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1. Introduction

In this paper, we present a new method for solving the Cauchy problem
1.1 uft, x) = AY(u(t, x)), t>0 and xeR"V,

u(O’ X) = uO(x)’ X € RN,

where | is a locally Lipschitz continuous and nondecreasing function on R such
that /(0)=0; and the method is described from the point of view of the nonlinear
semigroup theory.

For uge L'(RY) n L°(RY), a function u € L*((0, o0) x R") is called a weak

solution of the problem (1.1) if ue C([0, c0); L'(RY)) as an L!(RV)-valued
function on [0, o0),

S: <§ u(t, X)f(t, )+ W(u(t, XA, x)dx >dt -0

RN
for any fe CF((0, o) x RY) and u(0, x)=uy(x) a.e.. The existence of weak
solutions is established in [1] (in a more general situation) and the uniqueness is
proved in [3]. (See also [2] and [11].)

To state the new method for solving the Cauchy problem, let p be an arbitrary
but fixed rapidly decreasing function on R¥ which satisfies

p20, | pode=1, | tp@ae=o
RN RN
(1.2) and
[ &ep@dE=5, for ij=12N,

where d;;=1 if i=j and 6;;=0 otherwise. (For example, we can choose the
(normalized) Gaussian kernel (27)~V/2 exp (—|£|?/2) as such p(£).) We set

w9 = () ()0

for (¢, n) e RV x R and h>0, where {{/,}, ¢ is a family of smooth strictly increasing
functions on R such that ¥,(0)=0, ¥,(n)—¥(n) as h | 0, uniformly for bounded
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neR, and {Y,(n)} is uniformly bounded for bounded h>0 and bounded e R.
Note that, the assumption (1.2) on the function p implies

(1.9) SRN Eip(é, h)dé =0 and SRN fifjph(é, ndé = 2h_1|/’;1(’7)6i,j

for i, j=1, 2,---, N.
For each h>0, we define an operator C, on L!(R") by the integral

(19 €= ("7 e mn)ae, xerr,

where we LI(RN). Using the properties (1.4) of p,, we see easily that, for we
LY{R™) n L*(R"), h~(C,w—w) converges to Ay(w) in the sense of distributions
as h| 0. (See the proof of Lemma 3.2 below.) Thus, we can expect that, if
uo € LI(RV) n L°(RY), then (C/"luy)(x) converges to the weak solution of the
Cauchy problem (1.1) as h | 0, where [t] denotes the greatest integer in te R.
In fact, we have the following theorem.

THEOREM. Let uge LY(R¥)n L™(RY). Then, as h 10, (Ci/"lug)(-) con-
verges in L'(RN) to the unique weak solution u(t,-) of the Cauchy problem (1.1)
uniformly for bounded t>0.

The method stated above was suggested by the methods of solving the Cauchy
problem for the equation

u,+ V- -¢p(u)=0, t>0 and xeRV

that were presented in [S], [6] and [7], and the method of solving the Cauchy
problem for the equation

u, + V- -¢p(u) = pdu, t>0 and xeRV,

that was presented in [9], where ¢ is an RV-valued function on R, u is a positive
constant and 7 denotes the spatial nabla. As in these methods, our method is
also based on a linearization procedure of the problem (1.1) to the Cauchy problem
for a linear equation involving a parameter. In fact, let

F(a, n) = 27'(sign (a —n) +sign (1))

for a, n e R, where sign (1)=n/|n| if n#0 and sign (0)=0. (See [7] for the basic
properties of the function F.) Then, we can rewrite (1.4) as follows:

€)= [ 1t x, nyan,

where
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J@ x,n) = gRN P(OF(w(x — 20y (m)'12¢, md

for t>0, ne R and x € R", and the function f(t, x, n) satisfies the linear equation
involving the parameter

fi=vmdf for t>0, xeR"V,

provided p is the Gaussian kernel.

The result will be obtaind by applying the approximation theory for nonlinear
semigroups. In section 2, an approximation theorem given in [10] will be
recalled, the basic properties of the operators C, will be investigated so as to apply
the approximation theorem and a dissipative operator 4 in L!(RM) will be
introduced in such a way that Au=A4y(u) in an appropriate sense. The proof of
the Theorem will be given in section 3.

2. Basic properties of C,

We first recall the approximation theorem for nonlinear semigroups due to
Brezis-Pazy [4] and Oharu-Takahashi [10] in a form convenient for our use.

THEOREM 2.1. Let {C,},-o be a family of contractions on a real Banach
space X. Suppose that the limit

J)_U = limmo (I—Ah_l(ch_l))—lv

exists for any ve X and any 1>0, where I denotes the identity operator in X.
Then there exists an m-dissipative operator A in X such that J,=(I—AA)™!
for 2>0 and, for each ve D(A),

T(t)v = lim,,, Cit/*y
uniformly for bounded t>0, where {T(t)},>o is the semigroup generated by A.

For the proof we refer to [10]. We wish to apply this theorem to the
operators C, defined by (1.5) and the Banach space X =L'(R") with the usual
norm | -||,. For this purpose, we first prepare a few estimates concerning the
operators C,. In what follows, for each y e R¥, we define an operator t¥ on
LY(RY) by (t?u)(x)=u(x+y) for x e RY; where ue L'(R"). Let| -], denote the
usual norm of the space L*(RV).

PROPOSITION 2.2. Let h>0. Then:

(i) C, is a contraction operator on LY(RM) and ||Cuu|,<|ull, for ue
L'(RY).

(ii) Cyrv=1"C, for ye RV.
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(iii) If ue L'(RN)n L°(RY), then CyueL'(RM)nL>R") and ||Cyul,<
llull -

ProoF. Let ueL!(RY). Then

[, lCulax

< (fsien e 7 pute man ) ae
=, (0, sien e [* pue, myan dx)ag

Since SRN pu(€, fE=1, this implies that C,u e L'(RY) and |Cuull;<|ull;. Let
u, ve L\(RY). Then,

(Chu) (%) — (Cp)(x)
=0 (1 pace, m dn)

v(x—h¢

= SRN (S: Pu(&, Bu(x—h&) + (1-0) o(x — he)) do) -(u(x—h&) — v(x— h&))dE.

Therefore, we have
[, ICme = €l
< SRN (SRN ( g: piE, Bu(x—h&) + (1—0)o(x— h&))do
(e —h)—o(x— hEI ) dx) de
= [ (0 (17 e, 6u) + (1=00x)d0- 1) — ot ) dx ) e

= SRN [u(x) —v(x)|dx.

Assertion (ii) is evident from the definition of C,. It now remains to prove (iii).
Let ue L'(R")n L*(R™) and ke R. Since

S RN <§: (&, ﬂ)dq)d{ =k

we have

@1 €~k = (" pute, man)de.
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Taking k= + ||ul|,, in (2.1), we find that (C,u)(x)—|lu|,, <0 and (Cou)(x)+ lull o
>0. Hence Cyue L*(R") and ||Cypu|l o < ||ul . Q.E.D.

The following result will be used to estimate the integralsg |(Cpu)(x)|dx
for R>0 and u € L\(R"). =

PROPOSITION 2.3.  Let ue LY(RN) and h>0. Then,
u(x—hg§) |
e Il — e < § (17 sign (pute, mame,

for xe RN,

ProOF. Let ke R and xe R". Since the function sign (-) is nondecreasing
and p, >0, (2.1) implies

sign (k) ((Cu)(x) —u(x))
= SRN <g:(x—h§) sign (k)p4(&, n)dr,> dé

u(x—hg)
< (57 sign (opute, myan Y.
On the other hand, we have
u(x) |
Ikl = [ul = = Sk sign (1)dn

= =, (1 sign puce, man )de.

Hence,
|kl = lu(x)| + sign (k) ((Cpu)(x)—k)
<, (17 sign (n)puce, myan .
Taking k=(C,u)(x) in this inequality, we obtain (2.2). Q.E.D.
We set

Ah = h—l(Ch-"I) and Jl,h = (1_21‘1'1)_l

for A, h>0. Assertion (i) of Proposition 2.1 implies that each A, is m-dissipative
and the resolvent J, , is nonexpansive in L'(R"). The following result can be
proved in the same way as in the proof of Proposition 2.2 in [7].

ProOPOSITION 2.4. Let A, h>0. Then:
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(i) J,4 is a contraction operator on LY(RY) and ||J, vl <[v,] for ve
LY(Ry).

(i) Jy1v=1%J,, for ye RV,

(i) If ve LY(RY)n L®(RN), then J, v € L°(RN) and |J; 10 o <[]l o-

We define an operator 4, in L'(R"N) by

Aou = AY(u) for ueD(A,),

where the domain D(A4,) of A, is the set of u e LY(R") n L*(R") such that Ay(u)
in the sense of distribution is an integrable function on RY. Let A4 be the closure
of Ay in LY(RY). The following fact is proved in [1] but we here gives its proof
for completeness.

PROPOSITION 2.5. The operators Ay and A are dissipative in L'(RV).

Proor. It is sufficient to show that A, is dissipative in LI(R¥). To this end,
define a linear operator L by Lu=Au for u e D(L), where D(L) is the set of u e
LY(RM) such that the distributional derivative 4u is in L'(RY). Since the
assumptions on Y imply that y(u) e L'(RY) n L*(RN) if u e LY(RN) n L°(RY), we
have Aqgu=Ly(u) for ue D(4,). Itis known that the operator L is densely defined
(linear) m-dissipative operator in LY(R"). (See, for example, Lemma 1.1 in [1].)

Let u, ve D(4,) and 4, ¢>0. Since Y is nondecreasing and (I —eL)™! is
nonexpansive in L'(RV), we have

SRN [(u —v)(x) — Ae™((I — L)~ (Y () — Y(0))(x)| — |(u — v) (x)|1dx

> — 2ot | sign (= o)) [ — oLyt — D)~ Y)x)dx

%

> — et SRN (T —eL)~' (Y(w) =Y ())(x)] — [0 () —P())(x)ldx
> 0.
Letting ¢ | 0 in this inequality gives

SRN [l(u —v)(x) = AL(Y (1) —Y())(x)] = |(u —v)(x)|]1dx > O.
Q.E.D.

3. Proof of the Theorem

We start with the following lemma.

LemMA 3.1. Let ve L(RV)n L°(RY). Then



An operator theoretic method for solving u,= 4y(u) 85

[ 1000ldx — 0 as R— o,
|x|>R

uniformly for bounded h>0 and bounded A>0.

Proor. Set u,,=J,,v for 4, h>0. Then it follows from Proposition 2.4
that u, , € L'(R¥) n L*(R¥) and

(3.1) lusnll, < lloll,, p=1, co.
Since

(3.2) h 1 (Cpuzp—usp) = A (u34—0),
we have

A (Juz () = [v(x)])
< sign (uy j (A7 (1 ,4(x) — v(x))
= sign (u 4 (x))h™ ((Cyu2,m)(%) — 1 4(x)
< W (Chu, )| — [ (X)) -

Hence, (2.2) with u=u, , implies

(33 27491 = o)
< w0 sign nypuce, mpan .

Choose a function g € C*(R) such that
g =1 if s>1; g6)=0 if s<0; and 0<g(s) <1 for seR,
and define, for R>r>0, the function f®:"e C*(R") by
JRr(x) = g(R=r)"'(Ix|—r))  for xeRM.

Since fR:r(x)=1 if |x|>R; fR"(x)=0 if |x|<r;and 0< fR"(x)<1 for xe RV, it
follows from (3.3) that

Gay | = ol
< . (2Ol = (DS~ ()
<ant {10 (17 sign e, mn )de | rr(ax

ua,n(x)

=t (0 sign@p, mn) (707 e he) - R pax | de
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By Taylor’s formula, we have
IR+ he)=fR() = £ R0 ()

< 27'NR 3 |&;|2 sup; ;

62 R,r
0x;0x f

Therefore, in view of (1.4), (3.4) implies
f  wldx={  pldx
|x|>R |x|>r
2 ua,m(x) . ’ :l A 62 R,r
< AN gRN BO sign(n)¥4(n)dn |dx-sup;, ; el s

Thus, using (3.1), we obtain the estimate

[ s < jpeolds
|x|>R |x|>r

+ ANZ[sup <oy ¥ s(M1- vl -sup; ;

<)

62 R,r
0x;0x; f

By the hypothesis on y;, and the definition of f®:7, we see that the second term on
the hand side of the above inequality converges to zero as R— oo, uniformly for
bounded 4, h>0. Therefore,

lim Supgro SUPo<scsncnes | Iss(@ldx) <f  loColdz

|x1>

for A4,>0 and hy,>0. Since ve L'(RY), this shows the desired assertion.
Q.E.D.

LeMMA 3.2. Let ve L'(RN)n L*(RY) and .>0. Then we have:

(i) The set {J,,v; 0<h<hy} is precompact in L\(RN) for hy >0.

(ii) If {h(n)} is a null sequence such that J,,nv converges to a limit
u e L'(RN) as n— o, then ue D(A,) and A~ (u—v)=Aqu.

PrOOF. Let hy>0 and set u,,=J,v for A, h>0. Assertions (i), (ii) of
Proposition 2.4 together imply

(3.5) lPup—tznlls = [Japw?v—=J 00l < [[PPv—vy
for h>0and ye R¥. Hence
(3.6) SUPo <h<no 17Uz p—tsplly — 0 as y— 0.

Furthermore, Lemma 3.1 implies that
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G.7) sup°<,,<,,ogl o Juai0ldx — 0 as R—s o,

In view of (3.1), (3.6) and (3.7), the well-known compactness criterion in L1(RN)
can be applied to get the first assertion (i).

To prove (ii), let {h(n)} be a null sequence such that u, ,,, converges a.e. to
a limit u, € L'(RY) as n—»o0. It follows from (3.1) that u; € L°(R") and |u,||, <
Ivllo. LetfeCP(RY). By (3.2) and the definition of C,, we have

38 (| # w0 -0 eodx

=T (1 e, mn)ae | s

ua,n(x)
= h~! SR,, BRN <S0” i, n)dn> (fe+hé) — f(x))dx]d&

Using (1.4), we can rewrite the right side of the above equality as
g [S (gu/\,h(x) pu(&, 'I)drl>-{h—l(f(x+h€)—f(x))_f.Vf(x)}dxildé
RN RN 0

=0 LS (5 pute man){[| -7 s+ om0 7 a0} ax [ae

0

and by a change of variables the above integral is transformed into

SRN Bmf <S e )(2%('1))(2/&# (m)~1/2

Al &0 e+ 0@y 20 -7 f(x)d0Ydn )o(@)d ¢ .

Put h=h(n) in (3.8) and let n tend to the infinity in the resultant equality. Since
lusullo is uniformly bounded for h>0 and y(n) is uniformly bounded for
bounded h>0 and bounded 5 € R by the assumption, the Lebesgue convergence
theorem yields

[ 70— f (dx

= Ju L cviom -0 df’}d">
(e 88y 50 1) )o@ | .
= o UGN ),

where we have used (1.2). Hence u, € D(4,) and A~1(u, —v)=Aqu,. Q.E.D.
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In the same way as in the proof of the consistency condition (d,) in [7]
(p. 504-505), we can show that the lemma above implies the following result.

PROPOSITION 3.3. The operator A is m-dissipative in L'(R") and
(I=AA)'v = lim, o J, v in LY(RY)
for A>0 and ve L'(RY).
We have also the following result.

PROPOSITION 3.4. The domain D(A) of A is dense in L'(RV).

Proor. Let ve LY(RY)n L°(R") and set u,=(I—AA)~'v for 1>0. Since
u,=lim,,, J, v in LY(R"), (3.1) and (3.5) imply

lually < lloglly and 2w, —uslly < [lv7v—vlly,
respectively. Also, Lemma 3.1 implies

supoqqog |[u,(x)/dx — 0 as R— o0
|x]>R

for any 1,>0. So, the Fréchet-Kolmogorov theorem implies that the set {u,;
0<A<ly} is precompact in L'(RY). Let {A(n)} be a null sequence such that
U 3(m) converges in L'(RY) to a limit u € L'(RV) as n—>oo. Since [u,]|,, is bounded
for >0 by (3.1), so is ||(u,)ll,, and A(n)Y(u,) converges in the sense of distri-
bution to zero as n—oco. Therefore, u;,)—v=A(n)4Y(u,.,) converges in the
sense of distribution to zero as n—oo and v=u=lim,_, U, in L'(R"). This
implies v € D(4). Since L'(R¥) n L°(R¥) is dense in L1(RY), we see that D(4)=
LY(RM). Q.E.D.

By Propositions 3.3 and 3.4, the dissipative operator A generates a con-
traction semigroup {7T(¢)},=o on LY(R"). On the other hand, Theorem 2.1 and
Proposition 3.2 together imply that, for u, e L1(R")

(3.9) T(t)uo = 1imh¢0 CE,'/"]MO

holds in L!(R") uniformly for bounded t>0. Hence, it suffices to show that
u(t, x)=(T(t)uy)(x) is a weak solution of the problem (1.1) provided u, € L'(R") n
L*(R™). To this end, let uye LY(RY)n L®(RY) and set u(t, x)=(T(H)uy)(x).
Obviously, ue C([0, c0); LL(RY)) and, by Proposition 2.2(iii) and (3.9),
u € L*((0, c0) x (RY) with |u(t, x)| <|luoll,. Set wuy(t, x)=(CL/hlyy)(x). Since
(Crup)(t,-)=uy(t+h,-), we have h=1(u,(t+h, - ) —u,(t,-))=(A4,u,)t,-), so that
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h-lS:BRN uy(t, X)(f(t—h, x)—f(t, x))dx]dz

0

=nt S: DRN (SRN <Smm P&, n)dr,)- (f(t, x+hd)— f(1, x))dx)df] dt

for fe C3((0, ) x RY) and h>0 sufficiently small. Since u,(1,-) converges to
u(t,-)in L'(R") as h | 0, uniformly for bounded >0, and |u,(t, x)| < vl ., the
same argument as in the proof of assertion (ii) of Lemma 3.2 yields

o [ e 01 0 e = ST v, xpar, e ae

for fe CF((0, c0) x R™). Thus, u(t, x) is a weak solution of (1.1). This com-
pletes the proof of the Theorem.
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