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§1. Introduction

Let G and g be a real connected noncompact semisimple Lie group with
finite center and its Lie algebra respectively. Let G=KAN be an Iwasawa
decomposition of G and g=f+a+n the corresponding decomposition of g.
Denote by K the set of all equivalence classes of irreducible unitary representations
of K. Let FcK, |Fl<w and 0<p<?2. Let ¥P(G: F) be the L? Schwartz
space on G of type F. It follows from the definition that if 0< p’<p <2 then

C>(G: F) = 47 (G: F) = ¥%G: F) = ¢%G: F) = €(G: F).

The images of €7(G: F) by the Fourier transform are characterized by Harish-
Chandra [9(c, d, e)] for p=2 and general rank cases, and by Trombi [12(c)] for
0<p<2 and rk (G/K)=1 case, respectively. One of the most difficult parts of
the theory in [12(c)] is to show the continuity of the inverse Fourier transform.
To prove the main theorem in [12(c)], Trombi [12(b)] investigated the
asymptotic behavior of the Eisenstein integral at infinity. He gave, taking
some terms of the Harish-Chandra expansion of the spherical function as an
approximation for it, a uniform estimate for the difference between them for ve F
apart from a compact set including the origin, where F denotes (—1)!/2a* (a*
the real dual space of a). But the use of the approximation, instead of the
whole series expansion of the spherical function, and the exclusion of a compact
set in the approximation theorem, made the proof of the continuity of the
Fourier inverse map rather complicated.

On the other hand, Eguchi-Hashizume-Koizumi [4] obtained the Gangolli
estimates for the coefficients of the Harish-Chandra expansions of Eisenstein
integrals. Our purpose of this paper is to show that we can give an elementary
proof of the continuity of the wave packets, the Fourier inverse map, by using
the whole expansion and the Gangolli estimates. But unfortunately, our proof
cannot remove the K finite condition on %°? functions (see Remark in Section 6).

In Section 3, we review the Harish-Chandra expansion of the Eisenstein
integral and the Gangolli estimates for its coefficients. To explain the instruments
which we use in Section 6, we recall in Sections 4 and 5, the notion of the Fourier
transform of €7(G: F) from [12(c)]. We give in Section 6 an elementary proof
of the continuity of the wave packets.
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§2. Notation

Let G and K be as in Section 1. In what follows Lie groups and their sub-
groups will be denoted by upper case Latin letters and their Lie algebras by the
corresponding lower case Germann letiers; the upper case Germann letters are
reserved for the elements of the enveloping algebra.

If V' is a vector space over R, we shall denote by V. its complexification.
Let V* (resp. V§) denote the real (resp.complex) dual of V (resp. V.); S(V)
(resp. S(V ¢)) the symmetric algebra over V (resp. V).

For any Lie group L we denote by L the set of equivalence classes of irre-
ducible unitary representations of L.

Let 0 be a Cartan involution of G which fixes K elementwise. We use also
the same symbol 0 for its differential. Let g=1t+s be the Cartan decomposition
defined by 0. Let ) be a 0 stable Cartan subalgebra of g with maximal vector
partand puta=hns; A=expa. Throughout this paper we assume that dima=1.
We denote by P(A) the set of parabolic subgroups whose split component is A4.
Let M and M’ be the centralizer and the normalizer of 4 in K, respectively. The
finite group W(A)=M’/M is called the Weyl group of (g, a), and it acts on a% and
M in the usual manner: if ye M, (V, 6)ey, vea} and we M’ then w acts on a}
and M by (wv)(H)=wAdw~'(H)) (Hea;) and (wo)(m)=c(w™'mw) (me M),
respectively.

Let Qe P(4) and Q=MAN, be its Langlands decomposition. Let ye€ M,
gey, veag and put 7, , ,=Ind g(a®f‘,), where & (a)=e*1°99) and o®E&, is
extended to Q by making it trivial on N, Let 5#,,, be the representation
space of my,,. Put F=(—1)"2a* F,=qa¥ and Fgp=a* We also put F'=
F—{0}, Fc=F¢—{0} and Fr=Fg—{0}. It is known that &, ,, is irreducible
for all ve F’" and that my, ,, is unitarily equivalent to my, ,, ,, for all ve F', ye M,
se W(A) and Q,, Q, € P(A). The intertwining operator between them is denoted
by &), |0, that is an isometry 5, , ,—#p, 5. SUCh that

o,10,(51 X VTG, (X)) = Ty, 0 (X)), 10,(5: X1 V) (x€G).

Moreover, it is also known that, for fixed Q,, Q,, s and y, the function v—
g, 10,81 x: v) has a meromorphic extension to F.

Suppose that rk (G)=rk (K) and B is a Cartan subgroup contained in K.
Then there exists a lattice Ly=b¥ such that Ly is isomorphic to B. Let W(G/B)
denote the finite group Ng(B)/B, where N4(B) denotes the normalizer of Ly in G.
Then W(G/B) acts on Ly, the set of the regular elements of L;. Let L} be a
fundamental domain for this action. To each element A€ Ly a representation
w(A) corresponds, whose matrix elements are L? functions on G. It is known
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that if A,, A, € Ly then w(A,) is equivalent to w(A,) if and only if A, =s4, for
some s€ W(G/B). In particular, L} parametrizes the class of representations
corresponding to B. We shall denote by s, the representation space of w(A).

Fix now a finite set F<K. We put M(F)={ye M: [5,): x]1>0 for some
de F}. Then |M(F)| <o and we have by the Frobenius reciprocity theorem that
[mg.,.k: 61#0 for some Se F if and only if ye M(F). For each ye M(F) we
fix a representation (o, V,) in x. By the restriction map ¢ —¢|K of 2, , , onto a
Hilbert space £, ,, which is independent of v, we sometimes identify s#, , with
Hy.,. if it is not neccesary to appeal to the parameter v. For each ye KR, we
denote by s#,,, the isotypic component of s, , corresponding to y and put
Hg k= 2 yer Hgpyp N, V)=dim#, .. Fix an orthonormal basis {¢, ,(Q: x):
1<I<n(x:y)} for s, , -

In a manner similar to the above, we put J#, r=3 ,.p #4.,» #4, denoting
the isotypic component of 5#, corresponding toy. We put also n(4, y)=dim s, ,
and fix an orthonormal basis {¢, (A1): 1 <I<n(A, y)} for 5, ,.

For ye F put £,=dim (y)conj. x,, where yx, denotes the character of y, and
put &p=2,.r&, Let

5.1 v(X) = T(Cp(X)n(Cr) (x€G),
where n=mn, ,,. Then nf§ , (x)eEnd (£, r).

For QeP(A) put dy(m)=(detAd m,,)'/2 (meMA) and po(H)=
(1/2)tr(ad H},,) (Hea). We also put A*(Q)={aeA:e*'ea)>1}, where
a=ua, is the unique simple root in 4(g, a), the set of all roots of (g, a).

§3. The Harish-Chandra expansion of Eisenstein integrals

We shall review the Harish-Chandra expansion of the Eisenstein integral
and the Gangolli estimate of the coefficients in the expansion.
On the Fréchet space V=C*(K x K), equipped with the C®-topology, a

double unitary representation t=(t,, 1,) of K is defined as follows. If k;, u;e K
(j=1, 2) and ve V then let

Ty(kDvty(ky) (uy 2 uy) = v(u ky: kauy).
It can be seen that 7 is unitary with respect to the norm
o2 =f ok, s k)2 dk, .
KxK

We simply write 7 for 7, and 7, when there is no ambiguity. Let

Ve = {u eV u=fk ep(kye(Kyodk = f e (ke ,(k)dk} .



474 Masaaki EGucHI and Masato WAKAYAMA

Let (t, V) be the double K-representation given by restricting t to V. Let
(o, V,) be in the class y, ye M(F). A function ¢ from K x K into End (V,) is
called smooth if it is continuous and

A (myky: kymy) = o(my)) A (ky: k)o(m;) (m,, myeM, k,, k, e K).
It is known from Lemma 6.1 of [9(d)] that there exists a linear bijection T— ¢
of End (5, ) into the space of smooth functions such that

(Th)(ky) = [ Hrlley: k(i )k, (he o ir, k€ K).

For y € M(F), L(x) denotes the subspace of all fe C*(M: Vg: 1)) (tM=1m)
such that for all m,;, m, € M, the function: m—f(m,: m: m,) belongs to the span
of the matrix elements of (o, V,). For TeEnd (s, r), ¥re€ L(x)is defined as
follows. If me M, y(m) is the element ve V given by

u(ky: ky) = Yplky: m: ky) = tr {oHp(ky: ky)o(m)}.
By Lemma 7.1 of [9(e)] the map T— is a bijection.
LemMMA 3.1. We have

(D) < dim (#y, 2| T .

PrOOF. Let h; (1<i<r) be an orthonormal basis for s, , r and u; (1<
Jj<d(0)) an orthonormal basis for V,. Then, from the argument in the proof of
Lemma 6.1 of [9(e)], we have

Hplky: ku = 3 <o, k) (T*h)(k7Y), u) (ueV,),
where T* denotes the adjoint operator of the linear operator T. Thus, from the
definition of Y+ we have for k,, k, e K
Yokt 10 ky) = tr {Ap(ky: ky)}

=3 (Xi hilk)(T*h)(kT"), uy), uj)

= 2 X2 (hlky), (uy, (T*h)(kTM))u;)

= Xi(hika), (T*h)(k7).
Therefore we have

Wrky: 1 k)12 < 2i<i, jer [(hik2), (T*h)(kTY)) (hj(k,), (T*hj)(kfl))l .

By using the Minkovsky-Schwarz inequality on the right hand side and integrating
the both side, we obtain the desired inequality
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W12 = [ Walk,: 12 klPdk,dk, < dim (o, R TI

Let Qe P(A). According to the Iwasawa decomposition G=KAN,, each
x € G can be written uniquely as x=k(x)exp H(x)n(x) (k(x)e K, H(x)€a, n(x) €
Ny). R

Given Y € L(x) (xe M(F)), ve F¢, Q € P(A), ¥ is extended to a function on
G by

Y(kan) = t(k)y(1) (keK,aeA,neNy).

Then the integral
E(Q: y: v:x) = f (xk)r(k~1)el>=po)H (k)
K

is called the Eisenstein integral.
If Te End (£, r) then it is known ([9(e)]) that

EQ:Yr:v:iky:x:ky) =tr{Tnf , ,(k;xk,)} 3.1

for k{, k,e K and x€G.

Fix Q e P(A) and let a=a, be the unique simple root of 4(q, a). For the
convenience we then identify C with F. via the map z—za. Under this identifi-
cation p, corresponds to (p+2q)/2, where p=dim g, and g=dimg,,. We put
V¥={veVg: t(mv=vi(m), me M}. Let w, denote the Casimir element of
M and let y be the endomorphism of Hom¢ (V¥, V¥) defined by

NT) = [1w,), T]  (TeHom¢ (VE, Vi),

Let y4,..., 7, be the set of all distinct eigenvalues of y with multiplicities m,---, m,,
respectively. Since the representations 7, and 7, of K are unitary, every eigenvalue
of the transformation v—vt,(w,) is real, whence the y; are real. Moreover, if
{0,,..., 0,} denotes an enumeration of the eigenvalues of 7,(w,,), it is then known
that each y; is of the form ,—0, (1<, k<I). We now put

Toi = N[2 = po + ¥:/@nlaf?) (1<i<0).

Put I''=C~{1,;: 1<n<oo, 1<i<t}. Then I'" is an open connected set. For
vel’ and n>1, we recursively define I'(v) € End (V) as follows: put I'y(v)=1,
and for n>1
lali2{2nv —nln —2po 1} (v) — [ta(wy), Ty(v)]
=2 121 {pllall*(v—n+2DI,_,(v)+2qlal*(v—n+4D)T,_4(v)}

+8 2 2 AQI=Dr (Y)Y ) o 21— 1) (W)}

AeP*,1=a I>1
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+8 3 zl {2I= Dy (Y)Y D a1+ 2(0)}

ieP* 1=2a |

-8 > 2 KoY Y_ )=t (Y Y_ ), 2(v)

iePt 1=a I>1

-8 > Z Ko (YY) =t (Y Y_ ), af(v)-
ArePt J1=2a I>=1

Here P*=P~P~ and A=1|a, P being a positive system of roots for 4(g, b)

and P~ ={aeP:ala=0}. Moreover, we put I',=0 if k<0. It is known

that the functions v—1I",(v) are well defined and are rational functions in v and

holomorphic on I'". Let I'"={veC:v—pyel'} and I'={veC:v, —vel"}.

Put

d(v: a) = i I (v—pgle—renattesa) (yel, ae A*(Q)).
n=0

THEOREM 3.1 (Harish-Chandra (cf. [14])). For any vel,te W(A), Q € P(A)
there exist uniquely determined elements Cgy (t:v) in End (V¥) such that
ifyeC*(M: V¥: 1) then

EQ:y:v:a) =tEWZ(A)¢(tv: a)Co)oft: VY(1)

for all ae A*(Q). Moreover, Cyo(t: v) (te W(A)) are meromorphic functions
in v and holomorphic on T.

We list some properties of the Harish-Chandra C-functions and the Plancherel
measure, which we shall use in the last section. For the details see [9(e)] and
also [12(c)].

(1) There exists g >0 such that if n(v)=<v, ag)?*? then n(v)Cp,o,(s: V)
(Q,, Q, € P(A)) extends to a holomorphic function of v on F={ve F: [Rev|<
£}

(2) LetseW(A). Thensactson L(F)=3},.q ), L(x) in the usual manner.
We then have

$Co,10.(t: V) = Cgso,(st:v);  Co,o(t: V)s™! = Co, oi(ts™!: sv).

(3) Coq,jo, extends to a meromorphic function on Fg.

(4) Cgjo(l:v) and Cyo(1: —v) are holomorphic on the set {(Rev, ap) <O0.
If se W(A), s#1, then Cyo(s: v) and Cy(1: v) are also holomorphic there.

(5) For fixed Q,, Q, € P(A), se W(A), ve F' and ye M, Cy,,9,(s: v) defines
a bijection of L(x) onto L(sx). Let °Cgp,o,(s: vV)=Cp,jp,(1: V) Cp,j0,(s: V).
Then v—°Cy,o,(s: v) defines a rational mapping of F¢ into End (L(F)).

(6) There exists a function u: M x F— C satisfying the following:

(A) For each ye M, v—pu(y: v) is meromorphic on F, holomorphic on F2
for some &,>0, u(y, v)>0on F’, and u(x, v)>0on F.



An elementary proof of the Trombi theorem on ¢*(G: F) 477

(B) There exists a constant depending only on A4, say C(A), such that for
all Q,, Q, € P(A), te W(A), ve F', ye M(F),
H(x: V)Coyy,(t: V)*Coyio,(t: V) | Ly =-C(A)1,;

here for Te End (L(F)), T* denotes the adjoint of T, and 1, denotes the identity
operator on L(y).

(C) u(ty: )=u(x:v) (xeM,veF, te W(A)).

(D) The poles and zeroes of u(y: v) are simple, with the exception of v=0,
where u(x: v) may have a zero of multiplicity two. The poles and zeroes are
all in Fg; the poles are independent of y and occur at the points na/2, ne Z (cf.

REN)2

(7) Fix Qe P(A), v, v'e F'. Then the four linear transformations

Coio(1:v), Cgo(l:v), Cgo(1:v), Cgig(l: V)
commute with each other. Moreover, we have
Colo(1: v)* = Cgip(1:v), Cgo(l: v)* = Cpp(1:V');
Colos: s7Iv)* = s*Cgo(1:v), (se W(A), s#1),
and as meromorphic functions on F, we have
u(x: ¥)Caya(1: M)Cqg(l: M |1y = C(APL, :
u(x: —v)s~1oCgo(1: v)CQ,Q(I: v)os| Loy = C(4)21,,

where s e W(A), s#1.

(8) det Cgo(1: v)=0 and det Cg4(1: v)=0 for at most finitely many points
(all of which belong to Fg) in Re v<0.

(9) Fixe 0<e<l1/4,and Q e P(A), Then there exists a polynomial function
S e S(ac) such that if

A(v) = SO)Cqp(1: v)7Y,  A,(v) = S(M)Cgo(l: v)7!
B,(v) = n(v)Cqjo(1: v), By(v) = n(v)Cgo(s: V) ,

where se W(A), s#1, then A4,, A, are holomorphic on (vg, 25> <e. Further,
given any u € S(F¢), M >0 there exists C=C,, » >0, [=1, 5, ., >0 such that

[4;(v; | < CA+P)' (j=1,2,veF¢, —M<(Rev, ap)<e);
IB(v; wll < C(A+ ) (veFe, j=1,2).
(10) There exist constants C>0 and >0 such that

lu(x: vl < CA+P) (veFy).
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We shall next review the Gangolli estimates for the coefficients I', due to
[4]. Without loss of generality, renumbering the eigenvalues of y we can assume

that
P < <P <0< ppq <0< Y,
Let L denote the finite set of all ne Z, n>0, such that -—n?|a||?2>y,. For each
ne Z,, we define polynomials p, by
pv)=1 if neL~Lj;
Pa(v) = [T @nlla|?v—n?a||2 =y if nelLj
and set d’(n) =Y m;; where the products and the sums are taken for i such

that 1<i<s and n?|a||?+7,;<0. We also put

Pv) =TI pv), d=3%d(n);

neLj nelLq

PO)= T p») dmy= 5 dm)

sn eL’,n" <n

for ne L’. Then remark that P is of finite degree and thus d <oco. We put
R ={E+neFs:E€F,neFg n<0}.

THEOREM 3.2 (Eguchi-Hashizume-Koizumi [4]). There exist absolute con-
stants D, d; >0 such that

1P, (v=po)ll < DL+ (V][ +n)?4-n? (ve #)
forall ne L.

Let U denote the union of the following sets:

(1) {78 Tui—Po<0}

(2) {reF¢:1<0 and either det Cg 5(1: 7)=0 or det Cgy(1: 7)=0}

(3) {0} if either Cy p(1: v) or Cp o(s: v) has a pole at v=0.

For (e U let 0,({) denote the maximum order of the pole of the functions
v T (v—po)Cqo(1: v)™! at v={ if Re{<0 and put 0,({)=0 if {=0. Further,
let O(0) (se W(A), s#1) denote the maximum order of the pole of the functions
v T, (v—po)Cqio(1: v)™-s atv=_if Re {<0. Note that O({)<oo (Vte W(A)).
Fix Qe P(A) and ye M. For Ae F>=Fx F, say A=(y, 9), let

Z(A:y) ={Je Z2: if J=(l, m) then 1<I<n(y:7y), I <m<n(x: 8)}.

Put
m(Q: y:vi 41 J: x) = (mg , (X), (Q: X), Psm(Q: X))

We now fix Q and set
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& = {n(Q: x: t{; 0%(v): A4: J): xye M(F), te W(A), e U,
0<k<O(0)—1, de F2, Je Z(4: y)}.

We recall the basis for & which is given in [12(c)]. We first enumerate U=
{{is+-> L} so that 0>(,>--->{(,,. We choose the least integer i, (m>i;>1)
so that there exist some ye M(F), te W(A), 0<k<O((,)—1, 4e F?, and Je
Z(A: x) such that n(Q: x: t{;,; 0%(v): 4: J)#0. We choose a basis for the set

& = {n(Q: x: t8;,; 0(v): 4: )): y € M(F), te W(A),
0<j<0(;)—1,4e F?, Je Z(4: y)}.

Next let i, be such that m>i,>i;>1 and there exist some y € M(F), te W(A),
0<j<0((;,)—1, AeF?, JeZ(4:)) such that =n(Q: x:1{;,; di(v): 4:J) is
independent from the already chosen basis elements. We extend the previously
chosen basis elements by adding elements of the set

& = {m(Q: x: t;,; 09(v): A: J): ye M(F), te W(A),
0<j<0((,)—1,4e F*, Je Z(4: y)}.
By continuing this process we obtain a basis of &. Let I be the subset of

{Q} x M(F) x ( \J tU) x Zx F* x Z?
teW(A)

which indexes the elements of &; and I’ the subset of I which indexes the above
chosen basis. Foriel, say i=(Q, x, t{;, j, 4, J) let us write n(i) for n(Q: x:
;5 04(v): 4: J). Foriel, i’ el define constants C(i: i") € C by the equation

ni)= % C(it ().

§4. The space ¥7(G: F) and its Fourier transform
Let Qe P(A), x=kexp X (ke K, Xes) and put

E(x) = f e~relHoNdk; o(x) = || X].
K

where || - || denotes the norm given by the Killing form. Let fe C*(G), ae®,
reR,0<p<2 and put

varlf) = sup|f(x; @) E72/7(x) (1 +0(x))"
Let
%?(G: F) = {feC(G: F): v; (f)<oo forany ae ®, re R}.
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Then €?(G: F) is a Fréchet algebra with convolution product. We denote by
S?(G) the set of all continuous seminorms on €#(G: F). It is also known that
€7(G: F)c Lr(G), CX(G: F)c¥?(G: F),and that if 0<p<p’ <2 then ¥7(G: F)
c%"(G: F)c%%G: F)=%(G: F). Moreover, the correspondence f—f (f(x)=
f(x71)) is a continuous involutive automorphism of ¢7(G: F).

For Qe P(A), yeM, veF, and aeC*(G: F), let #,(a)Q: x: v) € End
(#,.,.) be defined by

Fu()(Q: x:(f) =g, (D(f) (feHy,.).
If rk (G)=rk (K), A€ L}, o as above, let Fz(a)(A) € End (5#, 5) be defined by
Fp(a) (Mo = my(@)v (VEH, p).

Let & =%, if tk (G)>1k (K) and 7 =(F5, F,) if tk (G)=rk (K).

§5. The space ‘K‘;’,(é: F)

As usual the symmetric algebra S(F.) can be considered as the algebra of
differential operators on F.. [If F(Q: x) is a function defined on FQ: 2/p—1)
with values in End (5#,, ¢) and C* in Int (F(Q: 2/p—1)), we put, for ueS(F)
and re R,

Vi F) = sup [[F(Q: x: v w)li (1+v]),

where | -| denotes the operator norm and the sup is taken over velInt (F(Q:
2/p—1))and ye M(F). Let I, (resp. I,) denote the set of iel (resp. I), i=(Q, ¥,
1, j, 4, J)such that e U N F¢(Q: 2/p—1)=U,. We also let

A0S x:v) = T[Z(&F)MQAQ;_(S: 1T (CE),
where s€ W(A), Q;, Q,€ P(A), ye M(F), ve F',and m, =y, ., T2=Tp, .sv

DeriNITION 1. Let €5(G: F) denote the linear space of functions G(Q: ¥):
F(Q: 2/p—1)~End (#,,, r) (Q € P(A), x€ M) such that G(Q: x)=0 if y¢ M(F)
and

(1) G(Q: y) is holomorphic on Int (F(Q: 2/p—1));

(2) if Q, 0,€P(A), se W(A), ye M(F), ve F’ then

Ao St x:MGQy: 12 v) = G(Qy: syt sV)Ag,10,(S: X1 V)3
(3) forallreR,ueS(F¢), v, (G) < o,
(4) in the notation of the previous section,

G(i) = ZI C(i: iNG(I") (iel)).

L elp
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Here, for 4=(y, §) and J=(l, m),

G(Q: x: v 42 J) = KG(Q: x: )$,,(Q: 105 Pom(Q: 10D -

Then #%(G: F) is a Fréchet space equipped with the topology defined by the
seminorms v, (ue S(F¢), re R). Let S%(G) be the set of all continuous semi-
norms on €54(G: F).

DEerINITION 2. Assume 1k (G)=rk (K) and let B= K be the Cartan subgroup
of G given in Section 2. Let #5(G: F) be the linear space of all functions L:
L —End (£, g) such that L(A)=0 unless A€ L§(F) and pf(L)=sup (1+[A])*-
lL(A)| <o (for any ae R).- Here the sup is taken over A€ L} and ||L(A)|
denotes the norm introduced before relative to the basis {¢, (A4): ye F, 1<I<
n(A: y)}. R .

We topologize € j(G: F) using the seminorms u? (¢ € R). Then €5(G: F)
is a Fréchet space with this topology. Denote by S?(G) the set of the continuous
seminorms on € 5(G: F).

For each i"el’ choose o, € CX(G: F) such that Suppa; is contained in
¢G(1); here G(s)={x € G: a(x)>s} for s>0and the suffix ¢ denotes its complement,
and

f (- D(i”: X)dx = 8y (" €1').
G

DEerINITION 3. Let €7(G: F) be the space of functions defined as follows:

(1) If rk (G)>r1k (K), let ¥7(G: F)=%%(G: F) as topological spaces.

(2) If rk (G)=rk (K), let ¥7(G: F) be the linear subspace of ¥Z(G: F)x
&%(G: F) consisting of functions G=(Gg, G,) which satisfy the linear relation

Go(d: 4: D) = T Fyfa) (A: 4: D)Gy(i)

L elp

for all Ae Ly such that |A(H,)| <k(B) for some positive (relative to some fixed
ordering) non compact root f8 of the pair (g, b); here k(B)=(1/2)3,cp le(Hy)|, P a
positive system for A(g, b), f(Hz)=2. Gg(A: A: J) denotes the matrix of Gy(A)
relative to the basis {¢, (4): ye F, 1<I<n(y, )}.

The space ¥7(G: F) is a closed subspace of the product space ¥5(G: F)x
#%(G: F). Hence €7 (G: F) is also a Fréchet space.

The following result is due to Trombi [12(c)].

THEOREM 5.1. & is an injective and continuous map of ¥P(G: F) into
%?(G: F).
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§6. Wave packets
Let a; be as in Section 5. Let us fix Fe #%4(G: F) and put

Be(x) = Z; F(i');(x) (xeG);
Fo=F — Z4(Bp).
Then F, has the properties stated in the following lemma.

LemMmA 6.1 ([12(c), Lemma 9.1]). For all iel,, Fo(i)=0. In particular,
the function Fo(Q: x) has a zero at every { € U, of order equal to the maximum
of the order of the pole of the functions v—TI,(v—pg)Cggs(1: v)"1es (s € W(A))
at v=_{. If £(2/p—1)pge U, the above statement should be understood that
the appropriate derivatives of F, when extended to FJ Q:2/p—1) vanish at

+(2/p—1Dpy.
We now want to compute ¢ (Q: x: x) (x€ M(F), x € G) given by

Dr(@: 1: %) = [t (Fo(@: i v)mG, () }Ct: v).
By (3.1), the last expression is equal to
fr E(Q: Yroggpmy: Vi 1: x: Du(x: v)dv. (6.1)

Let ¢, and &, be as in (1) and (6A) of Section 3 respectively. Let U be the
set given in Section 3 and choose d,>0 so that

0 <25, < Min {|{l, &1, &2}¢evr03 -
Next choose ¢, € Fg so that with the ordering induced on a* by 4A*(Q) we have
Py = (1-2/p)pg < — & < Min {{},

where the minimum is taken over (eUnInt(Fc(Q:2/p—1)). We define
contours as in Fig. 1.
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Since the function
Vs E(Q: Wpyigupm? Vi 11 X2 Dalz: ¥) = tr {Fo(Q: 12 Wb, (Ol v}
is analytic in the strip F2% for all Q € P(4), xe M(F) and x € G, by (6.1) we have
brdQ: 120 = [ B(Q: Uryguen Vi 1i x: Ditits v

Hence, applying Theorem 3.1 and the above observation to the last formula we
have for all ae A*(Q),

brl@:1: @) = [ 3 Bwv: )Cogwi Wi (DHGLE V)Y

v1 welW(4)
= | 00 Coal: Wrgurm (Dax: )y
+ fy D(v: a)Coio(W: WV ko0 pw-1yy (D(x: wiv)dv.

Recalling the equalities in Section 3, we have for a € A+(Q),

C(A)2¢pp(Q: x: a)

= Ll O(v: a)Ca1p(L: V) Wy gugomy (1)dV

+ fy D(v: a)Coo(1: V) ToW g (gupiw-1v) (1dV.
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LEMMA 6.2. For all ueq and ae A*(Q),

4
Iim Y X D(v: a; u)Coyromll: V)T eWp 0.ymp-1y) (1)dv = 0.

pu-roweW(A) j=3 vi(u.€0)

Proor. Fixae A*(Q)and let yt,>0. Since the polynomial P,(v) in Theorem
3.2 has zeroes only on the real axis, we can find constants D>0 and d>0 such
that

[Fav=pl < D(1+n)

for all v (|Im v| > u,, Rev<e). In a similar manner, we have from (9) in Section 3
that for given ve S(F,) and M >0, there exists a constant C,, >0 and an
integer />0 such that for all v (|Im v|>u,, —M <Rev<e) and we W(A),

| Caian1: v3 0) 1< Cppg o1+ VD
On the other hand, by Lemma 3.1 we have
IV koq@ixen( DI < dim (3£, p) [ Fo(Q: 12 VI

Combining these estimates and the fact that F,e ¢%(G: F), we have that for
u €A there exists I’e Z, such that for p (u>p,)

4
5 O(v: a; u)Coppull: v)'lOWl/IFO(Q:X:W-|v)(1)dv“
Jj=3J vj(n.¢0) |
4 0
< const. 3° D(Z (1+n)d+"e—"a<'°sa)f (l+|v|)‘2|dv|>
Jj=3 n=0 yj(H,€0)

1
< const. f (14832 + p?)2dt < const. (1 +u2)=2.
(4]

This proves the assertion.

By Lemma 6.1 and Lemma 6.2 we have the following results.

COROLLARY. For ae AT(Q), we have

Pr(Q: x: a)
= C(4)? X P(v: a)Cqgn(1: V)T oW gy 041y (DY, (6.2)
F ¢ (¢0)

weW(A)

where F¢(eg)={veF¢: Rev=—eg,}. Further, all derivatives of ¢ (Q:x) by
elements of W can be computed differentiation under the integrals.

THEOREM 6.1. Let notation be as above. If

Pro(x) = D(G/A)XEZM(F)d(X)%o(QI x:loxo 1),
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then ¢p, € €7(G: F). Moreover, the map F— ¢, is continuous.

PROOF. Since F—F is continuous map of #%(G: F) into itself, it suffices to
show that for every be ®, re R there exists u e S%(G) such that

sup (L+0(X)Y E(x)"2/?|ppo(x; D) < u(Fo).

We first consider the above sup in the complement <G(1) of G(1) in G. By [9(d),
Lemma 17.1] we see that given Q € P(4), a € ® there exist constants C=C, and
r=r, such that

1EQ: ¥ v x; a)ly < Clylly(1+v)rE(x) (1 +a(x))
for xe G, Yy e L(x) (xe M(F)), ve F. And also by [9(c), Lemma 9.1] we have
“l//Fo(Q:x:v)”V S dlm (X)_I/ZI'FO(Q: X: V)” (VGF)'

Since Z(x) does not vanish on G and °G(1) is compact, we may choose C>0 so
that

Cl<Ex)'<C (xecG(l)),

combining these facts with (10) in Section 3. We see from this fact and the
defining formula of ¢y, that for any re R and ae  we can find y’ € S4(G) such
that

ggﬂ)(l +a(X)E(X)"P|Ppy(Q: x: vi x; @) < C2PH1U/(Fy).

We next consider the sup on G(1). Using the fact that G=KCI(A*(Q))K and the
radial component formula for any be ® (cf. [14]), we see that it is sufficient to
show that for every u € A and r € R there exists u € S5 (G) such that

sup (1+o(a)ye@/Peetioed, (a; u)l| < u(Fo),

the sup being taken over A*(Q)n A(1), where A(s)=A4 n G(s) for s (s>0). By
the results in Section 3 we may write

I (v—pg)Cqign(1: v)"tow = B, (M)/(v—p,)kn.

Here 0<k, ,,<0,(p,) and B, ,.(v) is holomorphic on {ve F;: —go<Rev< —¢),
where —e¢y<p,; moreover for u e S(F¢) there exist constants C=C,>0, d'>0
such that

[1By(v; )| < C(1+n)4(1+ v

holds on the above domain. Take an element ¢ e Fp satisfying p,<&< —e,.
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Then from the above arguments it follows that the interchange of the summation
and the integration in (6.2) is legitimate, and we have, for ae A*(Q) and ve ¥,

eClowetios g, (a;v) = DGIA) ¥ di) Y ¥ el srnoiosa
XeM(F)

n=0 wew(A4)

X fl" U(€+ V= na_pp)Bn,w(v)l//Fo,,,,W(Q:)(:w"(§+v))(1)ev(loga) dV,

here Fg, (Q: x: vV)=(v—p,) k=wFy(Q: x: v) being rapidly decreasing in v (cf.
[12(c), Lemma 9.6]). On the other hand, we see (cf. [12(c), Lemma 9.7]) that if
we put for & (€ Fg, p,<&<—¢,), Q€ P(A) and y e M(F),

G(Q:y:vikyimiky)=Vp, | yervykiimiky) (ky, keK, meM),

then G.(Q: ) € ¥(F)@C”?(M: V: 7) and if P is an arbitrary polynomial function
on F. and u e S(F) then there exists ue S%(G) (possibly depending on P, u, n
and w) such that

sup [[P(V)G(Q: x: v; uw)lly < u(Fo)

for all above &, where the sup is taken over Q € P(4), y€ M,and ve F. Combining
the usual arguments and these facts, we see that there exists u” € S%(G) such that

”(1 _I_O.(a))re(Z/p)pQ(log a)¢F0(a; U)“ < e(&—(1-2/p)po)(log a).uN(FO)

for ae A*(Q) n A(1). Since this holds for all ¢ (e Fg, p,<é< —¢gy) £ can be
replaced by p,. This proves the theorem.

ReMARK. (1) If we restrict ourselves to the special case that t=(1, 1), then
our proof gives a simple proof of [12(a)].

(2) In [6] Eguchi-Kowata studied the Fourier transform of the L? Schwartz
space ¥P(G/K) on the symmetric space G/K when rk (G/K)=1, in the same
way with ours (cf. also [10(a)]). But since the degree of the dependency of the
constant in the Gangolli estimate for the Eisenstein integrals with respect to the
K-types is higher than any polynomial order of the norm of K-types, we need to
put the K-finite condition in the statement of the main theorem. For the proof
of the theorem (general case), an argument like in [3(b)] is necessary.

Acknowledgement. The first author would like to state his gratitude to
Professor T. Oshima for pointing out the mistake in [6] and both authors also
would like to thank him for stimulating conversations.
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