00 V*eXn = V*sx vaguely.

We have V*eXn = (pV* + I)V*eXn + a'Hm with constants a'H£2cv. Let / e Q ( I )
with {/dm = 1. Then

so that the relative compactness of 0OS=i implies that (a'n)™=1 is bounded. Let X
be any vague accumulation point of (V*eXn)^=l. There is a subsequence of (xw),
which is again denoted by (xn), such that F*eXn-»A vaguely. We may assume that
a'n, and hence V*V*eXn, converges as n-»oo. By Lemma 12, we see that Ae
D+(F*), p$dX=l and F % = (JpF* + /)A + fl/m with some constant a'. On the
other hand, since V*£x = (pV* + I)V*ex + a'xm, condition (B) gives A=V*ex.
Since A is an arbitrary vague accumulation point, we conclude that limn_00 V*eXn =
V*ex vaguely. Thus Lemma 16 is shown.

LEMMA 17. (1) If we write V*ex=V*ex + pV*VP
<£x + axm, then x->ax is

lower semi-continuous and bounded above.
(2) IffieD+(V*), then J ^<oo , /zeP+(F*) and F>eD + (F*) . Further-

more, pV*fi and §axdii(x) are a semi-balayaged measure and a semi-balayage
constant of fi on X with respect to (V* + p~1I9 V*).

PROOF. (1): By Proposition 13, ax<^2cv for any xeX. L e t / e C £ ( X )
with J/dm = l. Then ax=Vf(x)-Vpf(x)-pVpVf(x). Since Vp is a continuous
kernel and snpp((Vf)+) is compact, VpVfis upper semi-continuous so that x^ax

is lower semi-continuous.
(2): Let fieD+(V*) and l e t / e C&X) w i th / ^0 . By definition J \Vf\dfi<oo

and hence condition (C) gives Jd/z<oo. Since p$dV*sx = l for any x e l , we



Semi-complete maximum principle 583

see Mb(X)cD(V*) so that \i e D+(V*). Next we take a sequence (fin)JL t

which converges increasingly to /i. Then — co <j axdfin(x)^2cv§ df.i< oo for all
n ^ l and hence we see V*nneD+(V*)and V*i*n=VP*iin + pV*VP*fin + ($ axdfi(x))m.
Since

P \ Wf\dV*p =

< oo,

we see F*/xeD+(F*) and l im, ,^ pF*F*/in = pF*F*/x vaguely. This also implies
l im, ,^ j axdfin(x) = jaxdfi(x)> - oo. Thus we have V*/J, = V*n + pV*V*ii +
(j axdfi(x))m9 which shows (2).

To see that (Vp)p>0 is a resolvent, we shall show the following

LEMMA 18. For any p>0 , q>0 and JIEM^(X), we have

V*fi — V*fi = (q — p)V*V*fi (the resolvent equation).

PROOF. Let a'p and a'q be the semi-balayage constants o f / i o n l with respect
to (V* + p~lI, V*) and to (V* + q'1I9 V*), respectively. Then

We also denote by a'p>q the semi-balayage constant of q~xV*n on A" with respect
to (V* + q~1I, V*) (cf. Lemma 17). Then

and hence
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Since $d(V$fi-V*ii-(q-p)V*V$fi) = (llp-llq-(q-p)lpq)JdjU = O, we obtain
the desired equality by condition (B). This completes the proof.

LEMMA 19. Let (fiX=i^M+(X) with l i m ^ Jdji^O and let (pX
with pn>0 and limn_+00 pn = 0. If V*nfin converges vaguely as n-*oo, then the
vague limit is of the form cm with some c^O.

PROOF. Let /l = limn_>a) V*njun. For any fe C%(X9 m), since Vfe Cb(X) and

= linw Pn \{vf(x)-p

which implies that k = cm with some c^O.

LEMMA 20. The family (Vp)p>0 is a uniformly recurrent markovian
resolvent.

PROOF. By Lemmas 16 and 18, we see that (Vp)p>0 is a resolvent. Clearly
it is markovian. To see the uniform recurrence, we first show that for any p>0
and any xeX, supp(V*ex) = X. Let x be fixed. By the resolvent equation,
we see that supp(F*eJ is independent of p>0. Since (qV*ex)q>0 is vaguely
bounded, there exist (q^^i^R and XeM+(X) with Jdvl^l such that qn>0,
lim,,^ qn = 0 and lim,,^ qnV*nex = X vaguely. By Lemma 19, we see X = cm with
some c^O. Therefore if X^O we see supp(F*ex)czsupp(A) = X so that supp-
(V^ex) = X. In case that A = 0, we put supp (V*ex) = X0 and suppose that XO^X.
Let foeCi(X) with supp(/0)c=Z\*0 and \fodm = \. Then for any/eC£(X),
V(f-aff0)eCb(X) shows that (qn$V(f-aff0)dV*neX=l is bounded, where
af = \fdm. By Lemma 15,

VqJ(x) = V9n{f-affB)(x) = V(f-a,f.Kx) - qn\v(f-aff0)dV*nex,

so that (Vqnf(x))™=1 is also bounded. Hence the equality

Vf(x) - VqJ(x) = qn \vfdV*qne + a'naf

with a'n^2cv implies that (qnjVfdV*neX=l is bounded below. On the other
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hand, since lim^^ qnV*nex = 0 vaguely and qn$dV*nex=l9

ex= - oo

(see the proof of Lemma 12 (b)). This contradiction shows that supp(K*eJC)
— X for any p>0 also in case A = 0.

Now le t / i eC^X) with jf1dm = l. We see that Vpft>0 on X for any
p>0 and Vp/^x) increases as p I 0 for any xeJf (by the resolvent equation).
Remark that limp_»0 Vpfl(x)=oo for all xeX. In fact, if lim^o Fp/1(x)<oo
for some xeX, then the equality Vf1(x)-Vpfl(x) = p j Vf1dV*sx + af

x>p with
ai>p^2cK implies (pjVfldV*ex)p>0 is bounded below and hence by the same
manner as above we have a contradiction. For any p>0, we put

We shall show that (up)p>0 is a family defining the uniform recurrence of (Vp)p>0.
It is clear that (up)p>0 satisfies conditions (a), (b) and (d) in Definition 6. Further-
more the Dini theorem shows limpioup = 0 in C(X). Let geC^(X). For any
sequence (uPnVPng)™=1 in {upVpg)^p>0, if (pX=i has a subsequence (̂ y)5L
\imj^ooqj = po¥=0, then by the Dini theorem Hmj^o0uqjVqjg = uPoVPog in
Hence to verify condotion (c) in Definition 6 it is sufficient to show that for any
g e CR(X) with $gdm = l, any compact set K in X and any e>0, there exists ro>0
such that

\upVpg-uqVqg\ < e on K

for any 0<p, q<r0. Put ft =fi-geCg(X, m). Then ||FA ||^<oo and

V,fi(x) V,Mx)

£ uJx)\Vphg(x)\ + uq

Lemma 15 gives U F ^ H ^ 2117/̂ 11̂ . Hence we may assume that [
By the fact that limp_+oup = 0 in C(X), there exists ro>0 such that for any 0<
p<r09 UpKEJAWVhgW^ on K. Then \upVpg-uqVqg\<e on iC for any 0< jp, q<r0.
Thus (MPFP^) 1^P > 0 forms a normal family on K. This completes the proof of
Lemma 20.

LEMMA 21. For ^ac/i p>0, {fieD+(V*);

PROOF. Put S(pV*) = {fieD+(V*); pV^^fi}. By [16, Proposition 5]
) = {fieD+(V*); pV*fi = fi}9 and by [16, Cororally 13 and Lemma 22],

we see that S(pV*) is one-dimensional. Hence, to complete the proof, it is
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sufficient to show that meS(pV*). Let fx and (up)p>0 be as in the proof of
Lemma 20. Since (up(x)V*ex)1^p>0 is vaguely bounded (by (c) in Definition 6)
and uq(x)$f1dV*sx = $fldm = l (q>0), Lemma 19 implies limg_0 uq(x)V*ex = m.
Letting q I 0 in the equation

uq(x)V*sx - uq(x)V*pex = (p-q)V*(uJLx)V*eJ,

we obtain m eD+(Vp) and m^pV*m. Thus Lemma 21 is shown.

By Lemmas 15, 16, 20 and 21, we have Theorem 7.
We now give the proof of Theorem 8.

PROOF OF THEOREM 8. Let (xn)™=lczX and (pn)™=l<^R with \imn^aopn = 0
(pn>0). Since {pnV*nEXr)™=l is vaguely bounded, Lemma 19 shows that its
any vaguely accumulation point is cm with some c^O. It is clear that if \dm — oo
then c = 0 and if X is compact then c= 1/Jdra. The equality Jjf(xn) — J ^ / O O =
lYfd(pnV*nBx} and the fact ^ e C 0 ( X ) show (1), (3) and the "if" part of (2).
On the other hand, the equality pV*m = m (p<0) implies the "only if" part of
(2). This completes the proof.

§ 4. The continuous semi-group associated with a real continuous kernel

We shall show the following

THEOREM 22. Let Vbe a real continuous kernel on X and let m be a positive
Radon measure on X whose support is equal to X. Suppose that Vsatisfies the
semi-complete maximum principle with respect to m and conditions (A), (B),
(C) and (D) in Theorems 7 and 8. We further assume:

(Bo) For any fieD°(V*) and aeR, V*\i = am implies fi = 0 and a = 0.
(Do) //Jrfm<oo, then $Vfdm = 0for anyfeC%{X, m).
Then there exists a uniquely determined uniformly recurrent markovian

continuous semi-group (Tt)t>0 such that for any feC%(X, m) and t>0,

Vf(x) = [ TJ(x)ds + TtVf(x) (xeX).
Jo

We call the above (Tt)t>0 the continuous semi-group associated with V

REMARK 23. In the case that X is compact, D. Revuz [14, p. 258] discussed
similar results under the assumption that Vsatisfies the semi-complete maximum
principle with respect to m, V is a compact operator on C%(X, m) into itself and

(Bo) the image V[C&X, m)] is dense in C^(Z, m).

It is easily seen that (Bo) implies (Bo).
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Before the proof of Theorem 22, we recall a characterization of Hunt kernels.
A continuous kernel V on X is called a Hunt kernel if there exists a continuous

S oo

TJdt defines a continuous kernel and
o

and Vf=\ TJdt. Remark that (Tt)t>0 is uniquely determined. It is known
Jo

([4, Proposition 1]) that Kis a Hunt kernel if and only if V possesses a resolvent
(i.e., there exists a resolvent (Vp)p>0 such that for any feCK(X), limp^0 Vpf=Vf
in C(X)) and Kis non-degenerate (i.e., for any x, yeX with x^y, V*ex is not
proportional to V*sy).

LEMMA 24. Let Vand m be as in Theorme 22 and let (Vp)p>0 be the resolvent
associated with V. Then there exists a uniquely determined markovian con-
tinuous semi-group (Tt)t>0 such that for any p>0 and any feCK(X)

PROOF. By Lemma 18, Vp possesses the resolvent (Vp+q)q>0. On the other
hand, the equality V*ex—V*sx + pV*V*ex + axm and condition (Bo) implies that
Vp is non-degenerate. Therefore Vp is a Hunt kernel such that there exists a

continuous semi-group (TPtt)t>0 such that Vpf=
<\° TpJdt (feCK(X)). By the

unicity of (Tpt)t>0 and the fact that (Vp)p>0 is a markovian resolvent, we see
that there exists a uniquely determined markovian continuous semi-group (Tt)t>0

such that TPtt = e~ptTt (t>0). This completes the proof.

REMARK 25. / / Vfurther satisfies
(As) there exists a constant cv such that for any iieD°(V*) and aeR,

V*fjL^am implies a^cv Jd|/i|,
then each Vp is a weakly regular Hunt kernel on X in the sense given in [2]
(see [17, Lemme 18] for a proof).

PROOF OF THEOREM 22. By Theorem 8 and condition (Do), limp_0 Vpf= Vf
uniformly on X for any feC%(X, m). For the continuous semi-group (Tt)t>0

given in Lemma 24, we see easily that

TtVpf = eP*Vpf - e" ^ e~**TJds

for any f >0 , p>0 a n d / e CK(X). Letting fe C%(X, m) and p j 0, we immediately
obtain the desired equality. The uniform recurrence follows from the definition.
This completes the proof.

It is well-known (see, e.g., [10]) that the continuous semi-groups associated
with the real continuous kernels G1 0 , G2, and P in Example 11 are the
1-dimensional Gauss semi-group ((4nt)~l/2exp( — (x — j02/40d£i0>))f>o> ^ e
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2-dimensional Gauss semi-group ((4nt) 1Qxp( — \x — y\2/4i)d^2(y))t>o a nd the
1-dimensional Poisson semi-group (t/(t2-\-(x — y)2)d£l(y))t>0, respectively.
These kernels satisfy

Vf(x) = -i- S?=i (pVp)
nf(x) (x e X)

and

Vf{x)=\™TJ(x)dt ( x e l ) ,
Jo

for any/e C%(X, m). Unfortunately in our general case, an additional assumption
is needed to show the above equalities.

We begin with the following preparation.

LEMMA 26. Let (Tt)t>0 be the semi-group given in Theorem 22. Then,
fxeD+(T*) and Tffi^fifor all t>0 if and only if fi = cm with some constant
c^O. Furthermore Tfm = mfor a.e.t>0.

PROOF. The "only if" part follows from Lemma 21. Let/e C£(X). Then

[fdm = p [fdV*m = p (°°e~**([T*fdm\dt

and hence from the injectivity of the Laplace transform it follows that Tfm = m
for a.e. f >0. Since (0, oo) 9 t->$fdTfm is lower semi-continuous, we see Tfm^
m for all t>0. Thus Lemma 26 is shown.

We now denote by Lp(m) (l^p^oo) the usual real Z/-space on X with
respect to m and by || • ||p its norm. For measurable functions u and v, put (w, v)m

= \uvdm provided that the right hand side makes sense.
Let T b e a continuous kernel on X such that J d T % ^ 1 for any xeX and

let meD+(T*) and T*m^m. Then for feCK(X)

This implies that Tfe L2(m) for any/e CK(X) and Tcan be extended to a positive
contraction operator on L2(m). We denote by T its extension and by T* the
adjoint operator of T. Clearly, T* is positive and contractive. Furthermore
we see easily

LEMMA 27. (a) IfueL2(m),(T*u)dm = dT*(um)asRadon measures on X.
(b) / / T is symmetric, that is, (g, Tf)m = (Tg,f)m for any f, geCK(X),

then ?=T* .
(c) Let (Tt)t>0 be a markovian continuous semi-group on X with me
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D+(Tf) and Tfm^mfor all t>0. Then for t, s>0

t l s — l t+s

(d) Let (Vp)p>0 be a markovian resolvent on X with meD+(V*) and
pV*m<>mfor all p>0. Then for p, q>0

Vp-Vq = (q-p)VpVq and V* - FJ = (q-p)V*pV*q,

where Vp= j{pVp) and F* = -^(pFp)*.

Given T as above, consider the subset of L2(m) on which all powers of both
operators T and T* act as isometries:

{«eL2(m); \\u\\2 = \\T*u\\2=\\T*nu\\2 for all n ^ l } .

The following is an essential tool in our argument.

LEMMA 28 (see [1, pp. 85-88]). (a) Ifue I(T), then \u\ e I(T).
(b) I(T) is an invariant subspace of T and T*9 and furthermore

I(T) = {ueL2(m); u=T»T*nu=T*nT»u for all n ^ l } .

(c) For veL2(m), any weak accumulation point of (Tnv)™==l or (T*nv)™=l

belongs to I(T).

(d) Ifv±I(T) (le.Jor anyueI(T), («, i?)m = 0), then

\\mn->n tnv = lim^^ T*nv = 0 weakly in L2(m).

LEMMA 29. Let (Tt)t>0 and (Vp)p>0 be as in Lemma 27 (c) and (d),
respectively. Then:

(a) For any s>0,

Ts) = {ueL2(m); \\u\\2= \\Ttu\\i= W^Mi for all t>0}

= {ueL2(m);u=TtT*u=T*Ttu for all t>0}.

(b) For any p>09 if u e I(pVp), then u — pVpu = pV*u.

PROOF. Let u e I(TS). For given t > 0, we choose n such that t ̂  ns. Then

\\u\\2 = ||r-ii||2 = ||T,,W||2 = \\Tns-tTtu\\2 ^ \\Ttu\\2 ^ \\u\\2

and hence ||frM|| = ||w||2. Similarly ||T*u||2 = ||u||2. Conversely if ||ii||2=||r,ii||2
= || Tfu || 2 for all t>0, then taking t = ns we see ueI(Ts). The second equality
is an easy consequence of the Schwartz inequality (see [1, p. 85]).

Next, let ueI(pVp) and let q>p. By Lemma 27 (d) and Lemma 28 (b),
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pPV$u. Thus

Ml2 ^ WpVqpV>\\2 + (q-p)\\Vqu\\2 ^ p\\Vqu\\2 + (q-p)\\Vqu\\2 ^ \\u\\2,

which implies qVqu = qVqpV*u = u. Since pVpueI(pVp) (by Lemma 28 (b)),
we also see qVqu = qVq(pV*pVpu) = (qVqpV^)pVpu = pVpu. Hence u = pVpu.
Similarly u=pV*u. This completes the proof.

We say that a real continuous kernel V on X is absolutely continuous with
respect to m if V*EX is absolutely continuous with respect to m for any xe X.

LEMMA 30. Let Vand m be as in Theorem 22 and let (Vp)p>0 be the resolvent
associated with V. Then

(a) for any p>0 and xeX, V*ex is not singular with respect to m,
(b) if V is absolutely continuous with respect to m then so is Vp for any

p>0.

Assertion (a) is shown in the same manner as in [6, Theoreme 1.8], so we
omit the proof (we do not use this fact later). Assertion (b) follows directly
from the equality V*ex = Vpx + pV*V*ex + axm (x e X).

THEOREM 31. Let V and m be as in Theorem 22 and let (Vp)p>0 be the
resolvent associated with V. Let p>0 be fixed. Then for any feC^X, m),
we have

for any g e CK(X). Furthermore if V is absolutely continuous with respect to
m, then

± f ( x ) (xeX).

For the proof, we first show the following

LEMMA 32. For any p>0, I(pVp) = {0} if $ dm = oo and I(pVp) = {const.} if
Jdm<oo. In particular,for anyfeC%(X, m) and any q>0 limn^o0(pVp)

nVqf=
\im^aD(pVp)

nf=0 weakly in L2(m).

PROOF. Let ueI(pVp). By Lemma 28 (a), we may assume that u > 0 .
By Lemma 29 (b) and Lemma 27 (a), the positive Radon measure um satisfies
pV*(um) = um and hence Lemma 21 tells us w = const.. Since ueL2(m), u=0
if J dm = oo. Hence the second assertion follows from Lemma 28 (d) if J dm = oo.
If J dm<oo, Lemma 28 (c) and the facts that $ (pVp)

nVqfdm = $fd((pV$)nV*)m =
q'1 J/dm = 0 and §(pVp)

nfdm = O together imply the second assertion.
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PROOF OF THEOREM 31. Let fe C%{X, m). The equality Vf= Vpf+ pVpVf
implies

for all N^ 1. Hence it is sufficient to show that \imN ̂ ^((pVp^Vf, g)m = 0 for any
g e CK(X). Since l im^oFp/^ Vf uniformly on X and pVpl = 1, we have

lim^o Hm^oo ((pVpr Vqf, g)m = l i m ^ ({pVpfVf, g)m.

By Lemma 32 we see the left hand side is equal to 0 and hence l i m ^ ^
((pVp)

NVf g)m = 0.

For the second assertion, we first remark that for any q>0, Vq is absolutely
continuous with respect to m (Lemma 30). Let xeX. By the same reason as
above, it is sufficient to show that

\imN^00(pVp)
NVqf(x) = 0 for any q > 0.

There exists uq,xeL\m) such that V*ex = uq,xdm. Since
Lemma 32 shows l i m ^ J((pK,)VK»dm = 0. Since (PVp)

NVqf(x)= Vq(pVp)
N •

f{x), we obtain therefore that lim^^^ (pVp)
NVqf(x) = 0. This completes the proof.

THEOREM 33. Let Vand m be as in Theorem 22 and (Tt)t>0 be the continuous
semi-group associated with V. Suppose that for any t>0, Tt is symmetric.
Then for any fe C%(X, m) we have

for any g e CK(X). Furthermore if V is absolutely continuous with respect to m,
then

Vf(x)=\XTJ(x)ds (xeX).
Jo

PROOF. In Theorem 22, we have already shown that Vf(x)=\ Tsf(x)ds +
Jo

TtVf(x) (x G X) for any t >0 . Hence it is sufficient to show that l i m , ^ (TtVf, g)m

= 0 for any g e CK(X). Assume, to the contrary, that there exist g e CK(X) and
a sequence 0X=i w i t n lim/,-oo ^ = °° such that l im, ,^ (TtnVf, g)m=£0. We may
assume that there exists e>0 such that (TtnVf, g)m>s for all n ^ 1. For t<t'

\(TtVf, g)m-(Tt,Vf g)m\ g ^ \(TsVf g)m\ds ^ (t'-t) \\Vf\\M, \0\)m-

This implies that the function (0, oo)a t^>(TtVf, g)m is uniformly continuous and
hence there exists to>0 such that Tfom = m and
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limsup r_00(TnroF/,^)m>e/2.

Since lim€_>0 Vqf—Vf uniformly on X9 there exists qo>0 such that lii
{TntVqJ9 g)m>EJA. On the other hand, by the condition that each Tt is symmetric
and by Lemma 29 (a), we see

I(Tto) = {ueL2(m); T*u = u for any t>0}.

Then, it follows from Lemma 26 that 7(T,o) = {0} if JJm = oo and I(Tto) =
{const.} if \dm< oo. So in the same manner as in Lemma 32, we have l im, ,^
(Tnto Vqof9 gf)m = O, which is a contradiction.

The second assertion can be shown in the same manner as the corresponding
part of Theorem 31. This completes the proof.

REMARK 34. In the case that Tt9 t>09 are all absolutely continuous with
respect to m, the assumption that Tt9 t>09 are symmetric can be removed in the
above theorem.

In fact, in the above proof, we used the symmetrictiy only to show that
I(Tt) = {0} if $dm = oo and I(Tt)= {const.} if \dm<oo for f>0. However if Tt

is absolutely continuous with respect to m, [1, p. 52, Theorem A] shows that there
exists an m x m-measurable function pt{x9 y ) o n l x l such that for a n y / e CK(X)

Ttf{x) = ^pt{x9y)f{y)dm{y) m - a.e. xeX.

Since (Tt)t>0 is uniformly recurrent, we may consider that tt is a Harris proccess
(see [1, p. 58]) and hence I0 = {A; ^ e / ( T r ) } is atomic (see [1, p. 58, Theorem D
and p. 87, Theorem B]), where XA *S t n e characteristic function of A. Let A be an
atom in Io. Then the argument in [1. p. 90] shows that either T?XA> n = 0, 1,...,
are all distinct, or there exists an integer k^l with TfkXA— ^XIA — IA- But the
Hopt maximal ergodic lemma [1, p. 11, (2.1)] shows that the first case does not
occur. Remarking that I(Tt), and hence Io9 is independent of f>0, we see that
for t9 t'>0 with tjt' irrational, there exist n9 m ^ l such that T*{XA= ^mtXA — XA-
This implies that {se[0, oo); Tf(xAm) = xA

rn} is dense in [0, oo). Since s->
\TJdxAm ( / e C J ( I ) ) is lower semi-continuous, Tf(xAm)^XAm for every s^O.
By Lemma 26, we see Io = {0} if Jdm = oo and I0 = {X} if J'^m<oo. Since Io

generates I(Tt) ([1, p.87, Theorem B]), we have I(Tt) = {0} if J dm= oo and I(Tt) =
{const.} if Jdm<oo.

§ 5. Neumann kernels as our examples

In this section we shall discuss the Neumann kernel as an example of a
continuous kernel satisfying the semi-complete maximum principle (cf. [10,
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Example 5]). We consider the same setting as in S. Ito's paper [9]. Let D be
a relatively compact subdomain of n-dimensional orientable C°°-manifold whose
boundary S = D — D consists of a finite number of (n — l)-dimensional simple
hypersurfaces of class C2. Let A be an elliptic differential operator of the form:

for weC2(D), where ||a^'(x)|| and ||b£(x)|| ( l ^ / , j ^ n ) are contravariant tensors
of class C2 on 25, ||af7'(x)|| is symmetric and strictry positive definite and
a(x) = det ||fl|/x)||=det Ha'-'OOir1. We denote by dx and dS% respectively
the volume element in D and the hypersurface element on S with respect to the
Riemannian metric defined by ||tf;/x)||. We also denote by !f^ and /?(£) re-

spectively the outer normal derivative of u(x) and the outer normal component
of the vector || 6'(x)|| at the point £ e S. The adjoint differential operator A* of A
is defined as follows:

for u e C2(D). Let U(t, x, y) be the fundamental solution (for definition, see
[8]) of the initial-boundary value problem of the parabolic equation:

$£- =Au+f(t>09xeD), u\t=0 = u0 and. |jj- - fiu = $ (t>0,xeS).

Then U(T, x, y) is also the fundamental solution of the adjoint initial-boundary
value problem:

eD)9 u\t=0 = u0 and ^L = xj, (t>0,xeS).

The family of continuous kernels (Ut)t>0 on X = D defined by

UJ(y) = \u(t, x, y)f(x)dx9 fe C(X)

is a markovian continuous semi-group. In [9], it is shown that there exists a
function co(x)>0 on X satisfying

\ co(y) U(t, y, x)dy = co(x) and \ co(x)dx = 1

and that

K(y, x) = t°V(f, y, x)-co(x))dt
Jo
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is well-difined whenever x, yeX and x #= y, and is a kernel function of the boundary
value problem (Neumann problem)

Au(x)=f(x) in D and ^^~ ~ m<0 = HO on S

and also the adjoint problem

A*u(x) = f(x) in D and g " ( 0 = i/<£) on S.

The real continuous kernel X on X defined by

, x)f(y)dy, fe C(X)

satisfies the semi-complete maximum principle with respect to w(x)dx. In fact,
forany/eC£(X, codx\

UJ(y)ds = lim,.^ (' (t/(s, x, >;)-co
o Jo

and the convergence is uniform on X (see [9, Theorem 2 and p. 27, (3.10)]), and
hence Remark 3 (d) shows our assertion. We also see that (Ut)t>0 is uniformly
recurrent.
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