Characterization of connection coefficients for hypergeometric systems

Toshiaki Yokoyama
(Received September 10, 1986)

Introduction

In the paper [4] it was shown that a connection problem for the hypergeometric system of linear differential equations

$$
\begin{equation*}
(t-B) \frac{d X}{d t}=A X \tag{0.1}
\end{equation*}
$$

where X is an n-dimensional column vector, $B=\operatorname{diag}\left[\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right]$ and $A \in M_{n}(\boldsymbol{C})$, can be solved by the global analysis of the system of linear difference equations

$$
\begin{equation*}
(B-\lambda)(z+1) G(z+1)=(z-A) G(z), \tag{0.2}
\end{equation*}
$$

which determines coefficients of power series solutions of (0.1). The method of [4] was effectively applied to solve the connection problem for a system of linear differential equations corresponding to a one-dimensional section of Appell's $F_{3}\left(\alpha, \alpha^{\prime}, \beta, \beta^{\prime}, \gamma ; x, y\right)$ in [8]. In this paper, dealing with the complete solution of a connection problem for (0.1) with A which is diagonalizable and has only two distinct eigenvalues, we shall clear up the relation between solutions of (0.1) and (0.2), and the structure of connection coefficients in more detail.

In Section 1 we shall be concerned with power series solutions of (0.1) near singularities. In Section 2 we study the system (0.2). In Section 3 we analyze Barnes-integral representations of solutions of (0.1) and characterize the connection coefficients between solutions of (0.1) near a finite singularity and near the infinity. It will be shown that these coefficients are given by solutions of an ($n-1$)-dimensional hypergeometric system obtained from (0.1). In the last section, §4, we deal with some examples.

As for other investigations related to this paper, we refer the reader to [1], [3], [6] and [7].

Hereafter we assume that the diagonal elements $\lambda_{j}(j=1, \ldots, n)$ of B are all distinct and $A=\left[a_{j k}\right]$ is similar to

$$
\operatorname{diag}[\overbrace{\mu_{1}, \ldots, \mu_{1}}^{n_{1}}, \overbrace{\mu_{2}, \ldots, \mu_{2}}^{n_{2}}] \quad\left(n_{1}+n_{2}=n\right) .
$$

Denoting $a_{j j}$ by $v_{j}(j=1, \ldots, n)$, we furthermore assume the following:
[A_{0}] No three λ_{j} lie on a line.
[A_{1}] None of the quantities

$$
v_{j} \quad(j=1, \ldots, n), \quad \mu_{1}-\mu_{2}
$$

is an integer.
This implies that there appear no logarithmic solutions.
[A_{2}] None of the quantities

$$
\mu_{k} \quad(k=1,2), \quad \mu_{k}-v_{j} \quad(k=1,2 ; j=1, \ldots, n)
$$

is an integer.
This condition is related to the reducibility of (0.1) (see [1] and [6]).

§ 1. Power series solutions of (0.1)

Since (0.1) is a Fuchsian system with regular singularities $t=\lambda_{j}(j=1, \ldots, n)$ and $\infty,(0.1)$ has convergent power series solutions at each singularity. Let $t=\lambda$ be one of the finite singularities. For brevity of the notation we may assume that $\lambda_{n}=\lambda$. This can always be done by interchanging the components in (0.1) by the linear transformation $X=P Y$ with a permutation matrix P. Furthermore, without loss of generality, we may assume that

$$
\arg \left(\lambda_{1}-\lambda\right)<\arg \left(\lambda_{2}-\lambda\right)<\cdots<\arg \left(\lambda_{n-1}-\lambda\right)<\arg \left(\lambda_{1}-\lambda\right)+2 \pi
$$

by the assumption $\left[\mathrm{A}_{0}\right]$.
Near $t=\lambda\left(\lambda=\lambda_{n}\right)$, there exists a non-holomorphic solution of (0.1) of the form

$$
\begin{equation*}
\hat{X}(t)=(t-\lambda)^{v} \sum_{m=0}^{\infty} \hat{G}(m)(t-\lambda)^{m} \quad(|t-\lambda|<R) \tag{1.1}
\end{equation*}
$$

where $v=v_{n}$ and $R=\min \left\{\left|\lambda_{j}-\lambda\right| ; j=1, \ldots, n-1\right\}$. The coefficient vectors $\hat{G}(m)$ $(m \geqslant 0)$ are determined uniquely up to a constant factor by the system of linear difference equations

$$
\left\{\begin{array}{l}
(B-\lambda)(m+1+v) \hat{G}(m+1)=(m+v-A) \hat{G}(m) \quad(m \geqslant 0) \tag{1.2}\\
(B-\lambda) v \widehat{G}(0)=0 .
\end{array}\right.
$$

Besides there exist $n-1$ holomorphic solutions of (0.1) of the form

$$
X(t)=\sum_{m=0}^{\infty} G(m)(t-\lambda)^{m},
$$

where the coefficient vectors are characterized by the system of linear difference equations replacing v by 0 in (1.2), i.e., (0.2).

Near $t=\infty$, there exist n linearly independent solutions of (0.1) of the form

$$
\begin{equation*}
Y^{k l}(t)=(t-\lambda)^{\mu_{k}} \sum_{r=0}^{\infty} H^{k l}(r)(t-\lambda)^{-r} \quad\left(|t-\lambda|>R^{\prime} ; k=1,2 ; I=1, \ldots, n_{k}\right), \tag{1.3}
\end{equation*}
$$

where $R^{\prime}=\max \left\{\left|\lambda_{j}-\lambda\right| ; j=1, \ldots, n-1\right\}$. The coefficient vectors $H^{k l}(r)(r \geqslant 1)$ are determined by the system of linear difference equations

$$
\begin{equation*}
\left(r-\mu_{k}+A\right) H^{k l}(r)=(B-\lambda)\left(r-1-\mu_{k}\right) H^{k l}(r-1) \quad(r \geqslant 1) \tag{1.4}
\end{equation*}
$$

subject to the initial condition

$$
\begin{equation*}
\left(A-\mu_{k}\right) H^{k l}(0)=0 . \tag{1.5}
\end{equation*}
$$

For each $k(=1,2)$, since rank $\left(A-\mu_{k}\right) \doteq n-n_{k}$, we can choose $H^{k l}(0)\left(I=1, \ldots, n_{k}\right)$ as n_{k} linearly independent eigenvectors of A corresponding to μ_{k}.

§ 2. Solutions of (0.2)

In this section, for Barnes-integral representation of $\hat{X}(t)$ and $X(t)$, we consider the system of linear difference equations (0.2), where z is a complex variable and $\lambda=\lambda_{n}$.

We first show the following lemma.
Lemma.

$$
(z-A)^{-1}=\frac{1}{\left(z-\mu_{1}\right)\left(z-\mu_{2}\right)}\left(z-\mu_{1}-\mu_{2}+A\right) .
$$

Proof. Since A is similar to $\operatorname{diag}\left[\mu_{1}, \ldots, \mu_{1}, \mu_{2}, \ldots, \mu_{2}\right]$, we have

$$
\begin{equation*}
\left(\mu_{1}-A\right)\left(\mu_{2}-A\right)=0 \tag{2.1}
\end{equation*}
$$

Then we have

$$
\left(z-\mu_{1}-\mu_{2}+A\right)(z-A)=\left(z-\mu_{1}\right)\left(z-\mu_{2}\right) I
$$

which proves the Lemma.
Using this formula, we can rewrite (0.2) as

$$
\begin{equation*}
\frac{z+1}{\left(z-\mu_{1}\right)\left(z-\mu_{2}\right)}\left(z-\mu_{1}-\mu_{2}+A\right)(B-\lambda) G(z+1)=G(z) \tag{2.2}
\end{equation*}
$$

Then, putting

$$
\begin{equation*}
G(z)=\frac{\Gamma\left(z-\mu_{1}\right) \Gamma\left(z-\mu_{2}\right)}{\Gamma(z+1)} \bar{G}(z), \tag{2.3}
\end{equation*}
$$

we can transform (2.2) into

$$
\left(z-\mu_{1}-\mu_{2}+A\right)(B-\lambda) \bar{G}(z+1)=\bar{G}(z),
$$

which is rewritten in the form

$$
\begin{equation*}
\left(z-\mu_{1}-\mu_{2}+\tilde{B} \tilde{A}_{11} \widetilde{B}^{-1}\right) \widetilde{G}(z+1)=\widetilde{B} \widetilde{G}(z) \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{A}_{21} \tilde{B}^{-1} \widetilde{G}(z+1)=\tilde{g}(z) \tag{2.5}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{A}_{11}=\left[\begin{array}{c}
a_{11} \ldots a_{1 n-1} \\
\ldots \ldots \\
a_{n-11} \cdots a_{n-1 n-1}
\end{array}\right], \quad \tilde{A}_{12}=\left[\begin{array}{c}
a_{1 n} \\
\vdots \\
a_{n-1 n}
\end{array}\right], \\
& \tilde{A}_{21}=\left[a_{n 1} \cdots a_{n n-1}\right], \quad \tilde{A}_{22}=\left[a_{n n}\right], \\
& \tilde{B}=\operatorname{diag}\left[\tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{n-1}\right], \quad \tilde{\lambda}_{j}=\left(\lambda_{j}-\lambda\right)^{-1} \quad(j=1, \ldots, n-1),
\end{aligned}
$$

and $\widetilde{G}(z)$ and $\tilde{g}(z)$ are the vectors which consist of the first $n-1$ components and the last one of $\bar{G}(z)$, respectively. Namely, as the system of difference equations, (2.4) is an essential part. We observe that the dimension of (2.4) is equal to $n-1$.

2.1. Principal solutions in the right half plane

By the Mellin-transformation

$$
\widetilde{G}(z)=\frac{1}{\Gamma(z-\rho)} \int t^{z-\rho-1} \widetilde{\Psi}(t) d t
$$

ρ being a complex parameter, (2.4) is transformed into an ($n-1$)-dimensional hypergeometric system

$$
\begin{equation*}
(t-\tilde{B}) \frac{d \widetilde{\Psi}}{d t}=\left(\rho-1-\mu_{1}-\mu_{2}+\tilde{B} \tilde{A}_{11} \tilde{B}^{-1}\right) \widetilde{\Psi} \tag{2.6}
\end{equation*}
$$

In order to define the arguments of $t-\tilde{\lambda}_{j}$, we put

$$
\mathscr{D}=C \backslash \cup_{j=1}^{n-1}\left\{s \tilde{\lambda}_{j} ; s \geqslant 1\right\} .
$$

Then, for $t \in \mathscr{D}$, we take the value between $\arg \tilde{\lambda}_{j}-2 \pi$ and $\arg \tilde{\lambda}_{j}\left(\arg \tilde{\lambda}_{j}=-\right.$ $\left.\arg \left(\lambda_{j}-\lambda\right)\right)$ for $\arg \left(t-\tilde{\lambda}_{j}\right)(j=1, \ldots, n-1)$. Let $\tilde{\Psi}_{j}(\rho ; t)(j=1, \ldots, n-1)$ be solutions of (2.6) in \mathscr{D} which are developed as

$$
\begin{aligned}
& \widetilde{\Psi}_{j}(\rho ; t) \\
& =\left(e^{\pi i}\left(t-\tilde{\lambda}_{j}\right)\right)^{\rho-1-\mu_{1}-\mu_{2}+v_{j}} \sum_{m=0}^{\infty} \frac{1}{\Gamma\left(\rho-\mu_{1}-\mu_{2}+v_{j}+m\right)} \tilde{C}_{j}(m)\left(t-\tilde{\lambda}_{j}\right)^{m}
\end{aligned}
$$

near $t=\tilde{\lambda}_{j}$, where $\tilde{C}_{j}(m)(m \geqslant 0)$ are the vectors determined uniquely by the systems of linear difference equations

$$
\left\{\begin{array}{l}
\left(\widetilde{B}-\tilde{\lambda}_{j}\right) \widetilde{C}_{j}(m+1)=\left(m+v_{j}-\tilde{B} \tilde{A}_{11} \tilde{B}^{-1}\right) \widetilde{C}_{j}(m) \quad(m \geqslant 0) \\
\widetilde{C}_{j}(0)=\tilde{e}_{j}
\end{array}\right.
$$

\tilde{e}_{j} being the j-th unit $(n-1)$-vector $(j=1, \ldots, n-1)$. Using these $\widetilde{\Psi}_{j}(\rho ; t)$, we define

$$
\begin{equation*}
\widetilde{G}_{j}(z)=\frac{1}{\Gamma(z-\rho)} \int_{0}^{\lambda_{j}} t^{z-\rho-1} \widetilde{\Psi}_{j}(\rho ; t) d t \quad(j=1, \ldots, n-1) \tag{2.7}
\end{equation*}
$$

for z satisfying $\operatorname{Re}(z-\rho)>0$, where the path of integration is the straight line from 0 to $\tilde{\lambda}_{j}, \arg t=\arg \tilde{\lambda}_{j}$ and the parameter ρ is selected as $\operatorname{Re}\left(\rho-1-\mu_{1}-\mu_{2}+v_{j}\right)$ >0 (for every $j=1, \ldots, n-1$). We here observe that, under the assumption [A_{0}], $\arg \tilde{\lambda}_{i} \neq \arg \tilde{\lambda}_{j}(\bmod 2 \pi)(i \neq j)$. Concerning these $\tilde{G}_{j}(z)$, we obtain the following

Proposition. (i) $\widetilde{G}_{j}(z)$ is holomorphic and is a solution of (2.4) in $\operatorname{Re}(z-$ $\rho)>0$, therefore an entire solution $(j=1, \ldots, n-1)$.
(ii) $\widetilde{G}_{j}(z)=\widetilde{\Psi}_{j}(z ; 0)$ for every $z \in \boldsymbol{C}$. Therefore $\widetilde{G}_{j}(z)$ does not depend on $\rho(j=1, \ldots, n-1)$.
(iii) As $z \rightarrow \infty,|\arg z|<\pi / 2+\varepsilon$ for sufficiently small $\varepsilon>0$,

$$
\tilde{G}_{j}(z) \sim \tilde{F}_{j}(z),
$$

where $\tilde{F}_{j}(z)$ is a formal solution of (2.4) of the form

$$
\left\{\begin{array}{l}
\tilde{F}_{j}(z)=\Gamma(z)^{-1} \tilde{\lambda}_{j}^{z}-1-\mu_{1}-\mu_{2}+v_{j} z^{\mu_{1}+\mu_{2}-v_{j}} \sum_{r=0}^{\infty} \tilde{f}_{j}(r) z^{-r} \\
\tilde{f}_{j}(0)=\tilde{e}_{j} \quad(j=1, \ldots, n-1)
\end{array}\right.
$$

Proof. (i) It is trivial that $\widetilde{G}_{j}(z)$ is holomorphic and is a solution of (2.4) in $\operatorname{Re}(z-\rho)>0$. Then $\widetilde{G}_{j}(z)$ is analytically continued into the left half plane by the equation (2.4).
(ii) For $\operatorname{Re}(z-\rho)>0$ and $t \in \mathscr{D}$, we put

$$
\widetilde{G}_{j}(z ; t)=\frac{1}{\Gamma(z-\rho)} \int_{t}^{\lambda_{j}}(\tau-t)^{z-\rho-1} \widetilde{\Psi}_{j}(\rho ; \tau) d \tau
$$

where the path of integration is a curve in \mathscr{D} from t to $\tilde{\lambda}_{j}$ and $\arg (\tau-t)$ is taken continuously along the path of integration as $\arg \left(\tilde{\lambda}_{j}-t\right)=\arg \left(t-\tilde{\lambda}_{j}\right)+\pi$ at the endpoint $\tilde{\lambda}_{j}$. For $\left|t-\tilde{\lambda}_{j}\right|$ sufficiently small, we have

$$
\begin{aligned}
& \tilde{G}_{j}(z ; t) \\
& =\left(e^{\pi i}\left(t-\tilde{\lambda}_{j}\right)\right)^{z-1-\mu_{1}-\mu_{2}+v_{j}} \sum_{m=0}^{\infty} \frac{1}{\Gamma\left(z-\mu_{1}-\mu_{2}+v_{j}+m\right)} \tilde{C}_{j}(m)\left(t-\tilde{\lambda}_{j}\right)^{m} \\
& =\tilde{\Psi}_{j}(z ; t)
\end{aligned}
$$

by termwise integration. Since both $\widetilde{G}_{j}(z ; t)$ and $\widetilde{\Psi}_{j}(z ; t)$ are holomorphic in \mathscr{D},
we obtain $\widetilde{G}_{j}(z ; t)=\widetilde{\Psi}_{j}(z ; t)$ for $t \in \mathscr{D}$ and $\operatorname{Re}(z-\rho)>0$, in particular

$$
\widetilde{G}_{j}(z ; 0)=\widetilde{G}_{j}(z)=\widetilde{\Psi}_{j}(z ; 0) .
$$

Moreover, since both $\widetilde{G}_{j}(z)$ and $\widetilde{\Psi}_{j}(z ; 0)$ are holomorphic in C, we obtain the above formula for every $z \in \boldsymbol{C}$.
(iii) This asymptotic expansion for $|\arg z|<\pi / 2$ is immediately seen by applying Watson's lemma (e.g. [5; p. 4]) to the integral representation of $\widetilde{G}_{j}(z)$ with $t=\tilde{\lambda}_{j} e^{-\tau}$, i.e.,

$$
\tilde{G}_{j}(z)=\frac{\tilde{\lambda}_{j}^{z-\rho}}{\Gamma(z-\rho)} \int_{0}^{\infty} e^{-(z-\rho) \tau} \tilde{\Psi}_{j}\left(\rho ; \tilde{\lambda}_{j} e^{-\tau}\right) d \tau
$$

and by using Stirling's formula. Then, putting $\tau=e^{i \theta} \zeta$ for $|\theta|$ sufficiently small, we have the asymptotic expansion in the enlarged half plane as stated above (cf. [5; p. 6 Lemma 2]).

Remark. (i) As to the holomorphy of $\tilde{\Psi}_{j}(z ; 0)$ in $z \in \boldsymbol{C}$, see [7].
(ii) According to the general theory of difference equations, the fundamental set of solutions of (2.4) characterized by the asymptotic behavior in (iii) is uniquely determined.

Now we shall denote by $G_{j}(z)$ the solution of (0.2) constructed by $\widetilde{G}_{j}(z)$ with (2.5) and (2.3) $(j=1, \ldots, n-1)$, which will be used for Barnes-integral representation of the holomorphic solutions of (0.1) near $t=\lambda$ in $\S 3$.

2.2. Solution having zeros in the left half plane

For the solution of (1.2) we next consider a solution of (2.4) which has zeros in the left half plane. We first calculate Casorati's determinant of $\widetilde{G}_{j}(z)(j=1, \ldots$, $n-1$). Since from the Lemma we have

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\frac{1}{\left(z-\mu_{1}\right)\left(z-\mu_{2}\right)}\left(z-\mu_{1}-\mu_{2}+\tilde{A}_{11}\right) & \frac{1}{\left(z-\mu_{1}\right)\left(z-\mu_{2}\right)} \tilde{A}_{12} \\
0 & 1
\end{array}\right](z-A)} \\
& =\left[\begin{array}{cc}
I_{n-1} & 0 \\
-\tilde{A}_{21} & z-\tilde{A}_{22}
\end{array}\right],
\end{aligned}
$$

I_{n-1} being the ($n-1$)-dimensional identity matrix, we then obtain

$$
\operatorname{det}\left(z-\mu_{1}-\mu_{2}+\tilde{B} \tilde{A}_{11} \tilde{B}^{-1}\right)=(z-v)\left(z-\mu_{1}\right)^{n_{2}-1}\left(z-\mu_{2}\right)^{n_{1}-1}
$$

Therefore we have

$$
\operatorname{det}\left[\widetilde{G}_{j}(z)\right]=\frac{\prod_{j=1}^{n-1} \tilde{\lambda}_{j}}{\Gamma(z-v) \Gamma\left(z-\mu_{1}\right)^{n_{2}-1} \Gamma\left(z-\mu_{2}\right)^{n_{1}-1}} p(z),
$$

where $\left[\widetilde{G}_{j}(z)\right]$ denotes $\left[\widetilde{G}_{1}(z), \widetilde{G}_{2}(z), \ldots, \widetilde{G}_{n-1}(z)\right]$ for short and $p(z)$ is a periodic function of period 1. From Proposition (iii) and Stirling's formula it is easy to see that

$$
p(z) \sim \prod_{j=1}^{n-1} \tilde{\lambda}_{j}^{-1-\mu_{1}-\mu_{2}+v_{j}}
$$

as $z \rightarrow \infty,|\arg z|<\pi / 2+\varepsilon$. Hence $p(z)$ is indeed a constant equal to the right hand side of this formula. We consequently obtain

$$
\operatorname{det}\left[\widetilde{G}_{j}(z)\right]=\frac{\prod_{j=1}^{n=1} \tilde{\lambda}_{j}^{z-1-\mu_{1}-\mu_{2}+v_{j}}}{\Gamma(z-v) \Gamma\left(z-\mu_{1}\right)^{n_{2}-1} \Gamma\left(z-\mu_{2}\right)^{n_{1}-1}} .
$$

Observing from the (1, 2)-block of (2.1) that

$$
\begin{equation*}
\left(v-\mu_{1}-\mu_{2}+\tilde{B} \tilde{A}_{11} \tilde{B}^{-1}\right) \tilde{B} \tilde{A}_{12}=0, \tag{2.8}
\end{equation*}
$$

we can define the constants $\gamma_{j}(j=1, \ldots, n-1)$ as the solution of the system of linear equations

$$
\sum_{j=1}^{n-1} \gamma_{j} \widetilde{G}_{j}(v+1)=-\frac{\Gamma(v+1)}{\Gamma\left(v+1-\mu_{1}\right) \Gamma\left(v+1-\mu_{2}\right)} \tilde{B} \tilde{A}_{12} .
$$

In fact, since $\operatorname{det}\left[\widetilde{G}_{j}(v+1)\right] \neq 0$, these constants are uniquely determined. Using these γ_{j}, we define a solution $\widetilde{G}_{0}(z)$ of (2.4) by

$$
\widetilde{G}_{0}(z)=\sum_{j=1}^{n-1} \gamma_{j} \widetilde{G}_{j}(z) .
$$

Then it is easy to see that $\widetilde{G}_{0}(v-r)=0$ for $r=0,1,2, \ldots$.
Now we shall denote by $G_{0}(z)$ the solution of (0.2) constructed by $\widetilde{G}_{0}(z)$ with (2.5) and (2.3), and put

$$
\widehat{G}(z)=G_{0}(z+v) .
$$

Then it is immediately seen that $\hat{G}(-r)=0$ for $r=1,2, \ldots$. Observing that

$$
(v-A) G_{0}(v)=(B-\lambda)(v+1) G_{0}(v+1)=(v-A) e_{n},
$$

e_{n} being the n-th unit n-vector, and $\operatorname{det}(v-A) \neq 0$ by the assumption [A_{2}], we obtain

$$
\widehat{G}(0)=G_{0}(v)=e_{n} .
$$

Hence $\hat{G}(z)$ is a (non-trivial) solution of (1.2), which will be used for Barnesintegral representation of the non-holomorphic solution of (0.1) near $t=\lambda$ in $\S 3$.

The solution $\widetilde{G}_{0}(z)$ of (2.4) will be considered again at the last part of $\S 3$.

§ 3. Barnes-integral representation

We consider a Barnes-integral

$$
X_{j}(t)=-\frac{1}{2 \pi i} \int_{C} G_{j}(z) \frac{\pi e^{-\pi i z}}{\sin \pi z}(t-\lambda)^{z} d z \quad(j=1, \ldots, n-1)
$$

where the path of integration C is a Barnes-contour running along the straight line $z=-i a$ from $+\infty-i a$ to $0-i a$, a curve from $0-i a$ to $0+i a$ and the straight line $z=i a$ from $0+i a$ to $+\infty+i a$ such that the points $z=m(m=0,1,2, \ldots)$ lie to the right of C and the points $z=\mu_{k}-r(r=0,1,2, \ldots ; k=1,2)$ lie to the left of C. The constant a is taken as $a>\max \left\{\left|\operatorname{Im} \mu_{k}\right| ; k=1,2\right\}$. In view of the asymptotic behavior of $G_{j}(z)$, the above integral is absolutely convergent for $|t-\lambda|<\left|\lambda_{j}-\lambda\right|\left(=1 /\left|\tilde{\lambda}_{j}\right|\right)$ and equal to the sum of residues at $z=m(m=0,1,2, \ldots)$, i.e.,

$$
X_{j}(t)=\sum_{m=0}^{\infty} G_{j}(m)(t-\lambda)^{m} \quad\left(|t-\lambda|<\left|\lambda_{j}-\lambda\right|\right),
$$

which is a holomorphic solution of (0.1) near $t=\lambda$.
Now let ξ be an arbitrary negative number not equal to $\operatorname{Re}\left(\mu_{k}-r\right)(r=0,1$, $2, \ldots ; k=1,2)$. We take the positive integer $N_{k}(k=1,2)$ such that

$$
-\left(N_{k}+1\right)<\xi-\operatorname{Re} \mu_{k}<-N_{k} \quad(k=1,2) .
$$

Replacing the path C by the rectilinear contour L_{ξ} which runs first from $+\infty-i a$ to $\xi-i a$, next from $\xi-i a$ to $\xi+i a$ and finally from $\xi+i a$ to $+\infty+i a$, we obtain

$$
\begin{aligned}
X_{j}(t)= & -\frac{1}{2 \pi i} \int_{L_{\xi}} G_{j}(z) \frac{\pi e^{-\pi i z}}{\sin \pi z}(t-\lambda)^{z} d z \\
& -\sum \operatorname{Res}\left[G_{j}(z) \frac{\pi e^{-\pi i z}}{\sin \pi z}(t-\lambda)^{z}\right],
\end{aligned}
$$

where the summation covers all poles in the domain encircled by L_{ξ} and the curve from -ia to $i a$ of C. Since $G_{j}(-r)=0(r=1,2, \ldots)$ by (2.3), $z=-r(r=1,2, \ldots)$ are no longer poles. Then, by (2.3), the integrand has simple poles only at $z=$ $\mu_{k}-r\left(r=0,1, \ldots, N_{k} ; k=1,2\right)$ in that domain. Hence we obtain

$$
\sum \operatorname{Res}\left[G_{j}(z) \frac{\pi e^{-\pi i z}}{\sin \pi z}(t-\lambda)^{z}\right]=\sum_{k=1}^{2} \sum_{r=0}^{N_{k}} \frac{\pi e^{-\pi i \mu_{k}}}{\sin \pi \mu_{k}} H_{j}^{k}(r)(t-\lambda)^{-r+\mu_{k}},
$$

where

$$
H_{j}^{k}(r)=\lim _{z \rightarrow \mu_{k}-r}\left[\left(z-\mu_{k}+r\right) G_{j}(z)\right] \quad(r=0,1,2, \ldots ; k=1,2),
$$

which is a solution of the system of linear difference equations (1.5) and (1.4).

In fact, since $G_{j}(z)$ is holomorphic at $z=\mu_{k}+1$, we have

$$
\begin{aligned}
& \left(A-\mu_{k}\right) H_{j}^{k}(0)=\lim _{z \rightarrow \mu_{k}}\left[-(z-A)\left(z-\mu_{k}\right) G_{j}(z)\right] \\
& \quad=\lim _{z \rightarrow \mu_{k}}\left[-(B-\lambda)(z+1)\left(z-\mu_{k}\right) G_{j}(z+1)\right]=0 .
\end{aligned}
$$

For $r \geqslant 1$, we have

$$
\begin{aligned}
&(r\left.-\mu_{k}+A\right) H_{j}^{k}(r)=\lim _{z \rightarrow \mu_{k}-r}\left[-(z-A)\left(z-\mu_{k}+r\right) G_{j}(z)\right] \\
& \quad=\lim _{z \rightarrow \mu_{k}-r}\left[-(B-\lambda)(z+1)\left(z-\mu_{k}+r\right) G_{j}(z+1)\right] \\
& \quad=(B-\lambda)\left(r-1-\mu_{k}\right) \lim _{z+1 \rightarrow \mu_{k}-(r-1)}\left[\left(z+1-\mu_{k}+r-1\right) G_{j}(z+1)\right] \\
&=(B-\lambda)\left(r-1-\mu_{k}\right) H_{j}^{k}(r-1) .
\end{aligned}
$$

Hence there exist the constants $T_{j}^{k l}\left(k=1,2 ; l=1, \ldots, n_{k}\right)$ such that

$$
-\frac{\pi e^{-\pi i \mu_{k}}}{\sin \pi \mu_{k}} H_{j}^{k}(r)=\sum_{l=1}^{n_{k}} T_{j}^{k l} H^{k l}(r) \quad(r=0,1,2, \ldots ; k=1,2) .
$$

Actually these constants are uniquely determined by the system of linear equations

$$
\sum_{l=1}^{n_{k}} T_{j}^{k l} H^{k l}(0)=-\frac{\pi e^{-\pi i \mu_{k}}}{\sin \pi \mu_{k}} H_{j}^{k}(0)
$$

$\left(H^{k l}(0)\left(k=1,2 ; l=1, \ldots, n_{k}\right)\right.$ are given in advance $)$. This, in turn, is equivalent to

$$
\begin{equation*}
\sum_{l=1}^{n_{k}} T_{j}^{k l} \tilde{H}^{k l}(0)=-\frac{\pi e^{-\pi i \mu_{k}}}{\sin \pi \mu_{k}} \cdot \frac{\Gamma\left(2 \mu_{k}-\mu_{1}-\mu_{2}\right)}{\Gamma\left(\mu_{k}+1\right)} \cdot \widetilde{\Psi}_{j}\left(\mu_{k} ; 0\right) \quad(k=1,2) \tag{3.1}
\end{equation*}
$$

where $\tilde{H}^{k l}(0)$ denotes the vector which consists of the first $n-1$ components of $H^{k l}(0)$, since for an eigenvector H of A corresponding to μ_{k} we have

$$
\tilde{h}=\left(\mu_{k}-v\right)^{-1} \tilde{A_{21}} \tilde{H},
$$

where \tilde{H} and \tilde{h} denote the vectors which consist of the first $n-1$ components and the last one of H, respectively. We therefore obtain

$$
\begin{aligned}
X_{j}(t)= & \sum_{k=1}^{2} \sum_{l=1}^{n k_{1}} T_{j}^{k l}\left\{(t-\lambda)^{\mu_{k}} \sum_{r=0}^{N_{k}} H^{k l}(r)(t-\lambda)^{-r}\right\} \\
& -\frac{1}{2 \pi i} \int_{L_{\xi}} G_{j}(z) \frac{\pi e^{-\pi i z}}{\sin \pi z}(t-\lambda)^{z} d z \quad\left(|t-\lambda|<\left|\lambda_{j}-\lambda\right|\right) .
\end{aligned}
$$

We here apply the results of B. L. J. Braaksma [2; pp. 271-278] to the last term. The integral

$$
-\frac{1}{2 \pi i} \int_{\xi-i \infty}^{\xi+i \infty} G_{j}(z) \frac{\pi e^{-\pi i z}}{\sin \pi z}(t-\lambda)^{z} d z
$$

is the analytic continuation of the above integral for t which, in view of the
asymptotic behavior of $G_{j}(z)$, lies in the sector

$$
S_{j}^{\prime}=\left\{t \in C ; \arg \left(\lambda_{j}-\lambda\right)+\varepsilon^{\prime} \leqslant \arg (t-\lambda) \leqslant \arg \left(\lambda_{j}-\lambda\right)+2 \pi-\varepsilon^{\prime}\right\} \quad\left(\varepsilon^{\prime}>0\right) .
$$

Moreover we have

$$
\left\|-\frac{1}{2 \pi i} \int_{\xi-i \infty}^{\xi+i \infty} G_{j}(z) \frac{\pi e^{-\pi i z}}{\sin \pi z}(t-\lambda)^{z} d z\right\|<K|t-\lambda|^{\xi}
$$

as $t \rightarrow \infty, t \in S_{j}^{\prime}$, where K is a positive constant independent of t (but depending on ξ). Hence $X_{j}(t)$ is analytically continued into $C \backslash\left\{\lambda+s\left(\lambda_{j}-\lambda\right) ; s \geqslant 1\right\}$ and has the asymptotic expansion

$$
X_{j}(t) \sim \sum_{k=1}^{2} \sum_{l=1}^{n k_{1}} T_{j}^{k l} Y^{k l}(t)
$$

as $t \rightarrow \infty, t \in S_{j}=\left\{t \in C ; \arg \left(\lambda_{j}-\lambda\right)<\arg (t-\lambda)<\arg \left(\lambda_{j}-\lambda\right)+2 \pi\right\}$. Since $t=\infty$ is a regular singularity of (0.1) and $Y^{k l}(t)\left(k=1,2 ; l=1, \ldots, n_{k}\right)$ are convergent, we therefore obtain

$$
X_{j}(t)=\sum_{k=1}^{2} \sum_{l=1}^{n_{1}} T_{j}^{k l} Y^{k l}(t)
$$

for $t \in S_{j}$. Consequently the connection coefficients between $X_{j}(t)$ and $Y^{k l}(t)$ $\left(k=1,2 ; l=1, \ldots, n_{k}\right)$ are given by $\widetilde{\Psi}_{j}\left(\mu_{k} ; 0\right)(k=1,2)$.

As to the non-holomorphic solution of (0.1) near $t=\lambda$, we analyze the Barnesintegral

$$
\hat{X}(t)=-\frac{1}{2 \pi i} \int_{C^{\prime}} \hat{G}(z) \frac{\pi e^{-\pi i z}}{\sin \pi z}(t-\lambda)^{z+v} d z
$$

where the path of integration C^{\prime} is a suitable Barnes-contour defined in a way similar to the above consideration. Then, for $|t-\lambda|<R$, we have

$$
\hat{X}(t)=\sum_{m=0}^{\infty} \widehat{G}(m)(t-\lambda)^{m+v}
$$

and

$$
\begin{aligned}
\hat{X}(t)=\sum_{j=1}^{n-1} \gamma_{j}\{ & \sum_{k=1}^{2} \sum_{l=1}^{n k_{1}} e^{\pi i v} \frac{\sin \pi \mu_{k}}{\sin \pi\left(\mu_{k}-v\right)} T_{j}^{k l} \sum_{r=0}^{N_{k}^{\prime}} H^{k l}(r)(t-\lambda)^{-r+\mu_{k}} \\
& \left.-\frac{1}{2 \pi i} \int_{L^{\prime} \xi^{\prime}} G_{j}(z+v) \frac{\pi e^{-\pi i z}}{\sin \pi z}(t-\lambda)^{z+v} d z\right\},
\end{aligned}
$$

where $L_{\xi^{\prime}}^{\prime}$ is a suitable rectilinear contour and $N_{k}^{\prime}(k=1,2)$ are suitable positive integers. Hence the above $\widehat{X}(t)$ is the non-holomorphic solution of (0.1) near $t=\lambda$ and is analytically continued into the sector

$$
\cap_{j=1}^{n-1} S_{j}=\left\{t \in C ; \arg \left(\lambda_{n-1}-\lambda\right)<\arg (t-\lambda)<\arg \left(\lambda_{1}-\lambda\right)+2 \pi\right\},
$$

and we have

$$
\begin{equation*}
\hat{X}(t)=\sum_{k=1}^{2} \sum_{l}^{n=1}\left\{e^{\pi i v} \frac{\sin \pi \mu_{k}}{\sin \pi\left(\mu_{k}-v\right)} \sum_{j=1}^{n-1} \gamma_{j} T_{j}^{k l}\right\} Y^{k l}(t) \tag{3.2}
\end{equation*}
$$

for $t \in \cap_{j=1}^{n-1} S_{j}$. In order to obtain an analytic continuation of $\hat{X}(t)$ into another sector, we anew take

$$
\widehat{G}(z)=\sum_{j=1}^{n-1} \gamma_{j} e^{2 \pi i \delta_{j} z} G_{j}(z+v),
$$

where $\delta_{j}(j=1, \ldots, n-1)$ are suitable integers, instead of

$$
\widehat{G}(z)=\sum_{j=1}^{n-1} \gamma_{j} G_{j}(z+v) .
$$

Then we obtain the analytic continuation of $\hat{X}(t)$ into $\cap_{j=1}^{n=1} S_{j}\left(\delta_{j}\right)$, where

$$
\begin{array}{r}
S_{j}\left(\delta_{j}\right)=\left\{t \in C ; \arg \left(\lambda_{j}-\lambda\right)-2 \pi \delta_{j}<\arg (t-\lambda)<\arg \left(\lambda_{j}-\lambda\right)-2 \pi \delta_{j}+2 \pi\right\} \tag{3.3}\\
(j=1, \ldots, n-1) .
\end{array}
$$

Now, in order to characterize γ_{j} and the coefficients in (3.2), we shall investigate the solution $\widetilde{G}_{0}(z)$ of (2.4). Let $\tilde{\Phi}(\rho ; t)$ be a solution of (2.6) near $t=\infty$ corresponding to the exponent $-(\rho-1-v)$. Then it is easy to see that $\widetilde{\Phi}(\rho ; t)$ has an expansion of the form

$$
\tilde{\Phi}(\rho ; t)=\left(e^{\pi i} t\right)^{\rho-1-v} \sum_{r=0}^{\infty} \frac{(-1)^{r}}{\Gamma(\rho-v-r)} \tilde{K}(r) t^{-r}
$$

near $t=\infty$, where $\tilde{K}(r)(r \geqslant 1)$ are the vectors determined uniquely by the system of linear difference equations

$$
\begin{equation*}
\left(r+1+v-\mu_{1}-\mu_{2}+\tilde{B} \tilde{A}_{11} \tilde{B}^{-1}\right) \tilde{K}(r+1)=\tilde{B} \tilde{K}(r) \tag{3.4}
\end{equation*}
$$

subject to the initial condition

$$
\left(v-\mu_{1}-\mu_{2}+\tilde{B} \tilde{A}_{11} \tilde{B}^{-1}\right) \tilde{K}(0)=0 .
$$

Observing (2.8), we here define

$$
\tilde{K}(0)=-\frac{\Gamma(v+1)}{\Gamma\left(v+1-\mu_{1}\right) \Gamma\left(v+1-\mu_{2}\right)} \tilde{B} \tilde{A}_{12} \quad\left(=\widetilde{G}_{0}(v+1)\right) .
$$

Then, since (3.4) is equivalent to (2.4), we have

$$
\tilde{K}(r)=\tilde{G}_{0}(r+1+v) \quad(r=0,1,2, \ldots)
$$

We therefore consider a Barnes-integral

$$
\hat{\Phi}(\rho ; t)=-\frac{1}{2 \pi i} \int_{C^{\prime \prime}} \widetilde{G}_{0}(z+1+v) \Gamma(z-\rho+1+v) \frac{\pi e^{-\pi i z}}{\sin \pi z} t^{\rho-1-v-z} d z
$$

where

$$
\widetilde{G}_{0}(z+1+v)=\sum_{j=1}^{n-1} \gamma_{j} e^{2 \pi i \delta_{j z}} \widetilde{G}_{j}(z+1+v) \quad\left(\delta_{j} \in \boldsymbol{Z}\right)
$$

the path of integration $C^{\prime \prime}$ is a suitable Barnes-contour and we temporarily assume that $\rho \not \equiv v(\bmod 1)$. By an analysis similar to the above we obtain

$$
\begin{aligned}
\hat{\Phi}(\rho ; t) & =\sum_{r=0}^{\infty} \widetilde{G}_{0}(r+1+v) \Gamma(r-\rho+1+v) t^{\rho-1-v-r} \\
& =\frac{\pi}{\sin \pi(\rho-v)} \sum_{r=0}^{\infty} \frac{(-1)^{r}}{\Gamma(\rho-v-r)} \tilde{K}(r) t^{\rho-1-v-r} \\
& =-\frac{\pi e^{-\pi i(\rho-v)}}{\sin \pi(\rho-v)} \tilde{\Phi}(\rho ; t)
\end{aligned}
$$

for $|t|>\max \left\{\left|\tilde{\lambda}_{j}\right| ; j=1, \ldots, n-1\right\}$ (observe that $e^{2 \pi i \delta_{j} r}=1$ for $r \in Z$). Moreover we obtain

$$
\begin{aligned}
\hat{\Phi}(\rho ; t)= & -\frac{\pi e^{-\pi i(\rho-v)}}{\sin \pi(\rho-v)} \sum_{m=0}^{N^{\prime \prime}} \frac{(-1)^{m}}{m!} \widetilde{G}_{0}(\rho-m) t^{m} \\
& -\frac{1}{2 \pi i} \int_{L_{\xi^{\prime \prime}}^{\prime \prime}} \widetilde{G}_{0}(z+1+v) \Gamma(z-\rho+1+v) \frac{\pi e^{-\pi i z}}{\sin \pi z} t^{\rho-1-v-z} d z
\end{aligned}
$$

where $L_{\xi^{\prime \prime}}^{\prime \prime}$ is a suitable rectilinear contour and $N^{\prime \prime}$ is a suitable positive integer. Since

$$
\frac{\partial}{\partial t} \widetilde{\Psi}_{j}(\rho ; t)=-\widetilde{\Psi}_{j}(\rho-1 ; t)
$$

we have

$$
\begin{aligned}
& \sum_{m=0}^{N^{\prime \prime}} \frac{(-1)^{m}}{m!} \widetilde{G}_{0}(\rho-m) t^{m} \\
& =\left.\sum_{j=1}^{n-1} \gamma_{j} e^{2 \pi i \delta_{j}(\rho-v)} \sum_{m=0}^{N^{\prime \prime}} \frac{1}{m!} \cdot \frac{\partial^{m}}{\partial t^{m}} \widetilde{\Psi}_{j}(\rho ; t)\right|_{t=0} \cdot t^{m}
\end{aligned}
$$

Then, observing the asymptotic behavior of $\widetilde{G}_{j}(z)$ and that the last summation in the above is the sum of the first $N^{\prime \prime}+1$ terms of Taylor's series of $\widetilde{\Psi}_{j}(\rho ; t)$, we see that $\tilde{\Phi}(\rho ; t)$ is analytically continued into the sector $\cap_{j=1}^{n=1} \tilde{S}_{j}\left(\delta_{j}\right)$, where

$$
\tilde{S}_{j}\left(\delta_{j}\right)=\left\{t \in \mathscr{D} ; \arg \tilde{\lambda}_{j}+2 \pi \delta_{j}-2 \pi<\arg t<\arg \tilde{\lambda}_{j}+2 \pi \delta_{j}\right\} \quad(j=1, \ldots, n-1),
$$

and we have

$$
\begin{equation*}
\tilde{\Phi}(\rho ; t)=\sum_{j=1}^{n=1} \gamma_{j} e^{2 \pi i \delta_{j}(\rho-v)} \widetilde{\Psi}_{j}(\rho ; t) \tag{3.5}
\end{equation*}
$$

for $t \in \cap \cap_{j=1}^{n=1} \tilde{S}_{j}\left(\delta_{j}\right)$. Consequently $\gamma_{j} e^{2 \pi i \delta_{j}(\rho-v)}(j=1, \ldots, n-1)$ are the connection coefficients between $\tilde{\Phi}(\rho ; t)$ and $\widetilde{\Psi}_{j}(\rho ; t)(j=1, \ldots, n-1)$ in the sector $\cap{ }_{j=1}^{n-1} \widetilde{S}_{j}\left(\delta_{j}\right)$. Since we can drop the assumption that $\rho \neq v(\bmod 1)$ in (3.5) by the holomorphy of $\tilde{\Phi}(\rho ; t)$ and $\widetilde{\Psi}_{j}(\rho ; t)$ in $\rho \in \boldsymbol{C}$, we therefore obtain

$$
\tilde{G}_{0}(z)\left(=\sum_{j=1}^{n-1} \gamma_{j} e^{2 \pi i \delta_{j}(z-v)} \tilde{G}_{j}(z)\right)=\tilde{\Phi}(z ; 0)
$$

for every $z \in C$, where $\tilde{\Phi}(z ; \cdot)$ means the analytic continuation through the sector $\cap{ }_{j=1}^{n-1} \tilde{S}_{j}\left(\delta_{j}\right)$. Hence the coefficients

$$
\begin{align*}
& \hat{T}^{k l}\left(\delta_{1}, \ldots, \delta_{n-1}\right)=e^{\pi i v} \frac{\sin \pi \mu_{k}}{\sin \pi\left(\mu_{k}-v\right)} \sum_{j=1}^{n=1} \gamma_{j} e^{2 \pi i \delta_{j}\left(\mu_{k}-v\right)} T_{j}^{k l} \tag{3.6}\\
& \left(k=1,2 ; l=1, \ldots, n_{k}\right),
\end{align*}
$$

which correspond to the analytic continuation of $\hat{X}(t)$ into the sector $\wedge_{j=1}^{\eta-1} S_{j}\left(\delta_{j}\right)$, are characterized as the unique solutions of the systems of linear equations

$$
\begin{align*}
& \sum_{l=1}^{n k_{1}} \hat{T}^{k l}\left(\delta_{1}, \ldots, \delta_{n-1}\right) \tilde{H}^{k l}(0) \tag{3.7}\\
& =-\frac{\pi e^{-\pi i\left(\mu_{k}-v\right)}}{\sin \pi\left(\mu_{k}-v\right)} \cdot \frac{\Gamma\left(2 \mu_{k}-\mu_{1}-\mu_{2}\right)}{\Gamma\left(\mu_{k}+1\right)} \cdot \tilde{\Phi}\left(\mu_{k} ; 0\right) \quad(k=1,2),
\end{align*}
$$

where $\tilde{\Phi}\left(\mu_{k} ; \cdot\right)$ means the analytic continuation through the sector $\cap_{j=1}^{n=1} \tilde{S}_{j}\left(\delta_{j}\right)$. Consequently the connection coefficients between $\hat{X}(t)$ and $Y^{k l}(t)$ ($k=1,2$; $\left.l=1, \ldots, n_{k}\right)$ are given by $\widetilde{\Phi}\left(\mu_{k} ; 0\right)(k=1,2)$, of which the sector of analytic continuation corresponds to that of $\hat{X}(t)$.

We summarize all results derived above in the following
Theorem. Let $Y^{k l}(t)\left(k=1,2 ; l=1, \ldots, n_{k}\right)$ be solutions of (0.1) of the form (1.3) near $t=\infty$, and let $S_{j}\left(\delta_{j}\right)(j=1, \ldots, n-1)$ be sectors defined by (3.3), where the δ_{j} are integers.
(i) For each $j(=1, \ldots, n-1)$, the holomorphic solution $X_{j}(t)$ of (0.1) near $t=\lambda$ which is characterized by $X_{j}(\lambda)=G_{j}(0)$, where $G_{j}(0)$ is constructed by (2.7) with (2.4), (2.5) and (2.3), is holomorphic in $\boldsymbol{C} \backslash\left\{\lambda+s\left(\lambda_{j}-\lambda\right) ; s \geqslant 1\right\}$ and

$$
X_{j}(t)=\sum_{k=1}^{2} \sum_{l=1}^{n k} e^{2 \pi i \delta_{j} \mu_{k}} T_{j}^{k l} Y^{k l}(t) \quad\left(t \in S_{j}\left(\delta_{j}\right)\right)
$$

holds, where the constants $T_{j}^{k l}\left(k=1,2 ; l=1, \ldots, n_{k}\right)$ are determined by (3.1).
(ii) The non-holomorphic solution $\widehat{X}(t)$ of (0.1) near $t=\lambda$ of the form (1.1) with $\hat{G}(0)=e_{n}$ is analytically continued into a sector $\cap_{j=1}^{n-1} S_{j}\left(\delta_{j}\right)$ and

$$
\hat{X}(t)=\sum_{k=1}^{2} \sum_{l=1}^{n_{k}} \hat{T}^{k l}\left(\delta_{1}, \ldots, \delta_{n-1}\right) Y^{k l}(t) \quad\left(t \in \bigcap_{j=1}^{n-1} S_{j}\left(\delta_{j}\right)\right)
$$

holds, where the constants $\hat{T}^{k l}\left(\delta_{1}, \ldots, \delta_{n-1}\right)\left(k=1,2 ; l=1, \ldots, n_{k}\right)$ are determined by (3.7) (or (3.6)).
(iii) $\quad X_{j}(t)(j=1, \ldots, n-1)$ and $\hat{X}(t)$ form a fundamental set of solutions of (0.1).

Remark. (i) About the integers $\delta_{j}(j=1, \ldots, n-1)$ in (ii) we actually choose them as $\cap_{j=1}^{n-1} S_{j}\left(\delta_{j}\right) \neq \varnothing$.
(ii) The fact in (iii) is immediately seen by $\operatorname{det}\left[\widetilde{G}_{j}(0)\right] \neq 0$.

Remark. The system (2.6) with $\rho=\mu_{k}$, whose solutions give the connection coefficients as above, is indeed reducible to an n_{k}-dimensional system of linear differential equations (which is no longer a hypergeometric system in general). This fact is easily seen by $\operatorname{rank}\left(\mu_{k}-\mu_{1}-\mu_{2}+A\right)=n_{k}(k=1,2)$.

§4. Examples

Example 1 (1-dimensional section of Appell's F_{3}).

$$
\begin{aligned}
& B=\operatorname{diag}\left[\lambda_{0}, \lambda_{0}, \lambda_{1}, \lambda_{2}\right] \\
& A=\left[a_{j k}\right] \sim \operatorname{diag}\left[\mu_{1}, \mu_{1}, \mu_{2}, \mu_{2}\right] \quad \text { with } \quad a_{12}=a_{21}=0 .
\end{aligned}
$$

See [8] in detail.
Example 2 (Jordan-Pochhammer system).

$$
(t-B) \frac{d X}{d t}=\left(\rho+\left[\begin{array}{ccc}
a_{1} & a_{1} \cdots a_{1} \tag{4.1}\\
a_{n} & \cdots \cdots & a_{n} \cdots
\end{array}\right]\right) X,
$$

where $B=\operatorname{diag}\left[\lambda_{1}, \ldots, \lambda_{n}\right]$. In this case the $(n-1)$-dimensional hypergeometric system corresponding to (2.6) becomes again a Jordan-Pochhammer system. We here describe connection formulas only for non-holomorphic solutions near finite singularities: Assume the assumptions corresponding to $\left[A_{0} \sim A_{2}\right]$. Let $P_{n}^{k}\left(\rho ; \left.\begin{array}{l}\lambda_{1}, \ldots, \lambda_{n} \\ a_{1}, \ldots, a_{n}\end{array} \right\rvert\, t\right)(k=1, \ldots, n)$ be solutions of (4.1) characterized by

$$
\lim _{t \rightarrow \lambda_{k}}\left(t-\lambda_{k}\right)^{-\left(\rho+a_{k}\right)} P_{n}^{k}\left(\rho ; \left.\begin{array}{c}
\lambda_{1}, \ldots, \lambda_{n} \\
a_{1}, \ldots, a_{n}
\end{array} \right\rvert\, t\right)=e_{k} \quad(k=1, \ldots, n),
$$

where e_{k} denotes the k-th unit n-vector. Besides let $\hat{Q}_{n}\left(\rho ; \left.\begin{array}{l}\lambda_{1}, \ldots, \lambda_{n} \\ a_{1}, \ldots, a_{n}\end{array} \right\rvert\, t\right)$ and $Q_{n}^{k, j}\left(\rho ; \left.\begin{array}{l}\lambda_{1}, \ldots, \lambda_{n} \\ a_{1}, \ldots, a_{n}\end{array} \right\rvert\, t\right)(k, j=1, \ldots, n, j \neq k)$ be solutions of (4.1) characterized by

$$
\lim _{t \rightarrow \infty} t^{-(\rho+\alpha)} \hat{Q}_{n}\left(\rho ; \left.\begin{array}{c}
\lambda_{1}, \ldots, \lambda_{n} \\
a_{1}, \ldots, a_{n}
\end{array} \right\rvert\, t\right)=\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{n}
\end{array}\right],
$$

where $\alpha=a_{1}+\cdots+a_{n}$, and

$$
\lim _{t \rightarrow \infty} t^{-\rho} Q_{n}^{k, j}\left(\rho ; \left.\begin{array}{c}
\lambda_{1}, \ldots, \lambda_{n} \\
a_{1}, \ldots, a_{n}
\end{array} \right\rvert\, t\right)=e_{j}-e_{k} \quad(k, j=1, \ldots, n, j \neq k)
$$

respectively. Then we have

$$
P_{n}^{k}\left(\rho ; \left.\begin{array}{l}
\lambda_{1}, \ldots, \lambda_{n} \\
a_{1}, \ldots, a_{n}
\end{array} \right\rvert\, t\right)
$$

$$
\left.\left.\begin{array}{rl}
= & \frac{\Gamma(\alpha) \Gamma\left(\rho+a_{k}+1\right)}{\Gamma(\rho+\alpha+1) \Gamma\left(a_{k}+1\right)} \prod_{j \neq k}\left(-\tilde{\lambda}_{j}^{k}\right)^{a_{j}} \hat{Q}_{n}\left(\rho ; \lambda_{1}, \ldots, \lambda_{1}, \ldots, a_{n} \mid t\right) \\
- & \frac{\Gamma(-\alpha) \Gamma\left(\rho+a_{k}+1\right)}{\Gamma(\rho+1) \Gamma\left(a_{k}+1-\alpha\right)}\left[Q_{n}^{k, 1}(t), \ldots, Q_{n}^{k, k-1}(t), Q_{n}^{k, k+1}(t), \ldots, Q_{n}^{k, n}(t)\right] \\
& \times \widetilde{B}_{k} \hat{Q}_{n-1}\left(-\alpha-1 ; \tilde{\lambda}_{1}^{k}, \ldots, \tilde{\lambda}_{k-1}^{k}, \tilde{\lambda}_{k+1}^{k}, \ldots, \tilde{\lambda}_{n}^{k}\right. \\
a_{1}, \ldots, a_{k-1}, a_{k+1}, \ldots, a_{n}
\end{array} \right\rvert\, 0\right),
$$

where $Q_{n}^{k, j}(t)$ denotes $Q_{n}^{k, j}\left(\rho ; \lambda_{1}, \ldots, \lambda_{n} \mid t\right)$ for short, $\tilde{\lambda}_{j}^{k}=\left(\lambda_{j}-\lambda_{k}\right)^{-1}(j \neq k)$ and

$$
\widetilde{B}_{k}=\operatorname{diag}\left[\tilde{\lambda}_{1}^{k}, \ldots, \tilde{\lambda}_{k-1}^{k}, \tilde{\lambda}_{k+1}^{k}, \ldots, \tilde{\lambda}_{n}^{k}\right] \quad(k=1, \ldots, n)
$$

The paths of analytic continuation in these formulas are taken as in $\S 3$.
Acknowledgment. The author would like to thank Professor M. Kohno of Kumamoto University for many helpful comments and suggestions concerning the present work.

References

[1] W. Balser, W. B. Jurkat and D. A. Lutz: On the reduction of connection problems for differential equations with an irregular singular point to ones with only regular singularities, I., SIAM J. Math. Anal., 12 (1981), 691-721.
[2] B. L. J. Braaksma: Asymptotic expansions and analytic continuations for a class of Barnes-integrals, Compositio Math., 15 (1964), 239-341.
[3] M. Hukuhara: Asymptotic exapansions for functions defined by inverse factorial series and their applications (in Japanese), RIMS. Kokyuroku (Kyoto Univ.), 499 (1983), 119134.
[4] M. Kohno: A connection problem for hypergeometric systems, to appear in Funkcial. Ekvac.
[5] Y. L. Luke: The Special Functions and Their Approximations, Vol. I, Academic Press, Inc. New York, 1969.
[6] K. Okubo: On the group of Fuchsian equations, Progress Report for Grant-in-Aid for Scientific Reserch from the Ministry of Education, Science and Culture, Japan, 1981.
[7] R. Schäfke: Über das globale analytische Verhalten der Lösungen der über die Laplacetransformation zusammenhängenden Differentialgleichungen $t x^{\prime}=(A+t B) x$ und $(s-B) v^{\prime}$ $=(\rho-A) v$, Dissertation, Universität Essen, 1979.
[8] T. Yokoyama: On connection formulas for a fourth order hypergeometric system, Hiroshima Math. J., 15 (1985), 297-320.

> Department of Mathematics,
> Faculty of Science, Hiroshima University

