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1. Introduction

This paper is concerned with the existence of positive entire solutions of
semilinear elliptic equations of the type

(1.1) ANu + a^-^u +•••+ aN.^Au + aNu = /(|x|, w), xεR",

where n^3, N^l, aj9 Irgj^N, are real constants, Ak, l^k^N, are iterates of
the Laplacian A = Σ?=ίd

2/dx2

i9 and f(t, ύ) is a real- valued continuous function
defined in [0, oo)x(0, oo). By an entire solution of (1.1) we mean a function
u e C2N(Rn) which satisfies equation (1.1) at every point of Rn.

The problem of existence (and nonexistence) of entire solutions for higher
order nonlinear elliptic equations was first investigated by Walter [9, 10] in the
late fifties; see also Walter and Rhee [11]. However, a systematic study of
this problem has recently been initiated by Kusano and Swanson [7], and Kusano,
Naito and Swanson [4, 5, 6]. See Usami [8] for further study in this direction.
In particular, it is shown [5] that the particular case of (1.1)

(1.2) ANu = f(\x\, u\ xεR\ n ̂  3

possesses a variety of entire solutions with different asymptotic behavior at
infinity.

The purpose of this paper is to extend the existence theory of [5] to a more
general equation (1.1) in which the differential operator

L = AN + OtA"-1 +•••+ α^J + aN

has a decomposition of the form

where αm, 1 ̂  m ̂  M, are nonnegative constants with o^ < < αM and pm, 1 < m g
M, are positive integers. The unperturbed equation

(1.3) (J-α?)^...(J-α^-W = 0

has a set of radial entire solutions
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ίi (M)» 0 = ' ~ An ~ 1» I = w = Λf,

where Cί(|x|) behaves as |x|-»oo like a positive constant multiple of the function

|x|'-"ir exp(α|x|) for α > 0; |x)2ί for α = 0.

We first give conditions under which equation (1.1) has positive radial entire
solutions u(x) which are asymptotic to Ctm(|x|) at infinity in the sense that the
limit

.. /-.\
lim -π

exists and is positive.
An interesting problem is to find entire solutions which are asymptotic to

none of the £am(|x|) a* infinity. We also study this problem and establish the
existence of four kinds of radial entire solutions w^x), M2(x), w3(x) and u4(x) for
(1.1) with asymptotic properties

lim r-ί̂ Ίv = 00, lim -Jf^Άr = °> 1 ̂  / ^ />m - 1
~! 1*1-00 CL(M) " ~

l i m - T p ϊ Γ = °°> I*™ ~ Γ - = 0 ;
l*|-»«> CS" (M) 1χ|-oo C«m

lim /4^v =0; lim --/̂
-

It is known that equation (1.3) has a set of radial solutions

ηl

am(\x\), 0 ^ i ^ p M - l , 1 ̂ m ^ M ,

where ^i(|x|) is defined in ΛM\{0} and behaves as |x|->oo like a constant
multiple of

M'-^expί-αlxl) for α>0; |x|2ί+2-- for α = 0.

We show that, under certain conditions, equation (1.1) possesses a decaying radial
entire solution u(x) such that the limit

lim u^11 111 ^ *~/i ΐ~v

w— rtϊ~l(\χ\)
exists and is positive.

All the existence theorems are proved in Section 3. In each of the theorems
the desired entire solution is obtained, via the Schauder-Tychonoίf fixed point
theorem, as a solution of a suitable integral equation, whose integral operator is
composed of a finite number of integral operators of the forms Gα and HΛ:
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(HΛg)(t) = (.(ί) Γ * Γ S"-iζa(s)g(s)dS,
J t Γ WW J 0

where Cα(0 is defined by

- y __ - v - - 1 α > 0
~ * 9 T ' =

Note that the operators Gα and HΛ were used by the present author [2] to con-
struct entire solutions of second order elliptic equations of the type An — <x2u =

/(jc, w), xeR", 71^3. Basic properties of Gα and HΛ needed in the proofs of
our results are collected in Section 2. An example illustrating the main results
is given in Section 4.

2. Fundamental integral operators

In our existence theory to be developed in Section 3 a crucial role will be
played by the integral operators Gα and HΛ (see (2.10) and (2.11) below) giving
rise to radial entire solutions of the linear elliptic equation of the form

Δu - α2w = g(\x\), xeR", n ̂  3.

The purpose of this preparatory section is to collect basic properties of these
integral operators.

We begin by considering, for n^3 and α>0, the functions

(2.1) C.(0 = («0-v'v(«0, v = -?--!,

(2.2) ηM =

where 7V(0 is the modified Bessel function of order v:

These functions constitute linearly independent solutions of the differential
equation

y" + -"-^1-/-α2y = 0, ί > 0.

Using the facts [12, pp. 77-80]
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7 ~ T ( v y as '" + 0

/v(0 ~ (2πί)"!/V as ί -» oo,

we see that

(2.3) Cα(0~2-vΓ(v+l)-1 as ί^ + 0,

(2.4) //α(0-(n-2)-12vΓ(v+l)ί2-" as r-+ + 0,

(2.5) Cα(0 - (2π)-1/2(αO(1"")/ V f as t -> oo,

(2.6) ηΛ(t) - (2π)1/2(2α)-1(ί/α)(1-")/2β-αί as ί->oo,

(2.7) fβ(0^(0 - (2α)-'*'-" as f -> oo.

It follows that ζΛ(\x\) is a positive entire solution of the equation Δu — α2w = 0
which increases exponentially to oo as |x|-»oo, and that ηΛ(\x\) is a solution of
the same equation which is defined in #Λ\{0} and decreases exponentially to
zero as |x|-*oo. Put

(2.8) Co(0 = 2-T(v+l)-', ιjo(0 = (n-2)-12vΓ(v+l)ί2-";

then Co(0 = limα_ + 0 ζΛ(t), η0(t) = \im^ + 0 ηΛ(t), and ζ0(\x\) and η0(\x\) are solutions
of the Laplace equation Au = Q in R" and KΠ\{0}, respectively.

Let /lα(0, oo ), α^O, denote the set of all real- valued continuous functions
g(t) in (0, oo ) such that

(2.9) Γ t*-*ζΛ(t)\g(t)\dt < αo, Γ t»-iηΛ(t)\g(t)\dt
Jo J δ

< oo

for any δ>Q. We define the integral operators Gα: C[0, oo)-^C2[0, oo) and
HΛ: Λα(0, oo)->C2(0, oo) by the formulas

(2.10) (

= - ιyβ(ί) Γ s*-iζj(s)g(s)ds + ζΛ(t) Γ s"-*ηjίs)g(s)ds9 t ̂  0,
Jo Jo

for 0eC[0, oo),

(2.11) (Hj) (0 = Cβ(0 Γ -̂  W Γ s-- lC.(sto(s)ds
J * r S α V 7 J 0

= ηx(t) Γ s-'Ws^sXs + WO Γ s'-'iί̂ s ί̂sMs, ί > 0,
Jo J ί

for 0eΛα(0, oo).
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It is obvious that Gα#^0 and HΛg^Q for 0^0 and that the image of C[0, oo) n
Λα(0, oo) under HΛ is contained in C2[0, oo). Note that if in particular α = 0,
then (2.10) and (2.11) reduce, respectively, to

(G00)(0= Γ r*-»dr Γ s*-lg(s)ds
Jo Jo

= — U- Γ (l - (-f Y~2 WsMs, . ί ̂  0, g e C[0, oo) ,
ft—^ J o \ \ i / /

and

(H00)(0 = f'V-' Λ Γ s»-^(s)ds
J ί Jo

= 7Γ^2" (Jl (f7~2 sg (s)ds + Ft sg(s}ds) ' ' > °' ^ 6 ΛJP> CX)) ;

see Kawano [3] and the present author [1].

The following result is an easy consequence of (2.10), (2.11) and the polar
form of A — α2 :

LEMMA 2.1. Gα and HΛ9 α^O, have the following properties:
(i) [(J-α')Gα0](|x|) = 0(|x|),xe^/0rα//0eC[0, oo).
(ii) [(Λ-α2)//αί7](|x|)=-0(M), xeR"^{0} [resp.xeR"] for all ge

ΛΛ(0, co) [resp. g e C[0, oo) n ̂ (0, oo)].

For α^O and i^O we define

(2.12) fi(0 = (Gίϋ(0, fi(0 = (fliflj(0,

where Gj, and ί/j, denote the ί-th iterates of the operators Gα and Ha.

LEMMA 2.2. For α>0 and i^O the functions ζ'x(t) and η'^t) have the fol-
lowing properties :

(i) CΐeC[0, oo) and

(2.13) ^ ( O ^ ^ ί ) f l s ,

(ii) (a) //Og/g[(n-3)/2], ίΛen ijίe/UO, oo)

(2.14) ηχt) ~ ±(- ηjt) as ί
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(2.15) ιyί(0 ~ ί^+i-" as t -* + 0 .ί α v 2lι\(n-2) ~(n-2ι-2)

(b) 7/n is ei en and i = (n/2) — 1, f/iefl /^e/l^O, oo)

1 / / \ ( f i / 2 ) - l
(2.16) , , i ( θ ~ - _ - (̂0 as ί-co,

(2.17) ,,i(0~

(c) // / £ [n/2], ί/ien /?ί e C[0, oo) n /la(0, oo) and (2.14) is satisfied.

PROOF, (i) It is clear that CίeC[0, oo) for all /^O. Since C2 = C«. (2-13)
holds for / = 0. Suppose that (2.13) is true for some ί^O. Then, by (2.10),

Γ S"-'αs)cί(s)ds + CΛO Γ s«-'f/α(s)α(
Jo Jo

Using ΓHospίtaΓs rule, (2.2), (2.7) and (2.13), we obtain

lim Γfl r = lim ----- /T^o
(^oo tt+lζ,(t) ,-,00 f ί + i / f

VJ,

^ ^
/7s

U . ̂

and

lim _ -.2irJ ___ = ii
,-00 ί ί+1ζβ(ί) ,-00 ί

0 = _ J
(/+Ί)TΛ2α

which shows that (2.13) with / replaced by ί+1 is true. Therefore (2.13) must
hold for all ί

(ii) (a) Suppose that ηl

a e Λx(0, oo) and (2.14H2.15) hold for some /
(Og/g[(n-3)/2]-l). Then η(+ί eC(0, oo) is obvious. In view of (2.11)
we get
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Jr /*«>
s'^ζJίsWtWds + Cα(ί) s"-*ηΛ(s)ηl

Λ(s)ds
o J t

LΉospitaΓs rule, together with (2.5), (2.6) and (2.14), implies that

Γt

lirn —ϊ+~f~^~γ~\ = um " ^ ϊ+τ~
ί-»oo ί ^7α\O f-^oo Γ

v+1

ί+1)!

and

Joo

± . _! _α

*ι Γ00 __- .̂-ί
J ί 'y/ί CαW

ΓT56" ~~^ "J"~"Jπ

lim— Γ V T - = Hm
,-.«, tl + lη,(t) r-oo ί

-l im- urn
'"""

~ 7!

proving the truth of (2.14) with / replaced by i+ 1.

Noting that ί2i+4-"-> oo as ί->+0 and >/;((ί)~ciί
2ί+2-" as f->+0, where

c( = 2vΓ(v+l)/2 ίί!(«-2) (/7-2/-2), and using (2.3), (2.4) and (2.18) we have

κ ( . 2T(v +
lim Λ '< " - lim/™o ?2 i+4-n - »m

= ,.
,"ΐo " (ιι - 2) (2ι + 2) r 2ί + ' (n - 2) "(27 + 2) '

f" -*"''»?«(*) 'ίi
»*'• -'--- - ..... —lim -^V-π- =

— lim - --
,"+" 2 vf(v + l)(2/ + 4-/ι)ί2f+3-n "(Λ-2)(/ι-4-2/)" '

and consequently

proving that (2.15) is true for / replaced by /+ 1. Thus, we have η*Λ

+1 e /lα(0, oo).
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Since ηΛeAΛ(0, oo) and (2.14)-(2.15) are trivial for ι = 0, it follows that r\\ e

Λα(0, oo) and (2.14)-(2.15) are true for 0^/^[(w-

(b) Let n be even and ί = (n/2)—\. Then, (2.16) is obtained by applying HΛ

to (2.14) with / = [(« — 3)/2] and proceeding exactly as in the derivation of (2.14)
in (a). The functions K^i) and K2(f) in (2.18) with i replaced by / — I satisfy in

view of (2.3), (2.4) and (2. 15)

l im ι V v = lim _____
,To log (1/0 "To (Λ -2)ί«-2 ϊog(ϊ/0

= lim _ _ _?ί^ι__ = n
/™o "(n-2)[(Ai-2) log (1/0- 1]

and

ί
oo

sn-lηa(s)ηί-1

t- o log (i/o ,τ;o 2 vr(v+ 1) iog(i/ί)

_
ί-1 n-2

which shows (2.17). Therefore, η[ e /4α(0, oo).

(c) By the definition of η\nl2\i),

tf«n/2\t) = ηΛ(t) Γ s"-iζAs)η<r
J o

+ ζ£)

if n is odd, and

= η*(t) Γ
J 0

if n is even. This, combined with the relations (see (a) and (b))

η(n-3)/2(t)^ 2]T^l)rl as ,^ + Q (for n odd),

as t -> + 0 (for n even),
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implies that f/ [

α

w / 2 ] e C[0, oo). The proof of (2.14) for /^[n/2] is similar to that
of part (a), and hence f/j/eCp), oo) n Λα(0, oo) for ι^[n/2]. This completes
the proof of Lemma 2.2.

Repeated application of G0 and H0 starting from (2.8) yields the explicit

expressions for £{,(0 and f/ό(0

LEMMA 2.3. £o(0 and //j(ί) are given by

(2-19)

(2-20)

It should be noticed that »/{,(f) cannot be defined for ι'̂ [(« — 1)/2], since

^("-3>/2lίΛ(0, oo) by (2.20).
We employ the notation

(2.21) L<[0, αo) = {<7eC[0, oo): f^tΛ'lηί(t)\g(t)\dt<ac^

for α^O, /^O. Obviously L°[0, oo) = C[0, oo) n Λα(0, oo).

LEMMA 2.4. // g(t) and h(f) are nonnegative functions in ΛJβ, oo), α^O,
then

(2.22) Γ t«-*h(t)(Hj)(t)dt = Γ t*-i(HΛh)(t)9(i)dt.
Jo Jo

The verification of this lemma is straightforward on the basis of the second
expression for HΛ in (2.11). Note that the integrals in (2.22) may converge or
diverge.

LEMMA 2.5. Let α^O andj^i. If g^L{'l\_^ oo), then for any ί^

(2.23) KGίH&XOI ^ «(0 f °° s-1^-1^) to(s)|Λ, ί ̂  0,
J o

and

(2.24) lim -ffigkM. = 0.
ί-.oo ςα(ί)

PROOF. We first consider the case where ι' = 0. Since Cα(0 is increasing
and ηΛ(t) is decreasing, we have from (2.11)

^1) (0 ̂  Cα(0 J* s"-*ηJίs) \9(s)\ds9 t ̂  0.
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From the relation

(2.25) (Hf%^ = Γ ¥&**-lU*)9(*)ds + Γ s"-*ηΛ(s)g(s)ds9
4cΛθ J 0 C α V O J f

we see, via the Lebesgue dominated convergence theorem applied to the first

integral in (2.25), that lim t_00(//βflf)(ί)/Cβ(0 = 0. Thus (2.23) and (2.24) are true
for / = 0 and 7=1. Assume that truth of (2.23) and (2.24) for / = 0 and some

7^1. Then, if g e LJ

Λ[Q, oo), using Lemma 2.4 we have

\(Hi+lg)(t)\ ^ ία(ί) Γs"-lηί-l(s)(HΛ\g\)(s)ds
J o

= C.(0 Γ s"-iηi(s)\g(s)\ds9 t ^ 0,
J o

and

lim ί^'tfXO _ lim (H{H.g)(t) _ Qi!!S ΰo !™ ~ΰo
Thus induction shows that (2.23) and (2.24) hold for / = 0 and all j^ 1.

Now let j^ 1 be fixed, and assume the truth of (2.23) and (2.24) for some ί^O.
That (2.23) and (2.24) with / replaced by /+! hold is seen as follows:

^ (G.\Gl.H{g\)(t)

Γ s"
J o

i</s' ' = °'

Γ r>^Γ(ΛΪ Γ ^-1

= li ^° ^ ζα( r) ^°" -

= lim -iA-w— = lim ^.:i^Άί^.L = 0.
f-κ»

Γ ̂ -l

-J «TΓ-

J o

It follows that (2.23) and (2.24) hold for all ί^O and j^l.

REMARK. In view of Lemma 2.3, if α = 0 in Lemma 2.5, then the integer j
must not exceed [(π — 1)/2]. A similar remark applies to the subsequent lemmas
in which the function ^(0 appears.

LEMMA 2.6. (i) // g(t) is a nonnegative function in C[0, oo), then for
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(2.26) lim -^Hϊ4r- = Γ s"-*ηΛ(s)g(s)ds.
r->αo ςi HO J o

(ii) // g(i) is a nonnegatίve function in LJ

Λ~
l[Q9 oo), α^O, ./Ξ>1, then for

(2.27) lim i^gffiHO- = Γ s»-iηί(s)g(s)ds.
r->oo ςα |ϊj j o

Note that the integrals in (2.26) and (2.27) may converge or diverge.

PROOF, (i) By (2.10), (Gα0)(f)/Cα(ί) is nondecreasing and

po

J 0

proving (2.26) for / = ! . If we suppose that (2.26) holds for some / ^ l , then we
have via ΓHospitaΓs rule

C1W

- lim - ± °— mil - f * t

y-^αωcr1

J 0

which shows that (2.26) is true for all /Ξ> 1.

(ii) If g e Lί-1[0, oo), then //£# is well defined (see Lemma 2.5), and
from (2.26) (with g replaced by HJ

Λg) and Lemma 2.4 it follows that

W^π¥^ = Γ s^ηΛ(s)(
ζi HO J 0

= Γ s"-lηJ

Λ(s)g(s)ds.
J o

This completes the proof.

LEMMA 2.7. Let α > β ̂  0, i ̂  1 flnd j ̂  0.
( i ) //^feC[0, oo) flπd lim^^ g(t)/ζj

a(t) exists in the extended real line

RU {±00}, then
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( ii) If ge Λα(0, GO) and lim,^ g(t)/ζj

β(t) exists in R, then

(2.29) lim Wίr) = I OTHim/7&.V ' r-oo Cί(0 (α2-02)< ^oo CjKO

(iii) //#e/lα(0, GO) and lim,_^ .g(t)lηj

β(t) exists in R, then

(230) Jim(2 J ϋ)

PROOF, (i) Suppose that /?>0. That (2.28) holds for / = ! is verified as

follows:

-ϊm
~ ί™

-Mm - ,
JL. (^-^^(o^)*'-./^^)^^^ ζJ[(0

Here ΓHospitaΓs rule, (2.5) and (2.13) have been used. Using this result, we

see that if (2.28) holds for some ί^ 1, then

lim ^"
J lim JG^fXO _ 1 __ -. g(t)

-β2 ™ cίίo™ Tί2-Ί82)Γ+~Γ ί™
showing the truth of (2.28) with i replaced by /+! . Therefore (2.28) holds for

all /;>! if β>0. A similar computation with the use of (2.8), (2.19) and (2.20)

shows that (2.28) also holds if β = 0. This completes the proof of (i).

The statements (ii) and (iii) can be proved analogously.
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We now introduce the notation:

(2.31) yβ(ί) = min (ζΛ(t), ηa(t)}9 t > 0,

(2.32) Γ.(0 = max {Cα(0, ηΛ(t)}> t > 0,

and

(2.33) yi(t) = (HM(t), f > 0 ,

where α^O and 7^0. Let Lα[0, oo), α^O, denote the set of all functions ge
C[0, oo) such that

-(2.34) Γs"-lΓΛ(s)\g(s)\ds< oo.
J o

It is clear that Lα[0, oo)cLα[0, oo).

LEMMA 2.8. // g(i) is a nonnegative function in Lα[0, oo), α^O, then for

(2.35) y{-\t) Γ s"-iγa(s)g(s)ds ^ (H{g)(t)
J o

^ yΓKO Γ s*-lΓJίs)g(s)ds9 t ̂  0,
J o

and

(2.36) lim -pf^p = JJ s"-lζa(s)g(s)dS.

PROOF. We prove this lemma by induction on j. By (2.11) and (2.31)
we have

(2-37) (Hxg) (t) ^ yx(t) Γ S"-^x(S)9(^ds, t ̂  0,
J 0

for 0eLα[0, oo) with 0(0^0. On the other hand, (2.11) together with the
monotonicity of ζΛ(t) and ηΛ(t) implies that
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which shows that

(2.38) (Hag)(t) ^ yΛ(t) Γ s"-*ΓΛ(s)g(s)ds9 t ^ 0.
J o

From (2.37) and (2.38) we see that (2.35) holds for j= 1. That (2.36) holds for

j=i follows from the relations :

and

- = Γ s*-ll (s)9(s)ds + -̂ T Γ s^
J o ηΛ(t) J t

0 = TΓm Γ sa'lηjίs)g(s)ds ^ Γ s"~ lζa(s)g(s)ds.na.\l) J t j t

Suppose that (2.35) and (2.36) are true for some j^l. Then, applying the
operator HΛ to (2.35), we obtain (2.35) with j replaced by j+1, and using (2.36)

we find

_— urn /»oo A Cr
r-.w I __________ <y _____ I vιι-ιr (<!\nJ-i(

J - r"-^Λ(rY J o <"(S)η (

Γ i"-»C.(i)(H^)(a)
= lim --Ulim -- ------------------------ = lim \ .

ί-->ζ. (*)»,>-»
J 0

proving (2.36) with j replaced by j -h 1 . This completes the proof.

3. Existence of positive entire solutions

In this section the existence of positive radial entire solutions will be

established for the elliptic equation

(3.1) (A-a2

1)P*- (A-(x2

M)p"ιι=f(\xl u), xeR", n ̂  3,

where αί? 1 ̂ /^M, are constants such that 0^α1<α2< <αM, and pt , 1 ̂ /^M,

are positive integers. Hypotheses on /(ί, w) will be selected from the following

list.

(fi) /'• [0» oo)x(0, co)->R is continuous.
(f2) There exists a continuous function /*: [0, oo)x(0, oo)-»[0, oo) such

that

, ιι)| ^ /*(;, u) for (ί, ii) e [0, oo) x (0, oo) .
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(f3) (Superlinearity) w-1/*(/, u) is nondecreasing in ue(0, oo) for each

fixed ί^O and satisfies

lim u-lf*(t, M) = 0, ί ̂  0.
r-H-O

(f4) (Sublinearity) u~lf*(t, u) is nonincreasing in we(0, oo) for each fixed
ί^O and satisfies

(f5) /*(ί, w) is nondecreasing in M e(0, oo) for each fixed f^O.
(f6) /*(ί, M) is nonincreasing in u e(0, oo) for each fixed ί^O.

Noting that the functions {ζl

Λm(t): 0^/^pm-l, l^m^Λf} defined by (2.1),
(2.8) and (2.12) yield the positive entire solutions

(3.2) C*J|x|), 0 ^ i ^ p M - l , l ^ m ^ M

of the unperturbed elliptic equation

(3.3) (A-al)P*-(A-&lf)P"u = 0, xεR",

we first discuss the situation in which equation (3.1) possesses positive radial

entire solutions u(x) which are asymptotic to Cίm(|x|) as |x|-*oo in the sense that

(3.4) lim -
r Ί π v
ζl

Λm(\X\)

for some positive value τ.

Let S denote the set of all positive radial entire solutions of (3.1), and define

the subsets S(ζi

gtm) of S and the subsets T(C|fm) of (0, oo) as follows:

S(ζl

Λm) = {ueS: u(x) satisfies (3.4) for some finite value τ>0} ,

Γ(£iJ = {τe(0, oo): there exists a u eS such that (3.4) holds} .

In what follows we use the notation F and F* to denote the Nemytskii
operators corresponding to the functions /(ί, w) and /*(f, u) in (f1)-(f6):

, oo).

Our first results are the following two theorems.

THEOREM 3.1. Suppose that (ft), (f2) and (f3) are satisfied. Let am be one
of the numbers α ] 5 . ., αM appearing in (3.1) and let i be an integer such that
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0 £ i g p m - l i f α m > 0 ,
(3.5)

max {θ, Pm- [ "y-1 ]} ^ / ^ P. - 1 if «„ = 0.

If there exists a positive constant λ such that

(3.6) F*(λς<m)eL£;;-'-'[0, co),

ίnen 7XCiw) contains an interval of the form (0, τ0), ί/iαf /s, ίnere /s α τ0>0 such
that equation (3.1) has a positive radial entire solution u(x) satisfying (3.4)
for every τ e (0, τ0).

THEOREM 3.2. Suppose that (f\), (f2) and (f4) are satisfied. Let am be one
of the numbers aj,...,aM appearing in (3.1) and /eί / be an integer satisfying
(3.5). If (3.6) holds for some A>0, ίnen T(£im) contains an interval of the form
(τ0, oo), ίnaί /s, fnere /s a τ0>0 such that equation (3.1) has a positive radial
entire solution u(x) satisfying (3.4) for every τe(τ 0, oo).

PROOF OF THEOREM 3.1. Let C[0, oo) be the locally convex space of all
continuous functions in [0, oo) with the topology of uniform convergence on
every compact subinterval of [0, oo). Define

(3.7) ξ*m(t) = ζam(t), ξ*am(t) = ζΛm(t) + CL(0 for f ^ 1.

Let τe(0, 2A/3) and consider the closed convex subset Ύτ of C[0, oo) defined by

(3.8) Yτ= ^eC[0, αo): - τξiJO

Condition (3.6), together with (f2) and (f3), implies that FyeLJ^-^p), oo) for
every j e Yτ. Let us define integral operators A, B and C by

(3.9) A = GSl Gfc i, B = G'XmH^~', C = H'^-H'".

Since, by Lemma 2.5,

|ds, ί £ 0,)
J oo

for g e LJ™"1"1!^), oo), using Lemma 2.4 we obtain for y e 7t

KBCFjOWl ^ CL(0 Γ005"-1n^--1(5)|(CFy)(5)|ί/5
J o

^ Cίm(ί) Γ s-HC*!/;;;-'-1)^) l(Fy)(s)|J5, ί ̂  0,
J o

where C*'=//;jj //;~j:i, and hence
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(3.10) \(ABCFym ^ (Aζl

xJ(t) Γ s"-1(C*η^-i-1)(s)(F*y)(S)ds, t ̂  0.
J 0

Noting that

lim(ΛCL) (0/CLCO = IΊ (<χm-*kΓpk > o

and

M
lim (c*!/;""'"1) (0/ |/£m~"l~"1(0 = Π (a?-am)~pk > o
ί^oo m w Λ = m + l

by Lemma 2.7, we see from (3.10) that there is a constant c>0 such that

\(ABCFy)(t)\ ^ cζt (0 ̂  sn-lηp^-i-ί(s}(F*\m J o
(3.11)

for ye Yτ. In view of (3.6) and the fact that limτ.. + 0τ-lf*(t, (3τ/2)^m(ί)) = 0,

ί^O, by (f3), we have

(3.12) lim |- Γ J"-1^-'-1 (j)/* fj, 4 τίL
τ-»+0 T J 0 \ ^

with the aid of the Lebesgue dominated convergence theorem. From (3.11)
and (3.12) it follows that there is a constant τ0>0 such that

(3.13) |(Λ*CFj>XO|gyftm(0, f ^ O ,

for all ye Yτ and 0<τ<τ0.

Fix τ, 0<τ<τ0, and consider the mapping Φτ: 7T-^C[0, oo) defined by

(3.14) (Φτy)(t) = τξίjt) + (- IHXBCF^XO, t ^ 0,

where p = pm-\ ----- l-pAf' By (3.13) it is clear that Φτ maps 7τ into 7τ. If{y f c }is
a sequence in 7τ converging to y e Yτ in the C[0, oo) topology, use of (f2), (f3)

and (3.6) together with the dominated convergence theorem shows that {(Φτyk)(t)}
converges to (Φτy)(t) uniformly on compact subintervals of [0, oo), implying the
continuity of Φt. Ascoli-Arzela's theorem can be used to show that Φτ(Yτ) is
relatively compact in C[0, oo). The Schauder-Tychonoff fixed point theorem
then guarantees the existence of y e Yτ such that y = Φτy. Put u(x) — X|x|), xeR".
Applying Lemma 2.1 repeatedly, we conclude that u(x) is a positive entire solution
of equation (3.1). Since CFy e LJ^"1'"1^, oo) for y e Yτ9 we have
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by Lemma 2.5, and hence

(3.15) lim = 0, j , 6 y τ ,
f-»w SαmU;

by (i) of Lemma 2.7. Thus the solution u(x) = y(\x\) has the desired asymptotic
property: lim,,,.^ u(x)lζi

Λm(\x\) = τ.

PROOF OF THEOREM 3.2. Let τ>2Λ, and define Yτ and Φt by (3.8) and (3.14),
respectively. We observe that Fj eLJ™"'"1^, oo) for yeYτ', in fact, in view
of (f2) and (f4), we have

7(0 = ""
/

=

and hence

^ 3/* ί, J ίijo ^ x /*(r, ̂ L (0), t ^ o.

It follows that there is a constant c>0 such that

(3.16) \(ABCFy)(t)\ ^ cζ'Λm(t) Γ s^η^'l(s)f*(s9 -?- ξ'Λm(s)}ds9 t ^ 0,
J o \ 2. /

f o r j ey,, where A, B and C are defined by (3.9). Since lim,^ τ-'/*(ί,
) = 0, ί^O, by (f4), we have

lim - f- ' i i fc- '- ' i i)/*, T ίLw s = 0.
T-»«> T J θ \ 2 m /

which, combined with (3.16), implies the existence of a τ 0>2A such that (3.13)
holds for all τ>τ 0 and all ye Yτ. We then conclude that, for any fixed τ>τ 0,
the mapping Φτ has a fixed element y ε 7τ, which gives rise to a positive entire
solution u(x) = y(\x\) of equation (3.1). To verify the asymptotic property of
u(x) it suffices to observe that (3.15) also holds in this case. This completes
the proof.

COROLLARY 3.1. Suppose that (f^, (f2) and (f3) hold. Let αm be one of the
numbers α1 ?..., αM appearing in (3.1), and suppose that pm^[(n — 1)/2] // αm = 0.
Then, S(ζίm)τ£φ for all /, 0^/^p m — 1, if there exists a constant λ>Q such that

(3.17) F%lCJ=-')eL2m[(), oo).
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COROLLARY 3.2. Suppose that (f\), (f2) and (f4) hold. Let αm be one of

the numbers α l 5 . . . ,α M appearing in (3.1), and suppose that pm^[(n — 1)/2] if

αm = 0. Then, S(ζi

Λtn)^φ for all /, 0:g/^/?m— 1, if there exists a constant A>0

SMC/I

(3.18) F^JeL^-'CO, oc).

PROOF OF COROLLARY 3.1. Let /, Q^i^pm— 1, be fixed. Since, by Lemmas

2.2 and 2.3, ζiJO^CS™"1^) f°r sufficiently large t, say t^t0, (f3) implies that

Using this and the relation

O as

for some constant c>0, which also follows from Lemmas 2.2 and 2.3, we see from

(3.17) that F*(λζl

ΛJeL%-l-l[Q9 oo), so that S(ζl

Λm)^φ by Theorem 3.1. Since

/ is arbitrary, the conclusion follows.

PROOF OF COROLLARY 3.2. Let i be as above. Let t0 be such that Cίm(0^

Cαw(0 for ί ̂  ί0. We also have F^λζ^J e L;«-'-l[0, oo), because (f4) implies

and Lemmas 2.2 and 2.3 show

CUO^-'-KO - cCβm(0^-!(0 as ί-*oo

for some c>0. Hence S(ζi

(Xm)^φ by Theorem 3.2.

We will show that the conclusion of Theorem 3.2 can be strengthened if

more restrictive conditions are placed on the nonlinearity of equation (3.1).

THEOREM 3.3. Suppose that (fx), (f2), (f4) and (f5) are satisfied. Let αm be

one of the numbers αt,..., αM appearing in (3.1) and let i be an integer satisfying

(3.5). Suppose moreover that

(3.19) (-!)"/(', M) ^ 0 /or (ί, u)e[0, oo) x (0, oo),

where p = pm+ ••• +/>Λ/-' // (3.6) holds for some 1>0, ί/ϊβf? T(ζίm) = (0, oo),
ί/iαί is, for any given τ>0 ί/ί^re exists a positive radial entire solution u(x) of

equation (3.1) satisfying (3.4).

PROOF. Fix τ > 0 arbitrarily and define

yτ>σ -{ye C[0, oo) : τ£<JO ̂  χo ̂  σ^m(ί), ί ̂  0} ,
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where σ^max {τ, λ}. If y e Yτ σ, then in view of (f2), (f4) and (f5)

(-I)'f(t9y(t))£f*(t,y(t))

f, σfiJO) ̂  (σM)/*(f, ^L(O), ί ̂  0,

which implies that (- l^FyeLS™-1' -'[(), °°) Letting A, β and C be as in (3.9)
and arguing as in the proof of Theorem 3.2, we see that there is a σ 0^max {τ, λ}
such that

(3.20) 0£(-l)p(ABCFy)(t)^ΐ.ζ*am(t)9 t ^ 0,

for all σ ̂  σ0 and y e Yτσ.

Put σ* = max {2τ, σ0}, and consider the mapping Φτ defined by (3.14). From
(3.20) it follows that Φτ maps 7τ σ* into itself. The continuity of Φτ and the
relative compactness of Φτ(7τ<r*) are verified without difficulty, and hence Φt

has a fixed element y e Yτ ?σ* by the Schauder-Tychonoίf theorem. The function
u(x) = y(\x\) then gives a positive entire solution with the desired asymptotic
behavior at infinity. This completes the proof.

The following theorem establishes a conclusion similar to Theorem 3.3
for the case where /(ί, u) is bounded by a function which is nonincreasing in u.

THEOREM 3.4. Suppose that (fr), (f2) and (f6) hold. Let αw, / and p be as
in Theorem 3.3 and suppose that (3.19) is satisfied. If (3.6) holds for all Λ>0,
then T(ζi

Λm) = (Q, oo), that is, for every τ>0 equation (3.1) has a positive radial
entire solution u(x) satisfying (3.4).

PROOF. Let τ > 0 be any fixed constant, and consider the set

, ex)): τξ

where Φτ is given by (3.14); Yτ is not empty because of (3.19). Hypotheses (f2) and
(f4) imply that

( - !)'/(*, XO) ^ /*(', XO) ^ /*(ί, τί im(ί))), t ̂  0,

for ^ e yτ, and so Φτ obviously maps Yτ into itself. Application of the Schauder-
Tychonoff theorem completes the proof.

In what follows we are concerned with the problem of existence of positive
entire solutions of equation (3.1) which are not asymptotic to any of the entire

solution Cim(|x|), Q^i^*pm—\9 l^m^M, of the corresponding linear equation
(3.3).

THEOREM 3.5. Let αm be one of the number aί9...,(x,M appearing in (3.1)
and let i be an integer such that
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^ ί ^ Λ , - ! if α m >0,

s / S p w - l if αm = 0.

In addition to (fx) suppose that

(3.21) /*(',«) = (-1)'/0,") £0 /or (f, ιι)6 [0, oo) x (0, oo),

where ρ = pm-\ ----- HpM — /, andf*(t, u) satisfies (f4) and (f5). //

(3.22) /•*(£<-') ξ La

p™- <[(), a>) and F*(fim)eL;=-'-'[0, oo),

then equation (3.1) Λas a positive radial entire solution u(x) such that

(3.23) lim "M_ = oo anrf lim -^Ά^ = 0.1*1-*°° CL (i*i) 1*1-*°° cim(i*i)
THEOREM 3.6. Lei m be an integer with I r g m r g M — 1. /n addition to (ft)

suppose that (3.21) holds for p = pm+ι~l ----- ̂ ~PM > and f*(t, u) satisfies (f4) and

(3.24) F ίCSΓ1) £ L2m[0, oo) and F*(ζam+1)eL^:! [0, oo),

ίnen equation (3.1) nas a positive radial entire solution u(x) such that

(3.25) lim _ " & > =00 and lim _ " ί ί ) = 0.

PROOF OF THEOREM 3.5. For each τ_ 1, define a set Fr by

Yτ = {yeC[0, oo): (̂O^XO î̂ 'OHCLO)), ί=0}.

Since ^"'(O^CUO for sufficiently large ί, (fs) and the second condition of (3.22)
imply that (- l)"Fy e LJ""'"1^, oo) for y € 7τ, and it follows that

^ cζl

xm(t) s-^^-'-l(s)f*(s, y(s))ds
J 0

SΞ cCLW Γ s-'ίfe-'-'ίs)/^, T(£i->(s) + CL(s)))̂ , ί ̂  0,
J 0

for some constant c>0, where A, B and C are given by (3.9) (see (3.11)). We now

choose τ0 ̂  1 so large that

(3.26) ( - \Y(ABCFy) (t) ^ τCim(f), t ̂  0,

for all τ^τ0 and yeYτ. This is possible because limτ_>00 τ~lf*(t, τ(ξi

a

fim(f))) = 0, ί^O, by (f4), which implies
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lim \- ΓV-'iffc-'-W^s. τ(ξi;1(s) + ζj[M(s)))ds = 0.
t-»oo τ J 0

Fix τ ̂  τ0 and define Φτ by

= τξ'-m

l(t) + (-l)'(ABCFy)(t), * £ 0.

Then it follows from (3.26) that Φτ maps Yτ into itself, and it is easy to show

that Φτ is continuous and Φτ(Yτ) is relatively compact. Consequently, there exists

a fixed point y e Yτ of Φt giving rise to entire solution u(x) = y(\x\) of equation (3.1).
It remains to study the asymptotic behavior of u(x) at infinity. Note first

that the proof of the second relation in (3.23) is the same as in Theorem 3.2.
Application of Lemma 2.6 shows that

lim (-
r->oo

(3.27) = (-1)" Γ s»-l(C*η^-ί)(s)(Fy)(s)ds
J 0

for some constant c>0, where C* = //Jjj //J^ + ;, and Lemma 2.4 and (iii) of

Lemma 2.7 have been used. Since

(-l)'(Fy)(t) ^ (-\Yf(t> τζί HO), t ^ 0,

the last integral in (3.27) is equal to oo, so that from (i) of Lemma 2.7 it follows

that

lim -
i

which establishes the first relation (3.23). This completes the proof.

PROOF OF THEOREM 3.6. We define Yτ and Φτ, τ>0, by

yt = {yeC[0, ex)): τ^

and

(Φτy)(t) = τ^ ΓHO + (-\)'(DEFy)(t), t ^ 0,

where D = G%\ -GP

Λ™ and £ = //J«i j //Jjj. As in the proof of Theorem 3.5
it can be shown that there exists a τ0 ̂  ί such that
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for all τ^τ 0 and ye Yτ. With such a choice of τ, Φτ is shown to be continuous
and to map Yr into a compact subset of 7t, and hence Φτ has a fixed element y e Yτ.

Using Lemma 2.5, we see that y(t) satisfies lim,^ (— l)"(EFy)(f)/Cβm +,(*) = ()>
whence, applying (i) of Lemma 2.7, we find lim,^ (- l)f>(DEFy)(t)/ζΛrn+ί(t) = Q.
This proves the second relation in (3.25). On the other hand, in view of Lemmas
2.6 and 2.4 and (iii) of Lemma 2.7 we have

( — l)p(GPmEFy)(t) Γ°°
lim rp 1™ \ = (~~ l)p I s" lf?αm(s)(^^>')(s)^5

i->°0 '<Xm W' J ^ m

(3.28) = Γ s>-l(E*ηxJ(S)(F*y)(S)ds
J 0

sn"lηΛm(s)(F*y)(s)ds9

where £* = H£j£ //£™+; and c>0 is a constant. This, combined with the
first condition in (3.24), implies that the last integral in (3.28) diverges, and so
repeated application of (i) of Lemma 2.7 shows that

lim - - oo
ί™ ίfc-'fO "

It follows that the function u(x) = y(\x\) is an entire solution of (3.1) with the
required asymptotic property. Thus the proof is complete.

THEOREM 3.7. In addition to (f t) suppose thatf(t, w)^0/0r (ί, ύ) e [0, oo) x
(0, oo) and f ( t , u) is nonincreasing in u. If

(3.29)

constant A>0, ί/?^n equation (3.1) possesses a positive radial entire
solution u(x) such that

<3 30) ..•ϊs.T Ί̂b-"-
PROOF. Fix τ>0 arbitrarily and define

ί ^ 0,

where G = GJ[ — GJjj, and

Yτ = (j;EC[0, oo): τξ^

In view of the nonincreasing nature of/, Φτ maps Yτ into itself. The continuity

of Φτ and the relative compactness of Φτ(Yτ) are easily verified. Therefore there
exists ye Yτ such that y = Φτy. Now, Lemma 2.6 shows that
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lim ("βM^y/ίO — ( o"-ιw

ί™ T£ίr' (') ~ J o ίβw

whence, via (i) of Lemma 2.7, it follows that

lim y(t) = τ + li™

J
QQ

o ^ *M

If this l imit is finite, then there exists a constant c>0 such that XO^^CJjj 'HO
for f^O, so that (/^XO^WcC^'OXO, '^0, by the nonincreasing nature off.
Therefore, by (3.29),

Γ s^ηΛM(s)(Fy)(s)ds ^ Γ s"
J o J o

= cx>,

which implies lim^^ XO/CίίJ~1(0= = 0 0> a contradiction. Thus, M(x) = y(|x|) is
an entire solution of (3.1) satisfying (3.30). This completes the proof.

The following theorem shows that a class of higher order sublinear elliptic
equations may possess positive entire solutions which decay to zero at infinity.

THEOREM 3.8. In addition to (fj) suppose that

(3.31) /*(*, w) = (-!)"/(*, M) >0 for (ί, u)e [0, oo) x (0, oo),

where p — p\Λ ----- I~PM Suppose thatf*(t, u) satisfies (f4), (f5) αnί/

(3.32) lim u'lf*(t, u) = oo, f ^ 0.
M->+0

Suppose moreover that pl ^[_(n — l)/2] / / α j =0.

(i) If there is a constant λ>0 such that

(3.33) F*(λCβl)eL;rl[0, oo),

then equation (3.1) /ifls α positive radial entire solution u(x) such that

(3.34) lim - wίg = 0.
i*ι-»» ςβl(|x|)

(ii) If there is a constant λ>Q such that

(3.35) F*(λyS - ) e £.,[(), oo),

ί/ίβn equation (3.1) /iί/5 # positive radial entire solution u(x) such that

(3.36) lim _-
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for some constant μ>0.

PROOF, (i) We first note that the relations

lim σ-l/*(ί, σCαι(0) = 0 and lim τ~ '/*(*, ^Γ'(O) = oo
σ- oo τ-» +0

which follow from (f4) and (3.32), respectively, imply that

(3.37) lim -i- Γ s"-*η'\-i(s)f*(s9 σζΛί(s))ds = 0
<r^oo σ J o

and

(3.38) lim i Γ s"-*γaι(s)f*(s9 τγ^(s))ds = oo.
τ-»+0 τ J 0

Let τ>0 and σ>0 be constants such that

(3.39) τy SΓ'ίO ^ σC«,(0 for ί ^ O

and consider the set

y,.σ = {yeC[_0, oo):

and the mapping

(3-40)

where H = H'\'. H>><. Letting H = H£-H'a% and H* = H^-H^2, and using

Lemmas 2.5, 2.4 and 2.7, we see that for any y e Yτσ

(-\Y(HFy)(t) ί ζ x ι ( t ) Γ s"-W-\
J 0

= c.,ω Γs"-'^*
J o

^ c^.XO Γ s"-'i,;j
J 0

^ cιfβl(o f00 s'-'ίίίΓ'ω/'ίs, ffC«,(s)Ms, / ^ o,
*/ o

where c x >0 is a constant. On the other hand, from Lemmas 2.8 and 2.7 we

have

^ yl\-\f) F *«-iyΛl(•J o

= tfr'W Γs"-1(
J 0
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(3.42) ^ c2y;r'(0 Γ s*-ly.t(s)(F*y)(s)ds
J o

^ CzVίΓ'W Γ s"-'ya,(s)/*(s, τyJ -'CsWs, ί ̂  0,
«y 0

where c2>0 is a constant. Here \ve have used the fact that yΛ(t) = ηΛ(t) for large

t to botain the second inequality in (3.42). Combining (3.41) and (3.42) with

(3.37) and (3.38), respectively, we infer that there exist a σ>0 (sufficiently large)

and a τ>0 (sufficiently small) such that (3.39) holds and

τyαV(0 g (-\Y(HFy)(t) ^ σζΛl(t), t ^ 0,

for all y e Yτσ. This shows that, for such σ and τ, Φ maps Yτσ into itself. Since

Φ is continuous and Φ(yτ>(r) is relatively compact, Φ has a fixed point ye 7 τ σ:

y = Φy. Lemma 2.5 implies that this y satisfies lim f_ΨOO(-l)'>(HF)?)(ί)/ζβl(0 = 0.
Therefore we conclude that w(x) = X|x|) gives an entire solution of (3.1) satisfying

(3.34).

(ii) We now define the set 7τ σ by

yτ,σ = {yeC[0, ex)): ry>i-*(t)£y(t)£σγϊ-*(t), r^O},

where σ^τ>0. It is easy to verify that the following inequalities hold for all

(-\)p(HFy)(t) ^ y j-KO Γ s"-lΓaί(s)(ftF*y)(s)ds
\) o

(3'43) ^c.vSΓHO Γs
J o

^ c^J -'ίO Γs
J 0

(-\)»(HFy)(t) ^ yf j- (ί) Γs--
J 0

= Vft-HO Γ s"-t

\) 0

^ c2y;j-' (0 Γ
J o

(144)

0

wheie c^O and c2>0 are constants. In (3.43) and (3.44) the first inequalities
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follow from Lemma 2.8, the next equalities are imliped by Lemma 2.4 and the
second inequalities are consequences of Lemma 2.7. Noting that

lim -i- PV'Γαι(S)/*(S, σrt -Ws = 0
<7-»00 O J 0

and

lim \ Γ s"-*γΛl(s)f*(s9 τγ'[-*(s))ds = 0,
τ->+0 τ J Q

we see from (3.43) and (3.44) that σ>0 and τ>0 can be chosen so that

τyj}-'(0 g (-l)p(HFy)(t) £ σγ*Γ*(ί), t £ 0,

for all y e Yτ>σ. The above observation shows that the mapping Φ defined by
(3.40) possesses a fixed element y in Yτσ. Since it follows from Lemma 2.8 that

lim f_» o oXf)/f/ίj~ 1(0= = c o n s t >0, the function u(x) = y(\x\) is a desired decaying
entire solution of equation (3.1). This completes the proof.

4. Example

To illustrate our main results presented in the preceding section, we consider
the fourth order semilinear elliptic equation

(4.1) A2u - 2aAu + bu = g(|x|)wp, xeR", n ̂  3,

where a and b are nonnegative constants, p is a constant with p^\, and q(t) is
a continuous function in [0, oo). In this case /(f, u) = q(t)up

9 for which (f j) is
satisfied. Assumption (f3) or (f4) holds according as p>\ or p<\9 and (f5) or
(fό) holds according as p^O or p^O.

We assume throughout this section that a2^.b, in which case we have

A2 - 2aA + b = (A-oc2)(A-β2)9

where

The unperturbed linear equation

Δ2u - 2aΔu + bu = 0

has the positive entire solutions

)} if " 2>
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and the positive solutions

kr(M),ty(M)} if * 2 > f r ;

ωwMKM)} if «2 = b
in ΛM\{0}. The asymptotic behavior of these functions is described in (2.3)-
(2.6) and Lemmas 2.2 and 2.3.

(i) Suppose that a2>b. It is easy to see that the condition F*(Λ.Cα)eLi[0,
oo) is equivalent to

(4.2) ϊ™ s-<P-lHa-lv2e<P-l>Λ5\q(s)\ds < oo for b > 0,

(4.3) Γ%|g(s)|ds < oo for b = 0,

and the condition F*(λζβ) e L$[0, oo) is equivalent to

(4.4) Γ s-^-l^"-l^2e^-l^s\q(s)\ds < oo.

Therefore, Theorems 3.1 and 3.2 show that, for equation (4.1),

T(ζΛ) Π T(ζβ) ID (0, τ0) for p> 1,

T(ζΛ) Π T(ζp) => (τ0, oo) for p < 1,

provided conditions (4.2)-(4.4) are satisfied. From Theorems 3.3 and 3.4 it
follows that, under (4.2) or (4.3),

T(ζΛ) = (0, oo) if p < 1 and q(t) ^ 0 for t ^ 0,

and under (4.4),

T(ζβ) = (0, oo) if p<\ and ^f(r) ^0 for t ^ 0.

According to Theorem 3.8 we see that if 0<p<l and q(t)>Q for ί^O, then con-
dition (4.2) or (4.3) guarantees the existence of a positive radial entire solution

u(x) of (4.1) such that lim,,,^ w(x)/Cα(|x|) = 0. Note that the condition F*(>tyα)e

Lα[0, oo) reduces to

(4.5) Γ s-^-l^n-l^2e-^-l^s\q(s)\ds < oo for b > 0,

(4.6) f° s-^-Pi'-viqWds < oo for b = 0.

Theorem 3.8-(ii) implies that if 0<p< 1 and q(t)>0 for ί^O and if (4.5) or (4.6)
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holds, then equation (4.1) has a radial decaying entire solution w(x) such that

lim^i^αo u(x)/ηΛ(\x\) = const. >0. On the other hand, the conditions F*(λζa).£

L°[0, oo) and F*(λζβ) <£ Lj}[0, oo) become

(4.7) ps-<p-υ(»-i)/2e(p-i)«|g(s)|ds =00 for b > 0,

(4.8) Γ° s\q(s)\ds =00 for b = 0,

and

(4.9) Γ s-(P-l^n-Vl2e^-lWs\q(s)\ds = oo,

respectively. In case 0<p<l and q(t)^Q for ί^O, Theorem 3.6 implies that,
under condition (4.4) and either (4.7) or (4.8), equation (4.1) has a radial entire

solution u(x) such that lim^.^ , M(x)/£α(|x|) = oo and lim^x^00u(x)/ζβ(\x\) = Q.
Finally, in case p£ΞO and q(t)^.Q for ί^O, Theorem 3.7 shows that (4.9) is a suffi-
cient condition for (4.1) to have a radial entire solution u(x) with the property

lim,J C |_0 0tt(x)/C/|x|)=oo.

(ii) Suppose that a2 = b. Then, the conditions F*(Λ£α)eL£[0, oo) and
F*(λζ£) e L2[0, oo) are equivalent to

Γ

Γ°

< oo for b > 0,

s*\q(s)\ ds < oo for b = 0 and n ^ 5,

and

0 0 l ) α s | ^ s ) | J s < ̂  for ^ > 0,
Γ0

Γ°° < oo for fc = 0 and n ̂  5,

respectively, while F*(λγ*) e Lα[0, oo) is equivalent to

-υ si^)!^ < oo for b > 0,

< oo for b = 0 and n ̂  5.Γ

With the help of these integral conditions one can establish criteria for the existence
of positive entire solutions of equation (4.1) with various asymptotic properties,
as described in Theorems 3.1 through 3.8. The details are left to the reader.



590 Nobuyoshi FUKAGAI

ACKNOWLEDGMENT. The author wishes to express his sincere gratitude to
Professor Takasi Kusano for his constant counsel and encouragement during
the preparation of this paper. The author is grateful to Professor Manabu Naito

for his interest in this work and for many valuable comments.

References

[ 1 ] N. Fukagai, Existence and uniqueness of entire solutions of second order sublinear
elliptic equations, Funkcial. Ekvac. 29 (1986), 151-165.

[2] N. Fukagai, Positive entire solutions of semilinear elliptic equations, Math. Ann.
274(1986), 75-93.

[ 3 ] N. Kawano, On bounded entire solutions of semilinear elliptic equations, Hiroshima
Math. J. 14(1984), 125-158.

[4] T. Kusano, M. Naito and C. A. Swanson, Radial entire solutions of even order semi-
linear elliptic equations in the plane, Proc. Royal Soc. Edinburgh, to appear.

[5] T. Kusano, M. Naito and C. A. Swanson, Radial entire solutions of even order semi-
linear elliptic equations, preprint.

[ 6 ] T. Kusano, M. Naito and C. A. Swanson, Entire solutions of a class of even order quasi-
linear elliptic equations, Math. Z. 195 (1987), 151-163.

[ 7 ] T. Kusano and C. A. Swanson, Positive entire solutions of semilinear biharmonic
equations, Hiroshima Math. J. 17 (1987), 13-28.

[ 8 ] H. Usami, On strongly increasing entire solutions of even order semilinear elliptic
equations, Hiroshima Math. J. 17 (1987), 175-217.

[9] W. Walter, Ganze Lδsungen der Differentialgleichung Δpu=f(u), Math. Z. 67 (1957),
32-37.

[10] W. Walter, Zur Existenz ganzer Losungen der Differentialgleichung Jpu = eu, Arch.
Math. 9(1958), 308-312.

[11] W. Walter and H. Rhee, Entire solutions of Δpu=f(r, u), Proc. Royal Soc. Edinburgh
82A(1979), 189-192.

[12] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge UP, London,
1944.

Department of Mathematics,
Faculty of Science,

Hiroshima University*)

Present address: Department of Mathematics, Faculty of Engineering, Tokushima
University.




