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Introduction

A Lie algebra L is called a t-algebra if every subideal of L is an ideal of L,
a T-algebra if any subalgebra of L is a t-algebra and a c-algebra if every nilpotent
subideal of L is an ideal of L. We easily see that L is a c-algebra if and only if
every 1-dimensional subideal of L is an ideal of L. Recently Varea [14] introduced
the concept of C-algebra in Lie algebra: L is a C-algebra if every subalgebra of a
nilpotent subalgebra H of L is an ideal in the idealizer of H in L. He investigated
the property of finite-dimensional C-algebras, and in [14] he proved the following
results:

(a) Let L be an n-dimensional Lie algebra over a field T of at least n—1
elements. Then the following are equivalent: i) L is a C-algebra. ii) L is a T-
algebra. iii) Every subalgebra of L is a c-algebra.

(b) Let L be a finite-dimensional Lie algebra over a field of characteristic
zero. Then the following are equivalent: i) L is a c-algebra. ii) L is a t-algebra.
iil) L=R@S where R is an ideal of L which is either abelian or almost-abelian
and S is a semisimple ideal of L.

The purpose of this paper is to give several generalizations of (a), (b) and
other results in [14] without the finite-dimensionality of L and the restriction on
the cardinality of f.

The main results of this paper are as follows.

(1) Let L be a serially finite Lie algebra over a field of characteristic zero.
If the locally soluble radical of L belongs to the class £(si)2l of Lie algebras, then
the three statements in (b) are equivalent (Theorem 2.3).

(2) Let L be an arbitrary Lie algebra. Then the following are equivalent:
i) L is a C-algebra. ii) Every subalgebra of L is a c-algebra. iii) Every 1-
dimensional ascendant subalgebra of a subalgebra H of L is an ideal of H (Theorem
3.5).

(3) Let L be a locally finite Lie algebra over any field. Then the following
are equivalent: i) L is a C-algebra. ii) L is a T-algebra. iii) Every serial
subalgebra of a subalgebra H of L is an ideal of H. iv) Every 1-dimensional serial
subalgebra of a subalgebra H of L is an ideal of H (Theorem 3.9).

(4) Over any field there exist a c-algebra which is neither a C-algebra nor a
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t-algebra, and a t-algebra which is not a T-algebra (Examples 4.1 and 4.2). Over
any field of characteristic zero there exists a C-algebra which is not a T-algebra
(Example 4.4).

In this paper we use the terminology €-algebras, €*-algebras, T-algebras and
IS-algebras instead of c-algebras, C-algebras, t-algebras and T-algebras in [14]
respectively.

1.

Throughout the paper Lie algebras are not necessarily finite-dimensional
over a field T of arbitrary characteristic unless otherwise specified. We mostly
follow [2] for the use of notations and terminology.

Let L be a Lie algebra over f and let H be a subalgebra of L. For an ordinal
o, H is a o-step ascendant (resp. weakly ascendant) subalgebra of L, denoted by
H=a°L (resp. H<°L), if there exists an ascending series (resp.chain) (H,),, of
subalgebras (resp. subspaces) of L such that

(1) Hy=H and H,=L,

(2) H,<aH,., (resp.[H,., HI= H,) for any ordinal a<a,

(3) H,=\U,.; H, for any limit ordinal 1<o.

H is an ascendant (resp. a weakly ascendant) subalgebra of L, denoted by H asc L
(resp. H wasc L), if H<a°L (resp. H<°L) for some ordinal 6. When ¢ is finite,
H is a subideal (resp. weak subideal) of L and denoted by H si L (resp. H wsi L).
For a totally ordered set Z, a series from H to L of type X is a collection {4,, V,:
o €2} of subalgebras of L such that

(1) HcV,cA,foralloeX,

(2) L~H=U;es (A1),

(3) AV, ifr<o,

4) V,<adA,foralloel.

H is a serial subalgebra of L, denoted by H ser L, if there’ exists a series from H
to L of type X for some ZX.

Let X be a class of Lie algebras and let 4 be any of the relations <, <, si,
asc, ser. A Lie algebra L is said to lie in L(4)X if for any finite subset X of L there
exists an X-subalgebra K of L such that X KAL. In particular we write LX
for L(<)X. When LeLX (resp.L(ser)X), L is called a locally (resp. serially)
X-algebra. &, A and N are the classes of Lie algebras which are finite-
dimensional, abelian and nilpotent respectively. For an ordinal o, £,(4)X is
the class of Lie algebras L having an ascending series (L,),., of A-subalgebras
such that

(1) Ly=0and L,=L,

2) L,<L,.,and L,,,/L,€ X for any ordinal a <o,

(3) L,=‘U,<,L, for any limit ordinal 1<o.
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We define E(A)X=\U,.qE(A)X, E(A)X=\U,<, E(4)X. In particular we write
EX and EX for E(<)X and E(<)X respectively. Thus 2l is the class of soluble
Lie algebras. When Le £(<a1)X, L is called a hyper X-algebra. QX is the class of
Lie algebras consisting of all homomorphic images of X-algebras. We say that
X is A-closed if X=AX, where A is either L, Eor Q. Let 4 be any of the relations
si, asc, ser. I(4) is the class of Lie algebras L in which every 4-subalgebra of L
is an ideal of L. In particular we write I for I(si). F(asc) (resp. I(ser)) is de-
noted by M’ (resp. X;) in [13] (resp. [6]).

Let H be a subalgebra of L. We denote by C,(H) (resp. I,(H)) the centralizer
(resp. idealizer) of Hin L. For xe L we put H*=3,-, [H, ,x], where [H, ,x]=
[H, x, x,..., x]. The Fitting radical v(L) of L is the sum of all nilpotent ideals of

Qe

L. The"Hirsch-Plotkin radical p(L) of L is the unique maximal locally nilpotent
ideal of L. The Baer radical (L) of L is the subalgebra generated by all nilpotent
subideals of L and the Gruenberg radical y(L) of L is the subalgebra generated
by all nilpotent ascendant subalgebras of L. For a locally finite Lie algebra L
the locally soluble radical (L) of L is the unique maximal locally soluble ideal
of L.

Now we begin with an elementary result whose proof is easy.

LEmMMA 1.1. Let L be a Lie algebra and let N be a subspace of L. Then
the following are equivalent:

(1) Every l-dimensional subspace of N is an ideal of L.

(2) For every xe L, ad x is a scalar transformation on N.
Moreover, if either (1) or (2) holds, then N is an abelian ideal of L and
dim L/C(N)< 1.

J(wasc)L{ is the class of Lie algebras generated by a set of weakly ascendant
locally finite subalgebras. We know that in any Lie algebra (resp. J(wasc) Lg-
algebra) L over a field of characteristic 0 B(L) (resp. y(L)) is an ideal of L owing
to [10, Theorem 10.7] (resp. [12, Theorem 3.3.4]). For our arguments we need
the following result, which may be shown by using [2, Lemma 9.1.2(c)] and
[4, Lemma 4.1].

LEMMA 1.2. Let L be a Lie algebra over a field t and let N be a subalgebra
of L. Then we have C,(N)XN if L, N and ¥ satisfy one of the following state-
ments:

(1) Lef&(<a)A, N=w(L) and t has any characteristic.

(2) Le&(<)LR, N=p(L) and ¥ has any characteristic.

(3) Le(si)A, N=p(L) and ¥ has characteristic 0.

(4) LeeNni(wasc) Ly, N=y(L) and t has characteristic 0.
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2.

In this section we shall consider three new classes €, €(asc) and E(ser) of Lie
algebras containing the classes T, T(asc) and I(ser) respectively. Let 4 be one of
the relations si, asc, ser. €(4) is the class of Lie algebras L in which every 1-
dimensional 4-subalgebra of L is an ideal of L. In particular we write € for €(si).
A @-algebra is equal to a c-algebra in [14], that is, a Lie algebra in which every
nilpotent subideal is an ideal. A Lie algebra L is said to be almost-abelian if L
is the split extension of an abelian algebra by the 1-dimensional algebra of scalar
multiplications. The following result generalizes [14, Corollary 3.3], [6,
Theorem 6.4] and [3, Proposition 2.8].

PROPOSITION 2.1. Let L be a hyperabelian Lie algebra over a field of any
characteristic (resp. an €(si)-algebra over a field of characteristic zero). Then
the following are equivalent:

(1) Every serial subalgebra of L is an ideal of L.

(2) Every l-dimensional serial subalgebra of L is an ideal of L.

(3) Every ascendant subalgebra of L is an ideal of L.

(4) Every l-dimensional ascendant subalgebra of L is an ideal of L.

(5) Every subideal of L is an ideal of L.

(6) Every 1-dimensional subideal of L is an ideal of L.

(7) L is either abelian or almost-abelian.

Proor. Evidently we have the following diagram of implications:

(B 6)
o B B
(2o (4 o (6)

(6)»(7): Let N=v(L) (resp. N=f(L)). Then forany y e N we have {y) siL
by [2, Lemma 1.3.7 (resp. Theorem 6.2.1)]. Therefore {y)<aL. It follows
from Lemmas 1.1 and 1.2 that N is abelian, dim L/N<1 and ad x is a scalar
transformation on N for any xe L. Thus L is either abelian or almost-abelian.

(7)o (1) is clear by [6, Lemma 6.3].

Furthermore we have the following proposition whose proof is similar to
that of Proposition 2.1.

PROPOSITION 2.2. Let L be a Lie algebra over a field of characteristic zero.
If Le € n y(wasc)L, then the following are equivalent:

(1) Every serial subalgebra of L is an ideal of L.

(2) Every l-dimensional serial subalgebra of L is an ideal of L.
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(3) Every ascendant subalgebra of L is an ideal of L.
(4) Every l-dimensional ascendant subalgebra of L is an ideal of L.
(5) L is either abelian or almost-abelian.

Now we shall give the main theorem in this section, which generalizes [14,
Corollary 3.5].

THEOREM 2.3. Let L be a serially finite Lie algebra over a field of charac-
teristic zero. If o(L) € E(si), then the following are equivalent:

(1) Every 1-dimensional serial subalgebra of L is an ideal of L.

(2) Every l-dimensional ascendant subalgebra of L is an ideal of L.

(3) Every 1-dimensional subideal of L is an ideal of L.

(4) Every subideal of L is an ideal of L.

(5) L=R®S, where R is an ideal of L which is either abelian or almost-
abelian and S is a semisimple ideal of L.

ProoOF. Implications (1)) (2) ) (3) and (4) o (3) are trivial.

(3)(5): Let R=0(L), N=B(R). For any ye N we have {y><aL since
{y>siL. By Lemma 1.1 N is an abelian ideal of L and dim L/C;(N)<1. On
the other hand [11, Theorem 2] and [2, Theorem 13.5.7] show that there exists
a Levi factor S of L. Furthermore S=S52<12<C,(N) by [2, Theorem
13.4.2] and Cx(N)=N by Lemma 1.2. Hence we have

CN)=CN) N (R4S)=Cr(N) + S=N@S.

Suppose that (x)siR. Then {(x)><aL and so {(x><aR. By making use of
Proposition 2.1, we see that R is either abelian or almost-abelian. Finally since
S=S2=C,(N)?ch C;(N)<aL it follows that S<L.

(5)D(1): Suppose that {(x)»ser L. Then {(x)<p(L)<R by [2, Theorem
13.3.7]. Since {x) ser R, we have {x)><aR using [6, Lemma 6.3]. Therefore we
have {x)><L.

(5)D(4): Let H<L and put S;={se S: there is r € R such that r+se H}.
It is easy to show that S, is an ideal of S containing Sn H. Also S, is semisimple
by [2, Theorem 13.4.2 and Lemma 13.4.3]. Since S;<H+R, S,=S}<(H+R)?
<H+R? and so S;<(H+R??<H. Hence we have S;,=Sn H. Furthermore
since H<R+S,, we obtain H=(H n R)®(H n S), where H n R is either abelian
or almost-abelian. Now assume that Hsi L. Then by repeating this argument
we have H=(H N R)®(H n S). It follows that Hn Rand H n S are ideals of R
and S respectively. Hence we see that H<L.

REMARK. Over any field there exists an £l n L9 -algebra which belongs to €
but not to €(asc) U T U E(si)A (Example 4.1). Therefore in Proposition 2.1 we
can not extend the classes E(<a) and E(si) (over a field of characteristic 0) to
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the class E. Furthermore by [11, Theorem 4] we can not remove the hypothesis
“o(L) e E(si)A’’ in Theorem 2.3.

3.

We denote by €* the class of C-algebras introduced in [14], that is, Lie
algebras L in which each subalgebra of a nilpotent subalgebra H of L is an ideal
in the idealizer of Hin L. In this section we shall investigate not necessarily finite-
dimensional €*-algebras and related Lie algebras. We begin with the following

LeMMA 3.1. Let L be a €*-algebra.

(@) If N is a locally nilpotent subalgebra of L, then N is abelian.

(b) If N is a locally nilpotent ideal of L, then ad x is a scalar transfor-
mation on N for any x€ L and dim L/C (N)< 1.

Proor. Let N be a locally nilpotent subalgebra of L and let x, y be any
elements of N. Then there exists a nilpotent subalgebra K of N which contains
x and y. Since L is a €*-algebra, any 1-dimensional subalgebra of K is an ideal
of K. It follows from Lemma 1.1 that K is abelian. Therefore [x, y]=0 and
N is abelian. Moreover if N is an ideal of L, then any 1-dimensional subalgebra
of N is an ideal of L. By using Lemma 1.1 we have the assertion of (b).

We shall give several characterizations of €*-algebras in the following propo-
sition, which generalizes [14, Theorem 2.4], and in Theorem 3.5.

PrROPOSITION 3.2. Let L be a Lie algebra over an arbitrary field. Then
the following are equivalent:

(1) L is a @*-algebra.

(2) Every soluble subalgebra of L is either abelian or almost-abelian.

(3) Every E(<)LN-subalgebra of L is either abelian or almost-abelian.

Proor. (1)0)(3): Let H be an E(<a)LM-subalgebra of L and set N = p(H).
Since H is a €*-algebra, it follows from Lemma 3.1 that N is abelian and dim H/
Cy(N)<1. Furthermore by Lemma 1.2 we have Cx(N)< N and so dim H/N<1.
If dim H/N =0, then H is abelian. If dim H/N =1, then we can pick up an element
x of H~N and write H=N 4 {x), where ad x is a non-zero scalar transformation
on N. Therefore H is almost-abelian.

(3)D(2) is clear.

(2)p(1): Let N be a nilpotent subalgebra of L and let K be a subalgebra of
N. Then N+<{x) is either abelian or almost-abelian for any element x of I,(N).
If N+{x) is abelian, then [K, x]< K is clear. We may assume that N+ {(x) is
almost-abelian. Then x& N and (N+{x>)?*=N. Since ad x is a scalar trans-
formation on N, we have [K, x]= K. This shows that K is an ideal of I (N).
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Varea showed the following results: Let L be an n-dimensional Lie algebra
over a field f of at least n—1 elements.

(V1) L is a @*-algebra if and only if every subalgebra of L is a €-algebra
([14, Proposition 2.6]).

(V2) L is a @*-algebra if and only if every subalgebra of L is a T-algebra
([14, Theorem 2.8]).
Now in these results we can remove the restriction on the cardinality of ¥ and
the finite-dimensionality of L.

Before generalizing (V1) and giving other characterizations of €*-algebras
we shall consider a stronger form:

LemMMA 3.3. Let L be a Lie algebra over an arbitrary field. Then the fol-
lowing are equivalent:

(1) For any subalgebra H of L, every ascendant subalgebra of H is an
ideal of H.

(2) For any subalgebra H of L, every subideal of H is an ideal of H.

(3) For K<L and xeL, if [K, ,x, K]=K for any n>1 then K is an ideal
of {K, x>.

Proor. (1) (2) is clear.

(2)p(3): Let K<L and x € L such that (K, ,x, K]=K for all n>1. Since
K<K*<a{K, x), we obtain K<{(K, x).

(3)o(1): Let Kasc H and let (4,),<, be an ascending series from K to H.
We show by transfinite induction on « that K is an ideal of 4,. Let a>1 and
assume that K<1A4, for all B<a. If a is a limit ordinal, then K<\Ug., Ag=A,.
Otherwise by induction hypothesis K<14,_;<14,. Let xe A4,. Since [K, ,x, K]
c K for any n>1, it follows that K<a{K, x). Hence we have K<14,.

Let X be a class of Lie algebras. Then we denote by XS the largest s-closed
subclass of X. That is, L belongs to X5 if and only if every subalgebra of L
belongs to X.

Now as a direct consequence of Lemma 3.3 we have

COROLLARY 3.4. T(asc)S=TS.

As mentioned above we shall provide a generalization for (V1) and charac-
terizations of €*-algebras, which is the first main theorem in this section.

THEOREM 3.5. Let L be a Lie algebra over an arbitrary field. Then the
following are equivalent:

(1) L isa Q*-algebra.

(2) For any subalgebra H of L, every 1-dimensional ascendant subalgebra
of H is an ideal of H.

(3) For any subalgebra H of L, every 1-dimensional subideal of H is an
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ideal of H.
(4) For two elements a and x of L, if [a, ,x, ale{a) for any n>1 then {a)
is an ideal of <{a, x).

Proor. The equivalence of (2), (3) and (4) can be proved as in Lemma 3.3.

(1) (3): It is sufficient to show that if (a)<a?H then <{ad><aH. Suppose
that (a) IB=H. Let x be any element of H~B. We put M, =3 1_, {[a, x])
forany n>0 and M=\, M,. Then we have [a, ,x, Bl M, by induction on
n. Thus M, is an ideal of B for all n>0. Since M,=M,_,+<{[a, ,x]>, we
obtain M{'<M,_,. Therefore M{"*1'=0. By virtue of Proposition 3.2 we
conclude that M{¥ =0 for all n>0 and so M>=0. Now we set K=M +{x).
Then K =0. Again by Proposition 3.2 K is either abelian or almost-abelian.
If K is abelian, then [a, x]=0. If K is almost-abelian, then [a, x] € {(a) since
K?=M. Hence we have [a, H]=<a).

(3)D(1): Let H be a nilpotent subalgebra of L and let a be any element of
H. Since {a) is a subideal of I,(H), {a) is an ideal of I, (H). Thus L is a C*-
algebra.

COROLLARY 3.6. CE*=((asc)S=(5.

Next as for (V2) we need the following

LEMMA 3.7. Let L be a finite-dimensional C€*-algebra over any field. If
K is an ideal of L, then K2+ (h) is an ideal of L for any he K.

PROOF. We assume that K2<K=<IL. Let x be an element of L~K. We
may moreover assume that L=K+{x). Let h be an element of K~K2. It
suffices to show that [L, K] (h)+ K2, If Ix((hY)=<h), then {(h) is a Cartan
subalgebra of K. Let K=K+ K, be the Fitting decomposition of K relative
to ad h. Using [5, Proposition 3.1] we have K,=<h) and so K=K?+{h).
In this case there is nothing to prove. We next consider the case I (<h))x{h).
Let k be an element of I ({h>)~<{h) and let H be a maximal soluble subalgebra of
L containing h and k. By Proposition 3.2 H is either abelian or almost-abelian.
If H is abelian, then we can consider the Fitting decomposition of L relative to
ad H,say L=Ly+L,. Itturnsoutthat L=H+ K, since H is a Cartan subalgebra
of L and L,cL?< K. Hence [L, h]= K2 Next suppose that H is almost-
abelian. If h& H?, then H=H?>4{+<{h)> and ad h is a non-zero scalar trans-
formation on H2. Now we can write k=y+oh, where O0xye H? and aef.
Accordingly we have [k, h]=[y, h]=0. Since [k, h]e K2 n {h)=0, we have a con-
tradiction. Therefore we obtain he H2 andso H& K. Thisleads to L=H + K.
It follows that [L, h]<[H, h]+[K, h]=<{h)>+ K2. This completes the proof.

From Lemma 3.7 we can deduce the following result, which generalizes [14,
Proposition 2.7].
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PrROPOSITION 3.8. Let L be a locally finite €*-algebra over an arbitrary
field. If N is an ideal of L, then L|N is a €*-algebra.

ProOF. Let K/N be a nilpotent subalgebra of L/N and let H/N be a sub-
algebra of K/N. Suppose that xel,(K) and he H. We set K,=Kn<h, x>
and recursively define K, , = K2+ (h) for any n>1. We first show that

K2z > K7 and K, <@« K, + {x) for any positive integer n. (*)

When n=1 it is clear that () is true. Suppose that (x) is true for n>1. Then
we have

K71 = (Ki+<h)? = (Ki+<h))? = Kyt

Since K, is finite-dimensional, we deduce from Lemma 3.7 that K,,, =K2+
(hy<K,+<{x>. Hence K,,;<sK,,;+<x>. It follows that (x) is true for
any n>1. Since K/N is nilpotent, we have K" <N for some m. Then

[h,x]e K2 + <h) = K7 + <h) = N + <h) < H.
This shows that H<aI;(K) and so H/N<I;,(K/N). Thus L/N is a @*-algebra.

Now we can show the second main theorem in this section, which is a gener-
alization for (V2).

THEOREM 3.9. Let L be a locally finite Lie algebra over an arbitrary field.
Then the following are equivalent:

(1) For any subalgebra H of L, every serial subalgebra of H is an ideal of
H.

(2) For any subalgebra H of L, every 1-dimensional serial subalgebra of
H is an ideal of H.

(3) For any subalgebra H of L, every ascendant subalgebra of H is an
ideal of H.

(4) For any subalgebra H of L, every 1-dimensional ascendant subalgebra
of H is an ideal of H.

(5) For any subalgebra H of L, every subideal of H is an ideal of H.

(6) For any subalgebra H of L, every 1-dimensional subideal of H is an
ideal of H.

Proor. Implications (1) (3)D(5)p(6) and (1) (2)D (4)D(6) are trivial.

(6)(5): Suppose that KsiH<L. Then K®<H by [2, Lemma 1.3.2]
and K/K¢si H/K®. By using Theorem 3.5 and Proposition 3.8 we see that
H/K® is a @*-algebra. Since K/K¢ is locally nilpotent, K/K® is abelian by
Lemma 3.1. Hence ({(x)+ K®)/K*<K/K®si H/K® and so ({x)>+ K%)/K®*<H|
Ko for all xe€ K by Theorem 3.5. Thus we obtain K< H.
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(5)(1): Suppose that Kser H<L. Let k and x be elements of K and H
respectively. Then by [2, Proposition 13.2.4] Kn <k, x> si (k, x) and so
K n <k, x)<alk, x). Hence we have [k, x]e K for any ke K and xe H.

REMARK. In general the class €* is not equal to the class I5 (see Example
4.4).

Varea determined the structure of finite-dimensional €*-algebras over an
algebraically closed field ([14, Theorem 2.9]). By making use of this result we
can determine the structure of locally finite €*-algebras over an algebraically
closed field. '

PROPOSITION 3.10. Let L be a locally finite €*-algebra over an alge-
braically closed field. Then L is either abelian, almost-abelian or 3-dimensional
simple.

ProOF. Let F be any finite-dimensional subalgebra of L. Then by [14,
Theorem 2.9] F is either abelian, almost-abelian or 3-dimensional simple. If
every finite-dimensional subalgebra of L is either abelian or almost-abelian,
then L) =0. It follows from Proposition 3.2 that L is either abelian or almost-
abelian. We now assume that there exists a 3-dimensional simple subalgebra
F of L. Then for all xeL, {(F, x) is finite-dimensional. Hence <{F, x) must
be 3-dimensional simple. From this we can deduce that L is 3-dimensional simple.

Finally in the following result we see that every LELM-subalgebras of a €*-
algebra is either abelian or almost-abelian, which generalizes Proposition 3.2.

PROPOSITION 3.11. Let L be a Lie algebra over any field. 1f Le LELM, then
the following are equivalent:

(1) For any subalgebra H of L, every serial subalgebra of H is an ideal
of H.

(2) For any subalgebra H of L, every 1-dimensional serial subalgebra of
H is an ideal of H.

(3) For any subalgebra H of L, every ascendant subalgebra of H is an
ideal of H.

(4) For any subalgebra H of L, every 1-dimensional ascendant subalgebra
of H is an ideal of H.

(5) For any subalgebra H of L, every subideal of H is an ideal of H.

(6) For any subalgebra H of L, every l-dimensional subideal of H is
an ideal of H.

(7) L is either abelian or almost-abelian.

Proof. Implications (1) (3)2 (5) 0 (6) and (1) (2) o) (4) D (6) are trivial.
(6)D(7): Let a be any element of L?). Then there is an ELN-subalgebra H
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of L such that ae H®. Let (H,),., be an ascending L-series of H. We
shall show by transfinite induction on « that H,<1H for any ordinal t<¢. Assume
that Hg<aH for all <a. If ais a limit ordinal, then H,=\U,., Hy<<H. Other-
wise, since H,_, belongs to £(-a)L:M we have H?), =0 by using Proposition 3.2.
If M/H,_, is a soluble subalgebra of H/H,_,, then M is soluble. Hence by
Proposition 3.2 we see that H/H,_, is a C*-algebra. Therefore H,/H,_, is abelian
by Lemma 3.1. It follows that ({(x>+H,_,)/H,_,asc H/H,_, for all xeH,.
By Theorem 3.5 we have (x)+ H,_,<tH, whence H,<H. Now Proposition 3.2
leads to H®=0. Therefore L>>=0. Finally by using Proposition 3.2 we can
conclude that L is either abelian or almost-abelian.
(7) (1) is clear by [6, Lemma 6.3].

REMARKS. (1) The classes €, €(asc), €(ser), €*, T, T (asc), T(ser) and IS
are L-closed but not E-closed (see Example 4.5).

(2) The classes ¥, T (asc) and IS are Q-closed, but the classes €, E(asc)
and €* are not Q-closed (see Example 4.4).

4.

In this section we shall give several examples concerning the classes in Sections
2 and 3.

ExaMPLE 4.1. Let U be the universal enveloping algebra of a Lie algebra
L over any field and let V be the associative ideal in U which is generated by L.
Suppose that L is nilpotent of class n—1 (n>2). The set of elements of V with
weight >n form an ideal in ¥V, which is denoted by S. Then N=N(L)=V/S is an
associative nilpotent algebra of class n and can be considered as a right L-module
in the usual way. Thus we form the split extension E=E(L)= N 4 L, which is
nilpotent of class n.

Let L, be a I-dimensional Lie algebra, say L,=<(e)>. Then N,=N(L,)=
(e, e?) and so L,=E(L)=N,+L,=<e, e?>4<ed>. We recursively define
N,=N(L,) and L,,,=E(L,)=N,+L, for all n>2. Set L=\UX, L, (the direct
limit of {L,}). Then by [9, Theorem 4] we know that Le L9 n £A and that L has
no non-zero bounded left Engel elements. Hence L is a G-algebra. Since by
[1, Theorem 4.6] L is a Gruenberg algebra, L is not a €(asc)-algebra. Moreover
L& E(si)U (cf. [8, Example 6.7]). We put =3, N;, which is an ideal of L.
Then L/I=L, As we have seen above L,=<e,, e,, e;) with [e,, e,]=e; and
{(L,)=<e;y. From this we deduce that {e,) is a 2-step subideal but not an ideal
of L,. Thus L does not belong to T. That is to say, we have over an arbitrary
field

I <€ and (E(asc) < €.
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ExaMmPLE 4.2. Let S be the 3-dimensional simple Lie algebra with basis
{e_,, ey, €1} over any field and with multiplication [e_,, eg]=e_,, (e, €;]1=¢,
and [e_, e,]=¢,. Weset L=®, S;, where each S; is an isomorphic copy of
S. Using [6, Theorem 4.4] we know that L belongs to T (ser). On the other
hand, there is a soluble subalgebra of L which is neither abelian nor almost-
abelian. Hence by Proposition 3.2 L is not a C*-algebra. That is to say, we
have over an arbitrary field

C* < @(asc), TS < I(asc) and T (ser)S < T(ser).

ExampLE 4.3. By [2, Theorem 6.5.5] over any field of characteristic zero
there exists a non-zero locally nilpotent Lie algebra L with trivial Gruenberg
radical. Evidently we see that L belongs to €(asc) but not to €(ser). Hence
over any field of characteristic zero we have

E(ser) < G(asc).

ExaMPLE 4.4. Let W be a Witt algebra, that is, a Lie algebra over a field of
characteristic zero with basis {w,, w,,...} and multiplication [w;, w;]J=(i—j)w; ;.
Since every non-zero soluble subalgebra of W is 1-dimensional ([7, Corollary to
Theorem 1]), it follows from Proposition 3.2 that Wis a C*-algebra. Let N be
the subalgebra of W generated by w,, ws,.... Then it is easy to see that W/N is
not a C-algebra. Hence Wis not a T-algebra. These tell us that over any field
of characteristic zero the classes €, €(asc) and €* are not Q-closed and

I5 < @,

ExAMPLE 4.5. We consider a metabelian Lie algebra L not belonging to €.
For example, let X be an abelian Lie algebra with basis {xq, x, X;,~:-} and &
be the upward shift on X, that is, x;0=x;,, for all i>0. Then clearly the split
extension L= X 4 <o) is not a G-algebra. Thus from such a Lie algebra L we
can deduce that any class X satisfying R <X <€ is not e-closed.
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