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§1. Introduction

Given two differentiable manifolds M, N and a continuous map f: M—N,
we denote by I[M, N], the set of regular homotopy classes of immersions of M
into N, which are homotopic to f, and by I[M, N] the set of all regular homotopy
classes of immersions of M into N.

As for the set I[M, N], some results have so far been obtained when N
is not Euclidean space. For example, for the existence of immersions of P"(Q)
into P"(C) or P™(R), of P*(C) into P™(C), of P*(R) into P™(R), and of L"(p) into
L™(p), see [1], [4] and [15], [8], and [5], respectively, and for the classification of
immersions of P"(R) into P™(R), see [7]-[9], where P*(F) is the F-projective
space of F-dimension k and L¥(p) is the lens space mod p. But the above results
are smaller in number than those when N is Euclidean space.

In this article we shall study the set I[P"(R), P"(C)] and I[P"(R), P"(C)],
for any map f: P"(R)->P"(C) (n<£2m—1).

Here we note the fact that [P"(R), P"(C)]=Z, if n<2m (see (2.5) below).

Let i: P"(R)—»P"(C)c P™(C) (n<m) be the natural embedding defined by
regarding real numbers as complex numbers and let ¢: P*(R)— P™(C) be a constant
map. Then we shall prove the following theorems:

THEOREM A. Assume that n>2. Then

(i) for n<m, the natural embedding i is not null-homotopic,

(i) for n>m, any immersion of P"(R) into P™(C), if any, is always null-
homotopic.

THEOREM B. Assume that n>2. Then
(i) both for f=i and f=c,
Z n=0 r_nod 2,
I[P"(R), P(C)], =
Z, n=1mod2;

(i) if m<n<2m-—1, then



660 Tsutomu YAasui

I[P"(R), P(C)] = I[P"(R), P"(C)]. = I[P"(R), R*"].

REMARK. (i) According to Whitney [17], for n<m there exists a null-
homotopic immersion of P"(R) into P*(C), and for m>n>2 any two immersions
of P*(R) into P™(C) which are homotopic are regularly homotopic.

(ii) According to Li [6, p. 257], there exists a null-homotopic immersion of
P"(R) into P"(C) if and only if there exists an immersion of P"(R) into R?™.

ExAMPLE. For n=4 there exists an immersion of P"(R) into P"~'(C) if and
only if n is not a power of two. If the same condition also holds for n=7, then

I[P"(R), P"~1(C)] = I[P*(R), R?"~2] = {0} | n =0 mod 4,
=Z,+Z, n=1 mod4,
=27, n =2 mod4,

=Z,+2Zg n=3 modd4,

according to the table in [14].
The proof of Theorem A is given in §2. We shall prove Theorem B along

the lines of Li and Habegger [11] (cf. [6]-[7]) in §3.

§2. Proof of Theorem A

Let x e H'(P"(R); Z,) be the first Stiefel-Whitney class w,(&) of the canonical
real line bundle ¢ over P*(R), and y e H%(P™(C); Z) the first Chern class c¢,({)
of the canonical complex line bundle { over P"(C). Then the following relations
hold (see, e.g., [13]):

(2.1)  HXPY(R); Z,) = Z,[x]/(x™*"), H*(P™(C); Z) = Z[y]/(y™*"),

(22)  XizowdPU(R)) = (14+x)""", 350 c,(P(C)) = (1—y)y™*T.
Further we know that

(2.3) p2c(P™(C)) = wy(P™(C)) and p,y = wy(0),

(see, e.g., [2, Theorem 1.4] or [3, (68)]), and hence

(2.4) 2 izo WP™(C)) = (1+ py)y™!.

It is also easily verified, e.g., by Feder [4], that for a CW-complex X of
dimension less than 2m+1, the correspondence which associates f*y with a
homotopy class of a map f: X— P"(C) leads to a bijection between the homotopy
set [X, Pm(C)] and the cohomology group H%(X ; Z). In particular we get

(2.5) [P"(R), P"(C)] = H¥(P"(R); Z) = Z, = {B,x, 0} if 2<n<2m.
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To prove that the natural embedding i is not null-homotopic, it is sufficient to
show that i*p,y=x2. Under the above notations, it is easily seen that the
induced bundle i*{ over P"(R) is isomorphic to the complexification of ¢, i.e.,

i*=¢®C.
As a real 2-plane bundle,
(®C =¢@¢

(see [13]). Hence, and because w,(E@E)=x2 and w,({)=p,v, we have i*p,y=x2,
which establishes Theorem A(i).
Moreover this, together with (2.5) and Remark (i) above, implies that

(2.6) [P(R), P"(C)] = {[i], [c]}  for 2=n=m,

where ¢ is a null-homotopic immersion.

To prove (ii), assume that n=>2 and that there is an immersion f: P"(R)—
P"=Y(C) such that f is not null-homotopic. Then f*p,y=x2 by (2.5). Let w,(f)
denote the k-th Stiefel-Whitney class of the normal bundle of this immersion f.
Then by the relation f*p,y=x2 and both by (2.2) and (2.4), we have a relation

Y kzowil(f) = (1+x2)"(14x)~(n+D =<z"%°< ’11 >x2i><2130<n:j>xj>

and in particular

(2.7)  w,_i(f) = Ax""!, where A= Zli:(=n0—l)/2]<’;><2n—"11—2i>.

If n=2r (r=1), then
<n> [OmodZ for 0<ig21'—1=[(n-1)2],
i 1 mod 2 for i=0,

and

<2n’;—1)___<2'+;r_1>51 mod 2.

Hence we have
(2.8) A=1mod2 if n=2" (r21).

Consider, next, the case when n#2". Then the diadic expansion of n is
given by

h = ngiglzn, 0§7‘1<r2 <"'<rs, 2§s.
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Under this expression of n, it is easily seen that 2"-'<[(n—1)/2]<2" and that
for 0§i§[(n——1)/2],<’l.1) =1mod?2 if and only if either i=0 or i=Y 2",
J=A{1,2,...,s—1}, and hence

2n—-23% ;. 21 1
A= 4eq,2,, s—])< )+< nn > mod 2.
n

Here

_ ! Zsz i>3 2rj+l +2r2+l +2n+l __1
<2nn 1)-—-( = >EO mod 2.
Dz jz3 2+ 2r2 420

IfJ={1, 2,...,s—1}, then i=2rs-t4... 42" and

2n—2i—1Y\ _/ 2rs*¥1—1 \ _
< n >_< n >_—_ 1 mod 2.
IfJ#{1,2,...,s—1}, let k=min{j|j¢ J} (1£k<s—1). Then

ai ZsZ' x. .Q‘Izrj+l+2rk+l_1
<2” 5’ 1>=< =7h >Eo mod 2.
PIRGNVLE D WV

Therefore
2.9) A=1mod2 if n#2.
From (2.7)+(2.9), we have

wu—1(f) # 0,

which is a contradiction because the normal bundle of this immersion f is an
(n—2)-plane bundle. This implies that immersions of P"(R) into P"~!(C) are
always null-homotopic, which is the case for any immersion of P*(R) into P™(C)
for m<n.

§3. Proof of Theorem B

Let £ and { be m- and n-dimensional real vector bundles (m<n) over the
spaces X and Y, respectively, and let Mono (&, {) be the space of all vector bundle
maps of ¢ to { which are monomorphisms on each fiber. Moreover for a map
f: XY, let Mono, (¢, {) and Mono,; (&, {) be the subspaces of Mono (&, {)
consisting of monomorphisms covering, respectively, f and maps homotopic to f.
Then Li and Habegger [11, 3.1] have shown that there is a bijection
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(3.1) mo(Mono, (¢, {)) = mo(Monoy, (&, 0)) if m(YX, f) = 0.

For a manifold M, let 7,, denote its tangent bundle. The Smale-Hirsch
theorem says that if dim M <dim N, then there is a bijection between the sets
ITM, N] and ng(Mono (ty, ty)). In particular we get

3.2 I[M, N],; = no(Monog,(ty, Ty))-

If N=Pm(C) and dim M <2m, then the Eilenberg classification theorem
(see [16, p. 243]) says that

7, (P(OM, f) = HAM-x (I, ); n,(P(C))) = H'(M; Z).
Hence for any f: P*(R)— P™(C),
n,(P"(C)P"R), ) =0 if n<2m.
Therefore for any f: P*(R)— P™(C), there is a bijection
(3.3) I[P"(R), P™(C)]; = mo(Mono, (Tpn(gy, Tpmy)) ifn <2m.
If n=m, we have
To(Mono; (Tpn(g), Ten(c))
H"(P"(R); Z[ f*w(P"(C))—w(P"(R))]) for even n,
H"(P"(R); Z,) for odd n,

where Z[a] stands for the integers twisted by a € H'(P"(R); Z,) (see, e.g., [I1,
Proposition 4.7.1]). Hence
Z if n is even,
7tO(MOTIOf (TP"(R)’ Tpn(e))) = . .
Z, if n is odd.

This, together with (3.3), leads to Theorem B(i).
For a constant map ¢ of P*(R) to either P(C) or R?™, we have

mo(Mono, (Tpn(grys Tpm(c))) = Mo(MoOnNo, (Tpn(g), P"(R)Xx R2™))
= mo(Mono, (Tpn(g)> Trzm)),

because the space Mono, (&, {) is isomorphic to Mono, (&, f*{). Hence using
(3.1)(3.3) and the fact that 7,((R?>")P"(®R), ¢)=0, we have

I[PY(R), P"(C)]. = ILP"(R), R*"], = I[P"(R), R?"].

This, together with Theorem A(ii), completes the proof of Theorem B(ii).
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