# On homomorphisms of cocommutative coalgebras and Hopf algebras

Hiroshi YANAGIHARA

(Received January 13, 1987)

Let

 $k \longrightarrow G \xrightarrow{j} H \xrightarrow{\rho} J \longrightarrow k$ 

be an exact sequence of cocommutative Hopf algebras over a field k and let C be a cocommutative coalgebra over k. Then it is known that the induced sequence

 $\{e\} \longrightarrow \operatorname{Hom}_{cool}(C, G) \xrightarrow{j_*} \operatorname{Hom}_{cool}(C, H) \xrightarrow{\rho_*} \operatorname{Hom}_{cool}(C, J)$ 

of groups is also exact, but that  $\rho_*$  is not necessarily surjective. In the paper [2] T. Shudo gave a condition for this homomorphism  $\rho_*$  to be always surjective in the case that H is a hyperalgebra. Precisely he showed that  $\rho_*$  is surjective for any connected cocommutative coalgebra C over k if and only if the Hopf algebra homomorphism j has a coalgebra retraction  $\eta: H \rightarrow G$  such that  $\eta \circ j$  is the identity map of G.

The main purpose of this paper is to show that the above result for hyperalgebras and connected cocommutative coalgebras is also true for any pointed cocommutative Hopf algebras and coalgebras. In §1 we shall show firstly some properties of cocommutative coalgebras over a field k and coalgebra homomorphisms between them, which are well known in connected cases. Then we shall show in Propositions 4 and 6 that the properties for coalgebra homomorphisms to have coalgebra splittings and coalgebra retractions are colocal in a sense. These results play essential roles in the proof of our main results. In §2 we shall give two theorems. Theorem 1 says that a sequence of pointed cocommutative Hopf algebras over k is exact if and only if the induced sequence of groups consisting of grouplike elements and the sequence of hyperalgebra components of the given sequence are both exact. Theorem 2 is our main result and is a generalization of Shudo's result mentioned in the above.

Throughout this paper we fix a ground field k. All coalgebras, Hopf algebras and their tensor products are defined over k, and our terminology and notations follow those in [3], [4], [5] and [6].

## §1. Some properties of coalgebra homomorphisms

**PROPOSITION 1.** Let  $(C, \Lambda, \varepsilon)$  be a cocommutative coalgebra over a field k and g a grouplike element of C. Denote by A the dual algebra  $C^*$  of C and by D the minimal subcoalgebra kg of C generated by g. Moreover let m be the null-space  $D^{\perp}$  of D in A and  $C_i$  the null-space  $(m^{i+1})^{\perp}$  of the ideal  $m^{i+1}$  of A in C. Then we have the following:

- (i)  $D_1 = \bigcup_{i=0}^{\infty} C_i$  is the largest connected subcoalgebra of C which contains D.
- (ii) For any integer  $i \ge 0$ , an element x in C is contained in  $C_i$  if and only if  $a \cdot x \in C_{i-1}$  for any a in m, where C is considered to be an A-module as defined in §3 in [4] and we understand  $C_{-1} = (0)$ .
- (iii) If x is contained in  $C_n$ , then  $\Delta(x) \in \sum_{i=0}^n C_{n-i} \otimes C_i$ .

**PROOF.** (i). If we put  $D_x = A \cdot x$  for a non-zero element x in  $D_1$ , then  $D_x$  is a finite dimensional subcoalgebra of C by Corollary 3.9 in [4] and  $A/D_x^{\perp}$  is isomorphic to the dual algebra  $D_x^*$  of  $D_x$  by Corollary 3.3 in [4]. Since  $x \in D_1$ , there is an integer *i* such that  $x \in C_i$ . By Proposition 3.8 in [4]  $C_i$  is an A-sub-module of C and hence  $D_x = A \cdot x$  is contained in  $C_i$ . Therefore we see

$$D_x^{\perp} \supset (C_i)^{\perp} = ((\mathfrak{m}^{i+1})^{\perp})^{\perp} \supset \mathfrak{m}^{i+1}.$$

Now let D' be a minimal subcoalgebra of  $D_1$ . If x is a non-zero element of D', then we have  $A \cdot x = D'$  and  $D'^{\perp} = (D_x)^{\perp}$  is a maximal ideal of  $A = C^*$ . Since  $D'^{\perp} \supset \mathfrak{m}^{i+1}$  for some *i*, we see that  $D'^{\perp}$  contains m and hence  $D'^{\perp}$  must be equal to m. Therefore  $D_1$  contains only one minimal subcoalgebra D = kg. Next let *E* be a subcoalgebra of *C* containing *D* and assume that *E* has no minimal subcoalgebra but *D*. Then we see that  $E^{\perp} \subset D^{\perp} = \mathfrak{m}$  and  $A/E^{\perp}$  is isomorphic to  $E^*$ by Corollary 3.3 in [4]. If we put  $\mathfrak{m}' = \mathfrak{m}/E^{\perp} \subset E^*$  and  $C'_i = (\mathfrak{m}'^{i+1})^{\perp} \subset E$ , then we have  $E = \bigcup_{i=0}^{\infty} C'_i$  by Proposition 3.11 in [4]. On the other hand we see that

$$C'_{i} = (\mathfrak{m}^{i+1})^{\perp} = (\mathfrak{m}^{i+1} + E^{\perp}/E^{\perp})^{\perp} = E \cap (\mathfrak{m}^{i+1})^{\perp} = E \cap C_{i}.$$

Therefore we see that

$$E = \bigcup_{i=0}^{\infty} C_i' = \bigcup_{i=0}^{\infty} (E \cap C_i) \subset \bigcup_{i=0}^{\infty} C_i = D_1$$

and hence that  $D_1$  is the largest connected subcoalgebra of C containing D.

The assertions (ii) and (iii) can be shown in the exactly same way as the proof of (ii) and (iii) of Proposition 3.11 in [4] and hence we omit the detail.

COROLLARY. Let  $(C, \Delta, \varepsilon)$ ,  $g, D = kg, A = C^*$  and  $C_i$  be as in Proposition 1. Let  $C^0$  be the kernel of  $\varepsilon$  and put  $C_i^0 = C^0 \cap C_i$ . Then an element x in C belongs to  $C_n^0$  if and only if Homomorphisms of cocommutative coalgebras

$$\Delta(x) - x \otimes g - g \otimes x \in \sum_{i=1}^{n-1} C_{n-i}^0 \otimes C_i^0$$

where we understand  $\sum_{i=1}^{n-1} C_{n-i}^0 \otimes C_i = 0$  for n = 1.

**PROOF.** This corollary can be shown in the same way as the proof of Proposition 3.13 in [4] and hence we omit the detail.

Let  $(C, \Delta, \varepsilon)$  be a cocommutative coalgebra over k and let g be a grouplike element of C. Then an element x of C is called a primitive element of C with respect to g, if we have  $\Delta(x) = x \otimes g + g \otimes x$ . In the following we denote by G(C)the set of grouplike elements of C and by  $P_q(C)$  the set of primitive elements of C with respect to g. It is easy to see that  $P_g(C)$  is a k-subspace of C and that we have  $\varepsilon(x) = 0$  for any x in  $P_q(C)$ .

**PROPOSITION 2.** Let g be a grouplike element of a cocommutative coalgebra C and put  $D_g = kg$ . If A is the dual algebra C\* of C and m is the ideal of A which is the null-space  $D_g^{\perp}$  of  $D_g$  in A, then the null-space  $C_1 = (m^2)^{\perp}$  of  $m^2$  in C is the direct sum of  $D_g$  and  $P_g(C)$ .

**PROOF.** Let  $\Delta$  and  $\varepsilon$  be the comultiplication and the coidentity of C, respectively. Since we have  $\varepsilon(g) = 1$  and  $\varepsilon(x) = 0$  for any x in  $P_g(C)$ , the sum  $D_g + P_g(C)$  is a direct one. If c is an element of  $C_1$  and we put  $d = c - \varepsilon(c)g$ , then d belongs to  $C_1$  and  $\varepsilon(d) = 0$ . Therefore we see, by Proposition 1, (iii), that

$$\Delta(d) = d_1 \otimes g + g \otimes d_2 \quad \text{with} \quad d_i \in C_1.$$

From this equality we see that

$$0 = \varepsilon(d) = (\varepsilon \otimes \varepsilon) \Delta(d) = \varepsilon(d_1) + \varepsilon(d_2) \tag{(*)}$$

and

$$d_1 + \varepsilon(d_2)g = d = d_2 + (d_1)g$$
 (\*\*)

using  $(id_c \otimes \varepsilon) \Delta(d) = d = (\varepsilon \otimes id_c) \Delta(d)$ . Hence we have from (\*\*) and (\*)

$$\begin{aligned} \Delta(d) &= d_1 \otimes g + g \otimes d_2 \\ &= (d - \varepsilon(d_2)g) \otimes g + g \otimes (d - \varepsilon(d_1)g) \\ &= d \otimes g + g \otimes d. \end{aligned}$$

This means that d is contained in  $P_g(C)$  and hence that  $C_1$  is a subspace of  $D_g \oplus P_g(C)$ . Conversely let x be an element of  $P_g(C)$ . If a and b are any elements of  $\mathfrak{m} = (D_g)^{\perp}$ , then we see by the definition of A-module structure of C given in §3 in [4] that

Hiroshi Yanagihara

$$\langle a \cdot x, b \rangle = \langle x, ab \rangle = \langle \Delta(x), a \otimes b \rangle$$
  
=  $\langle x \otimes g + g \otimes x, a \otimes b \rangle$   
=  $\langle x, a \rangle \langle g, b \rangle + \langle g, a \rangle \langle x, b \rangle = 0,$ 

because we have  $\langle g, a \rangle = \langle g, b \rangle = 0$ . Therefore  $a \cdot x$  belongs to  $\mathfrak{m}^{\perp} = C_0$  for any  $a \in \mathfrak{m}$  and hence x belongs to  $C_1 = (\mathfrak{m}^2)^{\perp}$  by Proposition 1, (ii). In conclusion we see that  $C_1 = D_g \oplus P_g(C)$ .

COROLLARY. Let C be a cocommutative coalgebra over k and let G(C) be  $\{g_{\lambda} | \lambda \in \Lambda\}$ . Then the sum  $\sum_{\lambda \in \Lambda} P_{g_{\lambda}}(C)$  is direct.

**PROOF.** By Proposition 1, (i) there exists the largest subcoalgebra  $D_{\lambda}$  of C containing  $D_{g_{\lambda}} = kg_{\lambda}$  for each  $\lambda$  and then, by Proposition 2, we see that  $D_{\lambda}$  contains  $P_{g_{\lambda}}(C)$ . Since the sum  $\sum_{\lambda \in \Lambda} D_{\lambda}$  is direct by Theorem 8.0.5 in [3], our assertion follows easily.

Now let C be a cocommutative coalgebra over a field k and let G(C) be the set  $\{g_{\lambda} | \lambda \in \Lambda\}$  of grouplike elements of C. Then the sum  $\sum_{\lambda \in \Lambda} P_{g_{\lambda}}(C)$  of vector subspaces  $P_{g_{\lambda}}(C)$  is direct as seen in the above. We denote by P(C) this direct sum and call it the space of primitive elements of C. The following proposition is a version of Lemma 11.0.1 of [3] in non-irreducible cases.

**PROPOSITION 3.** Let C and D be cocommutative coalgebras over k and let f be a coalgebra homomorphism of C to D. Assume that C is pointed. Then f is injective if and only if the restrictions  $f|_{P(C)}$  and  $f|_{G(C)}$  are both injective.

**PROOF.** It suffices to show the "if" part. If  $G(C) = \{g_{\lambda} | \lambda \in A\}$ , then we denote by  $C_{\lambda}$  the irreducible component of C containing the minimal subcoalgebra  $kg_{\lambda}$  of C. By Corollary 8.0.7 in [3] we see that C is the direct sum  $\bigoplus_{\lambda \in A} C_{\lambda}$  and  $f(C_{\lambda})$  is an irreducible subcoalgebra of D containing  $f(kg_{\lambda}) = kf(g_{\lambda})$  as a unique minimal subcoalgebra by Theorem 8.0.8 in [3]. By our assumption we have  $f(g_{\lambda}) \neq f(g_{\lambda'})$  for  $\lambda \neq \lambda'$  and hence we see  $f(C_{\lambda}) + f(C_{\lambda'}) = f(C_{\lambda}) \oplus f(C_{\lambda'})$  by Theorem 8.0.5 in [3]. Therefore we see by the same theorem that

$$f(C) = f(\bigoplus_{\lambda \in A} C_{\lambda}) = \bigoplus_{\lambda \in A} f(C_{\lambda}).$$

This means that f is injective if and only if  $f|_{C_{\lambda}}$  is injective for each  $\lambda$  by the injectivity of  $f|_{P_{\alpha\lambda}(C)}$  and and Lemma 11.0.1 in [3].

Let C and D be pointed cocommutative coalgebras over k and let f be a coalgebra homomorphism of C to D. If  $G(D) = \{h_{\mu} \mid \mu \in M\}$ , then we put  $D_0 = \sum_{\mu \in M} kh_{\mu} = \bigoplus_{\mu \in M} kh_{\mu}$ , which is a subcoalgebra of D. In §1 of [6] we defined the h-inverse  $h - f^{-1}(D_0)$  of  $D_0$  by f, which is the largest subcoalgebra C' of C satisfying

 $f(C') \subset D_0$ . We call this  $C' = h - f^{-1}(D_0)$  the *c*-kernel of f and denote it by *c*-ker f. If  $G(C) = \{g_{\lambda} | \lambda \in A\}$ , then we denote by  $C_{\lambda}$  the connected component of C containing  $kg_{\lambda}$  and we put  $f_{\lambda} = f|_{C_{\lambda}}$ . Since  $f_{\lambda}$  is a coalgebra homomorphism of  $C_{\lambda}$  to D and  $f_{\lambda}(C_{\lambda})$  is irreducible, there is a unique  $\mu$  in M such that  $f_{\lambda}(C_{\lambda}) \subset D_{\mu}$  where  $D_{\mu}$  is the irreducible component of D containing  $kh_{\mu}$ . It is clear that c-ker  $f_{\lambda}$  is irreducible and contained in *c*-ker f, and hence we see easily that *c*-ker  $f = \bigoplus_{\lambda \in A} c$ -ker  $f_{\lambda}$ . In particular if C and D are connected, i.e., colocal, then *c*-ker f coincides with *h*-ker f in the sense of [5]. Therefore if we consider that  $f_{\lambda}$  is a homomorphism of  $C_{\lambda}$  to  $D_{\mu}$ , then *c*-ker f is the direct sum  $\bigoplus_{\lambda \in A} h$ -ker  $f_{\lambda}$ . The following lemma is well-known, but we give a proof for convenience' sake.

LEMMA 1. Let C and D be colocal coalgebras with grouplike elements g and h, respectively, and let f be a coalgebra homomorphism of C to D. Then f is injective if and only if c-ker f = h-ker f is kg.

**PROOF.\*)** Since f(g) = h, it is easily seen that *c*-ker *f* is equal to kg if *f* is injective. Conversely assume that *c*-ker f = kg. If *f* is not injective, then there is a finite dimensional subcoalgebra *C'* of *C* such that  $f' = f|_{C'}$  is not injective by Corollary 3.9 in [4]. Since *c*-ker *f'* is contained in *c*-ker *f*, we may assume that  $\dim_k C$  is finite. Moreover we may assume that *f* is surjective. Let *A* and *B* be the dual algebras  $C^*$  and  $D^*$  of *C* and *D*, respectively, and  $f^*$  the dual algebra homomorphism of *f* from *B* to *A*. By our assumption *A* and *B* are both local rings and finite dimensional over *k*, and  $f^*$  is injective. The fact that *c*-ker f = kg means by Proposition 3.2 in [4] that the ideal of *A* generated by the image  $f^*(n)$  of the maximal ideal n of *B* coincides with the maximal ideal m of *A*. Therefore we have  $A = k + m = f^*(B) + f^*(n)A$  and hence, by Nakayama's lemma (cf. Corollary 2.7 in [1]),  $A = f^*(B)$ . This is a contradiction, because *f* is not injective.

COROLLARY. Let C and D be pointed cocommutative coalgebras over k and f a coalgebra homomorphism of C to D. Denote by  $C_0$  the subcoalgebra  $\bigoplus_{\lambda \in \Lambda} kg_{\lambda}$  of C where  $G(C) = \{g_{\lambda} | \lambda \in \Lambda\}$ . Then the following are equivalent: (i) f is injective.

(ii) c-ker f is contained in  $C_0$  and the restriction  $f|_{G(C)}$  of f is injective.

**PROOF.** It is easy to see that (i) implies (ii). Conversely assume that (ii) is true. Let  $C_{\lambda}$  be the connected component of C containing  $kg_{\lambda}$  for each  $\lambda$  and put  $f_{\lambda} = f|_{C_{\lambda}}$ . Since c-ker  $f = \bigoplus_{\lambda \in A} c$ -ker  $f_{\lambda}$  is contained in  $C_0 = \bigoplus_{\lambda \in A} kg_{\lambda}$ , c-ker  $f_{\lambda}$  is contained in  $kg_{\lambda}$  for each  $\lambda$  and hence  $f_{\lambda}$  is injective by Lemma 1. On the other hand since  $f|_{G(C)}$  is injective, the sum  $\sum_{\lambda \in A} f_{\lambda}(C_{\lambda})$  is direct by Theorem 8.0.5 in

<sup>\*)</sup> T. Shudo communicated to the author that a shorter proof of Lemma 1 can be given if we use Proposition 3. Our proof is independent of Proposition 3 and hence Lemma 11.0.1 in [3].

[3]. This means by the equality  $f(C) = f(\bigoplus_{\lambda \in \Lambda} C_{\lambda}) = \bigoplus_{\lambda \in \Lambda} f(C_{\lambda})$  that f is injective.

Let C be a pointed cocommutative coalgebra over k and let E be a subcoalgebra of C. Then we say that E has a coalgebra retraction in C if there exists a coalgebra homomorphism  $\eta$  of C to E such that  $\eta|_E$  coincides with the identity map  $id_E$  of E. The property for E to have a retraction in C is colocal in a sense. To see this we need the following

LEMMA 2. Let C and E be cocommutative coalgebras over k and assume that E has a grouplike element g. Then the mapping  $\eta$  of C to E given by  $\eta(x) = \varepsilon(x)g$  is a coalgebra homomorphism, where  $\varepsilon$  is the coidentity of C.

**PROOF.** This follows easily from the fact that  $\varepsilon: C \rightarrow k$  is a coalgebra homomorphism of C to the trivial coalgebra k and the subcoalgebra kg of E is isomorphic to k as coalgebras over k.

**PROPOSITION 4.** Let C be a pointed cocommutative coalgebra over k and let E be a subcoalgebra of C. Assume that G(C) is equal to  $\{g_{\lambda} | \lambda \in \Lambda\}$  and that G(E) is the subset  $\{g_{\mu} | \mu \in M\}$  of G(C) with  $M \subset \Lambda$ . Let  $C_{\lambda}$  be the connected component of C containing  $kg_{\lambda}$  for each  $\lambda$  and let  $E_{\mu}$  be the connected component of E containing  $kg_{\mu}$  for each  $\mu \in M$ . Then E has a coalgebra retraction in C if and only if  $E_{\mu}$  has a coalgebra retraction in  $C_{\mu}$  for each  $\mu \in M$ .

PROOF. First assume that there is a coalgebra homomorphism  $\eta$  of C to E such that  $\eta|_E = id_E$ . Then it is clear that  $\eta|_{E_{\mu}} = id_{E_{\mu}}$  for each  $\mu \in M$ . Since  $E_{\mu} \subset C_{\mu}$  for each  $\mu \in M$  by Theorem 8.0.5 in [3], we have  $\eta(C_{\mu}) \supset \eta(E_{\mu}) = E_{\mu}$  and hence  $\eta(C_{\mu}) = E_{\mu}$ . Therefore  $\eta|_{C_{\mu}}$  is a coalgebra homomorphism of  $C_{\mu}$  to  $E_{\mu}$ such that  $(\eta|_{C_{\mu}})|_{E_{\mu}} = id_{E_{\mu}}$ . In other words  $E_{\mu}$  has a coalgebra retraction in  $C_{\mu}$ . Conversely assume that  $E_{\mu}$  has a coalgebra retraction in  $C_{\mu}$  for each  $\mu \in M$ . Let  $\mu_0$  be a fixed element of M. If  $\lambda$  is an element of  $\Lambda$  but not in M, we define a map  $\eta_{\lambda}$  of  $C_{\lambda}$  to E by  $\eta_{\lambda}(x) = \varepsilon(x)g_{\mu_0}$  where  $\varepsilon$  is the coidentity of C. Then  $\eta_{\lambda}$  is a coalgebra homomorphism of  $C_{\lambda}$  to E by Lemma 2. If  $\mu$  is an element of M, then there exists a coalgebra homomorphism  $\eta_{\mu}$  of  $C_{\mu}$  to  $E_{\mu}$  such that  $\eta_{\mu}|_{E_{\mu}} = id_{E_{\mu}}$ . Now we define a coalgebra homomorphism  $\eta$  of C to E by  $\eta = \bigoplus_{\lambda \in \Lambda} \eta_{\lambda}$ . It is easy to see that  $\eta|_{E} = id_{E}$ .

Next we give another property of coalgebra homomorphisms. Let M and N be sets and let f be a map of M to N. Then a map g of N to M is called a *splitting* of f if the composite  $f \circ g$  is equal to the identity  $id_N$  of N. Similarly if C and D are cocommutative coalgebras over k and if  $\rho$  is a coalgebra homomorphism of C to D, then a coalgebra homomorphism  $\tau$  of D to C with  $\rho \circ \tau = id_D$  is called a *coalgebra splitting* of  $\rho$ . It is clear that if  $f: M \to N$  (resp.  $\rho: C \to D$ ) has a splitting  $g: N \to M$  (resp.  $\tau: D \to C$ ), then f (resp.  $\rho$ ) is a surjective. Moreover we have the following

**PROPOSITION 5.** Let C and D be cocommutative coalgebras over k and let  $\rho$  be a coalgebra homomorphism of C to D. Then the following are equivalent: (i)  $\rho$  has a coalgebra splitting  $\tau: D \rightarrow C$ .

(ii) For any cocommutative coalgebra F and any coalgebra homomorphism  $\sigma$ :  $F \rightarrow D$  there is a coalgebra homomorphism  $\omega$ :  $F \rightarrow C$  with  $\sigma = \rho \circ \omega$ .

**PROOF.** (i) $\Rightarrow$ (ii). It suffices to put  $\omega = \tau \circ \sigma$ . (ii) $\Rightarrow$ (i). If F and  $\sigma$  are taken as D and  $id_D$ , respectively, then  $\omega$  in (ii) is a coalgebra splitting of  $\rho$ .

The property for a coalgbra homomorphism between pointed cocommutative coalgebras to have a coalgebra splitting is also colocal in the same sense as for coalgebra retractions. Let C and D be pointed cocommutative coalgebras over k with grouplike elements  $G(C) = \{g_{\lambda} | \lambda \in \Lambda\}$  and  $G(D) = \{h_{\mu} | u \in M\}$ , respectively. Let  $C_{\lambda}$  be the connected component of C containing  $kg_{\lambda}$  for each  $\lambda \in \Lambda$  and let  $D_{\mu}$  be that of D containing  $kh_{\mu}$  for each  $\mu \in M$ . If  $\rho$  is a coalgebra homomorphism of C to D, then there is a mapping  $\rho'$  of  $\Lambda$  to M such that  $\rho(g_{\lambda}) = h_{\rho'(\lambda)}$ . It is easy to see that  $\rho(C_{\lambda})$  is contained in  $D_{\rho'(\lambda)}$ .

**PROPOSITION 6.** Let C, D,  $\rho$ ,  $\Lambda$ , M,  $C_{\lambda}$ ,  $D_{\mu}$  and  $\rho'$  be as above. Then  $\rho$  has a coalgebra splitting if and only if the following are satisfied:

(i)  $\rho'$  has a splitting  $\tau': M \to \Lambda$ .

(ii) For any  $\mu$  in M the restriction  $\rho_{\mu}: C_{\tau'(\mu)} \rightarrow D_{\mu}$  of  $\rho$  to the subcoalgebra  $C_{\tau'(\mu)}$  of C has a coalgebra splitting.

**PROOF.** Assume that  $\rho$  has a coalgebra splitting  $\tau: D \to C$ . Since  $\tau(h_{\mu})$  is a grouplike element of C, there is a unique  $\lambda$  in  $\Lambda$  such that  $\tau(h_{\mu}) = g_{\lambda}$ . So we define a map  $\tau': M \to \Lambda$  by  $\tau(h_{\mu}) = g_{\tau'(\mu)}$ . Then we see easily from  $\rho \circ \tau = id_D$  that  $\tau'$  is a splitting of  $\rho'$ . Now if  $\tau_{\mu}$  is the restriction of  $\tau$  to the subcoalgebra  $D_{\mu}$  of D, then  $\tau_{\mu}$  is a coalgebra homomorphism and we see that

$$\rho_{\mu} \circ \tau_{\mu} = (\rho \circ \tau) |_{D_{\mu}} = (id_D) |_{D_{\mu}} = id_{D_{\mu}}.$$

Therefore  $\rho_{\mu}$  has a coalgebra splitting  $\tau_{\mu}$ .

Conversely if our assertions (i) and (ii) are satisfied, then we see from  $(\rho' \circ \tau')(\mu) = \mu$  that  $\rho_{\mu}(C_{\tau'(\mu)}) = \rho(C_{\tau'(\mu)})$  is contained in  $D_{\mu}$  for any  $\mu$  in M. Since  $\rho_{\mu}$  has a coalgebra splitting  $\tau_{\mu} : D_{\mu} \to C_{\tau'(\mu)}$  for any  $\mu \in M$ , we define  $\tau : D \to C$  by  $\tau = \bigoplus_{\mu \in M} \tau_{\mu}$ . Is is easy to see that  $\tau$  is a coalgebra homomorphism with  $\rho \circ \tau = id_{D}$ .

#### §2. Strongly exact sequences of Hopf algebras

Let  $(H, m, i, \Delta, \varepsilon, c)$  be a pointed cocommutative Hopf algebra over a field k, where  $m, i, \Delta, \varepsilon$  and c are the multiplication, the identity, the comultiplication, the coidentity and the antipode of H, respectively. Then it is known that the set

G(H) of grouplike elements of H has a group structure with unit  $1_H$  under the composition  $gg' = m(g \otimes g')$  for g and g' in G(H) (cf. Proposition 4.7 in [4]). If g is an element of G(H), then we denote by  $H_g$  the connected component of H containing kg. In particular we denote by  $H_1$  the connected component of H containing  $k1_H = k$ . Moreover let  $h_g$  be the map of H to itself given by  $h_g(x) = m(g \otimes x) = gx$  for any x in H. The following two propositions play important roles in the proof of our main results.

**PROPOSITION 7.** Let  $(H, m, i, \Delta, \varepsilon, c)$ ,  $H_1$ ,  $H_g$  and  $h_g$  be as above. Then  $h_g$  is a coalgebra automorphism of H and gives a coalgebra isomorphism between  $H_1$  and  $H_g$ .

**PROOF.** By the definition of Hopf algebras we have  $\Delta m = (m \otimes m)\tau(\Delta \otimes \Delta)$ where  $\tau$  is the k-linear automorphism of  $H \otimes H \otimes H \otimes H \otimes H$  given by  $\tau(x \otimes y \otimes z \otimes w) = x \otimes z \otimes y \otimes w$ . Therefore if  $\Delta(x) = \sum_{(x)} x_{(1)} \otimes x_{(2)}$  for any element x in H, then we have for a grouplike element g of H

$$\begin{aligned} \Delta(gx) &= (\Delta m)(g \otimes x) = (m \otimes m)\tau(\Delta \otimes \Delta)(g \otimes x) \\ &= (m \otimes m)\tau(g \otimes g \otimes (\sum_{(x)} x_{(1)} \otimes x_{(2)})) \\ &= (m \otimes m)(\sum_{(x)} g \otimes x_{(1)} \otimes g \otimes x_{(2)}) \\ &= \sum_{(x)} g x_{(1)} \otimes g x_{(2)} = (h_g \otimes h_g)\Delta(x) \end{aligned}$$

hence we see  $\Delta h_g = (h_g \otimes h_g) \Delta$ . On the other hand we have the following commutative diagram:

$$\begin{array}{ccc} H \otimes H \xrightarrow{m} H \\ \downarrow^{\varepsilon \otimes \varepsilon} & \downarrow^{\varepsilon} \\ k \otimes k \xrightarrow{i} k \end{array}$$

Therefore we have for any x in H

$$\epsilon m(g \otimes x) = i(\epsilon \otimes \epsilon)(g \otimes x) = \epsilon(g)\epsilon(x) = \epsilon(x)$$

and hence  $\varepsilon h_g = \varepsilon$ . This means that  $h_g$  is a coalgebra endomorphism of H. Since G(H) is a group and we have  $h_{1_H} = id_H$  and  $h_g \circ h_{g'} = h_{gg'}$  for any g and g' in G(H), we see  $(h_g)^{-1} = h_{c(g)}$ . So  $h_g$  is a coalgebra automorphism of H. Moreover since  $h_g(1_H) = g$ , it is easy to see that  $h_g$  gives a coalgebra isomorphism of  $H_1$  onto  $H_g$ .

Let H' be another pointed cocommutative Hopf algebra over k and let  $\rho$  be a Hopf algebra homomorphism of H to H'. If g is a grouplike element of H, then the image  $g' = \rho(g)$  of g by  $\rho$  is that of H'. If  $H'_1$  and  $H'_{g'}$  are the connected components of H' containing  $k1_{H'}$  and kg', respectively, then the restrictions  $\rho_1$  and  $\rho_g$  of  $\rho$  to  $H_1$  and  $H_g$  map  $H_1$  and  $H_g$  to  $H'_1$  and  $H'_{g'}$ , respectively. Moreover let  $h_{g'}$  be the coalgebra automorphism of H' given by  $h_{g'}(x) = g'x$  for any x in H'.

**PROPOSITION 8.** Let H, H',  $\rho'$ ,  $h_g$  and  $h_{g'}$  be as above. Then  $h_g$  gives a coalgebra isomorphism from h-ker  $\rho_1 = c$ -ker  $\rho_1$  to h-ker  $\rho_g = c$ -ker  $\rho_g$  and  $h_{g'}$  gives a coalgebra isomorphism from  $\rho_1(H_1)$  to  $\rho_q(H_g)$ .

**PROOF.** Our assertions are direct consequences of the definition of c-kernels of coalgebra homomorphisms and the following commutative diagram of the coalgebras:

$$\begin{array}{c} H_1 \stackrel{\rho_1}{\longrightarrow} H'_1 \\ h_s \downarrow \qquad \qquad \downarrow h_{s'} \\ H_a \stackrel{\rho_s}{\longrightarrow} H'_{a'} \end{array}$$

where  $h_g$  and  $h_{g'}$  are coalgebra isomorphisms. We omit the detail of the proof.

Now let H, H' and H'' be pointed cocommutative Hopf algebras over kand let  $\rho: H \to H'$  and  $\rho': H' \to H''$  be Hopf algebra homomorphisms. If g is a grouplike element of H, then  $g' = \rho(g)$  and  $g'' = \rho'(g') = (\rho' \circ \rho)(g)$  are those of H'and H'', respectively. Let  $H_1(\text{resp. } H'_1, H''_1, H_g, H'_{g'} \text{ or } H''_{g''})$  be the connected components of H (resp. H', H'', H, H' or H'') containing  $k1_H$  (resp.  $k1_{H'}, k1_{H''}, kg, kg' \text{ or } kg'')$ . Then we have the following direct consequence of Proposition 8.

COROLLARY. In the above situation  $\rho(H_1)$  coincides with c-ker  $\rho'_1$  if and only if  $\rho(H_g)$  coincides with c-ker  $\rho'_{g'}$ , where  $\rho'_1$  and  $\rho'_{g'}$  are the restrictions of  $\rho'$  to  $H'_1$  and  $H'_{g'}$ , respectively.

Now let

$$k \xrightarrow{i_{G}} G \xrightarrow{j} H \xrightarrow{\rho} J \xrightarrow{\varepsilon_{J}} k \tag{(*)}$$

be a sequence of pointed cocommutative Hopf algebras over k where j and  $\rho$  are Hopf algebra homomorphisms. We recall that the sequence (\*) is said to be exact in the sense of §2 in [6] if we have  $i_G(k) = h$ -ker j, j(G) = h-ker  $\rho$  and  $\rho(H)$ = h-ker  $\varepsilon_J$ . If G(G), G(H) and G(J) are the groups consisting of grouplike elements of G, H and J, respectively, then the above sequence (\*) induces the following sequence of groups:

$$1_{k} \xrightarrow{i_{G}'} G(G) \xrightarrow{j'} G(H) \xrightarrow{\rho'} G(J) \xrightarrow{\varepsilon_{J}'} 1_{k}$$
(\*\*)

Moreover if  $G_1$ ,  $H_1$  and  $J_1$  are the connected components of G, H and J containing

 $k1_G$ ,  $k1_H$  and  $k1_J$ , respectively, then the sequence (\*) induces also the following sequence

$$k \longrightarrow G_1 \xrightarrow{j_1} H_1 \xrightarrow{\rho_1} J_1 \longrightarrow k \tag{***}$$

of connected Hopf algebras. Then we have the following

**THEOREM 1.** The sequence (\*) of Hopf algebras is exact if and only if the sequences (\*\*) of groups and (\*\*\*) of connected Hopf algebras are both exact.

**PROOF.** First assume that the sequence (\*) is exact. Then it is easy to see that j' is injective, that  $\rho'$  is surjective and that the image of  $\rho' \circ j'$  consists of only one element  $1_J$ . Let g be an element of G(H) such that  $\rho'(g)=1_J$  and  $H_g$  the connected component of H containing kg. Then we see from Proposition 7 that  $\rho(H_g) = \rho(h_g(H_1)) = \rho(g)\rho(H_1) \subset J_1$ . If  $\rho_g$  is the restriction of  $\rho$  to  $H_g$ , then  $\rho_g$  is a coalgebra homomorphism of  $H_g$  to  $J_1$  and c-ker  $\rho_g$  is contained in h-ker  $\rho$ . Since g belongs to c-ker  $\rho_g$  and hence to h-ker  $\rho = j(G)$ , there is a unique grouplike element g' in G(G) with j'(g') = j(g') = g. Therefore the sequence (\*\*) of groups is exact. As seen in the above if  $g \in G(H)$  is mapped into  $J_1$  by  $\rho$ , then we have  $\rho(H_g) = \rho(gH_1) = \rho(H_1)$ . Since  $\rho$  is surjective, this means that  $\rho_1: H_1 \rightarrow J_1$  is also surjective. If C is c-ker  $\rho_1 = h$ -ker  $\rho_1$ , then C is contained in h-ker  $\rho = j(G)$  and hence contained in  $j_1(G_1) = j(G_1) = H_1 \cap j(G)$  by injectivity of j. Since  $(\rho \circ j)(G)$  is equal to  $k1_J$ ,  $(\rho_1 \circ j_1)(G)$  is also equal to  $k1_J$ . Therefore C coincides with  $j_1(G_1)$  and so the sequence (\*\*\*) of connected Hopf algebras is exact.

Conversely assume that the sequences (\*\*) and (\*\*\*) are both exact. If g' is an element of G(G), then we have  $h_{i(q')} \circ j = j \circ h_{q'}$  where  $h_{q'}$  and  $h_{i(q')}$  are coalgebra homomorphisms given in Proposition 7. Since  $j_1: G_1 \rightarrow H_1$  is injective, we see from the above equality that the restriction  $j_{g'}: G_{g'} \rightarrow H_{j(g')}$  of j is also injective. This means that  $j: G \rightarrow H$  is injective, because different connected components of G is mapped to different connected components of H by the injectivity of j'. Now if g'' is any element of G(J), the connected component  $J_a''$  of J containing g'' is equal to  $h_{a''}(J_1) = g''J_1$  by Proposition 7. Since  $\rho' : G(H) \to G(J)$  is surjective, there is an element g in G(H) such that  $\rho'(g) = g''$ . Then we have  $h_{a''} \circ \rho = \rho \circ h_a$ and hence the restriction  $\rho_g$  of  $\rho$  to  $H_g = gH_1$  is a surjection onto  $J_{g''}$ , because  $\rho_1: H_1 \to J_1$  and  $h_{g''}: J_1 \to J_{g''}$  are both surjective. Therefore  $\rho$  is surjective. Next let C be h-ker  $\rho$  and let  $C = \bigoplus_{\lambda \in \Lambda} C_{g_{\lambda}}$  be the connected components decomposition of the cocommutative coalgebra C where  $\{g_{\lambda} | \lambda \in \Lambda\}$  is the set of the grouplike elements of C and  $C_{g_{\lambda}}$  is the connected component of C containing  $kg_{\lambda}$  for each  $\lambda \in \Lambda$ . Then  $g_{\lambda}$  belongs to ker  $\rho' = j'(G(G))$  and hence there is a unique element  $g'_{\lambda}$  in G(G) such that  $g_{\lambda} = j'(g'_{\lambda}) = j(g'_{\lambda})$  for each  $\lambda \in \Lambda$ . Let  $H_{g_{\lambda}}$  and  $G_{g'_{\lambda}}$  be the connected components of H and G containing  $kg_{\lambda}$  and  $kg'_{\lambda}$ , respectively. Then, by the corollary to Proposition 8 and the exactness

of the sequence (\*\*\*), we have  $j(G_{g'_{\lambda}}) = c \cdot ker \ \rho_{\lambda} = C_{g_{\lambda}}$  where  $\rho_{\lambda} \colon H_{g_{\lambda}} \to J_1$  is the restriction of  $\rho$  to  $H_{g_{\lambda}}$ . If  $g'_{\mu}$  is any grouplike element of G and  $G_{\mu}$  is the connected component  $g'_{\mu}G_1$  of G containing  $kg'_{\mu}$ ,  $j'(g'_{\mu})$  is contained in  $ker \ \rho'$  by the exactness of the sequence (\*\*\*) and hence we see by the corollary to Proposition 8 and the exactness of the sequence (\*\*\*) that  $j(G_{\mu}) = c \cdot ker \ \rho_{\mu}$  where  $\rho_{\mu}$  is the restriction of  $\rho$  to the connected component  $H_{\mu}$  of H containing  $j'(g'_{\mu}) = j(g'_{\mu})$ . Moreover since  $\rho(j'(g'_{\mu})) = (\rho' \circ j')(g'_{\mu}) = 1_J$ , we see that  $j(G_{\mu}) = c \cdot ker \ \rho_{\mu}$  is contained in  $h \cdot ker \ \rho$ . Therefore we have  $h \cdot ker \ \rho = C = \sum_{\lambda \in A} C_{q_{\lambda}} = j(G)$ .

In the paper [6] the author showed that a sequence

$$k \longrightarrow G \xrightarrow{f} H \xrightarrow{\rho} J$$

of cocommutative Hopf algebras over a field k is exact if and only if the induced sequence

 $\{e\} \longrightarrow \operatorname{Hom}_{coal}(C, G) \longrightarrow \operatorname{Hom}_{coal}(C, H) \longrightarrow \operatorname{Hom}_{coal}(C, J)$ 

of groups is exact for any connected cocommutative coalgebra C over k (cf. Lemma 6 in [6]). However the functor  $\operatorname{Hom}_{coal}(C, *)$  is not necessarily right exact. So we give the following notion of strong exactness for pointed cocommutative Hopf algebras, which is already given in the case of hyperalgebras in [2]. Let the sequence (\*) of cocommutative Hopf algebras over k be exact. Then this sequence is called *strongly exact* if the following sequence

 $\{e\} \longrightarrow \operatorname{Hom}_{coal}(C, G) \longrightarrow \operatorname{Hom}_{coal}(C, H) \longrightarrow \operatorname{Hom}_{coal}(C, J) \longrightarrow \{e\}$ 

of groups is exact for any pointed cocommutative coalgebra C over k. Now we show the main result of this paper.

**THEOREM 2.** Let the notation be as above, and assume that the sequence (\*) is exact. Then the following are equivalent:

- (i) The sequence (\*) is strongly exact.
- (ii) The sequence (\*\*\*) is strongly exact.
- (iii)  $\rho$  has a coalgebra splitting.
- (iv)  $\rho_1$  has a coalgebra sppltiting.
- (v) G has a coalgebra retraction in H.
- (vi)  $G_1$  has a coalgebra retraction in  $H_1$ .

**PROOF.** The equivalence of (i) and (iii) (resp. (ii) and (iv)) follows from Lemma 6 in [6] and Proposition 5. Moreover the equivalence of (ii) and (vi) is shown by T. Shudo in Theorem 1.8 of [2]. By our assumption and Theorem 1 the sequence (\*\*) of groups and (\*\*\*) of hyperalgebras are both exact. If (iii) is true, then  $\rho$  has a coalgebra splitting  $\tau: J \rightarrow H$ . By Proposition 6 there exists a

#### Hiroshi Yanagihara

splitting  $\tau': G(J) \to G(H)$  of  $\rho'$ . If  $g = \tau'(1_J)$  and  $H_g$  is the connected component of H containing g, then we see that the coalgebra homomorphism  $\rho_g = \rho|_{H_g}$ :  $H_g \to J_1$  has a coalgebra splitting  $\tau_g: J_1 \to H_g$  by the same proposition. Since the following diagram

$$\begin{array}{c} H_1 \xrightarrow{\rho_1} J_1 \\ h_s \downarrow \qquad \qquad \downarrow i d_{J_1} = h_{I_J} \\ H_g \xrightarrow{\rho_s} J_1 \end{array}$$

of coalgebras is commutative, we see that  $\rho_1$  has also a coalgebra splitting. Therefore (iv) is true. Conversely assume that (iv) is true. Since the sequence (\*\*) of groups is exact,  $\rho': G(H) \rightarrow G(J)$  has a splitting  $\tau': G(J) \rightarrow G(H)$  such that  $\tau'(1_J) =$  $1_H$ . Let  $J_{\lambda}$  be any connected component of J and let g" be the unique grouplike element of J contained in  $J_{\lambda}$ . If we put  $g = \tau'(g")$  and  $H_g$  is the connected component of H containing g, then we have the following commutative diagram

$$\begin{array}{c} H_1 \xrightarrow{\rho_1} J_1 \\ h_{\varepsilon} \downarrow \qquad \qquad \downarrow h_{\varepsilon''} \\ H_g \xrightarrow{\rho|_{Hg}} J_{\lambda} \end{array}$$

of coalgebras with vertical isomorphisms  $h_g$  and  $h_{g''}$ . Since  $\rho_1$  has a coalgebra splitting by our assumption, so does  $\rho|_{H_g}$ . Therefore  $\rho$  has a coalgebra splitting by Proposition 6.

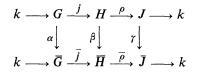
Next the implication  $(v) \Rightarrow (vi)$  follows from Proposition 4. Conversely assume that (vi) is true. Let  $G_{\lambda}$  be a connected component of G and g' be the unique grouplike element of G contained in  $G_{\lambda}$ . Then the following diagram

$$\begin{array}{c} G_1 \xrightarrow{J_1} H_1 \\ h_{s'} \downarrow \qquad \qquad \downarrow h_{j'(s')} \\ G_{\lambda} \xrightarrow{j|_{G_{\lambda}}} H_{\lambda} \end{array}$$

of coalgebras with vertical isomorphisms  $h_{g'}$  and  $h_{j'(g')}$  is commutative. Since  $j_1$  has a coalgebra retraction in  $H_1$  by our assumption, this commutative diagram means that  $G_{\lambda}$  and also a coalgebra retraction in  $H_{\lambda}$ . Therefore G has a coalgebra retraction in H by Proposition 4.

The following proposition and its corollaries are also shown in the case of hyperalgebras in [2].

**PROPOSITION 9.** Let



be a commutative diagram of pointed cocommutative Hopf algebras over a field k with exact rows. Then we have the following:

(i) If the upper row is strongly exact and  $\gamma$  has a coalgebra splitting  $\gamma': \overline{J} \rightarrow J$ , then the lower row is also strongly exact.

(ii) If the lower row is strongly exact and there is a coalgebra homomorphism  $\alpha': \overline{G} \to G$  such that  $\alpha' \circ \alpha = id_G$ , then the upper row is also strongly exact.

**PROOF.** (i) By our assumption and Theorem 2  $\rho$  has a coalgebra splitting  $\tau: J \rightarrow H$ . Therefore if we put  $\overline{\tau} = \beta \tau \gamma'$ , then we have  $\overline{\rho}\overline{\pi} = \overline{\rho}\beta \tau \gamma' = \gamma \rho \tau \gamma' = id_J$ . This means by Theorem 2 that the lower row is strongly exact.

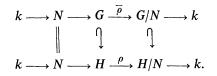
(ii) Similarly we have a coalgebra retraction  $\overline{f}$ :  $\overline{H} \to \overline{G}$  of  $\overline{j}$  by our assumption and Theorem 2. Therefore if we put  $f = \alpha' \overline{f}\beta$ , then we have  $fj = \alpha' \overline{f}\beta j = \alpha' \overline{f}j\alpha = \alpha' \alpha = id_G$ , and hence the upper row is also strongly exact by Theorem 2.

COROLLARY 1. Let N be normal Hopf subalgebra of a pointed cocommutative Hopf algebra H over a field k, and G be a Hopf subalgebra of H such that the join J(N, G) of N and G is equal to H. If the intersection I(N, G) of N and G has a coalgebra retraction in G, then N has also a retraction in H.

**PROOF.** Our assertion follows easily from Proposition 9, (i), Theorem 2 and the following commutative diagram of Hopf algebras where the right vertical mapping is an isomorphism by Theorem 3 in [6]:

COROLLARY 2. Let N be a normal Hopf subalgebra of a pointed cocommutative Hopf algebra H over a field k and let G be a Hopf subalgebra of H containing N. If the natural surjection  $\rho: H \rightarrow H/N$  has a coalgebra splitting, then the natural surjection  $\bar{\rho}: G \rightarrow G/N$  has a coalgebra splitting.

**PROOF.** This follows from Proposition 9, (ii), Theorem 2 and the following commutative diagram:



# Hiroshi Yanagihara

COROLLARY 3. Let N and  $\overline{N}$  be normal Hopf subalgebras of a pointed cocommutative Hopf algebra H over a field k such that  $N \supset \overline{N}$ . If N has a coalgebra retraction in H, then  $N/\overline{N}$  has also a coalgebra retraction in  $H/\overline{N}$ .

**PROOF.** This is a direct consequence of Proposition 9, (i), Theorem 2 and the following isomorphism

$$(H/\overline{N})/(N/\overline{N}) \cong H/N$$

of Hopf algebras obtained from the corollary to Theorem 2 in [6].

# References

- M. F. Atiyah and I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, London, 1969.
- [2] T. Shudo, On the relatively smooth subhyperalgebras of hyperalgebras, Hiroshima Math. J. 13 (1983), 627-646.
- [3] M. E. Sweedler, Hopf Algebras, Benjamin, New York, 1969.
- [4] H. Yanagihara, Theory of Hopf Algebras Attached to Group Schemes, Lecture Notes in Math. 614, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [5] -----, On isomorphism theorems of formal groups, J. Algebra 55 (1978), 341-347.
- [6] —, On group theoretic properties of cocommutative Hopf algebras, Hiroshima Math. J. 9 (1979), 179–200.

# Department of Mathematics, Hyogo University of Teacher Education