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Introduction

Let d be a linear endomorphism of a Lie algebra L. We call d a locally

inner derivation of L if, for any finite-dimensional subspace F of L, there is an

element x e L such that yd=[y. x] for any yeF. Evidently the set of locally

inner derivations of L is an ideal of the derivation algebra Der(L). It will be

denoted by Lin (L).

C. A. Christodoulou introduced the notion of cofinite Lie algebras by

analogy with cofinite groups and investigated their structure in [2]. In group

theory locally inner automorphisms and local conjugacy classes of FC-groups

have been studied by many authors from various points of view (see for example

[3, 4, 6, 9, 10]). In this paper, following their works we study locally inner

derivations of ideally finite Lie algebras by making use of the notion of cofinite

Lie algebras. In Section 1 we shall show that for a cofinite and ideally finite

Lie algebra, its locally inner derivations are precisely those induced by elements

of its idealizer in its profinite completion (Theorem 1). In Section 2 we shall

show that for an ideally finite Lie algebra L, Lin (L) is a profinite completion of

Inn (L) for some cofinite topology (Theorem 2), and by using it we shall determine

the dimension of Lin (L) and when Lin (L) and Inn (L) coincide over some fields

(Theorems 3 and 4, Corollary 2).

1.

We shall be concerned with Lie algebras which are not necessarily finite-

dimensional over an arbitrary field f of characteristic zero. A Lie algebra L is

called a cofinite Lie algebra if it has a topology satisfying the following C1-C4,

where JΓ(L) will denote the set of closed ideals of L of finite codimension, and

will denote the set of closed vector subspaces of L of finite codimension:

Cl. n { X

C2. For any H e &~(L), there exists K e JΓ(L) such that

C3. If //, K are vector subspaces of L such that HαK and H e ^(L), then

K is closed.

C4. The set {x + U : x e L, U e f(L)} is a subbase of closed sets of L.
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This topology is called a cofinite topology, which was suggested by the definition

of coset topology in Hochshild and Mostow [5]. A cofinite Lie algebra cannot

be Hausdorff unl ike cofinite groups. A compact cofinite Lie algebra is called a

profinite Lie algebra. It is known that any cofinite Lie algebra L has a profinite

completion P, that is, L can be embedded as a dense subalgebra in a profinite

Lie algebra P (see [2, Proposition 3.2 and Theorem 3.3]).

Let L be a cofinite Lie algebra. A derivation d of L is called residually inner

if, for all Ke JΓ(L), we have KddK and the derivation consequently induced on

LIK is inner. It is easy to see that residually inner derivations are continuous.

Now we consider the relationship between locally inner derivations and

residually inner derivations of a cofinite Lie algebra.

LEMMA 1. Let L be a residually finite Lie algebra. Then a locally inner

derivation of L is residually inner for any cofinite topology on L.

PROOF. Let d be a locally inner derivation of L and let K be an ideal of L of

finite codimension. Then there exists a finite-dimensional subspace F of L such

that L = K + F. It is easy to see that Kd<^K. Since d is locally inner, there is

an element x e L such that < / | F = adL(x)|F. Thus the derivation induced by d

on L/K coincides with &dL/κ(x + K).

We require a lemma describing some closure properties of confinite Lie

algebras. A bar over a set will denote closure.

LEMMA 2. Let L be a dense subalgebra of a cofinite Lie algebra P and let

U be a vector subspace of P. Then

(a) U= Π {1/ + M: MeJΓ(P)}. In particular P = L + M for every Me

(b)
(c) // K e JΓ(L) then K(]L=K.

PROOF, (a) follows from [2, Proposition 1.6].

(b) Let JT(P) = {Λf i : / e / } . Suppose that M e JΓ(P). Then M Π

From (a), we have

M Γ) L = r\-e/(Mt. + (M n L))

= n {M + C M Π L ) : M CiM}

= Π {M n (M + L): M cM} = M.

Conversely let K e JΓ(L) and F be a finite-dimensional subspace of L such

that L = K + F. Then there exists M e JΓ(P) such that L n M ̂  K, since {L n Mf :

/ e / } is cofinal in JΓ(L). From the aobve M = L(] M^K. Hence K has finite

codimension in P and so K + F is closed in P by C3. Since L is a dense subalgebra
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of P and L is contained in K + F, we have P = K + F. Now [X, F]c= nίe

Mi, Ή c nfe/ (X + A/,-) - K. Thus K is an ideal of P and so X e JΓ(P).
(c) There is a closed subset C of P such that K = L fl C. Hence XcC and

so K n L c C n L = K . Thus K n L = X.

LEMMA 3. Lei L be a cofinite Lie algebra with a profinite completion P,
and let xe!P(L). Then adL(x) is a residually inner derivation of L, and
conversely any residually inner derivation of I, is induced by such an element.

PROOF. Let KeJΓ(L). Then XeJΓ(P) and KnL = K by Lemma 2.
Hence [K, x]cK n L = K. Since P=L = L+K we can write x = / + /c with
/ e L, k E K. For any y e L, we have [y, /c] = [y, x] — [y, /] e L Π K = K. Thus
&dL/κ(x + K) = adL/κ (l + K) and therefore adL(x) is residually inner.

Conversely let d be a residually inner derivation of L. For each KE Jf(L),

let S(K)={fl e P: yd — [y, fl] e K for all yeL}. Since d is residually inner,
S(X) is non-empty. Let 0eS(X) and B = {s-a: seS(K)}. It is not hard to

see that B is a closed subspace of P. Since S(K) = a + B, S(K) is closed.
Furthermore the set {S(K): Xejf(L)} has the finite intersection property, and
so we can take an element x from their intersection since P is compact. From

Lemma 2, n {K : K E JΓ(L)} = 0. If y e L, then we have yd-\y, x] e K for any
K E JΓ(L). Thus we have d = adL (x) and x e IP(L).

From Lemmas 1 and 3, we have the following

PROPOSITION 1. Let L be a cofinite Lie algebra with a profinite completion
P. Then every locally inner derivation of L is induced by an element of IP(L).

Now we search for conditions under which the converse statement of the
proposition holds.

LEMMA 4. Let L be a cofinte Lie algebra with a profinite completion P.
Soppose that L has a local system £? of finite-dimensional subalgebras satisfying :

(a) IfHE^,xEPand\_H, x]cιL, then x-y E IP(H) for some y E L.
(b) If 'f is a continuous homomorphism of L onto a finite-dimensional Lie

algebra, then If(L)(f(H))=f(IL(H))for each HE&.
Then each element of IP(L) induces a locally inner derivation of L.

PROOF. Let x e IP(L) and H E & . By (a) there is an element y E L such that
x — y E IP(H). So to prove that x induces a locally inner derivation of L, we may
replace x by x — y and assume that XEIP(H).

Now we put I = IP(H) and show that / n L is dense in /. Let MeJΓ(P)
and J = / n L . Then P = L + M and it is easy to see that the canonical homo-
morphism of L onto P/M is continuous. Therefore we can apply (b) to obtain

Since [/ + M, // + M]c=// + M, we have /
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and Ί = J + (l Π M). From Lemma 2, it follows that J= fϊ {J + (/ h M): Me

Let C = C7(//). Then I/C is finite-dimensional. For each M e JΓ(P) we have

[C + / Π M, //]<=// Π M. Therefore C centralizes H, whence C is closed and

CeJΓ(7). By Lemma 2, 7 = J + C. So we can write x = z + c w i t h zeJ, ceC.

Then [/z, x] = [/?, z] for any /ί e //, which completes the proof.

If L is cofinite and ideally finite, then each finite-dimensional ideal of L is a

closed ideal of P (see [2, Proposition 1.18 and Corollary 2.26]). So it is easy to

see that the local system consisting of all finite-dimensional ideals of L satisfies

the conditions (a), (b) of Lemma 4. As a consequence of Lemmas 1, 3 and 4 we

have the following

THEOREM 1. Let L be a cofinite and ideally finite Lie algebra and let P be

a profinite completion of L. Then the following subalgebras of Der(L) are

coincident:

(a) The algebra of all locally inner derivations of L.

(b) The algebra of all residually inner derivations of L.

(c) The algebra of all derivations induced on L by elements of IP(L).

We note that (b) and (c) are independent of the cofinite topology of L. In

group theory, [3, Theorem 5.5] is the corresponding result on locally inner auto-

morphisms.

We now construct a cofinite L(O 2)$-algebra in which the algebra of (c) is not

contained in the algebra of (a). Let Hi be the three-dimensional Heisenberg

algebra with basis {xt , yi9 zj (/= 1, 2,...), where [x, , j.] = zί, \_Hh zj=0. Next, we

put H = ΌrieN Hi and C = CrieN H^ Then there is a derivation d of H such that

xtd = zi - zi+l

d can be uniquely extended to a derivation of C, which we also denote by d.

Now we can form the split extensions L = //4-<d>, p = c + <d>, and we regard

L as a subalgebra of P.

It is clear that L3 = 0 and LeL(<32)$. For each i E N, let /C^Σ^. Ur
M^Cΐj^iHj. Then we can give L and P the cofinite topologies by X f 's and

Mf's. Now let R be the projective limit of {P/M f; ptj}9 where ptj is the canonical

homomorphism of P/Mf onto P/M7 (i^j). It is well known that the homo-

morphism/: P-*R such that af=(a + M,) is a topological and algebraic embedding

(see [2, Corollary 2.18]). Moreover it is not hard to see that / is surjective.

Thus P is topologically and algebraically isomorphic to R, and so P is a profinite

Lie algebra. Since L + Mt = P for each / e JV, P is a profinite completion of L by

Lemma 2.
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Now let x = (xi)eC. Then [//, x]c// and [x, d] = xd = zl e L. Hence

xe/P(L). Finally we show that adL(x) is not a locally inner derivation of L.
Suppose that adL(x) is locally inner. Then there is an element y = h1-\ \-hn +
tdeL such that [>>, d~\ = zl with h^Hi and f ef. For each /, writing hi = aixi +
fr^. + CjZj with 0f, fc, , ct et (/=!,..., n), we have [y, d']=yd = aί(zί — z2)H h
an(zn — zn+1)^zl9 which is a contradiction. This establishes the claim.

2.

In this section we investigate locally inner derivations of ideally finite Lie
algebras. In general an ideally finite Lie algebra H is not residually finite, but
the algebra of its inner derivations Inn (//) is residually finite and can be a cofinite
Lie algebra. Its profinite completion is given in the following

THEOREM 2. Let H be an ideally finite Lie algebra. Then Lin(//) is a
profinite completion oflnn(H)for some cofinite topology.

PROOF. Let { F j i j e J } be a collection of finite-dimensional ideals of H
such that Σj<=jFj = H and J is directed, that is, for any i.jeJ there exists / c e J
such that F; + Fj c:Fk. Put L = Lin (//), / - Inn (//) and let L(F) = {d e L: Fd = 0},

I(F) = L(F)Πl for each finite-dimensional ideal F of H. L(Fy)'s and /(Fj)'s
form finite residual systems of L and I respectively, which give L and / the cofinite

topologies.
We now let P = lim {L/L(Ff); p^} where p/y is the canonical homomorphism

of L/L(Fi) onto L/L(Fy) for F fgrFy. We claim that the natural embedding
/: L-»P is surjective. For this let (d, + L(F;))eP with d,.eL. If F^Fy, then
di-djEL(Fj) since dj + L(Fj) = (di + L(Fi))pij = di + L(Fj). Therefore we can
define a locally inner derivation 5 of H such that xδ = xdj for xeF 7 . Then
δf=(dj + L(Fj)) and so/is a topological and algebraic isomorphism. Hence L is

profinite.
Let d e L and F = Fy for some 7 e J. Then there exists x e H such that d\F =

adF(x). It is clear that d-aάH(x)eL(F). Therefore deL(F) + I and so L =
L(F) + /. It follows that ΐ = L from Lemma 2. This completes the proof.

It was shown in [2, Theorem 4.18] that a profinite Lie algebra cannot have
countable-dimension. Taking account of this result, we can deduce the following

COROLLARY 1. Let L be an ideally finite Lie algebra. Then Inn(L)e$

if and only //Lin (L) e 5 Further if L is contable-dimensional, then Lin(L) =
Inn (L) if and only if Inn (L) e 5

Let L be a semisimple ideally finite Lie algebra. It is well known that L is

decomposed as a direct sum DrieISh and Der(L) is isomorphic to Crίeί 5, where
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each St is a non-abelian simple J^-algebra (see [1, Theorem 13.4.2 and Proposition

13.4.5]). It is not hard to see that if L is infinite-dimensional, then dim Lin (L) =
dimCr ί e / S^lfl 1 ' 1 . We shall extend this result to general ideally finite Lie

algebras.

LEMMA 5. Let L be an infinite-dimensional ideally finite R$-algebra and
{Ni'. / e / } be a set of ideals of L of finite codimension such that M, e/ N{ = Q.

Then dim Inn

PROOF. Adding all intersections of finitely many /V, we may assume that

for any /, y e / there exists / c e / such that N f cc:/V ( n Nj. For each / e / , let Cf =
CL(/V,). Then there exists a finite-dimensional ideal H of L such that L = N ί-h//.
It is clear that CL(H) n Q Π Nf has finite codimension in Q, and is contained in

Z = ζ(L). Hence Q/Z eft.
Now let # be any finite-dimensional ideal of L. Then there exists / e /

such that J 3 n N , = 0. Hence [£, NJ = 0 and so βcC,, Thus L/Z = Σ, e/
and therefore dim Inn (L) = dim

LEMMA 6. Let L be an ideally finite R^-algebra, and let N be an ideal of L
with infinite-dimension α. Then there exists an ideal M of L such that dim L/M

= α and M ΠN = 0.

PROOF. Since L is ideally finite, there exist ft-ideals Fj of L such that Λ^ =

Σyej Fj * \J\ ~α an(^ ^ *s directed. Then for each j e J there is an ideal Nj of L of
finite codimension such that F y n N 7 = 0. Let K = r^JeJNj and C/K = C(L/ K).
Then by Lemma 5, dim L/C<Ξα. Replacing L by L/K we can assume dim L/Z^α,
where Z = ζ(L). Let M be a subspace of Z such that Z = (N n Z) + M. Clearly,
Λf is an ideal of L and dim Z/M^dim N^α. Hence dim L/M ̂ α. On the other

hand M n N = A f n N n Z = 0, and therefore dim L/M = α.

Next we state the following facts about extensions and liftings of locally
inner derivations, which are analogous to [8, Corollaries 2.3 and 2.4].

LEMMA 7. Let L be an ideally finite Lie algebra.
(a) If H^L and deLin(H), then there exists ^eLin(L) such that δ\H = d.
(b) // K^L and de Lin(L//C), then there exists ^eLin(L) such that

6 induces the derivation d on L/K.

PROOF, (a) Let {F(/): ί e / } be the set of all finite-dimensional ideals of
L. For each / e / l e t Ai = aά(L)\ F(ί) and Bi = {f^Λi\f\H^F(i) = d\H^F(i)}. If we
give A{ the affine topology, then At is compact and 7\ (see [2, Proposition 2.2]).
Since there exists /? e H such that J = ad (h) on F(;) Π //, Bt is a non-empty closed
subset of AI and so compact.
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For jF(/)^F(y), the restriction /0 : A^Aj is continuous and closed by [2,

Lemma 2.4]. {Bi9 //7 |βί} forms a projective limit system and lim {Bt} is non-empty
by [7, Theorem 7.1]. Choosing (dt) e lim {£J, we can define <5eDer(L) by
<5 I F( 0 = d .. Then £ is locally inner and δ \ H = d.

(b) is similarly proved.

Now by making use of these lemmas we show the following

THEOREM 3. Let L be an ideally finite R$-algebra over a field I of charac-

teristic zero, and suppose that Inn (L) has infinite-dimension α. Then dim Lin (L)

PROOF. Let {Ft : i e 1} be the set of all finite-diemsnional ideals of L, ordering
/ by inclusion. We can choose a directed subset /' of / such that L = £(L) +

ΣίeΓ Ff and |/' |=α. As in the proof of Theorem 2, we can see that Lin(L) is
isomorphic to lim {Lin^/L^ /e/ ' } , where L ί={^eLin(L): FfJ = 0}. Hence
dim Lin (L)^dim CrίeΓ (Lin (L)/Lf)^ |f |α.

Conversely we show that dim Lin (L)^ |!|α. Let J be a maximal subset of /'

such that Σjej Fj=®jej Fj and each Fj is non-abelian. Let N—®JeJFj ana
\J\=β. If β is finite, then there is an ideal K of L of finite codimension such
that K fl N = 0. For any two elements x, y of K, there exists an gr-ideal F of L such
that <jc, y> ̂ F^K. Then F n N = Q. By the maximality of N, F is abelian and
[x, y] = 0. Thus K is abelian. On the other hand there is an g-ideal E of L
such that L = E+K. Then CK(E) is contained in ζ(L) and dim L/CK(E) is finite.
Then CK(E} is contained in ζ(L) and dim LjCK(E) is finite. This contradicts the
fact that ίnn (L) £ g.

Therefore JV is infinite-dimensional. By Lemma 6, there is an ideal M of L
such that άimL/M = β and M {} N = Q. As before, M is abelian. Let // be an
ideal of L with dimension β such that L = M + H. By Lemma 6 again, there
exists an ideal M} of L such that dim L/Mt =β and H n M t =0. Then M t n M^

C(L) and dim L/Mj n M^β. Hence we have dim N = α.
It is not hard to see that Lin (N) ~ CΐjeJ Inn (Fj). Each Inn (Fj) is non-

trivial because Fj is non-abelian. Therefore dim Lin (N) = |f |α. From Lemma 7,
it follows that dim Lin (L);> |f |α. This completes the proof.

For general ideally finite Lie algebras, we show the same fact as the above
with some restriction.

THEOREM 4. Let L be an ideally finite Lie algebra over afield f of charac-
teristic zero. Suppose that Inn(L) has infinite-dimension α and either α>|I|
o r α = K 0 . Then dim Lin (L) = \t\*.

PROOF, It is sufficient to show that dimLin(L)^|!|α as in the case of
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Theρrem3. Let Z = ζ(L) and W=ζ2(L). If dim L/W=α, then we can apply
Theorem 3 to conclude that dim Lin(L/Z)=|ϊ |α since L/Z is residually finite. It
follows that dim Lin (L)^|f|α from Lemma 7.

Thus we may assume that dim L/W=β<a and so dim W/Z = α. Let {xt + Z:
/ e /} be a basis of W/Z and let Fί = <xf-> + Z. Adding all the sums of finitely many

F, we can write W/Z= Σ fε/ Ff/Z, where Ff /Z e 5 and / is a directed set of cardinal
α. For each / e / , C^C^F^) has finite codimension in L. There is an Jξ -ideal
F of L such that L = C f + F. It is clear that Z = C^(Q) n CL(F) and C^(Q)/Z e ft.
From the choise of Ff's, we can see that for each Q there are only finitely many
Fj which commute with Q. Hence there are α subalgebras Ct.

Now let C = Λ f e/C i, A^adίL)!^ and // = Lin(L)|H,. Then A~L/C and
y4 is an infinite-dimensional abelian algebra. Let A~CΛ(F^ and H—C^Fi)
for each / e /. Then it is easily seen that the families of subalgebras Aί and f/^

foim finite residual systems of A and H respectively, under which A and H are
cofinite Lie algebras. Further since A + H^H for each iel, A is dense in H
by Lemma 2.

Let ^' = {/Gy4*: y4./=0 for some / e / } , where ,4* is the dual space of A.

For each iel let J3f ={/eA*:>!,•/= 0}. Then each Bt is a finite-dimensional
subspace of A', and A~ n {Ker(/):/e£J. Hence there is a one-to-one corre-
spondence between the families Ai and Bt. Thus α^| f | (dirndl') since there are
|!| (dim A') finite-dimensional subspaces of A'. By the assumption on α, we have
α^dimA'. On the other hand A'= \jielBi=^ieIBi and so d imv4 ' = α. By

[2, Remark 4.17] we have dim// = |!|α^dim Lin(L). The proof is completed.

COROLLARY 2. Let L be an ideally finite Lie algebra over a countable field

of characteristic zero. Then Lin (L) = Inn (L) if and only //Ίnn(L)eJ5

COROLLARY 3. Let L be an infinite-dimensional ideally finite Lie algebra
over a countable field of characteristic zero. Then Der (L)τ^Inn (L). In
paticular, dim Der (L) = 2<d ί m L>.

PROOF. If dim Inn (L) = dim L, then there is nothing to prove by Theorem 4.
Thus we may assume that dim Inn (L)<dim L. Then there is an ideal F of L such
that L = C(L) + F and dim Inn (L) = dim F. Let A be a subspace of ζ(L) such that

L = A + F. Then each linear endomorphism/of A induces a derivation d of L as
follows: (fl + x)ί/ = fl/for aeA, xeF. Hence dim Der(L)^dim End(Λ) = 2<d ί m '4>
and so dim Der(L) = 2(d i m L ).

Finally we note that for a semisimple serially finite Lie algebra L, Der(L) =

Lin(L). However, for semisimple locally finite Lie algebras we do not know
whether Der (L) = Lin (L) or not, even if they are simple.
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