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Let

be an exact sequence of cocommutative Hopf algebras over a field k and let C
be a cocommutative coalgebra over k. Then it is known that the induced sequence

{e} _> Homcoal (C, G) -^ Homcoal (C, H) -?*+ Homcoal (C, J)

of groups is also exact, but that p* is not necessarily surjective. In the paper
[2] T. Shudo gave a condition for this homomorphism ρ# to be always surjective
in the case that H is a hyperalgebra. Precisely he showed that p* is surjective
for any connected cocommutative coalgebra C over k if and only if the Hopf
algebra homomorphism j has a coalgebra retraction η: H-+G such that ηoj is
the identity map of G.

The main purpose of this paper is to show that the above result for hyper-
algebras and connected cocommutative coalgebras is also true for any pointed
cocommutative Hopf algebras and coalgebras. In §1 we shall show firstly some
properties of cocommutative coalgebras over a field k and coalgebra homo-
morphisms between them, which are well known in connected cases. Then we
shall show in Propositions 4 and 6 that the properties for coalgebra homo-
morphisms to have coalgebra splittings and coalgebra retractions are colocal in
a sense. These results play essential roles in the proof of our main results.
In §2 we shall give two theorems. Theorem 1 says that a sequence of pointed
cocommutative Hopf algebras over k is exact if and only if the induced sequence
of groups consisting of grouplike elements and the sequence of hyperalgebra
components of the given sequence are both exact. Theorem 2 is our main
result and is a generalization of Shudo 's result mentioned in the above.

Throughout this paper we fix a ground field k. All coalgebras, Hopf algebras
and their tensor products are defined over fc, and our terminology and notations
follow those in [3], [4], [5] and [6].
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§ 1. Some properties of coalgebra homomorphisms

PROPOSITION 1. Let (C, A, ε) be a cocommutative coalgebra over a field

k and g a grouplike element of C. Denote by A the dual algebra C* of C and

by D the minimal subcoalgebra kg of C generated by g. Moreover let m be

the null-space D1 of D in A and Ct the null-space (m^1)1 of the ideal mί+1 of

A in C. Then we have the following :
( i ) Dί = W£L0 Q is the largest connected subcoalgebra of C which contains D.
(ii) For any integer ί>0, an element x in C is contained in Q if and only if

a-xeCi-ί for any a in m, where C is considered to be an A-module as

defined in §3 in [4] and we understand C_1=(0).

(iii) If x is contained in Cn, then A(x)e Σ?=o Q

PROOF, (i). If we put Dx = A x for a non-zero element x in Dί9 then DΛ

is a finite dimensional subcoalgebra of C by Corollary 3.9 in [4] and A/D$ is
isomorphic to the dual algebra D* of Dx by Corollary 3.3 in [4]. Since xeDί9

there is an integer i such that x e C4. By Proposition 3.8 in [4] Q is an >4-sub-
module of C and hence Dx = A x is contained in Cf. Therefore we see

= ((m^1)1)1 => mί+1.

Now let D' be a minimal subcoalgebra of D l β If x is a non-zero element of D',

then we have A x = D' and D'L = (DX)
L is a maximal ideal of A = C*. Since

Dα=5mί+1 for some i, we see that D'1 contains m and hence D'1 must be equal
to m. Therefore D± contains only one minimal subcoalgebra D = kg. Next let
£ be a subcoalgebra of C containing D and assume that E has no minimal sub-

coalgebra but D. Then we see that £1c=D-L = m and A\EL is isomorphic to E*

by Corollary 3.3 in [4]. If we put m' = m/E1 c E* and Cί = (m/ί+1)1c:£, then
we have £= W£L0 C| by Proposition 3.11 in [4]. On the other hand we see that

C\ = (m/ί+1)x = (m^+E-LAE1)1 = E n (m^1)1 = E n C,.

Therefore we see that

£ = wr=0 c; = ur=0 (£ n Q c wr=0 Q = D,

and hence that D! is the largest connected subcoalgebra of C containing D.
The assertions (ii) and (iii) can be shown in the exactly same way as the proof

of (ii) and (iii) of Proposition 3.11 in [4] and hence we omit the detail.

COROLLARY. Let (C, Δ, ε), g, D = kg, A = C* and Q be as in Proposition 1.
Let C° be the kernel of ε and put C? = C° n Q. Then an element x in C belongs
to CQ

n if and only if
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A(x) - x ® g - g ® xe Σ?=ί C°-, ® C?

"where we understand Σ?=ί C2-j®Cj = 0/0r « = 1.

PROOF. This corollary can be shown in the same way as the proof of
Proposition 3.13 in [4] and hence we omit the detail.

Let (C, Δ9 ε) be a cocommutative coalgebra over k and let g be a grouplike
element of C. Then an element x of C is called a primitive element of C with
respect to g, if we have Δ(x) = x®g + g®x. In the following we denote by G(C)

the set of grouplike elements of C and by Pq(C) the set of primitive elements of C
with respect to g. It is easy to see that Pg(C) is a fc-subspace of C and that we
have ε(x) = 0 for any x in Pg(Q.

PROPOSITION 2. Let g be a grouplike element of a cocommutative coalgebra

C and put Dg = kg. If A is the dual algebra C* of C and m is the ideal of A
which is the null-space D^ of Dg in A, then the null-space C1=(m2)1 of m2 in C
is the direct sum of Dg and Pg(C).

PROOF. Let A and ε be the comultiplication and the coidentity of C,

respectively. Since we have ε(g) = l and ε(x) = 0 for any x in Pg(C), the sum
Dg + Pg(C) is a direct one. If c is an element of Cx and we put d = c — ε(c)g, then
d belongs to Cx and ε(d) = 0. Therefore we see, by Proposition 1, (iii), that

A(d) = dί ® g + g ® d2 with df e Q .

From this equality we see that

0 = ε(d) = (ε®έ)A(d) = ε(dί) + ε(d2) (*)

and

dί + ε(d2)g = d = d2 + (djg (**)

using (idc®έ)A(d) = d = (ε®idc)A(d). Hence we have from (**) and (*)

A(d) = dί ® g + g ® d2

= (d-ε(d2)g) ® g + g ® (d-ε(di)g)

This means that d is contained in Pg(C) and hence that Cί is a subspace of

Dg®Pg(C). Conversely let x be an element of Pg(C). If a and b are any
elements of m = (D^)1, then we see by the definition of ^4-module structure of C

given in §3 in [4] that
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<α x, by = <x, aby = <J(x), a® by

fc> = 0,

because we have <#, α> = <#, fr>=0. Therefore α x belongs to m-L = C0 for any

a em and hence x belongs to C1=(m2)1 by Proposition 1, (ii). In conclusion

we see that Ct = Dg®Pg(C).

COROLLARY. Let C be a cocommutative coalgebra over k and let G(C) be

{gλ \λ G A}. Then the sum Σλe/1 Pβλ(C) is direct.

PROOF. By Proposition 1, (i) there exists the largest subcoalgebra Dλ of C

containing Dg Λ = kgλ for each λ and then, by Proposition 2, we see that Dλ contains

P9λ(C). Since the sum Σλe/i^λ is direct by Theorem 8.0.5 in [3], our assertion
follows easily.

Now let C be a cocommutative coalgebra over a field k and let G(C) be the

set {gλ \λ E A} of grouplike elements of C. Then the sum Σλe/i P0Λ(C) °f vector
subspaces P9λ(C) is direct as seen in the above. We denote by P(C) this direct

sum and call it the space of primitive elements of C. The following proposition

is a version of Lemma 11.0.1 of [3] in non-irreducible cases.

PROPOSITION 3. Let C and D be cocommutative coalgebras over k and let

f be a coalgebra homomorphism of C to D. Assume that C is pointed. Then f

is injective if and only if the restrictions f\ P(C) and f\ G(C) are both injective.

PROOF. It suffices to show the "if" part. If G(C) = {gλ\λe A}9 then we

denote by Cλ the irreducible component of C containing the minimal subcoalgebra

kgλ of C. By Corollary 8.0.7 in [3] we see that C is the direct sum ®λeΛ Cλ

and f(Cλ) is an irreducible subcoalgebra of D containing f(kgλ) = kf(gλ) as a

unique minimal subcoalgebra by Theorem 8.0.8 in [3]. By our assumption we

have/(0A)^/(0Λ') for λ^λ' and hence we see f(CJ+f(Cλ.)=f(CJ®f(Cλ.) by
Theorem 8.0.5 in [3]. Therefore we see by the same theorem that

This means that /is injective if and only if f\CjL is injective for each λ by the

injectivity of/| Pgλ(C)
 and and Lemma 11.0.1 in [3].

Let C and D be pointed cocommutative coalgebras over k and let / be a

coalgebra homomorphism of C to D. If G(D) = {/ιμ |μeM}, then we put D0 =

ΣμeM khμ = ®μeM khμ, which is a subcoalgebra of D. In §1 of [6] we defined the

ft-inverse h-f~l(D0) of D0 by/, which is the largest subcoalgebra C of C satisfying
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/(C')c:D0. Wecall this C = h-f-l(D0)thec-kernel off and denote it by c-ker f.

If G(C) — {gλ\ λeλ}9 then we denote by Cλ the connected component of C

containing kgλ and we put /A=/|CA Since fλ is a coalgebra homomorphism of
Cλ to D and fλ(Cλ) is irreducible, there is a unique μ in M such that fλ(Cλ) c Dμ

where Dμ is the irreducible component of D containing khμ. It is clear that c-ker fλ

is irreducible and contained in c-ker /, and hence we see easily that c-ker /=
©A6/1 c-ker fλ. In particular if C and D are connected, i.e., colocal, then c-ker f
coincides with h-ker f in the sense of [5]. Therefore if we consider that/Λ is a
homomorphism of Cλ to Dμ, then c-ker f is the direct sum ®λeΛ h-ker fλ. The
following lemma is well-known, but we give a proof for convenience' sake.

LEMMA 1. Let C and D be colocal coalgebras with grouplike elements g

and h, respectively, and let f be a coalgebra homomorphism of C to D. Then f
is ίnjective if and only if c-ker f= h-ker f is kg.

PROOF.** Since/(0) = /ι, it is easily seen that c-ker f is equal to kg if / is

injective. Conversely assume that c-ker f= kg. If/is not injective, then there is

a finite dimensional subcoalgebra C' of C such that/'=/|c is not injective by
Corollary 3.9 in [4]. Since c-ker f is contained in c-ker f , we may assume that
άimk C is finite. Moreover we may assume that / is surjective. Let A and B
be the dual algebras C* and D* of C and D, respectively, and/* the dual algebra
homomorphism of/ from B to A. By our assumption A and B are both local

rings and finite dimensional over /c, and/* is injective. The fact that c-ker f= kg
means by Proposition 3.2 in [4] that the ideal of A generated by the image /*(n)
of the maximal ideal n of B coincides with the maximal ideal m of A. Therefore
we have A = k + m=/*(#)+/*(τφl and hence, by Nakayama's lemma (cf.
Corollary 2.7 in [1]), ,4=/%B). This is a contradiction, because/is not injective.

COROLLARY. Let C and D be pointed cocommutative coalgebras over k and

f a coalgebra homomorphism of C to D. Denote by C0 the subcoalgebra

®λeΛ kdλ °f C where G(C) = {gλ\λe A}. Then the following are equivalent:
(i) f is injective.

(ii) c-ker f is contained in C0 and the restriction f\ G(C) off is injective.

PROOF. It is easy to see that (i) implies (ii). Conversely assume that (ii)
is true. Let Cλ be the connected component of C containing kgλ for each λ and

put/A=/| CΛ. Since c-ker/= ΘAeyl c-ker fλ is contained in C0 = ®λeΛ kgλ, c-ker fλ

is contained in kgλ for each λ and hence fλ is injective by Lemma 1. On the other

hand since/|G(C) is injective, the sum Σλe/ι/λ(Cλ) is direct by Theorem 8.0.5 in

T. Shudo communicated to the author that a shorter proof of Lemma 1 can be given if we
use Proposition 3. Our proof is independent of Proposition 3 and hence Lemma 11.0.1

in [3].
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[3]. This means by the equality/(C)=/(®Λe/1 Cλ)= ®^Af(C^ that/is injective.

Let C be a pointed cocommutative coalgebra over k and let £ be a sub-
coalgebra of C. Then we say that E has a coalgebra retraction in C if there
exists a coalgebra homomorphism η of C to E such that f/|£ coincides with the

identity map idE of E. The property for E to have a retraction in C is colocal in

a sense. To see this we need the following

LEMMA 2. Let C and E be cocommutative coalgebras over k and assume
that E has a grouplike element g. Then the mapping η of C to E given by

η(x) = ε(x)g is a coalgebra homomorphism, where ε is the coidentity of C.

PROOF. This follows easily from the fact that ε: C->/c is a coalgebra

homomorphism of C to the trivial coalgebra k and the subcoalgebra kg of E is
isomorphic to k as coalgebras over k.

PROPOSITION 4. Let C be a pointed cocommutative coalgebra over k and let
E be a subcoalgebra of C. Assume that G(C) is equal to {gλ\λeA} and that
G(E) is the subset {gμ \ μeM} of G(C) with M<=A. Let Cλ be the connected com-

ponent of C containg kgλ for each λ and let Eμ be the connected component of E
containing kgμ for each μeM. Then E has a coalgebra retraction in C if and
only if Eμ has a coalgebra retraction in Cμfor each μeM.

PROOF. First assume that there is a coalgebra homomorphism η of C to E

such that η\E=idE. Then it is clear that η\Eμ = ίdEfί for each μeM. Since
Eμc:Cμ for each μeM by Theorem 8.0.5 in [3], we have η(Cμ)^η(Eμ) = Eμ and

hence η(Cμ) = Eμ. Therefore η\Ctί is a coalgebra homomorphism of Cμ to Eμ

such that ( η \ c μ ) \ E μ = idEμ. In other words Eμ has a coalgebra retraction in
Cμ. Conversely assume that Eμ has a coalgebra retraction in Cμ for each μeM.

Let μ0 be a fixed element of M. If λ is an element of A but not in M, we define a
map ηλ of Cλ to E by ηλ(x) = ε(x)gμo where ε is the coidentity of C. Then ηλ is a
coalgebra homomorphism of Cλ to E by Lemma 2. If μ is an element of M, then
there exists a coalgebra homomorphism ημ of Cμ to Eμ such that ημ\Etί

==idEtί.

Now we define a coalgebra homomorphism η of C to E by η = ®λeΛη Λ It is
easy to see that η \ E = idE.

Next we give another property of coalgebra homomorphisms. Let M and N
be sets and let / be a map of M to N. Then a map g of N to M is called a
splitting off if the composite /°# is equal to the identity idN of N. Similarly if

C and D are cocommutative coalgebras over k and if p is a coalgebra homo-
morphism of C to Z), then a coalgebra homomorphism τ of D to C with p°τ = idD

is called a coalgebra splitting of p. It is clear that if/: M-+N (resp. p: C-»D)

has a splitting g: N-+M (resp. τ: /)->C), then/(resp. p) is a surjective. Moreover
we have the following



Homomorphisms of cocommutative coalgebras 439

PROPOSITION 5. Let C and D be cocommutative coalgebras over k and let

p be a coalgebra homomorphism of C to D. Then the following are equivalent:
(i) p has a coalgebra splitting τ: D->C.

(ii) For any cocommutative coalgebra F and any coalgebra homomorphism

σ: F-+D there is a coalgebra homomorphism ω: F-+C with σ=p°ω.

PROOF. (i)c>(ii). It suffices to put ω = τ°σ. (ii) «=>(i). If F and σ are taken
as D and ί dD9 respectively, then ω in (ii) is a coalgebra splitting of p.

The property for a coalgbra homomorphism between pointed cocommutative
coalgebras to have a coalgebra splitting is also colocal in the same sense as for

coalgebra retractions. Let C and D be pointed cocommutative coalgebras over k

with grouplike elements G(C) = {gλ\λeΛ} and G(D) = {hμ\ueM}9 respectively.
Let Cλ be the connected component of C containing kgλ for each λ e A and let

Dμ be that of D containing khμ for each μeM. If p is a coalgebra homomorphism

of C to D, then there is a mapping p' of A to M such that ρ(gλ) = hp,(λ). It is

easy to see that p(Cλ) is contained in

PROPOSITION 6. Let C, D, p, A9 M, Cλ, Dμ and p' be as above. Then p has

a coalgebra splitting if and only if the following are satisfied:

(i) p' has a splitting τ' : M^A.

(ii) For any μ in M the restriction pμ: Cτ'(μ)->Dμ of p to the subcoalgebra Cτ'(μ)

of C has a coalgebra splitting.

PROOF. Assume that p has a coalgebra splitting τ: D-*C. Since τ(/ιμ)

is a grouplike element of C, there is a unique λ in A such that τ(hμ) = gλ. So we

define a map τ': M-+A by τ(/ιμ) = 0τ,(μ). Then we see easily from poτ = idD that

τ' is a splitting of p'. Now if τμ is the restriction of τ to the subcoalgebra Dμ of

D, then τμ is a coalgebra homomorphism and we see that

Pμ°τμ = (P°0 !DM = O'dι>) \Dμ = idDtί.

Therefore pμ has a coalgebra splitting τμ.

Conversely if our assertions (i) and (ii) are satisfied, then we see from (p'°τ')(μ)

= μ that pμ(Ct'(μ)) = p(Ct>(μ)) is contained in Dμ for any μ in M. Since pμ has a

coalgebra splitting τμ : Dμ-> Cτ'(μ) for any μ e M, we define τ : D-> C by τ = ®μeM V

Is is easy to see that τ is a coalgebra homomorphism with p°τ = idD.

§ 2. Strongly exact sequences of Hopf algebras

Let (H, m, i, A, ε, c) be a pointed cocommutative Hopf algebra over a field
/c, where m, i, J, e and c are the multiplication, the identity, the comultiplication,

the coidentity and the antipode of H, respectively. Then it is known that the set
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G(H) of grouplike elements of H has a group structure with unit 1H under the
composition gg' = m(g®gf) for g and gf in G(H) (cf. Proposition 4.7 in [4]).
If g is an element of G(H), then we denote by Hg the connected component
of H containing kg. In particular we denote by Hί the connected component of
H containing klH = k. Moreover let hg be the map of H to itself given by hg(x) —
m(g®x) = gx for any x in H. The following two propositions play important roles
in the proof of our main results.

PROPOSITION 7. Let (H, m, i, A, ε, c), Hi9 Hg and hg be as above. Then hg

is a coalgebra automorphism of H and gives a coalgebra isomorphism between
Hl and Hg.

PROOF. By the definition of Hopf algebras we have Δm = (m®m)τ(Δ®A)
where τ is the /c-linear automorphism of H®H®H®H given by τ(x®j;®z®w) =
x®z®y®w. Therefore if A(x) = Σ(jc) X(i)®x(2) for any element x in H, then we
have for a grouplike element g of H

A(gx) = (Δm)(g®x) = (m®m)τ(Δ®Δ)(g®x)

= (m®m)τ(g®g®(Σ(X) x<i)®x<2)))

= (hg®hg)Δ(x)

hence we see Ahg = (hg®hg)A. On the other hand we have the following com-
mutative diagram :

H®H -™-> H

k®k _U k

Therefore we have for any x in H

εm(g®x) = ί(ε®ε)(g®x) = ε(g)ε(x) = ε(x)

and hence εhg — ε. This means that hg is a coalgebra endomorphism of H. Since
G(H) is a group and we have hίH = idH and hg°hg> = hgg> for any g and #' in G(H),
we see (hg)~ί = hc(gy So /z^ is a coalgebra automorphism of H. Moreover since
hg(lH) = g, it is easy to see that hg gives a coalgebra isomorphism of //j onto Hg.

Let /Γ be another pointed cocommutative Hopf algebra over k and let p be
a Hopf algebra homomorphism of H to H'. If 0 is a grouplike element of //,
then the image g' = ρ(g) of g by p is that of H '. If H\ and H^ are the connected
components of H' containing k\H. and kg', respectively, then the restrictions ρ{
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and ρg of p to H^ and Hg map Hί and Hg to H[ and H'g.9 respectively. Moreover
let \ιg. be the coalgebra automorphism of H' given by hg,(x) = g'x for any x in #'.

PROPOSITION 8. Let H, H'9 p'9 hg and hg, be as above. Then hg gives a
coalgebra isomorphism from h-ker pί = c-ker pί to h-ker pg = c-ker ρg and hg,
gives a coalgebra isomorphism from p^H^) to pg(Hg).

PROOF. Our assertions are direct consequences of the definition of c-kernels

of coalgebra homomorphisms and the following commutative diagram of the

coalgebras :

H, -ei* //;

where hg and hg> are coalgebra isomorphisms. We omit the detail of the proof.

Now let H, H' and H" be pointed cocommutative Hopf algebras over k

and let p: H-+H' and p': H'^>H" be Hopf algebra homomorphisms. If g is a

grouplike element of H, then g' = ρ(g) and g" — ρ'(g') — (p'°p)(g) are those of H'
and //", respectively. Let H^resp. H'l9 H", Hg, H'g, or H"g..) be the connected
components of H (resp. H', H", H, H' or H") containing klH (resp. klH>9 k\H,,,
kg, kg' or kg"). Then we have the following direct consequence of Proposition 8.

COROLLARY. In the above situation p(Hv) coincides with c-ker p[ if and
only if p(Hg) coincides with c-ker ρ'g,, where ρ[ and p'g, are the restrictions of
p' to H( and H'g>, respectively.

Now let

be a sequence of pointed cocommutative Hopf algebras over k where j and p are
Hopf algebra homomorphisms. We recall that the sequence (*) is said to be

exact in the sense of §2 in [6] if we have iG(k) = h-ker j, j(G) = h-ker p and ρ(H)

= h-ker εy. If G(G), G(H) and G(J) are the groups consisting of grouplike

elements of G, H and J, respectively, then the above sequence (*) induces the
following sequence of groups :

1, 2<L G(G) JL+ G(H) -£-> G(J) -î  lfc (**)

Moreover if Gί9 Hί and Jx are the connected components of G, H and J containing
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/clG, klH and fclj, respectively, then the sequence (*) induces also the following

sequence

k >Gί-ίl->Hί-^Jί —>k (***)

of connected Hopf algebras. Then we have the following

THEOREM 1. The sequence (*) of Hopf algebras is exact if and only if the
sequences (**) of groups and (***) of connected Hopf algebras are both exact.

PROOF. First assume that the sequence (*) is exact. Then it is easy to see
that/ is injective, that p' is surjective and that the image of pΌj' consists of only
one element lj. Let g be an element of G(H) such that p'(g) = l j and Hg the
connected component of H containing kg. Then we see from Proposition 7
that p(Hg) = p(hg(Hί)) = ρ(g)p(Hί)c=.Jί. If pg is the restriction of p to Hg, then pg

is a coalgebra homomorphism of Hg to /x and c-ker pg is contained in h-ker p.
Since g belongs to c-ker ρg and hence to /ι-/cer p =j(G), there is a unique grouplike
element g' in G(G) vrithj'(g')=j(g') = g. Therefore the sequence (**) of groups is
exact. As seen in the above if g e G(H) is mapped into Ji by p, then we have
p(Hg) = ρ(gH1) = p(H1). Since p is surjective, this means that p1: Hί-^Jί is also
surjective. If C is c-ker ρ^ = h-ker p1? then C is contained in h-ker p=j(G) and
hence contained mjί(Gί)=j(G1) = H1 Πj(G) by injectivity of j. Since (p°j)(G) is
equal to klj, (pι°7ι)(G) is also equal to klj. Therefore C coincides wiihj^G^
and so the sequence (***) of connected Hopf algebras is exact.

Conversely assume that the sequences (**) and (***) are both exact. If g' is
an element of G(G), then we have hj(g>)°j=j°hg> where \ιg> and hJ(gΊ are coalgebra
homomorphisms given in Proposition 7. Since jί: G^H^ is injective, we see
from the above equality that the restriction jg,\ G9'-^Hj(g^ of j is also injective.
This means that j: G-+H is injective, because different connected components of
G is mapped to different connected components of H by the injectivity of /.
Now if g" is any element of G(J), the connected component Jg" of J containing g"
is equal to hg"(Jί) = g"Ji by Proposition 7. Since p': G(H)-+G(J) is surjective,
there is an element g in G(H) such that ρ'(g) = g". Then we have hg»°ρ = p°hg

and hence the restriction pg of p to Hg = gHί is a surjection onto Jg», because
ρί: Hl-^Jί and hg»:Jl-+Jg» are both surjective. Therefore p is surjective.
Next let C be h-ker p and let C=®λeΛC9λ be the connected components
decomposition of the cocommutative coalgebra C where {gλ\λeA} is the set
of the grouplike elements of C and C9λ is the connected component of C
containing kgλ for each λeΛ. Then gλ belongs to ker p'=/(G(G)) and hence

there is a unique element g'λ in G(G) such that gλ=j'(g'λ)=j(gf

λ) for each λεΛ.
Let Hgλ and Gg'λ be the connected components of H and G containing kgλ and
kg'λ, respectively. Then, by the corollary to Proposition 8 and the exactness
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of the sequence (***), we have j(Gg'J) = c-ker pλ = Cgλ where pλ: Hgλ-^Jl is the

restriction of p to Hgλ. If g'μ is any grouplike element of G and Gμ is the
connected component gμGί of G containing kg'μ, j'(gμ) is contained in ker p' by
the exactness of the sequence (**) and hence we see by the corollary to Proposi-
tion 8 and the exactness of the sequence (***) that j(Gμ) = c-ker pμ where ρμ

is the restriction of p to the connected component Hμ of H containing j'(g'μ) =

jlg'J. Moreover since ρ(/(0;)) = (ρ'°/)(0μ) = lj, we see that j(Gμ) = c-ker pμ

is containedin h-ker p. Therefore we have h-ker p = C=^λeΛCgλ

Tn the paper [6] the author showed that a sequence

of cocommutative Hopf algebras over a field k is exact if and only if the induced

sequence

{e} _^ Homcββ/(C, G) — > HomCOfl/(C, H) — * HomCOfl/(C, J)

of groups is exact for any connected cocommutative coalgebra C over k (cf. Lemma
6 in [6]). However the functor Homcofl/ (C, *) is not necessarily right exact. So

we give the following notion of strong exactness for pointed cocommutative Hopf

algebras, which is already given in the case of hyperalgebras in [2]. Let the
sequence (*) of cocommutative Hopf algebras over k be exact. Then this sequence
is called strongly exact if the following sequence

{e} - > Homcoβί (C, G) - > Homcoflί (C, #) - > Homcofl7 (C, J) - > {e}

of groups is exact for any pointed cocommutative coalgebra C over k. Now we
show the main result of this paper.

THEOREM 2. Let the notation be as above, and assume that the sequence

(*) is exact. Then the following are equivalent:
( i ) The sequence (*) is strongly exact.

(ii) The sequence (***) is strongly exact.

(iii) p has a coalgebra splitting.

(iv) pl has a coalgebra sppltiting.

(v) G has a coalgebra retraction in H.
(vi) G! has a coalgebra retraction in H±.

PROOF. The equivalence of (i) and (iii) (resp. (ii) and (iv)) follows from

Lemma 6 in [6] and Proposition 5. Moreover the equivalence of (ii) and (vi)
is shown by T. Shudo in Theorem 1.8 of [2]. By our assumption and Theorem 1

the sequence (**) of groups and (***) of hyperalgebras are both exact. If (iii) is
true, then p has a coalgebra splitting τ: J->/f. By Proposition 6 there exists a
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splitting τ': G(J)-»G(//) of p'. If g = τ'(\j) and Hg is the connected component

of H containing g, then we see that the coalgebra homomorphism pg = p\Hg:

Hg^Jί has a coalgebra splitting τg: J1^>Hg by the same proposition. Since

the following diagram

u Ps v j
tig - > J±

of coalgebras is commutative, we see that p± has also a coalgebra splitting. There-

fore (iv) is true. Conversely assume that (iv) is true. Since the sequence (**) of

groups is exact, p'\ G(#)->G(J) has a splitting τ' : G(J)->G(#) such that τ/(l j) =

1H. Let J λ be any connected component of J and let g" be the unique grouplike

element of J contained in Jλ. If we put g = τ'(g") and Hg is the connected com-

ponent of H containing g, then we have the following commutative diagram

h. he,

of coalgebras with vertical isomorphisms hg and hg». Since pί has a coalgebra

splitting by our assumption, so does p \Hg. Therefore p has a coalgebra splitting

by Proposition 6.

Next the implication (v)^ί>(vi) follows from Proposition 4. Conversely

assume that (vi) is true. Let Gλ be a connected component of G and g' be the

unique grouplike element of G contained in Gλ. Then the following diagram

h g ' l
ψ

of coalgebras with vertical isomorphisms hg, and /iy(g') is commutative. Since j\

has a coalgebra retraction in H± by our assumption, this commutative diagram

means that Gλ ahs also a coalgebra retraction in Hλ. Therefore G has a coalgebra
retraction in H by Proposition 4.

The following proposition and its corollaries are also shown in the case of

hyperalgebras in [2].

PROPOSITION 9. Let
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4 A
be a commutative diagram of pointed cocommutative Hopf algebras over a

field k with exact rows. Then we have the following :

(i) If the upper row is strongly exact and y has a coalgebra splitting γ': J->J,
then the lower row is also strongly exact.
(ii) If the lower row is strongly exact and there is a coalgebra homomorphism
α': G->G such that αΌα=idG, then the upper row is also strongly exact.

PROOF, (i) By our assumption and Theorem 2 p has a coalgebra splitting
τ : J->H. Therefore if we put τ = βτγ', then we have pπ = pβτy' = ypτy' = yy' = ίdj.
This means by Theorem 2 that the lower row is strongly exact.

(ii) Similarly we have a coalgebra retraction /: H-^G of j by our assumption

and Theorem 2. Therefore if we put /=α'/β, then we have fj = <χ,rfβj = <χ,'fjGc =

α'α = idG, and hence the upper row is also strongly exact by Theorem 2.

COROLLARY 1. Let N be normal Hopf subalgebra of a pointed cocom-

mutative Hopf algebra H over afield /c, and G be a Hopf subalgebra of H such
that the join J(N, G) of N and G is equal to H. If the intersection I(N, G) of

N and G has a coalgebra retraction in G, then N has also a retraction in H.

PROOF. Our assertion follows easily from Proposition 9, (i), Theorem 2
and the following commutative diagram of Hopf algebras where the right vertical
mapping is an isomorphism by Theorem 3 in [6] :

k —

k —

->I(N,

1
>N

G) > G

Ί
- — >H

G//(JV,

I
>H/N

G)

k.

COROLLARY 2. Let N be a normal Hopf subalgebra of a pointed cocom-
mutative Hopf algebra H over a field k and let G be a Hopf subalgebra of H

containing N. If the natural surjection p: H^H/N has a coalgebra splitting,

then the natural surjection p: G-+G/N has a coalgebra splitting.

PROOF. This follows from Proposition 9, (ii), Theorem 2 and the following

commutative diagram :

k - >N - >G-ί

N - >H-£-> H/N - > fe.
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COROLLARY 3. Let N and N be normal Hopf subalgebras of a pointed
cocommutative Hopf algebra H over afield k such that N=>N. If N has a coal-
gebra retraction in H, then N/N has also a coalgebra retraction in H/N.

PROOF. This is a direct consequence of Proposition 9, (i), Theorem 2 and
the following isomorphism

(H/N)/(N/N) s H/N

of Hopf algebras obtained from the corollary to Theorem 2 in [6].
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