Lie algebras in which every 1-dimensional subideal is an ideal

Hidekazu FURUTA and Takanori SAKAMOTO (Received January 17, 1987)

Introduction

A Lie algebra L is called a *t*-algebra if every subideal of L is an ideal of L, a *T*-algebra if any subalgebra of L is a *t*-algebra and a *c*-algebra if every nilpotent subideal of L is an ideal of L. We easily see that L is a *c*-algebra if and only if every 1-dimensional subideal of L is an ideal of L. Recently Varea [14] introduced the concept of *C*-algebra in Lie algebra: L is a *C*-algebra if every subalgebra of a nilpotent subalgebra H of L is an ideal in the idealizer of H in L. He investigated the property of finite-dimensional *C*-algebras, and in [14] he proved the following results:

(a) Let L be an n-dimensional Lie algebra over a field f of at least n-1 elements. Then the following are equivalent: i) L is a C-algebra. ii) L is a T-algebra. iii) Every subalgebra of L is a c-algebra.

(b) Let L be a finite-dimensional Lie algebra over a field of characteristic zero. Then the following are equivalent: i) L is a c-algebra. ii) L is a t-algebra. iii) $L = R \oplus S$ where R is an ideal of L which is either abelian or almost-abelian and S is a semisimple ideal of L.

The purpose of this paper is to give several generalizations of (a), (b) and other results in [14] without the finite-dimensionality of L and the restriction on the cardinality of f.

The main results of this paper are as follows.

(1) Let L be a serially finite Lie algebra over a field of characteristic zero. If the locally soluble radical of L belongs to the class $\dot{E}(si)\mathfrak{A}$ of Lie algebras, then the three statements in (b) are equivalent (Theorem 2.3).

(2) Let L be an arbitrary Lie algebra. Then the following are equivalent: i) L is a C-algebra. ii) Every subalgebra of L is a c-algebra. iii) Every 1dimensional ascendant subalgebra of a subalgebra H of L is an ideal of H (Theorem 3.5).

(3) Let L be a locally finite Lie algebra over any field. Then the following are equivalent: i) L is a C-algebra. ii) L is a T-algebra. iii) Every serial subalgebra of a subalgebra H of L is an ideal of H. iv) Every 1-dimensional serial subalgebra of a subalgebra H of L is an ideal of H (Theorem 3.9).

(4) Over any field there exist a c-algebra which is neither a C-algebra nor a

t-algebra, and a *t*-algebra which is not a *T*-algebra (Examples 4.1 and 4.2). Over any field of characteristic zero there exists a *C*-algebra which is not a *T*-algebra (Example 4.4).

In this paper we use the terminology \mathbb{C} -algebras, \mathbb{C} -algebras, \mathbb{T} -algebras and \mathbb{T} -algebras instead of *c*-algebras, *C*-algebras, *t*-algebras and *T*-algebras in [14] respectively.

1.

Throughout the paper Lie algebras are not necessarily finite-dimensional over a field t of arbitrary characteristic unless otherwise specified. We mostly follow [2] for the use of notations and terminology.

Let L be a Lie algebra over \mathfrak{k} and let H be a subalgebra of L. For an ordinal σ , H is a σ -step ascendant (resp. weakly ascendant) subalgebra of L, denoted by $H \lhd {}^{\sigma}L$ (resp. $H \leq {}^{\sigma}L$), if there exists an ascending series (resp. chain) $(H_{\alpha})_{\alpha \leq \sigma}$ of subalgebras (resp. subspaces) of L such that

(1) $H_0 = H$ and $H_\sigma = L$,

(2) $H_{\alpha} \triangleleft H_{\alpha+1}$ (resp. $[H_{\alpha+1}, H] \subseteq H_{\alpha}$) for any ordinal $\alpha < \sigma$,

(3) $H_{\lambda} = \bigcup_{\alpha < \lambda} H_{\alpha}$ for any limit ordinal $\lambda \le \sigma$.

H is an ascendant (resp. a weakly ascendant) subalgebra of *L*, denoted by *H* asc *L* (resp. *H* wasc *L*), if $H \lhd {}^{\sigma}L$ (resp. $H \le {}^{\sigma}L$) for some ordinal σ . When σ is finite, *H* is a subideal (resp. weak subideal) of *L* and denoted by *H* si *L* (resp. *H* wsi *L*). For a totally ordered set Σ , a series from *H* to *L* of type Σ is a collection $\{\Lambda_{\sigma}, V_{\sigma}: \sigma \in \Sigma\}$ of subalgebras of *L* such that

(1) $H \subseteq V_{\sigma} \subseteq \Lambda_{\sigma}$ for all $\sigma \in \Sigma$,

(2)
$$L \searrow H = \bigcup_{\sigma \in \Sigma} (\Lambda_{\sigma} \searrow V_{\sigma}),$$

- (3) $\Lambda_{\tau} \subseteq V_{\sigma}$ if $\tau < \sigma$,
- (4) $V_{\sigma} \triangleleft \Lambda_{\sigma}$ for all $\sigma \in \Sigma$.

H is a serial subalgebra of L, denoted by H ser L, if there exists a series from H to L of type Σ for some Σ .

Let \mathfrak{X} be a class of Lie algebras and let Δ be any of the relations \leq, \lhd, ς , si, asc, ser. A Lie algebra *L* is said to lie in $L(\Delta)\mathfrak{X}$ if for any finite subset *X* of *L* there exists an \mathfrak{X} -subalgebra *K* of *L* such that $X \subseteq K\Delta L$. In particular we write $L\mathfrak{X}$ for $L(\leq)\mathfrak{X}$. When $L \in L\mathfrak{X}$ (resp. $L(\operatorname{ser})\mathfrak{X}$), *L* is called a locally (resp. serially) \mathfrak{X} -algebra. $\mathfrak{F}, \mathfrak{A}$ and \mathfrak{N} are the classes of Lie algebras which are finitedimensional, abelian and nilpotent respectively. For an ordinal σ , $\acute{E}_{\sigma}(\Delta)\mathfrak{X}$ is the class of Lie algebras *L* having an ascending series $(L_{\alpha})_{\alpha \leq \sigma}$ of Δ -subalgebras such that

- (1) $L_0 = 0$ and $L_\sigma = L$,
- (2) $L_{\alpha} \triangleleft L_{\alpha+1}$ and $L_{\alpha+1}/L_{\alpha} \in \mathfrak{X}$ for any ordinal $\alpha < \sigma$,
- (3) $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$ for any limit ordinal $\lambda \le \sigma$.

We define $\dot{E}(\Delta)\mathfrak{X} = \bigcup_{\sigma>0} \dot{E}_{\sigma}(\Delta)\mathfrak{X}$, $E(\Delta)\mathfrak{X} = \bigcup_{n<\omega} \dot{E}_{n}(\Delta)\mathfrak{X}$. In particular we write $\dot{E}\mathfrak{X}$ and $E\mathfrak{X}$ for $\dot{E}(\leq)\mathfrak{X}$ and $E(\leq)\mathfrak{X}$ respectively. Thus $E\mathfrak{N}$ is the class of soluble Lie algebras. When $L \in \dot{E}(\lhd)\mathfrak{X}$, L is called a hyper \mathfrak{X} -algebra. $Q\mathfrak{X}$ is the class of Lie algebras consisting of all homomorphic images of \mathfrak{X} -algebras. We say that \mathfrak{X} is A-closed if $\mathfrak{X} = A\mathfrak{X}$, where A is either L, E or Q. Let Δ be any of the relations si, asc, ser. $\mathfrak{T}(\Delta)$ is the class of Lie algebras L in which every Δ -subalgebra of L is an ideal of L. In particular we write \mathfrak{T} for $\mathfrak{T}(si)$. $\mathfrak{T}(asc)$ (resp. $\mathfrak{T}(ser)$) is denoted by \mathfrak{M}' (resp. \mathfrak{X}_3) in [13] (resp. [6]).

Let *H* be a subalgebra of *L*. We denote by $C_L(H)$ (resp. $I_L(H)$) the centralizer (resp. idealizer) of *H* in *L*. For $x \in L$ we put $H^x = \sum_{n\geq 0} [H, _nx]$, where $[H, _nx] = [H, \underline{x}, \underline{x}, ..., \underline{x}]$. The Fitting radical v(L) of *L* is the sum of all nilpotent ideals of

L. The Hirsch-Plotkin radical $\rho(L)$ of L is the unique maximal locally nilpotent ideal of L. The Baer radical $\beta(L)$ of L is the subalgebra generated by all nilpotent subideals of L and the Gruenberg radical $\gamma(L)$ of L is the subalgebra generated by all nilpotent ascendant subalgebras of L. For a locally finite Lie algebra L the locally soluble radical $\sigma(L)$ of L is the unique maximal locally soluble ideal of L.

Now we begin with an elementary result whose proof is easy.

LEMMA 1.1. Let L be a Lie algebra and let N be a subspace of L. Then the following are equivalent:

(1) Every 1-dimensional subspace of N is an ideal of L.

(2) For every $x \in L$, ad x is a scalar transformation on N.

Moreover, if either (1) or (2) holds, then N is an abelian ideal of L and $\dim L/C_L(N) \le 1$.

 $J(wasc) \ \mathcal{B}$ is the class of Lie algebras generated by a set of weakly ascendant locally finite subalgebras. We know that in any Lie algebra (resp. $J(wasc) \ \mathcal{B}$ algebra) L over a field of characteristic 0 $\beta(L)$ (resp. $\gamma(L)$) is an ideal of L owing to [10, Theorem 10.7] (resp. [12, Theorem 3.3.4]). For our arguments we need the following result, which may be shown by using [2, Lemma 9.1.2(c)] and [4, Lemma 4.1].

LEMMA 1.2. Let L be a Lie algebra over a field \mathfrak{t} and let N be a subalgebra of L. Then we have $C_L(N) \leq N$ if L, N and \mathfrak{t} satisfy one of the following statements:

(1) $L \in \acute{E}(\triangleleft) \mathfrak{A}$, N = v(L) and \mathfrak{t} has any characteristic.

(2) $L \in \acute{E}(\lhd) L \mathfrak{N}$, $N = \rho(L)$ and \mathfrak{t} has any characteristic.

- (3) $L \in \acute{E}(si)\mathfrak{A}$, $N = \beta(L)$ and \mathfrak{k} has characteristic 0.
- (4) $L \in \acute{\mathfrak{gl}} \cap J(wasc) \sqcup \mathfrak{F}, N = \gamma(L)$ and \mathfrak{f} has characteristic 0.

2.

In this section we shall consider three new classes \mathfrak{C} , $\mathfrak{C}(\operatorname{asc})$ and $\mathfrak{C}(\operatorname{ser})$ of Lie algebras containing the classes \mathfrak{T} , $\mathfrak{T}(\operatorname{asc})$ and $\mathfrak{T}(\operatorname{ser})$ respectively. Let Δ be one of the relations si, asc, ser. $\mathfrak{C}(\Delta)$ is the class of Lie algebras L in which every 1dimensional Δ -subalgebra of L is an ideal of L. In particular we write \mathfrak{C} for $\mathfrak{C}(\operatorname{si})$. A \mathfrak{C} -algebra is equal to a c-algebra in [14], that is, a Lie algebra in which every nilpotent subideal is an ideal. A Lie algebra L is said to be almost-abelian if L is the split extension of an abelian algebra by the 1-dimensional algebra of scalar multiplications. The following result generalizes [14, Corollary 3.3], [6, Theorem 6.4] and [3, Proposition 2.8].

PROPOSITION 2.1. Let L be a hyperabelian Lie algebra over a field of any characteristic (resp. an é(si))(1-algebra over a field of characteristic zero). Then the following are equivalent:

- (1) Every serial subalgebra of L is an ideal of L.
- (2) Every 1-dimensional serial subalgebra of L is an ideal of L.
- (3) Every ascendant subalgebra of L is an ideal of L.
- (4) Every 1-dimensional ascendant subalgebra of L is an ideal of L.
- (5) Every subideal of L is an ideal of L.
- (6) Every 1-dimensional subideal of L is an ideal of L.
- (7) L is either abelian or almost-abelian.

PROOF. Evidently we have the following diagram of implications:

(6) \Diamond (7): Let N = v(L) (resp. $N = \beta(L)$). Then for any $y \in N$ we have $\langle y \rangle$ siL by [2, Lemma 1.3.7 (resp. Theorem 6.2.1)]. Therefore $\langle y \rangle \lhd L$. It follows from Lemmas 1.1 and 1.2 that N is abelian, dim $L/N \le 1$ and ad x is a scalar transformation on N for any $x \in L$. Thus L is either abelian or almost-abelian.

 $(7) \Rightarrow (1)$ is clear by [6, Lemma 6.3].

Furthermore we have the following proposition whose proof is similar to that of Proposition 2.1.

PROPOSITION 2.2. Let L be a Lie algebra over a field of characteristic zero. If $L \in \pounds \mathfrak{A} \cap J(wasc) L\mathfrak{F}$, then the following are equivalent:

- (1) Every serial subalgebra of L is an ideal of L.
- (2) Every 1-dimensional serial subalgebra of L is an ideal of L.

- (3) Every ascendant subalgebra of L is an ideal of L.
- (4) Every 1-dimensional ascendant subalgebra of L is an ideal of L.
- (5) L is either abelian or almost-abelian.

Now we shall give the main theorem in this section, which generalizes [14, Corollary 3.5].

THEOREM 2.3. Let L be a serially finite Lie algebra over a field of characteristic zero. If $\sigma(L) \in \acute{E}(si)\mathfrak{A}$, then the following are equivalent:

- (1) Every 1-dimensional serial subalgebra of L is an ideal of L.
- (2) Every 1-dimensional ascendant subalgebra of L is an ideal of L.
- (3) Every 1-dimensional subideal of L is an ideal of L.
- (4) Every subideal of L is an ideal of L.

(5) $L=R\oplus S$, where R is an ideal of L which is either abelian or almostabelian and S is a semisimple ideal of L.

PROOF. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (3)$ are trivial.

(3) \Rightarrow (5): Let $R = \sigma(L)$, $N = \beta(R)$. For any $y \in N$ we have $\langle y \rangle \lhd L$ since $\langle y \rangle$ si L. By Lemma 1.1 N is an abelian ideal of L and dim $L/C_L(N) \le 1$. On the other hand [11, Theorem 2] and [2, Theorem 13.5.7] show that there exists a Levi factor S of L. Furthermore $S = S^2 \le L^2 \le C_L(N)$ by [2, Theorem 13.4.2] and $C_R(N) = N$ by Lemma 1.2. Hence we have

$$C_L(N) = C_L(N) \cap (R \dotplus S) = C_R(N) \dotplus S = N \oplus S.$$

Suppose that $\langle x \rangle \sin R$. Then $\langle x \rangle \lhd L$ and so $\langle x \rangle \lhd R$. By making use of Proposition 2.1, we see that R is either abelian or almost-abelian. Finally since $S = S^2 = C_L(N)^2$ ch $C_L(N) \lhd L$ it follows that $S \lhd L$.

(5) \Rightarrow (1): Suppose that $\langle x \rangle$ ser L. Then $\langle x \rangle \leq \rho(L) \leq R$ by [2, Theorem 13.3.7]. Since $\langle x \rangle$ ser R, we have $\langle x \rangle \lhd R$ using [6, Lemma 6.3]. Therefore we have $\langle x \rangle \lhd L$.

 $(5) \Rightarrow (4)$: Let $H \lhd L$ and put $S_1 = \{s \in S: \text{ there is } r \in R \text{ such that } r+s \in H\}$. It is easy to show that S_1 is an ideal of S containing $S \cap H$. Also S_1 is semisimple by [2, Theorem 13.4.2 and Lemma 13.4.3]. Since $S_1 \le H+R$, $S_1 = S_1^2 \le (H+R)^2$ $\le H+R^2$ and so $S_1 \le (H+R^2)^2 \le H$. Hence we have $S_1 = S \cap H$. Furthermore since $H \le R+S_1$, we obtain $H = (H \cap R) \oplus (H \cap S)$, where $H \cap R$ is either abelian or almost-abelian. Now assume that H si L. Then by repeating this argument we have $H = (H \cap R) \oplus (H \cap S)$. It follows that $H \cap R$ and $H \cap S$ are ideals of Rand S respectively. Hence we see that $H \lhd L$.

REMARK. Over any field there exists an $\notin \mathfrak{A} \cap \mathfrak{L}\mathfrak{N}$ -algebra which belongs to \mathfrak{C} but not to $\mathfrak{C}(\operatorname{asc}) \cup \mathfrak{T} \cup \acute{\mathrm{E}}(\operatorname{si})\mathfrak{A}$ (Example 4.1). Therefore in Proposition 2.1 we can not extend the classes $\acute{\mathrm{E}}(\lhd)\mathfrak{A}$ and $\acute{\mathrm{E}}(\operatorname{si})\mathfrak{A}$ (over a field of characteristic 0) to

the class $\notin \mathfrak{A}$. Furthermore by [11, Theorem 4] we can not remove the hypothesis " $\sigma(L) \in \acute{E}(si)\mathfrak{A}$ " in Theorem 2.3.

3.

We denote by \mathfrak{C}^* the class of C-algebras introduced in [14], that is, Lie algebras L in which each subalgebra of a nilpotent subalgebra H of L is an ideal in the idealizer of H in L. In this section we shall investigate not necessarily finitedimensional \mathfrak{C}^* -algebras and related Lie algebras. We begin with the following

LEMMA 3.1. Let L be a \mathfrak{C}^* -algebra.

(a) If N is a locally nilpotent subalgebra of L, then N is abelian.

(b) If N is a locally nilpotent ideal of L, then ad x is a scalar transformation on N for any $x \in L$ and dim $L/C_L(N) \leq 1$.

PROOF. Let N be a locally nilpotent subalgebra of L and let x, y be any elements of N. Then there exists a nilpotent subalgebra K of N which contains x and y. Since L is a \mathbb{C}^* -algebra, any 1-dimensional subalgebra of K is an ideal of K. It follows from Lemma 1.1 that K is abelian. Therefore [x, y] = 0 and N is abelian. Moreover if N is an ideal of L, then any 1-dimensional subalgebra of N is an ideal of L. By using Lemma 1.1 we have the assertion of (b).

We shall give several characterizations of \mathfrak{C}^* -algebras in the following proposition, which generalizes [14, Theorem 2.4], and in Theorem 3.5.

PROPOSITION 3.2. Let L be a Lie algebra over an arbitrary field. Then the following are equivalent:

- (1) L is a \mathfrak{C}^* -algebra.
- (2) Every soluble subalgebra of L is either abelian or almost-abelian.
- (3) Every $\acute{E}(\triangleleft)$ L \Re -subalgebra of L is either abelian or almost-abelian.

PROOF. (1) \Rightarrow (3): Let *H* be an $\not{E}(\neg)$ L \Re -subalgebra of *L* and set $N = \rho(H)$. Since *H* is a \mathfrak{C}^* -algebra, it follows from Lemma 3.1 that *N* is abelian and dim *H*/ $C_H(N) \le 1$. Furthermore by Lemma 1.2 we have $C_H(N) \le N$ and so dim *H*/ $N \le 1$. If dim *H*/N = 0, then *H* is abelian. If dim *H*/N = 1, then we can pick up an element *x* of *H* \sim *N* and write $H = N \neq \langle x \rangle$, where ad *x* is a non-zero scalar transformation on *N*. Therefore *H* is almost-abelian.

 $(3) \Rightarrow (2)$ is clear.

(2) rightarrow (1): Let N be a nilpotent subalgebra of L and let K be a subalgebra of N. Then $N + \langle x \rangle$ is either abelian or almost-abelian for any element x of $I_L(N)$. If $N + \langle x \rangle$ is abelian, then $[K, x] \subseteq K$ is clear. We may assume that $N + \langle x \rangle$ is almost-abelian. Then $x \notin N$ and $(N + \langle x \rangle)^2 = N$. Since ad x is a scalar transformation on N, we have $[K, x] \subseteq K$. This shows that K is an ideal of $I_L(N)$.

Varea showed the following results: Let L be an n-dimensional Lie algebra over a field f of at least n-1 elements.

(V1) L is a \mathfrak{C}^* -algebra if and only if every subalgebra of L is a \mathfrak{C} -algebra ([14, Proposition 2.6]).

(V2) L is a \mathfrak{C}^* -algebra if and only if every subalgebra of L is a \mathfrak{T} -algebra ([14, Theorem 2.8]).

Now in these results we can remove the restriction on the cardinality of f and the finite-dimensionality of L.

Before generalizing (V1) and giving other characterizations of \mathfrak{C}^* -algebras we shall consider a stronger form:

LEMMA 3.3. Let L be a Lie algebra over an arbitrary field. Then the following are equivalent:

(1) For any subalgebra H of L, every ascendant subalgebra of H is an ideal of H.

(2) For any subalgebra H of L, every subideal of H is an ideal of H.

(3) For $K \leq L$ and $x \in L$, if $[K, {}_nx, K] \subseteq K$ for any $n \geq 1$ then K is an ideal of $\langle K, x \rangle$.

PROOF. (1) rightarrow (2) is clear.

(2) \triangleright (3): Let $K \leq L$ and $x \in L$ such that $[K, x, K] \subseteq K$ for all $n \geq 1$. Since $K \lhd K^x \lhd \langle K, x \rangle$, we obtain $K \lhd \langle K, x \rangle$.

(3) \Rightarrow (1): Let K asc H and let $(A_{\alpha})_{\alpha \leq \sigma}$ be an ascending series from K to H. We show by transfinite induction on α that K is an ideal of A_{α} . Let $\alpha > 1$ and assume that $K \lhd A_{\beta}$ for all $\beta < \alpha$. If α is a limit ordinal, then $K \lhd \bigcup_{\beta < \alpha} A_{\beta} = A_{\alpha}$. Otherwise by induction hypothesis $K \lhd A_{\alpha-1} \lhd A_{\alpha}$. Let $x \in A_{\alpha}$. Since $[K, {}_{n}x, K] \subseteq K$ for any $n \geq 1$, it follows that $K \lhd \langle K, x \rangle$. Hence we have $K \lhd A_{\alpha}$.

Let \mathfrak{X} be a class of Lie algebras. Then we denote by \mathfrak{X}^S the largest s-closed subclass of \mathfrak{X} . That is, L belongs to \mathfrak{X}^S if and only if every subalgebra of L belongs to \mathfrak{X} .

Now as a direct consequence of Lemma 3.3 we have

COROLLARY 3.4. $\mathfrak{T}(asc)^{S} = \mathfrak{T}^{S}$.

As mentioned above we shall provide a generalization for (V1) and characterizations of \mathfrak{C}^* -algebras, which is the first main theorem in this section.

THEOREM 3.5. Let L be a Lie algebra over an arbitrary field. Then the following are equivalent:

(1) L is a \mathfrak{C}^* -algebra.

(2) For any subalgebra H of L, every 1-dimensional ascendant subalgebra of H is an ideal of H.

(3) For any subalgebra H of L, every 1-dimensional subideal of H is an

ideal of H.

(4) For two elements a and x of L, if $[a, x, a] \in \langle a \rangle$ for any $n \ge 1$ then $\langle a \rangle$ is an ideal of $\langle a, x \rangle$.

PROOF. The equivalence of (2), (3) and (4) can be proved as in Lemma 3.3. (1) \Diamond (3): It is sufficient to show that if $\langle a \rangle \lhd^2 H$ then $\langle a \rangle \lhd H$. Suppose that $\langle a \rangle \lhd B \trianglelefteq H$. Let x be any element of $H \ B$. We put $M_n = \sum_{i=0}^n \langle [a, ix] \rangle$ for any $n \ge 0$ and $M = \bigcup_{n=0}^{\infty} M_n$. Then we have $[a, nx, B] \subseteq M_n$ by induction on n. Thus M_n is an ideal of B for all $n \ge 0$. Since $M_n = M_{n-1} + \langle [a, nx] \rangle$, we obtain $M_n^{(1)} \le M_{n-1}$. Therefore $M_n^{(n+1)} = 0$. By virtue of Proposition 3.2 we conclude that $M_n^{(2)} = 0$ for all $n \ge 0$ and so $M^{(2)} = 0$. Now we set $K = M + \langle x \rangle$. Then $K^{(3)} = 0$. Again by Proposition 3.2 K is either abelian or almost-abelian. If K is abelian, then [a, x] = 0. If K is almost-abelian, then $[a, x] \in \langle a \rangle$ since $K^2 = M$. Hence we have $[a, H] \subseteq \langle a \rangle$.

(3) \Rightarrow (1): Let *H* be a nilpotent subalgebra of *L* and let *a* be any element of *H*. Since $\langle a \rangle$ is a subideal of $I_L(H)$, $\langle a \rangle$ is an ideal of $I_L(H)$. Thus *L* is a \mathfrak{C}^* -algebra.

COROLLARY 3.6. $\mathfrak{C}^* = \mathfrak{C}(asc)^S = \mathfrak{C}^S$.

Next as for (V2) we need the following

LEMMA 3.7. Let L be a finite-dimensional \mathfrak{C}^* -algebra over any field. If K is an ideal of L, then $K^2 + \langle h \rangle$ is an ideal of L for any $h \in K$.

PROOF. We assume that $K^2 < K \leq L$. Let x be an element of $L \setminus K$. We may moreover assume that $L = K + \langle x \rangle$. Let h be an element of $K - K^2$. It suffices to show that $[L, h] \subseteq \langle h \rangle + K^2$. If $I_K(\langle h \rangle) = \langle h \rangle$, then $\langle h \rangle$ is a Cartan subalgebra of K. Let $K = K_0 \downarrow K_1$ be the Fitting decomposition of K relative to ad h. Using [5, Proposition 3.1] we have $K_0 = \langle h \rangle$ and so $K = K^2 + \langle h \rangle$. In this case there is nothing to prove. We next consider the case $I_K(\langle h \rangle) \neq \langle h \rangle$. Let k be an element of $I_{K}(\langle h \rangle) \setminus \langle h \rangle$ and let H be a maximal soluble subalgebra of L containing h and k. By Proposition 3.2 H is either abelian or almost-abelian. If H is abelian, then we can consider the Fitting decomposition of L relative to ad H, say $L = L_0 \downarrow L_1$. It turns out that L = H + K, since H is a Cartan subalgebra of L and $L_1 \subseteq L^2 \subseteq K$. Hence $[L, h] \subseteq K^2$. Next suppose that H is almostabelian. If $h \notin H^2$, then $H = H^2 + \langle h \rangle$ and ad h is a non-zero scalar transformation on H^2 . Now we can write $k = y + \alpha h$, where $0 \neq y \in H^2$ and $\alpha \in \mathfrak{k}$. Accordingly we have $[k, h] = [y, h] \neq 0$. Since $[k, h] \in K^2 \cap \langle h \rangle = 0$, we have a contradiction. Therefore we obtain $h \in H^2$ and so $H \subseteq K$. This leads to L = H + K. It follows that $[L, h] \subseteq [H, h] + [K, h] \subseteq \langle h \rangle + K^2$. This completes the proof.

From Lemma 3.7 we can deduce the following result, which generalizes [14, Proposition 2.7].

528

PROPOSITION 3.8. Let L be a locally finite \mathfrak{C}^* -algebra over an arbitrary field. If N is an ideal of L, then L/N is a \mathfrak{C}^* -algebra.

PROOF. Let K/N be a nilpotent subalgebra of L/N and let H/N be a subalgebra of K/N. Suppose that $x \in I_L(K)$ and $h \in H$. We set $K_1 = K \cap \langle h, x \rangle$ and recursively define $K_{n+1} = K_n^2 + \langle h \rangle$ for any $n \ge 1$. We first show that

$$K_n^2 \ge K_1^n$$
 and $K_n \triangleleft K_n + \langle x \rangle$ for any positive integer *n*. (*)

When n=1 it is clear that (*) is true. Suppose that (*) is true for $n \ge 1$. Then we have

$$K_{n+1}^2 = (K_n^2 + \langle h \rangle)^2 \subseteq (K_1^n + \langle h \rangle)^2 \subseteq K_1^{n+1}.$$

Since K_n is finite-dimensional, we deduce from Lemma 3.7 that $K_{n+1} = K_n^2 + \langle h \rangle \lhd K_n + \langle x \rangle$. Hence $K_{n+1} \lhd K_{n+1} + \langle x \rangle$. It follows that (*) is true for any $n \ge 1$. Since K/N is nilpotent, we have $K^m \le N$ for some m. Then

$$[h, x] \in K_m^2 + \langle h \rangle \subseteq K_1^m + \langle h \rangle \subseteq N + \langle h \rangle \subseteq H.$$

This shows that $H \triangleleft I_L(K)$ and so $H/N \triangleleft I_{L/N}(K/N)$. Thus L/N is a \mathfrak{C}^* -algebra.

Now we can show the second main theorem in this section, which is a generalization for (V2).

THEOREM 3.9. Let L be a locally finite Lie algebra over an arbitrary field. Then the following are equivalent:

(1) For any subalgebra H of L, every serial subalgebra of H is an ideal of H.

(2) For any subalgebra H of L, every 1-dimensional serial subalgebra of H is an ideal of H.

(3) For any subalgebra H of L, every ascendant subalgebra of H is an ideal of H.

(4) For any subalgebra H of L, every 1-dimensional ascendant subalgebra of H is an ideal of H.

(5) For any subalgebra H of L, every subideal of H is an ideal of H.

(6) For any subalgebra H of L, every 1-dimensional subideal of H is an ideal of H.

PROOF. Implications $(1) \not \ominus (3) \not \ominus (5) \not \ominus (6)$ and $(1) \not \ominus (2) \not \ominus (4) \not \ominus (6)$ are trivial.

(6) \Rightarrow (5): Suppose that $K \sin H \le L$. Then $K^{\omega} \lhd H$ by [2, Lemma 1.3.2] and $K/K^{\omega} \sin H/K^{\omega}$. By using Theorem 3.5 and Proposition 3.8 we see that H/K^{ω} is a \mathfrak{C}^* -algebra. Since K/K^{ω} is locally nilpotent, K/K^{ω} is abelian by Lemma 3.1. Hence $(\langle x \rangle + K^{\omega})/K^{\omega} \lhd K/K^{\omega} \sin H/K^{\omega}$ and so $(\langle x \rangle + K^{\omega})/K^{\omega} \lhd H/K^{\omega}$ for all $x \in K$ by Theorem 3.5. Thus we obtain $K \lhd H$. (5) \Rightarrow (1): Suppose that K ser $H \le L$. Let k and x be elements of K and H respectively. Then by [2, Proposition 13.2.4] $K \cap \langle k, x \rangle$ si $\langle k, x \rangle$ and so $K \cap \langle k, x \rangle \lhd \langle k, x \rangle$. Hence we have $[k, x] \in K$ for any $k \in K$ and $x \in H$.

REMARK. In general the class \mathfrak{C}^* is not equal to the class \mathfrak{T}^S (see Example 4.4).

Varea determined the structure of finite-dimensional \mathfrak{C}^* -algebras over an algebraically closed field ([14, Theorem 2.9]). By making use of this result we can determine the structure of locally finite \mathfrak{C}^* -algebras over an algebraically closed field.

PROPOSITION 3.10. Let L be a locally finite \mathfrak{C}^* -algebra over an algebraically closed field. Then L is either abelian, almost-abelian or 3-dimensional simple.

PROOF. Let F be any finite-dimensional subalgebra of L. Then by [14, Theorem 2.9] F is either abelian, almost-abelian or 3-dimensional simple. If every finite-dimensional subalgebra of L is either abelian or almost-abelian, then $L^{(2)}=0$. It follows from Proposition 3.2 that L is either abelian or almost-abelian. We now assume that there exists a 3-dimensional simple subalgebra F of L. Then for all $x \in L$, $\langle F, x \rangle$ is finite-dimensional. Hence $\langle F, x \rangle$ must be 3-dimensional simple. From this we can deduce that L is 3-dimensional simple.

Finally in the following result we see that every LéL \Re -subalgebras of a \mathfrak{C}^* -algebra is either abelian or almost-abelian, which generalizes Proposition 3.2.

PROPOSITION 3.11. Let L be a Lie algebra over any field. If $L \in L \in L$, then the following are equivalent:

(1) For any subalgebra H of L, every serial subalgebra of H is an ideal of H.

(2) For any subalgebra H of L, every 1-dimensional serial subalgebra of H is an ideal of H.

(3) For any subalgebra H of L, every ascendant subalgebra of H is an ideal of H.

(4) For any subalgebra H of L, every 1-dimensional ascendant subalgebra of H is an ideal of H.

(5) For any subalgebra H of L, every subideal of H is an ideal of H.

(6) For any subalgebra H of L, every 1-dimensional subideal of H is an ideal of H.

(7) L is either abelian or almost-abelian.

PROOF. Implications $(1) \ddagger (3) \ddagger (5) \ddagger (6)$ and $(1) \ddagger (2) \ddagger (4) \ddagger (6)$ are trivial. (6) $\ddagger (7)$: Let *a* be any element of $L^{(2)}$. Then there is an $\pounds \mathbb{N}$ -subalgebra *H*

of L such that $a \in H^{(2)}$. Let $(H_{\alpha})_{\alpha \leq \sigma}$ be an ascending L \Re -series of H. We shall show by transfinite induction on α that $H_{\alpha} \lhd H$ for any ordinal $\alpha \leq \sigma$. Assume that $H_{\beta} \lhd H$ for all $\beta < \alpha$. If α is a limit ordinal, then $H_{\alpha} = \bigcup_{\beta < \alpha} H_{\beta} \lhd H$. Otherwise, since $H_{\alpha-1}$ belongs to $\not{e}(\neg \neg)$ L \Re we have $H^{(2)}_{\alpha-1} = 0$ by using Proposition 3.2. If $M/H_{\alpha-1}$ is a soluble subalgebra of $H/H_{\alpha-1}$, then M is soluble. Hence by Proposition 3.2 we see that $H/H_{\alpha-1}$ is a \mathfrak{C}^* -algebra. Therefore $H_{\alpha}/H_{\alpha-1}$ is abelian by Lemma 3.1. It follows that $(\langle x \rangle + H_{\alpha-1})/H_{\alpha-1}$ asc $H/H_{\alpha-1}$ for all $x \in H_{\alpha}$. By Theorem 3.5 we have $\langle x \rangle + H_{\alpha-1} \lhd H$, whence $H_{\alpha} \lhd H$. Now Proposition 3.2 leads to $H^{(2)} = 0$. Therefore $L^{(2)} = 0$. Finally by using Proposition 3.2 we can conclude that L is either abelian or almost-abelian.

 $(7) \Rightarrow (1)$ is clear by [6, Lemma 6.3].

REMARKS. (1) The classes \mathfrak{C} , $\mathfrak{C}(\operatorname{asc})$, $\mathfrak{C}(\operatorname{ser})$, \mathfrak{T}^* , \mathfrak{T} , $\mathfrak{T}(\operatorname{asc})$, $\mathfrak{T}(\operatorname{ser})$ and \mathfrak{T}^s are L-closed but not E-closed (see Example 4.5).

(2) The classes \mathfrak{T} , $\mathfrak{T}(asc)$ and \mathfrak{T}^s are Q-closed, but the classes \mathfrak{C} , $\mathfrak{C}(asc)$ and \mathfrak{C}^* are not Q-closed (see Example 4.4).

4.

In this section we shall give several examples concerning the classes in Sections 2 and 3.

EXAMPLE 4.1. Let U be the universal enveloping algebra of a Lie algebra L over any field and let V be the associative ideal in U which is generated by L. Suppose that L is nilpotent of class n-1 ($n \ge 2$). The set of elements of V with weight > n form an ideal in V, which is denoted by S. Then N = N(L) = V/S is an associative nilpotent algebra of class n and can be considered as a right L-module in the usual way. Thus we form the split extension E = E(L) = N + L, which is nilpotent of class n.

Let L_1 be a 1-dimensional Lie algebra, say $L_1 = \langle e \rangle$. Then $N_1 = N(L_1) = \langle \bar{e}, \bar{e}^2 \rangle$ and so $L_2 = E(L_1) = N_1 + L_1 = \langle \bar{e}, \bar{e}^2 \rangle + \langle e \rangle$. We recursively define $N_n = N(L_n)$ and $L_{n+1} = E(L_n) = N_n + L_n$ for all $n \ge 2$. Set $L = \bigcup_{n=1}^{\infty} L_n$ (the direct limit of $\{L_n\}$). Then by [9, Theorem 4] we know that $L \in L\mathfrak{N} \cap \mathfrak{S}\mathfrak{A}$ and that L has no non-zero bounded left Engel elements. Hence L is a \mathfrak{C} -algebra. Since by [1, Theorem 4.6] L is a Gruenberg algebra, L is not a $\mathfrak{C}(\mathrm{asc})$ -algebra. Moreover $L \notin \mathfrak{E}(\mathrm{si})\mathfrak{A}$ (cf. [8, Example 6.7]). We put $I = \sum_{i=2}^{\infty} N_i$, which is an ideal of L. Then $L/I \cong L_2$. As we have seen above $L_2 = \langle e_1, e_2, e_3 \rangle$ with $[e_1, e_2] = e_3$ and $\zeta(L_2) = \langle e_3 \rangle$. From this we deduce that $\langle e_1 \rangle$ is a 2-step subideal but not an ideal of L_2 . Thus L does not belong to \mathfrak{T} . That is to say, we have over an arbitrary field

$$\mathfrak{T} < \mathfrak{C}$$
 and $\mathfrak{C}(asc) < \mathfrak{C}$.

EXAMPLE 4.2. Let S be the 3-dimensional simple Lie algebra with basis $\{e_{-1}, e_0, e_1\}$ over any field and with multiplication $[e_{-1}, e_0] = e_{-1}$, $[e_0, e_1] = e_1$ and $[e_{-1}, e_1] = e_0$. We set $L = \bigoplus_{i=1}^{\infty} S_i$, where each S_i is an isomorphic copy of S. Using [6, Theorem 4.4] we know that L belongs to \mathfrak{T} (ser). On the other hand, there is a soluble subalgebra of L which is neither abelian nor almostabelian. Hence by Proposition 3.2 L is not a \mathfrak{C}^* -algebra. That is to say, we have over an arbitrary field

$$\mathfrak{C}^* < \mathfrak{C}(\operatorname{asc}), \quad \mathfrak{T}^S < \mathfrak{T}(\operatorname{asc}) \quad \text{and} \quad \mathfrak{T}(\operatorname{ser})^S < \mathfrak{T}(\operatorname{ser}).$$

EXAMPLE 4.3. By [2, Theorem 6.5.5] over any field of characteristic zero there exists a non-zero locally nilpotent Lie algebra L with trivial Gruenberg radical. Evidently we see that L belongs to $\mathfrak{C}(\operatorname{asc})$ but not to $\mathfrak{C}(\operatorname{ser})$. Hence over any field of characteristic zero we have

$$\mathfrak{C}(\operatorname{ser}) < \mathfrak{C}(\operatorname{asc})$$
.

EXAMPLE 4.4. Let W be a Witt algebra, that is, a Lie algebra over a field of characteristic zero with basis $\{w_1, w_2, ...\}$ and multiplication $[w_i, w_j] = (i-j)w_{i+j}$. Since every non-zero soluble subalgebra of W is 1-dimensional ([7, Corollary to Theorem 1]), it follows from Proposition 3.2 that W is a \mathfrak{C}^* -algebra. Let N be the subalgebra of W generated by $w_4, w_5, ...$ Then it is easy to see that W/N is not a \mathfrak{C} -algebra. Hence W is not a \mathfrak{T} -algebra. These tell us that over any field of characteristic zero the classes \mathfrak{C} , $\mathfrak{C}(\operatorname{asc})$ and \mathfrak{C}^* are not Q-closed and

$$\mathfrak{T}^{S} < \mathfrak{C}^{*}.$$

EXAMPLE 4.5. We consider a metabelian Lie algebra L not belonging to \mathfrak{C} . For example, let X be an abelian Lie algebra with basis $\{x_0, x_1, x_2, \cdots\}$ and σ be the upward shift on X, that is, $x_i \sigma = x_{i+1}$ for all $i \ge 0$. Then clearly the split extension $L = X + \langle \sigma \rangle$ is not a \mathfrak{C} -algebra. Thus from such a Lie algebra L we can deduce that any class \mathfrak{X} satisfying $\mathfrak{A} \le \mathfrak{X} \le \mathfrak{C}$ is not E-closed.

References

- [1] R. K. Amayo: Ascendant subalgebras of Lie algebras, preprint, Universität Bonn, 1975.
- [2] R. K. Amayo and I. Stewart: Infinite-dimensional Lie Algebras, Noordhoff, Leyden, 1974.
- [3] M. Honda: Joins of weak subideals of Lie algebras, Hiroshima Math. J. 12 (1982), 657-673.
- [4] T. Ikeda: Hyperabelian Lie algebras, Hiroshima Math. J. 15 (1985), 601-617.
- [5] N. Jacobson: Lie Algebras, Interscience, New York, 1962.
- [6] Y. Kashiwagi: Lie algebras which have an ascending series with simple factors, Hiroshima Math. J. 11 (1981), 215-227.

- [7] F. Kubo: A note on Witt algebras, Hiroshima Math. J. 7 (1977), 473-477.
- [8] T. Sakamoto: Lie algebras satisfying the weak minimal condition on ideals, Hiroshima Math. J. 16 (1986), 51-75.
- [9] L. A. Simonjan: Certain examples of Lie groups and algebras, Sibirsk. Mat. Ž. 12 (1971), 837–843, translated in Siberian Math. J. 12 (1971), 602–606.
- [10] I. Stewart: Lie Algebras, Lecture Notes in Mathematics 127, Springer, Berlin, 1970.
- [11] S. Tôgô: Serially finite Lie algebras, Hiroshima Math. J. 16 (1986), 443-448.
- [12] S. Tôgô: Infinite-dimensional Lie Algebras (in Japanese), Maki, Tokyo (to appear).
- [13] S. Tôgô and H. Miyamoto: Lie algebras in which every ascendant subalgebra is a subideal, Hiroshima Math. J. 8 (1978), 491–498.
- [14] V. R. Varea: On Lie algebras in which the relation of being an ideal is transitive, Comm. Algebra 13 (1985), 1135–1150.

Department of Mathematics, Faculty of Science, Hiroshima University

and

Department of Mathematics, Hiroshima University of Economics*)

^{*)} The present address of the second author is as follows: Department of Mathematics, Fukuoka University of Education (Munakata 811–41, Japan).