Generic solvability of the equations of Navier-Stokes

Hermann Sohr and Wolf von Wahl
(Received August 25, 1986)

1. Introduction

Let $\Omega \subset \mathbf{R}^{3}$ be a bounded domain in \mathbf{R}^{3} with a smooth boundary $\partial \Omega ; \partial \Omega$ is of class C^{∞}. We consider the equations of Navier-Stokes

$$
\begin{equation*}
u^{\prime}-\Delta u+u \cdot \nabla u+\nabla \pi=f, \quad \operatorname{div} u=0,\left.\quad u\right|_{\partial \Omega}=0, \quad u(0)=u_{0} \tag{1.1}
\end{equation*}
$$

on the cylindrical domain $\Omega \times(0, T) \subset \mathbf{R}^{4}$ with some $T>0$, and we investigate strong solutions u of (1.1); these are solutions with $u \in L^{p}\left(0, T ; H^{2, p}(\Omega)^{3} \cap\right.$ $\left.\stackrel{\circ}{H}^{1, p}(\Omega)^{3}\right)$ and $u^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ for some p with $2 \leqq p<\infty$.

Using the projection $P_{p}: L^{p}(\Omega)^{3} \rightarrow H_{p}(\Omega)$ from $L^{p}(\Omega)^{3}$ onto the subspace $H_{p}(\Omega) \subset L^{p}(\Omega)^{3}$ of divergence free functions with zero normal component on $\partial \Omega$ (in the sense of [3]), we can write (1.1) in the following equivalent form as an evolution equation in $H_{p}(\Omega)$:

$$
\begin{equation*}
u^{\prime}+A_{p} u+P_{p}(u \cdot \nabla u)=P_{p} f, \quad u(0)=u_{0}, \quad \mathrm{C} \leqq t \leqq T . \tag{1.2}
\end{equation*}
$$

Here $A_{p}: v \rightarrow A_{p} v:=-P_{p} \Delta v$ denotes the Stokes operator with domain $D\left(A_{p}\right):=H^{2, p}(\Omega)^{3} \cap H^{1, p}(\Omega)^{3} \cap H_{p}(\Omega)$. We can define the fractional powers A_{p}^{α} of A_{p} with $0 \leqq \alpha \leqq 1$ and domain $D\left(A_{p}^{\alpha}\right) \supset D\left(A_{p}\right)$ as in [6]. Let $f \in L^{p}(0, T$; $\left.L^{p}(\Omega)^{3}\right)$ and $u_{0} \in D\left(A_{p}^{1-(1 / p)+\delta}\right)$ with some $\delta, 0<\delta<1 / p$ (take $u_{0} \in D\left(A_{p}\right)$ for example). Then a strong solution u of (1.1) or (1.2) is defined by the conditions $u \in L^{p}\left(0, T ; D\left(A_{p}\right)\right), u^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ and (1.2).

The existence of strong solutions of (1.1) for arbitrary $T>0$ is an important unsolved problem up to now. Therefore it is interesting to know properties of the set

$$
R\left(u_{0}\right):=\left\{f \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right) \mid(1.2) \text { has a unique strong solution } u\right.
$$

$$
\text { with data } \left.f, u_{0}\right\}
$$

for a fixed initial value $u_{0} \in D\left(A_{p}^{1-(1 / p)+\delta}\right)$. It is not known whether or not $R\left(u_{0}\right)=$ $L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$; however we can prove some density properties of this set. This gives us some information how many f do exist such that (1.1) is strongly solvable.

Solonnikov's theory of local solvability $[10 ; \S 10]$ tells us that $R\left(u_{0}\right) \subset$ $L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ is an open subset. In case $p=2$ it has been shown that $R\left(u_{0}\right)$
is dense in the space $L^{s}\left(0, T ; H^{-1,2}(\Omega)^{3}\right)$ with $1 \leqq s<4 / 3$, where $H^{-1,2}(\Omega)^{3}$ is the dual space of $\dot{H}^{1,2}(\Omega)^{3}([4,12])$. The aim of the present paper is to prove the following general density property.
1.3. Theorem. Let $2 \leqq p<\infty$ and $u_{0} \in D\left(A_{p}^{1-(1 / p)+\delta}\right)$ with $0<\delta \leqq 1 / p$. Then the set $R\left(u_{0}\right) \subset L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ is dense in the norm of $L^{s}\left(0, T ; L^{q}(\Omega)^{3}\right)$ for all s, $q \in(1, \infty)$ with $4<2 / s+3 / q$. Therefore, for every $f \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ and every $\varepsilon>0$ there exists some $g \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ with $\|g\|_{L^{s}\left(0, T ; L^{q}(\Omega)^{3}\right)} \leqq \varepsilon$ such that

$$
u^{\prime}+A_{p} u+P_{p}(u \cdot \nabla u)=P_{p} f+P_{p} g, \quad u(0)=u_{0}
$$

has a unique strong solution u.
Remarks. a) The quantity $2 / s+3 / q$ plays an important rôle in Serrin's regularity theory for the equation (1.1) $([8,16])$; a weak solution u is regular if $u \in L^{s}\left(0, T ; L^{q}(\Omega)^{3}\right)$ holds for some $s, q \in(1, \infty)$ with $2 / s+3 / q \leqq 1$.
b) It can be shown that Theorem 1.3 also holds for $\delta=0$. This extension is not difficult to prove for $p=2$; it would require the theory of Besov spaces for $2<p<\infty$; however this detail does not seem to be very important.
c) Let u_{0} be as in Theorem 1.3 and let $f \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$. Then from 1.3 it follows in particular that for every $\varepsilon>0$ we can always find an additional external force $g \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ with

$$
\int_{0}^{T} \int_{\Omega}|g(x, t)| d x d t \leqq \varepsilon
$$

such that the Navier-Stokes equation $u^{\prime}-\Delta u+u \cdot \nabla u+\nabla \pi=f+g$ has a unique strong solution u with $u(0)=u_{0}$.

Our method to prove 1.3 rests on a regularization procedure for (1.1) using the Yosida approximation (given in $[8,9]$ in principle) and on an estimate of the nonlinear term $u \cdot \nabla u$ using the exponent $p=5 / 4$ (given in [14, 15] in principle).

Notations. For $1<p<\infty$ and $k=1,2, \ldots$ we need the usual spaces $L^{p}(\Omega)$, $H^{k, p}(\Omega), \stackrel{\circ}{H}^{k, p}(\Omega), C^{k}(\Omega)$ and $C^{k}(\Omega)$. For a Banach space $H, L^{p}(0, T ; H)$ is the usual space with the norm $\|v\|_{L^{p}(0, T ; H)}=\left(\int_{0}^{T}\|v\|_{H}^{p} d t\right)^{1 / p}$, and $C(0, T ; H)$ is the space of continuous functions $v:[0, T] \rightarrow H$ with norm $\|v\|_{C(0, T ; H)}=$ $\sup _{0 \leqq t \leq T}\|v(t)\|_{H}$. In our proofs it is convenient to use the notations $\|v\|_{L^{p}(\Omega)}=$ $\|v\|_{p}$ or $\|v\|_{L^{p}(\Omega)}=\|v\|_{1 / p^{p}}$. Similarly, we use the notations $\|v\|_{L^{p}\left(0, T ; L^{q}(\Omega)\right)}=$ $\|v\|_{q, p}=\|v\|_{1 / q, 1 / p}$ and $\|v\|_{q, \infty}=\sup _{0 \leqq t \leqq T}\|v(t)\|_{q}$. The corresponding spaces of vector functions $v=\left(v_{1}, v_{2}, v_{3}\right)$ are denoted by $L^{p}(\Omega)^{3}, H^{k, p}(\Omega)^{3}, \ldots$, respectively.

We set $D_{i}:=\partial / \partial x_{i}\left(i=1,2,3, x=\left(x_{1}, x_{2}, x_{3}\right) \in \Omega\right), u^{\prime}:=\partial / \partial t, \quad \Gamma:=\left(D_{1}, D_{2}\right.$,
$\left.D_{3}\right)$, div $v:=D_{1} v_{1}+D_{2} v_{2}+D_{3} v_{3}\left(v=\left(v_{1}, v_{2}, v_{3}\right)\right), u \cdot v=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}, u \cdot \nabla u=$ $(u \cdot \nabla) u=\left(u \cdot\left(\nabla u_{1}\right), u \cdot\left(\nabla u_{2}\right), u \cdot\left(\nabla u_{3}\right)\right)$ and $\langle u, v\rangle:=\int_{\Omega} u(x) \cdot v(x) d x$.

Let $H_{p}(\Omega)$ be the closure of $\left\{u \mid u \in \mathcal{C}^{\infty}(\Omega)^{3}, \operatorname{div} u=0\right\}$ with respect to the $L^{p}(\Omega)^{3}$-norm. There exists a bounded linear projection operator $P_{p}: L^{p}(\Omega)^{3} \rightarrow$ $H_{p}(\Omega)$, and every $v \in L^{p}(\Omega)^{3}$ possesses a decomposition $v=P_{p} v+\nabla \pi$ with $\pi \epsilon$ $H^{1, p}(\Omega)$ ([3]).

Let $\Delta_{p}: D\left(\Delta_{p}\right) \rightarrow L^{p}(\Omega)^{3}$ be the usual Laplace operator in $L^{p}(\Omega)^{3}$ with $D\left(\Delta_{p}\right)=$ $H^{2, p}(\Omega)^{3} \cap \dot{H}^{1, p}(\Omega)^{3} \quad$ and $\quad \Delta_{p} u=D_{1}^{2} u+D_{2}^{2} u+D_{3}^{2} u . \quad P_{p} \Delta_{p}: D\left(P_{p} \Delta_{p}\right) \rightarrow H_{p}(\Omega) \quad$ is the usual Stokes operator with $D\left(P_{p} \Delta_{p}\right)=D\left(\Delta_{p}\right) \cap H_{p}(\Omega)$. We set

$$
A_{p}:=-P_{p} \Delta_{p} \quad \text { and } \quad B_{p}:=-\Delta_{p}
$$

In our proofs we need some well known embedding properties which follow from the ellipticity of the Laplace operator ([13]):

Suppose $1<p \leqq q<\infty, 0 \leqq \beta \leqq \alpha \leqq 1,2 \alpha-3 / p \leqq 2 \beta-3 / q$. Then we have

$$
\begin{equation*}
\left\|B_{q}^{\beta} v\right\|_{q} \leqq c\left\|B_{p}^{\alpha} v\right\|_{p}, \quad v \in D\left(B_{p}^{\alpha}\right) \tag{1.4}
\end{equation*}
$$

where $c=c(p, q, \alpha, \beta, \Omega)>0$ does not depend on v.
Using Giga's characterization $D\left(A_{p}^{\alpha}\right)=D\left(B_{p}^{\alpha}\right) \cap H_{p}(\Omega)$ ([6]), we see that the following holds too:

$$
\begin{equation*}
\left\|A_{q}^{\beta} v\right\|_{q} \leqq c\left\|A_{p}^{\alpha} v\right\|_{p} \quad \text { for all } \quad v \in D\left(A_{p}^{\alpha}\right), \tag{1.5}
\end{equation*}
$$

where q, p, β, α, c are as above.
In case $\beta=0, q=\infty, 2 \alpha-3 / p>-3 / q=0$, these estimates remain valid; we get in particular $\|v\|_{\infty} \leqq c\left\|A_{p}^{\alpha} v\right\|_{p}$ in this case.

The operator $-A_{p}$ generates for $p, 1<p<\infty$, an analytic semigroup $e^{-t A_{p}}$, $t \geqq 0$, in $H_{p}(\Omega)([14,5])$. Therefore, we get for every $v \in L^{p}\left(0, T ; D\left(A_{p}\right)\right)$ with $v^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ the representation

$$
\begin{equation*}
v(t)=e^{-t A_{p}} v(0)+\int_{0}^{t} e^{-(t-s) A_{p}}\left(v^{\prime}+A_{p} v\right) d s \tag{1.6}
\end{equation*}
$$

for almost all $t \in[0, T]$. Using (1.5) and the well known property $\left\|A_{p}^{\alpha} e^{-t A_{p}}\right\| \leqq$ $c t^{-x}$ ([2]), we can derive from (1.6) the following imbedding properties:

Suppose $v \in L^{p}\left(0, T ; D\left(A_{p}\right)\right), v^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right), v(0) \in D\left(A_{p}^{1-1 / p}\right), \quad 1<p \leqq$ $q<\infty$. Then we have (after redefinition on a set of measure zero)

$$
\begin{array}{r}
v \in C\left(0, T ; L^{q}(\Omega)^{3}\right), \quad\|v\|_{q, x} \leqq c\left(\left\|A_{p}^{1-1 / p} v(0)\right\|_{p}+\left\|v^{\prime}\right\|_{p, p}+\left\|A_{p} v\right\|_{p, p}\right) \tag{1.7}\\
\text { for } 2-5 / p>-3 / q,
\end{array}
$$

and moreover

$$
\begin{equation*}
D_{i} v \in C\left(0, T ; L^{q}(\Omega)^{3}\right), \quad\left\|D_{i} v\right\|_{q, \propto} \leqq c\left(\left\|A_{p}^{1-1 / p} v(0)\right\|_{p}+\left\|v^{\prime}\right\|_{p, p}+\left\|A_{p} v\right\|_{p, p}\right) \tag{1.8}
\end{equation*}
$$

$$
\text { for } 2-5 / p>1-3 / q, \quad i=1,2,3 \text {, }
$$

where $c=c(p, q, \Omega)$ does not depend on T since Ω is bounded and $\left\|e^{-t A_{p}}\right\|$ decays exponentially. In case $p=2$, it can be shown by using the scalar product that (1.8) also holds in case $2-5 / p=1-3 / q$, i.e. $q=2$. The continuity assertion on v and $D_{i} v$ follows from the continuity of $J_{k} v$ resp. $D_{i} J_{k} v$ by letting $k \rightarrow \infty$ and using the estimates above with $J_{k} v$ instead of $v ; J_{k} v$ is the Yosida approximation to be introduced later.

The linearized equation for (1.2) is given by

$$
u^{\prime}+A_{p} u=P_{p} f, \quad u(0)=u_{0}, \quad 0 \leqq t \leqq T
$$

in the space $H_{p}(\Omega)$. Let $f \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ and $v(t):=\int_{0}^{t} e^{-(t-s) A_{p}} P_{p} f d s$. Then the estimate

$$
\left\|v^{\prime}\right\|_{p, p}+\left\|A_{p} v\right\|_{p, p} \leqq c\|f\|_{p p}
$$

with $c=c(p, \Omega)>0$ has been developed by Solonnikov ([10]). Using the property $\left\|A_{p}^{1-(1 / p)+\delta} e^{-t A_{p}}\right\| \leqq c t^{-(1-(1 / p)+\delta)}$, we get easily the estimate $\left(\int_{0}^{T}\left\|A_{p} e^{-t A_{p}} u_{0}\right\|_{p}^{p} d t\right)^{1 / p}$ $\leqq c\left\|A_{p}^{1-(1 / p)+\delta} u_{0}\right\|_{p}$ with $0<\delta \leqq 1 / p$.

Therefore, for all $f \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ and $u_{0} \in D\left(A_{p}^{1-(1 / p)+\delta}\right)$ with $0<\delta \leqq 1 / p$, we obtain a unique solution

$$
u: t \longrightarrow u(t)=e^{-t A_{p}} u_{0}+\int_{0}^{t} e^{-(t-s) A_{p}} P_{p} f d s
$$

of $u^{\prime}+A_{p} u=P_{p} f, u(0)=u_{0}$, and it holds

$$
\begin{equation*}
\left\|u^{\prime}\right\|_{p, p}+\left\|A_{p} u\right\|_{p, p} \leqq c\left(\left\|A_{p}^{1-(1 / p)+\delta} u_{0}\right\|_{p}+\|f\|_{p, p}\right) \tag{1.9}
\end{equation*}
$$

with $c=c(p, \Omega)>0$.
In fact, (1.9) holds for $2 \leqq p<\infty$ also with $\delta=0$. This follows for $p=2$ rather elementary using the scalar product and the self-adjointness of A_{2}, and for $2<p<\infty$ it follows from the imbedding property $D\left(A_{p}^{1-1 / p}\right) \subset B^{1-1 / p . p}$ where $B^{1-1 / p . p}$ is a certain Besov space (a similar argument has been used in [8; p. 362]). However, we omit the details.

For $p=2$, we get instead of (1.8) the estimate

$$
\begin{equation*}
\left\|A_{2}^{1 / 2} u(t)\right\|_{2} \leqq c\left(\left\|A_{2}^{1 / 2} u_{0}\right\|_{2}+\left\|u^{\prime}\right\|_{2,2}+\left\|A_{2} u\right\|_{2,2}\right) \tag{1.10}
\end{equation*}
$$

with some $c>0$.
In the following c, c_{1}, c_{2}, \ldots are always positive constants whose values may change.

2. Proof of the main theorem

The proof of Theorem 1.3 rests on the regularization of (1.1) by the Yosida approximation similar as in [8] and [9]. From well known semigroup properties of $e^{-t A p}(t \geqq 0)$ we get easily that the operators

$$
J_{k}:=\left(I+k^{-1} A_{p}\right)^{-1}, \quad k=1,2, \ldots
$$

fulfill the following conditions: $\left\|J_{k}\right\| \leqq c$ where $c=c(p, \Omega)>0$ does not depend on k, and $\lim _{k \rightarrow \infty} J_{k} v=v$ for all $v \in H_{p}(\Omega) . \quad J_{k}$ approximates the identity operator I in the strong sense.

An important property is the estimate

$$
\begin{equation*}
\left\|A_{p}^{\alpha} J_{k}\right\| \leqq c k^{\alpha} \tag{2.1}
\end{equation*}
$$

where $c=c(p, \Omega)>0$ and $0 \leqq \alpha \leqq 1([2,17])$.
The idea of the proof is to solve in the strong sense the regularized NavierStokes equation

$$
\begin{equation*}
u^{\prime}+A_{p} u+P_{p}\left[\left(J_{k} u\right) \cdot \Gamma u\right]=P_{p} f, \quad u(0)=u_{0} \tag{2.2}
\end{equation*}
$$

instead of (1.2). Then we write (2.2) in the form

$$
u^{\prime}+A_{p} u+P_{p}[u \cdot \nabla u]=P_{p} f+P_{p}\left[\left(I-J_{k}\right) u \cdot \nabla u\right]
$$

and show that the term $P_{p}\left[\left(I-J_{k}\right) u \cdot \nabla u\right]$ tends to zero as $k \rightarrow \infty$ in the space $L^{s}\left(0, T ; L^{q}(\Omega)^{3}\right)$ with $4<2 / s+3 / q$; this will prove the theorem.

The next lemma yields the solvability of (2.2) in the strong sense for each $k=1,2, \ldots$.
2.3. Lemma. Let $2 \leqq p<\infty, f \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$, and $u_{0} \in D\left(A_{p}^{1-(1 / p)+\delta}\right)$ with $0<\delta \leqq 1 / p$. Then for each fixed $k=1,2, \ldots$, there exists a unique $u \in L^{p}(0, T$; $D\left(A_{p}\right)$) which fulfills $u^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ and (2.2). It holds the energy equality

$$
\begin{equation*}
\|u(t)\|_{2}^{2}+2 \int_{0}^{t}\|\nabla u(\tau)\|_{2}^{2} d \tau=\left\|u_{0}\right\|_{2}^{2}+2 \int_{0}^{t}\langle f(\tau), u(\tau)\rangle d \tau \tag{2.4}
\end{equation*}
$$

and therefore the inequality

$$
\begin{equation*}
\|u(t)\|_{2}^{2}+c_{1}\|\nabla u\|_{2,2}^{2} \leqq\left\|u_{0}\right\|_{2}^{2}+c_{2}\|f\|_{2,2}^{2} \tag{2.5}
\end{equation*}
$$

where $c_{1}=c_{1}(\Omega)>0$ and $c_{2}=c_{2}(\Omega)>0$ depend only on Ω.
Proof. We solve (2.2) by Banach's fixed point theorem; however for technical reasons we start with regularized initial values $J_{m} u_{0}$ instead of u_{0}. Thus we solve the equations

$$
\begin{equation*}
u^{\prime}+A_{p} u+P_{p}\left[\left(J_{k} u\right) \cdot \nabla u\right]=P_{p} f, \quad u(0)=J_{m} u_{0} \tag{2.6}
\end{equation*}
$$

for fixed $k, m=1,2, \ldots$ in the strong sense (i.e. $u \in L^{p}\left(0, T ; D\left(A_{p}\right)\right)$ and $u^{\prime} \in L^{p}(0$, $\left.T ; L^{p}(\Omega)^{3}\right)$). The solution u depends on k, m; later on we get the desired solution of (2.2) by letting $m \rightarrow \infty$.

Instead of (2.6) we can solve the equivalent integral equation

$$
\begin{equation*}
u(t)=e^{-t A_{p}} J_{m} u_{0}+\int_{0}^{t} e^{-(t-\tau) A_{p}}\left(P_{p} f-P_{p}\left[\left(J_{k} u\right) \cdot \nabla u\right]\right) d \tau, \quad 0 \leqq t \leqq T . \tag{2.7}
\end{equation*}
$$

This equation can be solved using Banach's fixed point theorem. To show this, we have first to estimate the nonlinear term $P_{p}\left[\left(J_{k} u\right) \cdot \nabla u\right]$; in particular from this estimate it will follow that $P_{p}\left[\left(J_{k} u\right) \cdot \nabla u\right] \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ is well defined for strong solutions u.

For $2<p<\infty$ we can choose some r with $2-5 / p>1-3 / r$ and $2<p<r<\infty$, and for $p=2$ we choose $r=2$. Then we obtain from (1.5), (1.7), (1.8), and (2.1) the following estimates for the nonlinear term:

$$
\begin{aligned}
& \left\|P_{p}\left[\left(J_{k} u\right) \cdot \Gamma u\right]\right\|_{p} \leqq c_{1}\left\|\left(J_{k} u\right) \cdot \Gamma u\right\|_{p} \leqq c_{2}\left\|J_{k} u\right\|_{1 / p-1 / r}\|\Gamma u\|_{1 / r}, \\
& \|\nabla u\|_{r, \infty} \leqq c_{3}\left(\left\|A_{p}^{1-1 / p} J_{m} u_{0}\right\|_{p}+\left\|u^{\prime}\right\|_{p, p}+\left\|A_{p} u\right\|_{p, p},\right. \\
& \left\|J_{k} u\right\|_{1 / p-1 / r} \leqq c_{4}\left\|A_{p}^{3 / 2 r} J_{k} u\right\|_{1 / p} \leqq c_{5} k^{3 / 2 r}\|u\|_{1 / p}, \\
& \|u\|_{p, \infty} \leqq c_{6}\left(\left\|A_{p}^{1-1 / p} J_{m} u_{0}\right\|_{p}+\left\|u^{\prime}\right\|_{p, p}+\left\|A_{p} u\right\|_{p, p}\right), \\
& \left.\left\|P_{p}\left[\left(J_{k} u\right) \cdot \nabla u\right]\right\|_{p, p} \leqq c_{2}\left(\int_{0}^{T}\left\|J_{k} u\right\|_{1 / p-1 / r}^{p}\|\nabla u\|_{1 / r}^{p} d t\right)\right)^{1 / p} \\
& \quad \leqq c_{7} T^{1 / p}\|u\|_{p, \infty}\|\nabla u\|_{r, \infty} \\
& \quad \leqq c_{8} T^{1 / p}\left(\left\|A_{p}^{1-1 / p} J_{m} u_{0}\right\|_{p}+\left\|u^{\prime}\right\|_{p, p}+\left\|A_{p} u\right\|_{p, p}\right)^{2} .
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
\left\|\left(J_{k} u\right) \cdot \nabla u\right\|_{L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)} \leqq c T^{1 / p}\left(\left\|A_{p}^{1-1 / p} J_{m} u_{0}\right\|+\left\|u^{\prime}\right\|_{p, p}+\left\|A_{p} u\right\|_{p, p}\right), \tag{2.8}
\end{equation*}
$$

where $c=c(p, k, \Omega)>0$ still depends on k but not on T.
In particular we get $P_{p}\left[\left(J_{k} u\right) \cdot \nabla u\right] \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ whenever $u \in L^{p}(0, T$; $\left.D\left(A_{p}\right)\right), u^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$.

At first we solve (2.7) with $p=2$ and fixed m, k by Banach's fixed point theorem. For this purpose we set

$$
(F u)(t):=e^{-t A_{2}} J_{m} u_{0}+\int_{0}^{t} e^{-(t-\tau) A_{2}}\left(P_{2} f-P_{2}\left[\left(J_{k} u\right) \cdot \nabla u\right]\right) d \tau,
$$

write (2.7) in the form $u=F u$, and we apply the fixed point theorem to the mapping $F: u \rightarrow F u$ defined on the set

$$
\begin{array}{r}
\mathscr{C}_{R}\left(u_{0}, T_{1}\right):=\left\{u \in L^{2}\left(0, T_{1} ; D\left(A_{2}\right)\right) \mid u^{\prime} \in L^{2}\left(0, T_{1} ; L^{2}(\Omega)^{3}\right), \quad u(0)=J_{m} u_{0},\right. \\
\left.\left\|u^{\prime}\right\|_{2,2}+\left\|A_{2} u\right\|_{2,2} \leqq R\right\} .
\end{array}
$$

We show that the conditions of this theorem are fulfilled for some $R>0$ and some sufficiently small $T_{1}>0$ with $T_{1} \leqq T$; the metric on $\mathscr{C}_{R}\left(u_{0}, T_{1}\right)$ is given by $\|u-\tilde{u}\|^{*}:=\left\|u^{\prime}-\tilde{u}^{\prime}\right\|_{2,2}+\left\|A_{2} u-A_{2} \tilde{u}\right\|_{2,2}$.

The applicability of the fixed point theorem can be derived from the following inequalities

$$
\begin{align*}
& \left\{\begin{array}{l}
\|F u\|^{*}=\|F u-0\|^{*} \\
\quad \leqq c_{1}\left(\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2}+\|f\|_{2,2}\right)+c_{2} T_{1}^{1 / 2} \\
\qquad \cdot\left(\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2}+\left\|u^{\prime}\right\|_{2,2}+\left\|A_{2} u\right\|_{2,2}\right)^{2}, \\
\|F u-F \tilde{u}\|^{*} \\
\leqq c_{3}\left(\left\|u^{\prime}-\tilde{u}^{\prime}\right\|_{2,2}+\left\|A_{2} u-A_{2} \tilde{u}\right\|_{2,2}\right)
\end{array}\right. \tag{2.9}\\
& \cdot\left(\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2}+\left\|u^{\prime}\right\|_{2,2}+\left\|\tilde{u}^{\prime}\right\|_{2,2}+\left\|A_{2} u\right\|_{2,2}+\left\|A_{2} \tilde{u}\right\|_{2,2}\right) T_{1}^{1 / 2}
\end{align*}
$$

where $c_{v}=c_{v}(k, m, \Omega)>0(v=1,2,3)$ depends on k and m.
We obtain (2.9) by applying (1.9) and (2.8) to (2.7) in the following way ($\delta=0$ for $p=2$):

$$
\begin{aligned}
\|F u\|^{*} \leqq & c_{5}\left(\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2}+\|f\|_{2,2}+\left\|\left(J_{k} u\right) \cdot \nabla u\right\|_{2,2}\right) \\
& \leqq c_{6}\left(\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2}+\|f\|_{2,2}\right) \\
\quad & +c_{7} T_{1}^{1 / 2}\left(\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2}+\left\|u^{\prime}\right\|_{2,2}+\left\|A_{2} u\right\|_{2,2}\right)^{2}, \\
\|F u-F \tilde{u}\|^{*} & \leqq c_{8}\left\|\left(J_{k} u\right) \cdot \nabla u-\left(J_{k} \tilde{u}\right) \cdot \nabla \tilde{u}\right\|_{2,2} \\
& \leqq c_{9}\left(\|\left(J_{k}(u-\tilde{u}) \cdot \nabla u\left\|_{2,2}+\right\|\left(J_{k} \tilde{u}\right) \cdot \Gamma(u-\tilde{u}) \|_{2,2}\right) .\right.
\end{aligned}
$$

The last term can be estimated in the same way as in (2.8); we get

$$
\begin{aligned}
& \left\|\left(J_{k}(u-\tilde{u})\right) \cdot \nabla u\right\|_{2,2} \\
& \quad \leqq c_{10} T T_{1}^{1 / 2}\left(\left\|u^{\prime}-\tilde{u}^{\prime}\right\|_{2,2}+\left\|A_{2} u-A_{2} \tilde{u}\right\|_{2,2}\right) \cdot\left(\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2}+\left\|u^{\prime}\right\|_{2,2}+\left\|A_{2} u\right\|_{2,2}\right) \\
& \quad \leqq c_{11} T_{1}^{1 / 2}\left(\left\|u^{\prime}-\tilde{u}^{\prime}\right\|_{2,2}+\left\|A_{2} u-A_{2} \tilde{u}\right\|_{2,2}\right) \cdot\left(\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2}+\left\|u^{\prime}\right\|_{2,2}+\left\|A_{2} u\right\|_{2,2}\right), \\
& \left\|\left(J_{k} \tilde{u}\right) \cdot \nabla(u-\tilde{u})\right\|_{2,2} \\
& \quad \leqq c_{12} T_{1}^{1 / 2}\left(\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2}+\left\|\tilde{u}^{\prime}\right\|_{2,2}+\left\|A_{2} \tilde{u}\right\|_{2,2}\right)\left(\left\|u^{\prime}-\tilde{u}^{\prime}\right\|_{2,2}+\left\|A_{2} u-A_{2} \tilde{u}\right\|_{2,2}\right) .
\end{aligned}
$$

Thus we get the inequalities (2.9).
From (2.9) we conclude the applicability of the fixed point theorem with $R:=2 c_{1}\left(\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2}+\|f\|_{2,2}\right)$ and some sufficiently small $T_{1}>0$; we obtain a unique strong solution u of (2.7) on the interval [$0, T_{1}$]. In order to repeat this
procedure on a second interval etc., we need the energy inequality which prevents the blow up of the solution before it reaches the point T.

Taking the scalar product of (2.6) with u, we obtain

$$
\begin{aligned}
& \|u(t)\|_{2}^{2}+2 \int_{0}^{t}\|\nabla u\|_{2}^{2} d \tau=\left\|J_{m} u_{0}\right\|_{2}^{2}+2 \int_{0}^{t}\langle f, u\rangle d \tau \\
& \quad \leqq c_{1}\left\|u_{0}\right\|_{2}^{2}+2 \int_{0}^{t}\|f\|_{2}\|u\|_{2} d \tau \\
& \quad \leqq c_{1}\left\|u_{0}\right\|_{2}^{2}+c_{2} \varepsilon^{-2} \int_{0}^{t}\|f\|_{2}^{2} d \tau+c_{3} \varepsilon^{2} \int_{0}^{t}\|u\|_{2}^{2} d \tau \\
& \leqq c_{1}\left\|u_{0}\right\|_{2}^{2}+c_{2} \varepsilon^{-2} \int_{0}^{t}\|f\|_{2}^{2} d \tau+c_{4} \varepsilon^{2} \int_{0}^{t}\|\nabla u\|_{2}^{2} d \tau
\end{aligned}
$$

for arbitrary $\varepsilon>0$. For some appropriate $\varepsilon>0$ we obtain

$$
\begin{equation*}
\|u(t)\|_{2}^{2}+c_{5} \int_{0}^{t}\|\Gamma u\|_{2}^{2} d \tau \leqq c_{6}\left\|u_{0}\right\|_{2}^{2}+c_{7} \int_{0}^{t}\|f\|_{2}^{2} d \tau \tag{2.10}
\end{equation*}
$$

where $c_{5}, c_{6}, c_{7}>0$ depend only on Ω.
Using this energy inequality and (1.10) we obtain

$$
\begin{aligned}
&\left\|A_{2}^{1 / 2} u\left(T_{1}\right)\right\|_{2}=\left\|A_{2}^{1 / 2}(F u)\left(T_{1}\right)\right\|_{2} \leqq c_{1}\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2} \\
&+c_{2}\left(\int_{0}^{T_{1}}\left(\|f\|_{2}^{2}+\left\|\left(J_{k} u\right) \cdot \nabla u\right\|_{2}^{2}\right) d \tau\right)^{1 / 2} \\
& \leqq c_{1}\left\|A_{2}^{1 / 2} J_{m} u_{0}\right\|_{2}+c_{3}\left(\int_{0}^{T_{1}}\|f\|_{2}^{2} d \tau\right)^{1 / 2} \\
&+c_{4}\left(\int_{0}^{T_{1}}\left\|J_{k} u\right\|_{\infty}^{2}\|\nabla u\|_{2}^{2} d \tau\right)^{1 / 2}, \\
&\left\|J_{k} u\right\|_{\infty} \leqq c_{5}\left\|A_{2} J_{k} u\right\|_{2} \leqq c_{6}\|u\|_{2}, \\
&\left(\int_{0}^{T_{1}}\left\|J_{k} u\right\|_{\infty}^{2}\|\nabla u\|_{2}^{2} d \tau\right)^{1 / 2} \leqq c_{7}\left(\sup _{0 \leqq t \leqq T_{1}}\|u(t)\|_{2}^{2}\right)^{1 / 2}\left(\int_{0}^{T_{1}}\|\nabla u\|_{2}^{2} d \tau\right)^{1 / 2} \\
& \leqq c_{8}\left(\left\|u_{0}\right\|_{2}^{2}+\int_{0}^{T_{1}}\|f\|_{2}^{2} d \tau\right) .
\end{aligned}
$$

Thus it follows

$$
\begin{equation*}
\left\|A_{2}^{1 / 2} u\left(T_{1}\right)\right\|_{2} \leqq c_{9}\left(\left\|u_{0}\right\|_{2}+\left(\int_{0}^{T_{1}}\|f\|_{2}^{2} d \tau\right)^{1 / 2}+\left\|u_{0}\right\|_{2}^{2}+\int_{0}^{T_{1}}\|f\|_{2}^{2} d \tau\right) . \tag{2.11}
\end{equation*}
$$

Now we can repeat the above construction of the strong solution for the next interval $\left[T_{1}, T_{2}\right.$] with the initial value $u\left(T_{1}\right)$ instead of $J_{m} u_{0}$, and so forth. This is possible because the right hand side of (2.10) depends only on the data f, u_{0}. Therefore in (2.9) we may insert $u\left(T_{1}\right)$ instead of $J_{m} u_{0}$, and we see the
following: T_{1}, T_{2}, \ldots may be chosen so that all the intervals $\left[T_{v-1}, T_{v}\right]$ have the same length. In this way, we get a unique strong solution of (2.7) on the whole interval $[0, T]$. Let u_{m} be this solution for $m=1,2, \ldots$ and fixed k.

In the next step we show $u_{m} \in L^{p}\left(0, T ; D\left(A_{p}\right)\right)$ and $u_{m}^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$. For this purpose we have only to give a bound for $\left\|u_{m}^{\prime}\right\|_{p, p}+\left\|A_{p} u_{m}\right\|_{p, p}$ on $[0, T]$. Moreover, we show that this bound is independent of m. This enables us to let $m \rightarrow \infty$, and in this way we obtain a strong solution of (2.2).

To find such a bound, we give another estimate of $\left\|\left(J_{k} u_{m}\right) \cdot \nabla u_{m}\right\|_{p, p}$. We can choose r and a with $p<r<\infty, 1 / 2<a<1$ and with $a(1 / p-2 / 3)+(1-a) / 2=1 / r-$ $1 / 3$, and we get from Sobolev's embedding theorem [4; p. 24] the estimate $\left\|\nabla u_{m}\right\|_{r}$ $\leqq c_{1}\left\|\Delta u_{m}\right\|_{p}^{a}\left\|u_{m}\right\|_{2}^{1-a}$. Using $(2 / 3)(3 / 2)(1 / 2-(1 / p-1 / r))-1 / 2=-(1 / p-1 / r)$ and $(3 / 2)(1 / 2-(1 / p-1 / r)) \leqq 1$, we get from (1.5) the inequality $\left\|J_{k} u_{m}\right\|_{1 / p-1 / r} \leqq$ $c_{2}\left\|A_{2}^{(3 / 2)(1 / 2-(1 / p-1 / r))} J_{k} u_{m}\right\|_{2} \leqq c_{3}\left\|u_{m}\right\|_{2}$ where $c_{3}=c_{3}(p, r, \Omega)>0$. Therefore we obtain

$$
\begin{aligned}
\left\|\left(J_{k} u_{m}\right) \cdot \nabla u_{m}\right\|_{p} & \leqq c_{4}\left\|J_{k} u_{m}\right\|_{1 / p-1 / r}\left\|\nabla u_{m}\right\|_{1 / r} \\
& \leqq c_{5}\left\|u_{m}\right\|_{2}^{2-a}\left\|A_{p} u_{m}\right\|_{p}^{a}
\end{aligned}
$$

and for any $\varepsilon>0$ it follows

$$
\left\|\left(J_{k} u_{m}\right) \cdot \nabla u_{m}\right\|_{p}^{p} \leqq c_{6} \varepsilon^{1 / a}\left\|A_{p} u_{m}\right\|_{p}^{p}+c_{7} \varepsilon^{1 /(1-a)}\left\|u_{m}\right\|_{2}^{(2-a)_{p /(1-a)}} .
$$

Applying (1.9) to (2.6) and using the last estimate, we obtain for some sufficiently small $\varepsilon>0$ the inequalities

$$
\left\|u_{m}^{\prime}\right\|_{p, p}+\left\|A_{p} u_{m}\right\|_{p, p} \leqq c_{1}\left(\left\|A_{p}^{1-(1 / p)+\delta} J_{m} u_{0}\right\|_{p}+\|f\|_{p, p}+\left\|\left(J_{k} u_{m}\right) \cdot \nabla u_{m}\right\|_{p, p}\right)
$$

and

$$
\left\|u_{m}^{\prime}\right\|_{p, p}+\left\|A_{p} u_{m}\right\|_{p, p} \leqq c_{2}\left(\left\|A_{p}^{1-1 / p+\delta} u_{0}\right\|_{p}+\|f\|_{p, p}+\left\|u_{m}\right\|_{2, \infty}^{(2-a) /(1-a)}\right)
$$

where $c_{2}=c_{2}(p, k, \Omega, T)>0$ is independent of m. Together with (2.10), we get from the last inequality a bound for $\left\|u_{m}^{\prime}\right\|_{p, p}+\left\|A_{p} u_{m}\right\|_{p, p}$ which does not depend on m.

We can now choose a subsequence $\left(u_{m_{j}}\right)$ of $\left(u_{m}\right)$ such that

$$
\begin{array}{lll}
u_{m_{j}}^{\prime} \longrightarrow u^{\prime} & \text { in } \quad L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right), \\
A_{p} u_{m_{j}} \longrightarrow A_{p} u \quad \text { in } & L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right) .
\end{array}
$$

As for the nonlinear term we get $\left(J_{k} u_{m}\right) \cdot \nabla u_{m_{j}} \rightharpoonup v$ in $L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$. If $\varphi \in$ $C_{0}^{\infty}((0, T) \times \Omega)^{3}$, we have

$$
\int_{0}^{T} \int_{\Omega}\left(\left(J_{k} u_{m_{j}}\right) \cdot \nabla u_{m_{j}}\right) \varphi d x d t \longrightarrow \int_{0}^{T} \int_{\Omega}\left(\left(J_{k} u\right) \cdot \nabla u\right) \varphi d x d t
$$

since $\nabla u_{m_{j}} \rightarrow \nabla u$ in $L^{2}\left(0, T ; L^{2}(\Omega)^{3}\right)$ and $J_{k} u_{m_{j}} \rightarrow J_{k} u$ in $L^{2}\left(0, T ; L^{2}(\Omega)^{3}\right)$ by Rellich's theorem. Thus $v=J_{k} u \cdot \nabla u$ and, in particular, $P_{p}\left(J_{k} u_{m_{j}} \cdot \nabla u_{m_{j}}\right) \rightharpoonup$ $P_{p}\left(J_{k} u \cdot \nabla u\right)$ in $L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$. Finally we arrive at $u^{\prime}+A_{p} u+P_{p}\left(J_{k} u \cdot \nabla u\right)=f$, $u^{\prime} \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right), A_{p} u \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right), u(0)=u_{0}$. The u of course obeys the same bound as the u_{m}. Let us remark that without loss of generality we have always chosen the same subsequence of $\left(u_{m}\right)$.

To show the uniqueness, we consider two strong solutions u and \tilde{u} with the same data u_{0}, f. Then we get

$$
(u-\tilde{u})^{\prime}+A_{p}(u-\tilde{u})=P_{p}\left[\left(J_{k}(\tilde{u}-u)\right) \cdot \nabla u\right]+P_{p}\left[\left(J_{k} \tilde{u}\right) \cdot \nabla(\tilde{u}-u)\right] .
$$

Using (1.9), it follows

$$
\begin{aligned}
\left\|u^{\prime}-\tilde{u}^{\prime}\right\|_{L^{p}\left(0, t ; L^{p}\right)}^{p}+\left\|A_{p}(u-\tilde{u})\right\|_{L^{p}\left(0, t ; L^{p}\right)}^{p} \leqq & c_{1}\left(\left\|\left(J_{k}(\tilde{u}-u)\right) \cdot \nabla u\right\|_{L^{p}\left(0, t ; L^{p}\right)}^{p}\right. \\
& \left.+\left\|\left(J_{k} \tilde{u}\right) \cdot \nabla(\tilde{u}-u)\right\|_{L^{p}\left(0, t: L^{p}\right)}^{p}\right)
\end{aligned}
$$

for $0 \leqq t \leqq T$, where c_{1} is independent of t.

$$
\text { We set } y(t):=\left\|u^{\prime}-\tilde{u}^{\prime}\right\|_{L^{p}\left(0, t ; L^{p}\right)}^{p}+\left\|A_{p}(u-\tilde{u})\right\|_{L^{p}\left(0, t ; L^{p}\right)}^{p} .
$$

The same estimates which we have used for (2.8) yield the inequality $y(t) \leqq c \int_{0}^{t}$ $y(\tau) d \tau$. In order to show this we use the same notation as in the proof of (2.8) and obtain:

$$
\begin{aligned}
\left\|\left(J_{k}(\tilde{u}-u)\right) \cdot \nabla u\right\|_{L^{p}\left(0, t, L^{p}\right)}^{p} & \leqq c_{2} \int_{0}^{t}\left\|J_{k}(\tilde{u}-u)\right\|_{1 / p-1 / r}^{p}\|\nabla u\|_{1 / r}^{p} d \tau \\
& \leqq c_{3} \int_{0}^{t}\|\tilde{u}-u\|_{p}^{p}\|\nabla u\|_{r}^{p} d \tau .
\end{aligned}
$$

Using (1.7) and (1.8), the last expression is

$$
\begin{aligned}
& \leqq c_{4} \int_{0}^{t} y(\tau)\|\nabla u\|_{r}^{p} d \tau \\
& \leqq c_{5}\left(\int_{0}^{t} y(\tau) d \tau\right)\left(\left\|A_{p}^{1-1 / p} u_{0}\right\|_{p}^{p}+\int_{0}^{T}\left(\left\|u^{\prime}\right\|_{p}^{p}+\left\|A_{p} u\right\|_{p}^{p}\right) d \tau\right) \\
& \leqq c_{6} \int_{0}^{t} y(\tau) d \tau
\end{aligned}
$$

In the same way it follows

$$
\left\|\left(J_{k} \tilde{u}\right) \cdot \nabla(\tilde{u}-u)\right\|_{L^{p}\left(0, t ; L^{p}\right)}^{p} \leqq c_{7} \int_{0}^{t} y(\tau) d \tau
$$

and thus we obtain the inequality $y(t) \leqq c \int_{0}^{t} y(\tau) d \tau$. Together with $y(0)=0$ we
get that $y(t)=0$ for all $t \in[0, T]$; it follows $u=\tilde{u}$ by Gronwall's inequality.
The energy equality (2.4) follows by taking the scalar product of (2.1) with u. Lemma 2.3 is proved.

Let us make two remarks: First we want to explain why we have used regularized initial values $J_{m} u_{0}$. The reason is simply that in the second part of the preceding proof we need an initial value in $D\left(A_{p}^{1-(1 / p)+\delta}\right)$, whereas in the first part it is sufficient to have $u_{0} \in D\left(A_{2}^{1 / 2}\right)$. Secondly, it follows from the linear theory that the solution in Lemma 2.3 is in $C^{0}\left((0, T), D\left(A_{2}^{1 / 2}\right)\right)$.

Proof of Theorem 1.3. Let f, u_{0} and s, q be as in 1.3 , and let u_{k} be the strong solution of (2.2) for $k=1,2, \ldots$. We write (2.2) in the form

$$
u_{k}^{\prime}+A_{p} u_{k}+P_{p}\left[u_{k} \cdot \nabla u_{k}\right]=P_{p} f+P_{p}\left[\left(I-J_{k}\right) u_{k} \cdot \nabla u_{k}\right]
$$

and show that $g_{k}:=P_{k}\left[\left(I-J_{k}\right) u_{k} \cdot \nabla u_{k}\right]$ belongs to $L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ and tends to zero in $L^{s}\left(0, T ; L^{q}(\Omega)^{3}\right)$ as $k \rightarrow \infty$. Then we have proved the last assertion of 1.3. However, because $2 / s+3 / q>4$, we see that $s<2$ and $q<2$; it follows that $s \leqq p, q \leqq p$ and therefore, that $L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$ is contained in $L^{s}\left(0, T ; L^{q}(\Omega)^{3}\right)$ as a dense subset. Thus we obtain the first assertion of 1.3 too.

As for the main part we show first that $g_{k} \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$. To prove this we choose $r=2$ in case $p=2$ and $r>p$ with $2-5 / p>1-3 / r$ in case $2<p$. Then from (1.8) we obtain

$$
\left\|\Gamma u_{k}\right\|_{r, \infty} \leqq c_{1}\left(\left\|A_{p}^{1-1 / p} u_{0}\right\|_{p}+\left\|u_{k}^{\prime}\right\|_{p, p}+\left\|A_{p} u_{k}\right\|_{p, p}\right)
$$

and using $2 / 3-1 / p>-(1 / p-1 / r)$ and (1.5), we arrive at

$$
\left\|u_{k}\right\|_{1 / p-1 / r} \leqq c_{2}\left\|A_{p} u_{k}\right\|_{p}
$$

Therefore we get

$$
\begin{aligned}
\left\|g_{k}\right\|_{p, p} & \leqq c_{3}\left(\int_{0}^{T}\left\|\left(I-J_{k}\right) u_{k} \cdot \nabla u_{k}\right\|_{p}^{p} d t\right)^{1 / p} \\
& \leqq c_{4}\left(\int_{0}^{T}\left\|u_{k}\right\|_{1 / p-1 / r}^{p}\left\|\nabla u_{k}\right\|_{1 / r}^{p} d t\right)^{1 / p} \\
& \left.\leqq c_{5}\left(\left\|A_{p}^{1-1 / p} u_{0}\right\|_{p}+\left\|u_{k}^{\prime}\right\|_{p, p}+\left\|A_{p} u_{k}\right\|_{p, p}\right)\left(\int_{0}^{T}\left\|A_{p} u_{k}\right\|_{p}^{p} d t\right)\right)^{1 / p} .
\end{aligned}
$$

Because u_{k} is a strong solution of (2.2) it follows $g_{k} \in L^{p}\left(0, T ; L^{p}(\Omega)^{3}\right)$.
In order to show that $g_{k} \rightarrow 0$ in $L^{s}\left(0, T ; L^{q}(\Omega)^{3}\right)$, we take an $r>q$ with $4=$ $2 / s+3 / r$; this is possible because $4<2 / s+3 / q$. Then we can choose $\alpha \in(0,1)$ with $(3 / 2)(1-1 / r)-\alpha \geqq(3 / 2)(1-1 / q)$ and we get

$$
(2 / 3)((3 / 2)(1-1 / r)-\alpha)-1 / 2 \geqq(2 / 3)(3 / 2)(1-1 / q)-1 / 2=-(1 / q-1 / 2)
$$

Using $I-J_{k}=(1 / k) A_{p} J_{k}$, (2.1) and (1.5), we obtain the following estimates:

$$
\begin{aligned}
& \left\|g_{k}\right\|_{q}=\| P_{p}\left[\left(\left(I-J_{k}\right) u_{k} \cdot \nabla u_{k}\right]\left\|_{q} \leqq c_{1}\right\|\left(\left(I-J_{k}\right) u_{k}\right) \cdot \nabla u_{k} \|_{q}\right. \\
& \quad=c_{1}\left\|\left((1 / k) A_{p} J_{k} A_{p}^{-\alpha} A_{p}^{\alpha} u_{k}\right) \cdot \nabla u_{k}\right\|_{q}=c_{1}\left\|\left((1 / k) A_{p}^{1-\alpha} J_{k} A_{p}^{\alpha} u_{k}\right) \cdot \nabla u_{k}\right\|_{q} \\
& \quad \leqq c_{2}\left\|(1 / k) A_{p}^{1-\alpha} J_{k} A_{p}^{\alpha} u_{k}\right\|_{1 / q-1 / 2}\left\|\nabla u_{k}\right\|_{1 / 2} \\
& \leqq c_{3}\left\|(1 / k) A_{p}^{1-\alpha} J_{k}\right\|\left\|A_{p}^{\alpha} u_{k}\right\|_{1 / q-1 / 2}\left\|\nabla u_{k}\right\|_{1 / 2} \\
& \leqq c_{4} k^{-\alpha}\left\|A_{p}^{\alpha} u_{k}\right\|_{1 / q-1 / 2}\left\|\nabla u_{k}\right\|_{1 / 2} \\
& \leqq c_{5} k^{-\alpha}\left\|A_{2}^{(3 / 2)(1-1 / r)-\alpha} A_{2}^{\alpha} u_{k}\right\|_{2}\left\|A_{2}^{1 / 2} u_{k}\right\|_{2} \\
& =c_{5} k^{-\alpha}\left\|A_{2}^{(3 / 2)(1-1 / r)} u_{k}\right\|_{2}\left\|A_{2}^{1 / 2} u_{k}\right\|_{2} \\
& \leqq c_{6} k^{-\alpha}\left\|A_{2}^{1 / 2} u_{k}\right\|_{2}^{3(1-1 / r)}\left\|u_{k}\right\|_{2}^{1-3(1-1 / r)}\left\|A_{2}^{1 / 2} u_{k}\right\|_{2} \\
& =c_{6} k^{-\alpha}\left\|A_{2}^{1 / 2} u_{k}\right\|\left\|_{2}^{1+3(1-1 / r)}\right\| u_{k} \|_{2}^{1-3(1-1 / r)} .
\end{aligned}
$$

Here we have used that $A_{p}^{\beta} v=A_{2}^{\beta} v$ holds for $v \in D\left(A_{p}^{\beta}\right) \cap D\left(A_{2}^{\beta}\right), 0 \leqq \beta \leqq 1$.
Using $2=s(1+3(1-1 / r))$ (because $4=2 / s+3 / r)$ and $s(1+3(1-1 / r))=2 s-2$ we obtain

$$
\begin{aligned}
\left\|g_{k}\right\|_{q, s} & =\left(\int_{0}^{T}\left\|g_{k}\right\|_{q}^{s} d t\right)^{1 / s} \leqq c_{6} k^{-\alpha}\left(\int_{0}^{T}\left\|A_{2}^{1 / 2} u_{k}\right\| \sum_{2}^{(1+3(1-1 / r)}\left\|u_{k}\right\|_{2}^{s(1-3(1-1 / r))} d t\right)^{1 / s} \\
& \leqq c_{6} k^{-\alpha}\left(\int_{0}^{T}\left\|A_{2}^{1 / 2} u_{k}\right\|_{2}^{2} d t\right)^{1 / s}\left\|u_{k}\right\|_{2, \infty}^{2-2 / s} \\
& =c_{6} k^{-\alpha}\left\|A_{2}^{1 / 2} u_{k}\right\|_{2,2}^{2 / s}\left\|u_{k}\right\|_{2, \infty}^{2-2 / s} .
\end{aligned}
$$

The energy inequality (2.5) shows that

$$
\sup _{k}\left(\left\|A_{2}^{1 / 2} u_{k}\right\|_{2,2}^{2 / s}\left\|u_{k}\right\|_{2, \infty}^{2-2 / s}\right)=\sup _{k}\left(\left\|\nabla u_{k}\right\|\left\|_{2,2}^{2 / s}\right\| u_{k} \|_{2, \infty}^{2-2 / s}\right)
$$

has a bound which is independent of k. Thus we see that $\left\|g_{k}\right\|_{q, s} \rightarrow 0$ as $k \rightarrow \infty$, and Theorem 1.3 is proved.

References

[1] Bogovskij, M. E.: Solution of the first boundary value problem for the equation of an incompressible medium, Soviet Math. Dokl. 20, 1094-1098 (1979).
[2] Friedman, A.: Partial Differential Equations, Holt, Rinehart, and Winston: New York 1969.
[3] Fujiwara, D., Morimoto, H.: An L_{r}-theorem of the Helmholtz-decomposition of vector fields, J. Fac. Sci. Univ. Tokyo 24, 689-699 (1977).
[4] Fursikov, A. V.: On some problems of control and results concerning the unique solvability of a mixed boundary value problem for the three-dimensional Navier-Stokes and Euler systems, Dokl. Akad. Nauk SSSR 252, 1066-1070 (1980).
[5] Giga, Y.: Analyticity of the semigroup generated by the Stokes operator in L_{r}-spaces, Math. Z. 178, 297-329 (1981).
[6] Giga, Y.: The Stokes operator in L_{r}-spaces, Proc. Japan Acad. 57, 85-89 (1981).
[7] Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Gleichungen, Math. Nachr. 4, 213-231 (1951).
[8] Sohr, H.: Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes, Math. Z. 184, 359-376 (1983).
[9] Sohr, H.: Optimale lokale Existenzsätze für die Gleichungen von Navier-Stokes, Math. Ann. 267, 107-123 (1984).
[10] Solonnikov, V. A.: Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math. 8, 467-529 (1977).
[11] Témam, R.: Navier-Stokes Equations, Amsterdam-New York-Oxford: North Holland 1977.
[12] Témam, R.: Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS-NSF. Regional Conference Series in Applied Mathematics 1983.
[13] Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, Amsterdam-New York-Oxford: North Holland 1978.
[14] Wahl, W. von: Über das Verhalten für $t \rightarrow 0$ der Lösungen nichtlinearer parabolischer Gleichungen, insbesondere der Gleichungen von Navier-Stokes, Bayreuther Math. Schriften 16, 151-277 (1984).
[15] Wahl, W. von: Regularitätsfragen für die instationären Navier-Stokesschen Gleichungen in höheren Dimensionen, J. Math. Soc. Japan 32, 263-283 (1980).
[16] Wahl, W. von: The Equations of Navier-Stokes and Abstract Parabolic Equations, Aspects of Mathematics E8, Braunschweig-Wiesbaden: Vieweg 1985.
[17] Yosida, K.: Functional Analysis. Grundlehren der Math. Wiss. 123, Berlin-HeidelbergNew York: Springer 1965.

Fachbereich Mathematik
der Universität -Gesamthochschule-
(D-4790 Paderborn, Bundesrepublik Deutschland)
und
Fakultät für Mathematik und Physik der Universität
(D-8580 Bayreuth, Bundesrepublik Deutschland)

