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Introduction

A Lie algebra L is called a ί-algebra if every subideal of L is an ideal of L,

a Γ-algebra if any subalgebra of L is a ί-algebra and a c-algebra if every nilpotent

subideal of L is an ideal of L. We easily see that L is a oalgebra if and only if

every 1-dimensional subideal of L is an ideal of L. Recently Varea [14] introduced

the concept of C-algebra in Lie algebra: L is a C-algebra if every subalgebra of a

nilpotent subalgebra H of L is an ideal in the idealizer of H in L. He investigated

the property of finite-dimensional C-algebras, and in [14] he proved the following

results:

(a) Let L be an ^-dimensional Lie algebra over a field f of at least n — \

elements. Then the following are equivalent: i) L is a C-algebra. ii) L is a T-

algebra. iii) Every subalgebra of L is a c-algebra.

(b) Let L be a finite-dimensional Lie algebra over a field of characteristic

zero. Then the following are equivalent: i) L is a c-algebra. ii) L is a ί-algebra.

iii) L = R®S where R is an ideal of L which is either abelian or almost-abelian

and S is a semisimple ideal of L.

The purpose of this paper is to give several generalizations of (a), (b) and

other results in [14] without the finite-dimensionality of L and the restriction on

the cardinality of f.

The main results of this paper are as follows.

(1) Let L be a serially finite Lie algebra over a field of characteristic zero.

If the locally soluble radical of L belongs to the class έ(si)^l of Lie algebras, then

the three statements in (b) are equivalent (Theorem 2.3).

(2) Let L be an arbitrary Lie algebra. Then the following are equivalent:

i) L is a C-algebra. ii) Every subalgebra of L is a c-algebra. iii) Every 1-

dimensional ascendant subalgebra of a subalgebra H of L is an ideal of H (Theorem

3.5).

(3) Let L be a locally finite Lie algebra over any field. Then the following

are equivalent: i) L is a C-algebra. ii) L is a T-algebra. iii) Every serial

subalgebra of a subalgebra H of L is an ideal of H. iv) Every 1-dimensional serial

subalgebra of a subalgebra H of L is an ideal of H (Theorem 3.9).

(4) Over any field there exist a c-algebra which is neither a C-algebra nor a
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f-algebra, and a f-algebra which is not a T-algebra (Examples 4.1 and 4.2). Over
any field of characteristic zero there exists a C-algebra which is not a T-algebra

(Example 4.4).
In this paper we use the terminology Ct-algebras, (£*-algebras, ^-algebras and

Xs-algebras instead of c-algebras, C-algebras, ί-algebras and T-algebras in [14]

respectively.

1.

Throughout the paper Lie algebras are not necessarily finite-dimensional
over a field f of arbitrary characteristic unless otherwise specified. We mostly
follow [2] for the use of notations and terminology.

Let L be a Lie algebra over ! and let H be a subalgebra of L. For an ordinal
σ, H is a σ-step ascendant (resp. weakly ascendant) subalgebra of L, denoted by
//oσL (resp. f/<σL), if there exists an ascending series (resp. chain) (//α)α<;σ of
subalgebras (resp. subspaces) of L such that

(1) //0 = / / a n d / / σ = L,

(2) //α<3 HΛ +1 (resp. [f/α + ί, //] ̂  //α) for any ordinal α < σ,
(3) Hλ=\jΛ<λ HΛ for any limit ordinal λ<σ.

H is an ascendant (resp. a weakly ascendant) subalgebra of L, denoted by H asc L
(resp. H wascL), if /ί<3σL (resp. H<σL) for some ordinal σ. When σ is finite,

H is a subideal (resp. weak subideal) of L and denoted by H si L (resp. // wsi L).
For a totally ordered set Γ, a series from H to L of type Σ is a collection {Λσ, Vσ:
σεΣ} of subalgebras of L such that

(1) / / c j ς c Λ σ f b r a l l σel,

(2) L^H = WσeI(Λσ^K,),
(3) Λ τ c = K f f i f τ < σ ,
(4) Kσ<]/lσfor all σel.

H is a serial subalgebra of L, denoted by // ser L, if there exists a series from //
to L of type I" for some Σ.

Let £ be a class of Lie algebras and let A be any of the relations <, o, si,
asc, ser. A Lie algebra L is said to lie in L( J)£ if for any finite subset X of L there

exists an ^-subalgebra K of L such that X^KAL. In particular we write iJE

for L(<)£. When LeL£ (resp. L(ser)ϊ), L is called a locally (resp. serially)
£-algebra. $> $1 and 91 are the classes of Lie algebras which are finite-
dimensional, abelian and nilpotent respectively. For an ordinal σ, Eσ(A)£ is
the class of Lie algebras L having an ascending series (Lα)α<σ of A -subalgebras
such that

(1) L0 = OandL σ = L,
(2) LαoLα+1 and Lα + 1/L βε3E for any ordinal α<σ,
(3) Lλ=\JΛ<λLΛ for any limit ordinal λ<σ.
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We define E(Δ)X = \jtr>0Eσ(Δ)X9 E(Δ)£ = \jn<ωEn(Δ)£. In particular we write
E£ and E£ for έ(<)£ and E(<)£ respectively. Thus EΪl is the class of soluble
Lie algebras. When Le έ(<ι)£, L is called a hyper £-algebra. Q£ is the class of
Lie algebras consisting of all homomorphic images of Λ'-algebras. We say that
•£ is A-closed if £ = A£, where A is either L, E or Q. Let Δ be any of the relations
si, asc, ser. %(Δ) is the class of Lie algebras L in which every /d-subalgebra of L
is an ideal of L. In particular we write X for S(si). £(asc) (resp. £(ser)) is de-

noted by W (resp. Ϊ3) in [13] (resp. [6]).
Let H be a subalgebra of L. We denote by CL(H) (resp. IL(H)) the centralizer

(resp. idealizer) of H in L. For x e L we put Hx = ΣM;>o [#» w*]> where [//, πx] =
[#, x, x,..., x]. The Fitting radical v(L) of L is the sum of all nilpotent ideals of

n

L. The Hirsch-Plotkin radical p(L) of L is the unique maximal locally nilpotent
ideal of L. The Baer radical β(L) of L is the subalgebra generated by all nilpotent
subideals of L and the Gruenberg radical y(L) of L is the subalgebra generated
by all nilpotent ascendant subalgebras of L. For a locally finite Lie algebra L
the locally soluble radical σ(L) of L is the unique maximal locally soluble ideal
of L.

Now we begin with an elementary result whose proof is easy.

LEMMA 1.1. Let L be a Lie algebra and let N be a subspace of L. Then
the following are equivalent:

(1) Every l-dimensional subspace of N is an ideal of L.
(2) For every xeL, adx is a scalar transformation on N.

Moreover, if either (1) or (2) holds, then N is an abelian ideal of L and
dimL/CL(N)<\.

j(wasc)L5 is the class of Lie algebras generated by a set of weakly ascendant
locally finite subalgebras. We know that in any Lie algebra (resp. j(wasc) t{5-
algebra) L over a field of characteristic 0 β(L) (resp. y(L)) is an ideal of L owing
to [10, Theorem 10.7] (resp. [12, Theorem 3.3.4]). For our arguments we need

the following result, which may be shown by using [2, Lemma 9.1.2(c)] and
[4, Lemma 4.1].

LEMMA 1.2. Let L be a Lie algebra over afield f and let N be a subalgebra
of L. Then we have CL(N)<N if L, N and I satisfy one of the following state-
ments:

(1) Le E(<0S21, N = v(L) and t has any characteristic.
(2) Leέ(<])L$R, N = p(L) and ! has any characteristic.
(3) LEE(si)9l, N = β(L) and f has characteristic 0.

(4) Le E$l n j(wasc) L$, N = γ(L) and ϊ has characteristic 0.
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2.

In this section we shall consider three new classes (£, CL(asc) and (£(ser) of Lie

algebras containing the classes ϊ, £(asc) and X(ser) respectively. Let A be one of

the relations si, asc, ser. d(J) is the class of Lie algebras L in which every 1-

dimensional zl-subalgebra of L is an ideal of L. In particular we write (£ for (£(si).

A Ol-algebra is equal to a c-algebra in [14], that is, a Lie algebra in which every

nilpotent subideal is an ideal. A Lie algebra L is said to be almost-abelian if L

is the split extension of an abelian algebra by the 1-dimensional algebra of scalar

multiplications. The following result generalizes [14, Corollary 3.3], [6,

Theorem 6.4] and [3, Proposition 2.8].

PROPOSITION 2.1. Let L be a hyperabelian Lie algebra over a field of any

characteristic (resp. an E(sϊ)W-algebra over a field of characteristic zero). Then

the following are equivalent:

(1) Every serial subalgebra of L is an ideal of L.

(2) Every \-dimensional serial subalgebra of L is an ideal of L.

(3) Every ascendant subalgebra of L is an ideal of L.

(4) Every \-dimensional ascendant subalgebra of L is an ideal of L.

(5) Every subideal of L is an ideal of L.

(6) Every \-dimensional subideal of L is an ideal of L.

(7) L is either abelian or almost-abelian.

PROOF. Evidently we have the following diagram of implications:

(1) c> (3) 0 (5)
o & o
(2) 0 (4) 0 (6)

(6) 0 (7): Let N = v(L) (resp. N = β(L)). Then for any y e N we have O> siL

by [2, Lemma 1.3.7 (resp. Theorem 6.2.1)]. Therefore <j;)χ]L. It follows

from Lemmas 1.1 and 1.2 that N is abelian, dimL/N<l and ad x is a scalar

transformation on N for any x e L. Thus L is either abelian or almost-abelian.

(7)0(1) is clear by [6, Lemma 6.3].

Furthermore we have the following proposition whose proof is similar to

that of Proposition 2.1.

PROPOSITION 2.2. Let L be a Lie algebra over afield of characteristic zero.

If Le έ$l n J(wasc)t5, then the following are equivalent:

(1) Every serial subalgebra of L is an ideal of L.

(2) Every l-dimensional serial subalgebra of L is an ideal of L.
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(3) Every ascendant subalgebra of L is an ideal of L.
(4) Every {-dimensional ascendant subalgebra of L is an ideal of L.
(5) L is either abelian or almost-abelian.

Now we shall give the main theorem in this section, which generalizes [14,
Corollary 3.5].

THEOREM 2.3. Let L be a serially finite Lie algebra over a field of charac-
teristic zero. If σ(L) ε έ(si)^ί, then the following are equivalent:

(1) Every l-dimensional serial subalgebra of L is an ideal of L.
(2) Every l-dimensional ascendant subalgebra of L is an ideal of L.
(3) Every l-dimensional subideal of L is an ideal of L.
(4) Every subideal of L is an ideal of L.

(5) L = R®S, where R is an ideal of L which is either abelian or almost-
abelian and S is a semisimple ideal of L.

PROOF. Implications (1) 0 (2) 0 (3) and (4) 0 (3) are trivial.

(3)0(5): Let R = σ(L\ N = β(R). For any yεN we have O>><αL since
<y> si L. By Lemma 1.1 N is an abelian ideal of L and dimL/CL(ΛΓ)< 1. On
the other hand [11, Theorem 2] and [2, Theorem 13.5.7] show that there exists
a Levi factor S of L. Furthermore S = S2<L2<CL(7V) by [2, Theorem
13.4.2] and CR(N) = N by Lemma 1.2. Hence we have

CL(N) = CL(N) Π (R + S) = CR(N) + S = N®S.

Suppose that <x> si R. Then <x><ιL and so <x><α/?. By making use of
Proposition 2.1, we see that R is either abelian or almost-abelian. Finally since

S = S2 = CL(AT)2 ch CL(ΛΓ)<ι L it follows that S<α L.
(5)0(1): Suppose that <x>serL. Then <x><p(L)<# by [2, Theorem

13.3.7]. Since <x> ser R, we have <x><ιK using [6, Lemma 6.3]. Therefore we
have <x><αL.

(5)0(4): Let H^L and put S1 = {seS: there is rεR such that r + se//}.
It is easy to show that S{ is an ideal of S containing S n H. Also Sί is semisimple
by [2, Theorem 13.4.2 and Lemma 13.4.3]. Since S^H + R, S^SΪ^H + R)2

<H + R2 and so S1 <(H + R2)2<H. Hence we have S^SnH. Furthermore

since H^R + S^ we obtain H = (H n R)®(H n 5), where H n R is either abelian
or almost-abelian. Now assume that H si L. Then by repeating this argument
we have H = (H n R)®(H Π S). It follows that H n R and H n S are ideals of R
and 5 respectively. Hence we see that /f<αL.

REMARK. Over any field there exists an έ2ϊ n L9ί-algebra which belongs to (£
but not to d(asc) U X U έ(si)2ί (Example 4.1). Therefore in Proposition 2.1 we
can not extend the classes E(o)2ί and έ(si)2l (over a field of characteristic 0) to
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the class έSl. Furthermore by [11, Theorem 4] we can not remove the hypothesis

"σ(L) e έ(si)«" in Theorem 2.3.

3.

We denote by (£* the class of C-algebras introduced in [14], that is, Lie
algebras L in which each subalgebra of a nilpotent subalgebra H of L is an ideal
in the idealizer of //in L. In this section we shall investigate not necessarily finite-
dimensional (£*-algebras and related Lie algebras. We begin with the following

LEMMA 3.1. Let L be a &*-algebra.
(a) If N is a locally nilpotent subalgebra of L, then N is abelian.
(b) // N is a locally nilpotent ideal of L, then ad x is a scalar transfor-

mation on N for any x e L and dim L/CL(N)< 1.

PROOF. Let N be a locally nilpotent subalgebra of L and let x, y be any
elements of N. Then there exists a nilpotent subalgebra K of N which contains
x and y. Since L is a (£*-algebra, any 1-dimensional subalgebra of K is an ideal
of K. It follows from Lemma 1.1 that K is abelian. Therefore [x, y] = 0 and

N is abelian. Moreover if N is an ideal of L, then any 1-dimensional subalgebra
of N is an ideal of L. By using Lemma 1.1 we have the assertion of (b).

We shall give several characterizations of (£*-algebras in the following propo-
sition, which generalizes [14, Theorem 2.4], and in Theorem 3.5.

PROPOSITION 3.2. Let L be a Lie algebra over an arbitrary field. Then

the following are equivalent:
(1) L is a &*-algebra.

(2) Every soluble subalgebra of L is either abelian or almost-abelian.
(3) Every έ(<ι)L9ί-swbalgebra of L is either abelian or almost-abelian.

PROOF. (1)0(3): Let H be an έ(<ι)L«-subalgebra of L and set N = p(H).
Since H is a (£*-algebra, it follows from Lemma 3.1 that N is abelian and dim ///

CH(N) < 1. Furthermore by Lemma 1.2 we have CH(N) < N and so dim H/N < 1.
If dim H/N = 0, then H is abelian. If dim H/N = 1, then we can pick up an element
x of H^N and write H = N + <x>, where ad x is a non-zero scalar transformation
on N. Therefore H is almost-abelian.

(3) 0(2) is clear.

(2) 0 (1): Let N be a nilpotent subalgebra of L and let K be a subalgebra of
N. Then ΛΓ + <x> is either abelian or almost-abelian for any element x of IL(N).
If ΛΓ + <x> is abelian, then [K, x]^/C is clear. We may assume that N + <x> is
almost-abelian. Then x^N and (N-f<x>)2 = N. Since ad x is a scalar trans-
formation on N, we have [X, x]^/C. This shows that K is an ideal of /L(N).
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Varea showed the following results: Let L be an ^-dimensional Lie algebra
over a field f of at least n — 1 elements.

(VI) L is a (£*-algebra if and only if every subalgebra of L is a (£-algebra
([14, Proposition 2.6]).

(V2) L is a (£*-algebra if and only if every subalgebra of L is a ^-algebra
([14, Theorem 2.8]).

Now in these results we can remove the restriction on the cardinality of ! and
the finite-dimensionality of L.

Before generalizing (VI) and giving other characterizations of (£*-algebras
we shall consider a stronger form:

LEMMA 3.3. Let L be a Lie algebra over an arbitrary field. Then the fol-
lowing are equivalent:

(1) For any subalgebra H of L, every ascendant subalgebra of H is an
ideal of H.

(2) For any subalgebra H of L, every subideal of H is an ideal of H.
(3) For K<Land xeL, if\_K, „*, K~]^Kfor any n>\ then K is an ideal

of(K,xy.

PROOF. (l)c>(2)is clear.
(2) φ (3): Let K < L and x e L such that [K, nx, K] c K for all n > 1. Since

x>, we obtain K^K, x>.
): Let KascH and let (Aa)a^σ be an ascending series from K to H.

We show by transfinite induction on α that K is an ideal of Aa. Let α>l and
assume that K^Aβ for all β«x. If α is a limit ordinal, then K^\Jβ<Λ Aβ = Aa.
Otherwise by induction hypothesis K^AΛ_ ι^AΛ. Let x e AΛ. Since [K, πx, K]
^K for any n> 1, it follows that K<ι<K, x>. Hence we have K^AΛ.

Let £ be a class of Lie algebras. Then we denote by £s the largest s-closed
subclass of 3E. That is, L belongs to Xs if and only if every subalgebra of L
belongs to 3E.

Now as a direct consequence of Lemma 3.3 we have

COROLLARY 3.4. ϊ(asc)s = Xs.

As mentioned above we shall provide a generalization for (VI) and charac-
terizations of (£*-algebras, which is the first main theorem in this section.

THEOREM 3.5. Let L be a Lie algebra over an arbitrary field. Then the
following are equivalent:

(1) L is a &*-algebra.
(2) For any subalgebra H of L, every l-dimensional ascendant subalgebra

of H is an ideal of H.
(3) For any subalgebra H of L, every \-dimensional subideal of H is an
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idea I of H.
(4) For two elements a and x of L, if [a, πx, a~\ e (a} for any n> 1 then <(#>

is an ideal of (a, x>.

PROOF. The equivalence of (2), (3) and (4) can be proved as in Lemma 3.3.

(1)0(3): It is sufficient to show that if <»<]2// then <0><α//. Suppose

that (ay^B^H. Let x be any element of H^B. We put Mn=Σ?= 0 <!>> Λ']>
for any n>0 and M=\j^Q Mn. Then we have [<7, nx, B~\^Mn by induction on

n. Thus Mn is an ideal of B for all w>0. Since Mn = M w _ j -h<[0, „*]>, we
obtain Mj^rCM,,,,. Therefore Mi l

l l + 1 ) = 0. By virtue of Proposition 3.2 we
conclude that M(

n

2) = Q for all n>0 and so A/ ( 2 ) = 0. Now we set /C = M + <x>.
Then K ( 3 ) = 0. Again by Proposition 3.2 K is either abelian or almost-abelian.

If K is abelian, then [α, x] = 0. If K is almost-abelian, then [α, x]e<<7> since
K2 = M. Hence we have [>, //]c<Λ>.

(3)0(1): Let // be a nilpotent subalgebra of L and let a be any element of

H. Since <tf > is a subideal of /L(#), <0> is an ideal of IL(H). Thus L is a (£*-
algebra.

COROLLARY 3.6. <£* = (£(asc)s - (Γ>\

Next as for (V2) we need the following

LEMMA 3.7. Let L be a finite-dimensional ^-algebra over any field. If
K is an ideal of L, then K2 + </?> is an ideal of L for any he'K.

PROOF. We assume that K2<K^L. Let x be an element of L^K. We
may moreover assume that L = JC + <x>. Let h be an element of K^K2. It

suffices to show that [L, /ι]c</ί> + κ2. If /X«Λ» = <Λ>, then </ι> is a Cartan
subalgebra of K. Let K = K0^-Kί be the Fitting decomposition of K relative

to ad// . Using [5, Proposition 3.1] we have K0 = </ί> and so
In this case there is nothing to prove. We next consider the case

Let k be an element of 7κ«/ί»\<Λ> and let H be a maximal soluble subalgebra of
L containing /? and k. By Proposition 3.2 H is either abelian or almost-abelian.
If H is abelian, then we can consider the Fitting decomposition of L relative to
ad H, say L = L0 -f Ll. It turns out that L = H + X, since H is a Cartan subalgebra
of L and L{^L2^K. Hence [L, /ι]^χ2 ^jext suppose that H is almost-

abelian. If h^H2, then // = //2 + </z> and ad/i is a non-zero scalar trans-
formation on H2. Now we can write k = y + ah, where Q^yεH2 and αeϊ .
Accordingly we have [/c, /i] = [y, /?] ̂ 0. Since [/c, /i] e K2 n </?> = 0, we have a con-
tradiction. Therefore we obtain hsH2 and so Hξ K. This leads to L = H + K.
Tt follows that [L, /?] c [//, /,] + [K, Λ] c </,> + ̂ 2 τhis completes the proof.

From Lemma 3.7 we can deduce the following result, which generalizes [14,
Proposition 2.7].
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PROPOSITION 3.8. Let L be a locally finite £*-algebra over an arbitrary
field. If N is an ideal of L, then L/N is a £*-algebra.

PROOF. Let K/N be a nilpotent subalgebra of L/N and let H/N be a sub-

algebra of KIN. Suppose that xεIL(K) and heH. We set / C 1 = / C n < f t , x>
and recursively define Kn+ l = K* + <λ> for any n>l. We first show that

K% > K" and Kn <ι Kn + <x> for any positive integer n. (*)

When n= 1 it is clear that (*) is true. Suppose that (*) is true for n> 1. Then

we have

Since Kπ is finite-dimensional, we deduce from Lemma 3.7 that Kn+l =
</?><]/<:„ + <x>. Hence KΛ + 1<3 K π + 1 + <x>. It follows that (*) is true for
any n > l . Since K/N is nilpotent, we have Km<N for some m. Then

[Λ, x] e K2

m

This shows that H*zIL(K) and so H/N^ιIL/N(K/N). Thus L/N is a (£*-algebra.

Now we can show the second main theorem in this section, which is a gener-
alization for (V2).

THEOREM 3.9. Let L be a locally finite Lie algebra over an arbitrary field.
Then the following are equivalent:

(1) For any subalgebra H of L, every serial subalgebra of H is an ideal of

H.
(2) For any subalgebra H of L, every \-dimensional serial subalgebra of

H is an ideal of H.
(3) For any subalgebra H of L, every ascendant subalgebra of H is an

ideal of H.
(4) For any subalgebra H of L, every l-dimensional ascendant subalgebra

of H is an ideal of H.
(5) For any subalgebra H of L, every subideal of H is an ideal of H.
(6) For any subalgebra H of L, every l-dimensional subideal of H is an

ideal of H.

PROOF. Implications. (1)0(3)0(5)0(6) and (1)0(2)0(4)0(6) are trivial.
(6)0(5): Suppose that KsiH<L. Then Kω<ι// by [2, Lemma 1.3.2]

and K/KωsiH/Kω. By using Theorem 3.5 and Proposition 3.8 we see that
H/Kω is a (£*-algebra. Since K/Kω is locally nilpotent, K/Kω is abelian by
Lemma 3.1. Hence «x> + Kω)/Kω<ι K/Kω si H/K<» and so
Kω for all x e K by Theorem 3.5. Thus we obtain
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(5)0(1): Suppose that Kser H<L. Let k and x be elements of K and H
respectively. Then by [2, Proposition 13.2.4] K n </c, x> si </c, x> and so
K Π </c, x><α</c, x>. Hence we have [/c, x] e K for any /c e K and x e //.

REMARK. In general the class (£* is not equal to the class £5 (see Example
4.4).

Varea determined the structure of finite-dimensional (£*-algebras over an
algebraically closed field ([14, Theorem 2.9]). By making use of this result we
can determine the structure of locally finite (£*-algebras over an algebraically

closed field.

PROPOSITION 3.10. Let L be a locally finite &*-algebra over an alge-

braically closed field. Then L is either abelian, almost-abelian or 3-dimensional

simple.

PROOF. Let F be any finite-dimensional subalgebra of L. Then by [14,
Theorem 2.9] F is either abelian, almost-abelian or 3-dimensional simple. If
every finite-dimensional subalgebra of L is either abelian or almost-abelian,
then L ( 2 ) = 0. It follows from Proposition 3.2 that L is either abelian or almost-

abelian. We now assume that there exists a 3-dimensional simple subalgebra
F of L. Then for all x e L, <F, x> is finite-dimensional. Hence <F, x> must
be 3-dimensional simple. From this we can deduce that L is 3-dimensional simple.

Finally in the following result we see that every LEL^l-subalgebras of a (£*-
algebra is either abelian or almost-abelian, which generalizes Proposition 3.2.

PROPOSITION 3.11. Let L be a Lie algebra over any field. If Le LέUR, then
the following are equivalent:

(1) For any subalgebra H of L, every serial subalgebra of H is an ideal

of H.
(2) For any subalgebra H of L, every \-dimensional serial subalgebra of

H is an ideal of H.
(3) For any subalgebra H of L, every ascendant subalgebra of H is an

ideal of H.
(4) For any subalgebra H of L, every i-dimensional ascendant subalgebra

of H is an ideal of H.
(5) For any subalgebra H of L, every subideal of H is an ideal of H.
(6) For any subalgebra H of L, every l-dimensional subideal of H is

an ideal of H.
(7) L is either abelian or almost-abelian.

PROOF. Implications (1) φ (3) 0 (5) 0 (6) and (1) c> (2) 0 (4) 0 (6) are trivial.
(6) 0 (7): Let a be any element of L(2). Then there is an EL$R-subalgebra H
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of L such that αe f/ ( 2 ) . Let (//α)α<σ be an ascending L9ί-series of H. We
shall show by transfinite induction on α that //α<αf/ for any ordinal α < σ. Assume
that Hβ<ιH for all /?<α. If α is a limit ordinal, then HΛ = \jβ<ol Hβ^H. Other-

wise, since // α _ t belongs to έ(-3)L9ΐ we have /Yj^^O by using Proposition 3.2.
If M///α_! is a soluble subalgebra of H/H(X-ί, then M is soluble. Hence by

Proposition 3.2 we see that /////α_ t is a (£*-algebra. Therefore // 7///α_! is abelian
by Lemma 3.1. It follows that ((xy + H o l _ ί ) I H a [ _ l a s c H / H 0 ί _ ί for all xe// α .
By Theorem 3.5 we have <x> + //α _!<://, whence HΛ<ιH. Now Proposition 3.2
leads to // (2)=0. Therefore L ( 2> = 0. Finally by using Proposition 3.2 we can
conclude that L is either abelian or almost-abelian.

(7)0(1) is clear by [6, Lemma 6.3].

REMARKS. (1) The classes £, <£(asc), <£(ser), <£*, X, X(asc), X(ser) and Xs

are L-closed but not E-closed (see Example 4.5).
(2) The classes X, X(asc) and Xs are Q-closed, but the classes (£, (£(asc)

and (£* are not Q-closed (see Example 4.4).

4.

In this section we shall give several examples concerning the classes in Sections
2 and 3.

EXAMPLE 4.1. Let U be the universal enveloping algebra of a Lie algebra
L over any field and let V be the associative ideal in U which is generated by L.
Suppose that L is nilpotent of class n — l (n>2). The set of elements of V with
weight > n form an ideal in V, which is denoted by S. Then N = N(L) = V/S is an

associative nilpotent algebra of class n and can be considered as a right L-module
in the usual way. Thus we form the split extension E = E(L) = N + L, which is
nilpotent of class n.

Let LI be a 1-dimensional Lie algebra, say L,=<e>. Then 7V,=N(L 1) =
<<?, έ2> and so L2 = E(L1) = N1 +L1 = <e, έ2>4-<e>. We recursively define

Nn = N(Ln) and LΛ + 1=£(Ln) = Nll + Llf for all n>2. Set L = W?=1 Ln (the direct
limit of {LΛ}). Then by [9, Theorem 4] we know that Le UR n έ^l and that L has
no non-zero bounded left Engel elements. Hence L is a (£-algebra. Since by
[1, Theorem 4.6] L is a Gruenberg algebra, L is not a (£(asc)-algebra. Moreover

Lξέ(si)δl (cf. [8, Example 6.7]). We put / = £?L2 W,-, which is an ideal of L.

Then L//^L 2 . As we have seen above L2 = <e l 9 e2, £3) with C^ι» ^2! = ̂ 3 and
ς(L2) = <e3>. From this we deduce that <?ι> is a 2-step subideal but not an ideal
of L2. Thus L does not belong to X. That is to say, we have over an arbitrary
field

X < (£ and <E(asc) < <£.
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EXAMPLE 4.2. Let S be the 3-dimensional simple Lie algebra with basis

{£_!, eQ, e{} over any field and with multiplication [e-λ, e()~\ = e^l, [f0, el] = eί

and [e-!, £ι ] = eo We se* ^— ®Γ=ι S/, where each St is an isomorphic copy of
S. Using [6, Theorem 4.4] we know that L belongs to £(ser). On the other

hand, there is a soluble subalgebra of L which is neither abelian nor almost-
abelian. Hence by Proposition 3.2 L is not a (£*-algebra. That is to say, we

have over an arbitrary field

G* < e(asc), 2s < 2(asc) and X (ser)s < X(ser).

EXAMPLE 4.3. By [2, Theorem 6.5.5] over any field of characteristic zero

there exists a non-zero locally nilpotent Lie algebra L with trivial Gruenberg
radical. Evidently we see that L belongs to (£(asc) but not to (£(ser). Hence

over any field of characteristic zero we have

<£(ser) < <£(asc).

EXAMPLE 4.4. Let W be a Witt algebra, that is, a Lie algebra over a field of

characteristic zero with basis {w l s w2,...} and multiplication [wί5 W y ] = ( / — j)wi+J.

Since every non-zero soluble subalgebra of W is 1-dimensional ([7, Corollary to
Theorem 1]), it follows from Proposition 3.2 that W is a (£*-algebra. Let N be

the subalgebra of W generated by w4, w5,.... Then it is easy to see that W/N is
not a (£-algebra. Hence Wh not a S-algebra. These tell us that over any field

of characteristic zero the classes (£, (£(asc) and (£* are not Q-closed and

Xs < <£*.

EXAMPLE 4.5. We consider a metabelian Lie algebra L not belonging to (£.

For example, let X be an abelian Lie algebra with basis {x0, x l 5 x2»"'} and &
be the upward shift on X, that is, χ.(τ = x ί + 1 for all ί>0. Then clearly the split

extension L = X-i-<(a} is not a OΓ-algebra. Thus from such a Lie algebra L we

can deduce that any class £ satisfying S2ί<3£<(£ is not E-closed.
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