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§ 1. Introduction

Let G and g be a real connected noncompact semisimple Lie group with

finite center and its Lie algebra respectively. Let G = KAN be an Iwasawa

decomposition of G and g = t + α-f-n the corresponding decomposition of g.

Denote by K the set of all equivalence classes of irreducible unitary representations
of K. Let FczX, |F|<oo and 0<p<2. Let <g?(G\ F) be the L" Schwartz

space on G of type F. It follows from the definition that if 0<p'<p<2 then

C?(G: F) c &p'(G: F) c <^(G: F) c #2(G: F) = V(G: F).

The images of &P(G: F) by the Fourier transform are characterized by Harish-

Chandra [9(c, d, e)] for p = 2 and general rank cases, and by Trombi [12(c)] for

0<p<2 and rk(G/K)=l case, respectively. One of the most difficult parts of

the theory in [12(c)] is to show the continuity of the inverse Fourier transform.

To prove the main theorem in [12(c)], Trombi [12(b)] investigated the

asymptotic behavior of the Eisenstein integral at infinity. He gave, taking

some terms of the Harish-Chandra expansion of the spherical function as an

approximation for it, a uniform estimate for the difference between them for v e F

apart from a compact set including the origin, where F denotes (— l)1/2α* (α*

the real dual space of α). But the use of the approximation, instead of the

whole series expansion of the spherical function, and the exclusion of a compact

set in the approximation theorem, made the proof of the continuity of the

Fourier inverse map rather complicated.

On the other hand, Eguchi-Hashizume-Koizumi [4] obtained the Gangolli

estimates for the coefficients of the Harish-Chandra expansions of Eisenstein

integrals. Our purpose of this paper is to show that we can give an elementary

proof of the continuity of the wave packets, the Fourier inverse map, by using

the whole expansion and the Gangolli estimates. But unfortunately, our proof

cannot remove the K finite condition on ^p functions (see Remark in Section 6).

In Section 3, we review the Harish-Chandra expansion of the Eisenstein

integral and the Gangolli estimates for its coefficients. To explain the instruments

which we use in Section 6, we recall in Sections 4 and 5, the notion of the Fourier

transform of &P(G: F) from [12(c)]. We give in Section 6 an elementary proof

of the continuity of the wave packets.



472 Masaaki EGUCHI and Masato W A K A Y A M A

§ 2. Notation

Let G and K be as in Section 1. In what follows Lie groups and their sub-

groups wil l be denoted by upper case Latin letters and their Lie algebras by the

corresponding lower case Germann letters; the upper case Germann letters are

reserved for the elements of the enveloping algebra.

If V is a vector space over /?, we shall denote by Vc its complexification.

Let K* (resp. K*) denote the real (resp. complex) dual of V (resp. Fc); S(V)

(resp. S(VC)) the symmetric algebra over K(resp. Vc).

For any Lie group L we denote by L the set of equivalence classes of irre-

ducible unitary representations of L.

Let Θ be a Cartan involution of G which fixes K elementwise. We use also

the same symbol 0 for its differential. Let g = f + $ be the Cartan decomposition

defined by θ. Let I) be a Θ stable Cartan subalgebra of g with maximal vector

part and put α = ί) Π s A = exp α. Throughout this paper we assume that dim α = 1.

We denote by P(A) the set of parabolic subgroups whose split component is A.

Let M and M' be the centralizer and the normalizer of A in K, respectively. The

finite group W(A) = M'/M is called the Weyl group of (g, α), and it acts on α£ and

M in the usual manner: if χeM, (V, σ)eχ, v e α g and v v e M ' then w acts on αj

and M by (wv)(//) = v(Ad *-'(//)) (Heac) and (wσ)(w) = σ(w-1mw) (m e M),

respectively.

Let ζ)ePC4) and Q = MANQ be its Langlands decomposition. Let χeM,

σeχ, v e α £ and put πQ > ; f > v = ϊndg(σ(g)ξv), where ξv(a) = ev(loga) and σ®ξ v is

extended to Q by making it trivial on NQ. Let «^Q,/JV be tne representation

space of π^ χ v. Put F = ( — ί)1/2α*, Fc = α£ and FΛ = α*. We also put F' =

F —{0}, F'c = Fc — {0} and F'R = FR — {0}. It is known that π ϋ f ; f f V is irreducible

for all v G F' and that πQl χ v is unitari ly equivalent to nQ2Sχsv for all v e F', χ e M,

s e W(A) and Ql9 Q2£ P(A). The intertwining operator between them is denoted

by ^Q{\Q2, that is an isometry ^QltXtV~^^Q2,sxtsv sucn that

^QιlQ2(
s : *: v)πQι,/,vW = πQ2.s/,svW ^Q,|Q2(5: X v) (x G G) .

Moreover, it is also known that, for fixed Qj , O2, s and /, the function v->

cί/Q ljQ 2(5: /: v) has a meromorphic extension to Fc.

Suppose that rk(G) = rk(K) and £ is a Cartan subgroup contained in K.

Then there exists a lattice Lβc:b£ such that LB is isomorphic to B. Let W(G/B)

denote the finite group NG(B)/B, where NG(B) denotes the normalizer of LB in G.

Then ίy(G/β) acts on L'B, the set of the regular elements of LB. Let L£ be a

fundamental domain for this action. To each element A e L'B a representation

ω(Λ) corresponds, whose matrix elements are L2 functions on G. It is known
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that if Λ j , Λ2eLβ then ω(Al) is equivalent to ω(Λ2) if and only if Al = sA2 for
some s e W(G/B). In particular, LJ parametrizes the class of representations

corresponding to B. We shall denote by JfΛ the representation space of ω(Λ).

Fix now a finite set F<^K. We put M(F) = {χeM: \_δ\M: #]>0 for some

δ E F}. Then \tiί(F)\ < oo and we have by the Frobenius reciprocity theorem that

LπQ,/,v\κ: <5]^0 f°r some δ e F if and only if χ e l ί f ( F ) . For each χeM(F) we
fix a representation (σ, Fσ) in χ. By the restriction map φ-+φ\K of «^)f/,v

 ont° a

Hubert space ^Q,χ, which is independent of v, we sometimes identify J^Qtχ with

^Qtχ ,v if it is not neccesary to appeal to the parameter v. For each y e K , we
denote by «^Q,x,y the isotypic component of j^Q χ corresponding to γ and put

Q,/.r Fix an orthonormal basis {φyJ(Q: χ):

In a manner similar to the above, we put jPΛ,F
=ΈγeF ^Ά^ ^A,Ί denoting

the isotypic component of 3PA corresponding toy. We put also n(Λ, γ) = dimjj?Λγ

and fix an orthonormal basis (φγtl(Λ): 1 <l<n(Λ, y)} for JFΛtr

For γeF put ξy = dim(y)conj. χr where χγ denotes the character of y, and

P U t f F = Σ y 6 F £ r Let

πS.x, vW = π(ξF)π(x)π(ξF) (x e G) ,

where π = πQtXtV. Then τrg> ; f > v(x) e End (^Q,X,F)-

For QeP(X) put dβ(w) = (det Ad m,ΠQ)1/2 (meMA) and pβ(//) =
(l/2)tr(ad//, Π Q ) (Heα). We also put ,4+(£) = {a e X : e e < l o e e >> 1}, where
α = αQ is the unique simple root in J(g, α), the set of all roots of (g, α).

§ 3. The Harish-Chandra expansion of Eisenstein integrals

We shall review the Harish-Chandra expansion of the Eisenstein integral
and the Gangolli estimate of the coefficients in the expansion.

On the Frechet space K=C°°(KxK), equipped with the C°°-topology, a

double unitary representation τ = (τ1? τ2) of K is defined as follows. If k^ u^ e K

(7 = 1, 2) and veVthen let

τί(kί)uτ2(k2)(uί: u2) = ί^u^: k2u2).

It can be seen that τ is unitary with respect to the norm

|ι>|2= Γ \v(ki:k2)\2dkldk2.J κ*κ

We simply write τ for τ t and τ2 when there is no ambiguity. Let

VF = ue V: υ =
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Let (τ, VF) be the double ^-representation given by restricting τ to VF. Let
(σ, Vσ) be in the class χ, χ E M(F). A function JΓ from K x K into End (Fσ) is
called smooth if it is continuous and

jΓ(m2λ;2: kίmί) = σ(m2)Jf(/c2: A Jσfm,) (m l5 m 2 EM, kί9 k2eK).

It is known from Lemma 6.1 of [9(d)] that there exists a linear bijection Γ->jTΓ

of End (J^Q^F) into tne space of smooth functions such that

(Th)(k2) = f
•) K.

For χeJ0r(/'), L(χ) denotes the subspace of all/eC°°(M: VF: τM) (τM = τ\M)
such that for all mί9 m2 e M, the function: m^f^^ : m: m2) belongs to the span
of the matrix elements of (σ, Vσ). For TeEnd(3FQtXtp), ψτeL(χ)is defined as
follows. If m e M, ψτ(m) is the element veVF given by

K/q: fc2) =

By Lemma 7.1 of [9(e)] the map T-+ψτ is a bijection.

LEMMA 3.1. W^β have

dim (jrQΛF) II T||

PROOF. Let ̂  (l<i<r) be an orthonormal basis for J^QtXfF

 and uj (^
j < d(σ)) an orthonormal basis for Vσ. Then, from the argument in the proof of

Lemma 6.1 of [9(e)], we have

jrr(/c2: kju = Σ^i<r Λί(/c2)((T*Λί)(/cl1), u) (u e Vσ),

where Γ* denotes the adjoint operator of the linear operator T. Thus, from the

definition of \j/τ we have for kί9 k2 e K

= Σj(Σι

Therefore we have

By using the Minkovsky-Schwarz inequality on the right hand side and integrating

the both side, we obtain the desired inequality
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1 : k^dk.dk, < dim (^,χ,F)
2|| T||2.

Let βePC4). According to the Iwasawa decomposition G = KANQ, each
x e G can be written uniquely as x = κ(x) exp H(x)n(x) (κ(x) e K, H(x) e α, n(x) e

NQ).
Given ψ e L(χ) ( χ e M ( F ) ) , veF c, QeF(A), ^ is extended to a function on

G b y

ψ(kan) = τ(k)ψ(l) (kε K,aeA,n

Then the integral

= Γ
J K

is called the Eisenstein integral.

If Te End (3FQ^F) then it is known ([9(e)]) that

E(Q: ψτ: v: k,: x: k2) = tr {Tπ^v(kίXk2)} (3.1)

for kί9 k2 e K and x e G.
Fix QeP(A) and let α = αβ be the unique simple root of zl(q, α). For the

convenience we then identify C with Fc via the map z->zα. Under this identifi-

cation PQ corresponds to (p + 2q)/2, where ^ = dimgα and g = dimg2 α ^e Put

Vy = {ve VF: τ(m)v = vτ(m\ meM}. Let ωm denote the Casimir element of
TO and let γ be the endomorphism of Homc (Vp1, Vy ) defined by

= [τ2(ωj, T] (TG Homc(Fίί,

Let γ j,..., yf be the set of all distinct eigenvalues of γ with multiplicities mί9 9 mt,

respectively. Since the representations τ{ and τ2 of K are unitary, every eigenvalue
of the transformation ι;->ιrr2(ωm) is real, whence the γt are real. Moreover, if
{#!,..., 0/} denotes an enumeration of the eigenvalues of τ2(ωm), it is then known

that each γt is of the form Θj — Θk (1 <y, /c</). We now put

τnΛ = n/2 -pQ + yJ(2n\M\2) (l

Put Γ' = C^{τwί: l<π<oo, !</<ί}. Then Γ' is an open connected set. For

veΓ' and n>l, we recursively define Γπ(v)6End(Fί f) as follows: put Γ O (V)ΞΞ!,
and for n > 1

||ap{2nv-n[n-2/7Q]}rn(v) - [τ2(ωj, ΓB(v)]

= 2 Σ {p||a!2v-

+ 8 Σ Σ{(2/-l)r1(n)τ2(K_Λ)Γn_ ( 2 /_υ(v)}
λeP + ,Z=a />!
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+ 8 Σ Σ
Λ e P + , A = 2 α / 1

-8 Σ Σ '
AeP + ,y[=α />!

-8 Σ Σ l{τt(YλY-λ)-τ2(YλY-,)}Γn_4l(v).
λeP + ,I=2α l>\

Here P + =P\P~ and λ = λ\a, P being a positive system of roots for A(Q, fy)

and P~ = {αe P: α |α = 0}. Moreover, we put Fk = 0 if fc<0. It is known
that the functions v->Γπ(v) are well defined and are rational functions in v and

holomorphic on Γ'. Let F" = {ve C: v — pQεΓ'} and F = { v e C : v , — veF"}.

Put

φ(v: α) = £ rn(v-p0)eiv-PQ-n*Hlo*a> (veΓ, <7
w=o

THEOREM 3.1 (Harish-Chandra (cf. [14])). For any v e F, t e Ϊ^(A), Q e
there exist uniquely determined elements CQ\Q(t: v) in End(FJί) swc/7 that

//>eC°°(M: KJf: τM)

E(Q:ψ:v:a)= Σ Φ(tv: a)CQ]Q(t: v
ίeW(A)

for all aeA+(Q). Moreover, CQ\Q(t: v) (teW(Λ)) are meromorphic functions
in v and holomorphic on Γ.

We list some properties of the Harish-Chandra C-functions and the Plancherel
measure, which we shall use in the last section. For the details see [9(e)] and

also [12(c)].
(1) There exists ε^O such that if τr(v) = <v, αQX+« then τr(v)CQl |ζ>2(s: v)

((?ι> β2e^(^)) extends to a holomorphic function of v on F^ = {veF c: |Rev |<

(2) Let s e W(A). Then s acts on L(F)= Σ/eM(F> L(χ) in the usual manner.
We then have

5C(hi«ι(ί: v) = CQs2\Qι(st: v)ί CQ2\Ql(
t: v)5~1 = CQ2,Qf(ίs"1: sv).

(3) ^Q2|Q, extends to a meromorphic function on Fc.
(4) CQ]Q(\ : v) and CQ|Q(1 : — v) are holomorphic on the set <Re v, αQ><0.

If 56 W(A), ST£ 1, then CQ|Q(s: v) and Cρ|δ(l : v) are also holomorphic there.
(5) For fixed ρ, , Q2 e P(X), 5 e W(^), v e F' and χ e M, C^^^s : v) defines

a bijection of L(χ) onto L(sχ). Let °CQllQ2(s: v) = CQ l | t t 2(l: sv)-1CQtiQ2(s: v).
Then v->°CQ l|Q2(s: v) defines a rational mapping of Fc into End (L(F)).

(6) There exists a function μ: M x FC-+C satisfying the following:
(A) For each #e M, v-+μ(χ: v) is meromorphic on Fc, holomorphic on F^

for some ε2>0, μ(χ, v)>0 on F', and μ(χ, v)>0 on F.
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(B) There exists a constant depending only on A, say C(A), such that for

all Qί9 Q2eP(A), f e W(A)9 veF, χeM(F),

a*' v)Cβ2,Ql(f: v)*Cfl2|Cl(f: v)|Lω =.C(Aflx

here for Te End(L(/0), Γ* denotes the adjoint of T, and lχ denotes the identity
operator on L(χ).

(C) μ(tχ:tv) = μ ( χ : v ) ( χ ε M, ve F, teW(A)).
(D) The poles and zeroes of μ(χ: v) are simple, with the exception of v = 0,

where μ(χ: v) may have a zero of multiplicity two. The poles and zeroes are
all in FR the poles are independent of χ and occur at the points nα/2, n e Z (cf.

[11]).
(7) Fix Q e P(A), v, v' e F'. Then the four linear transformations

Ce,Q(l: v), Cδιs(l:v), CQle(l: v'), CQ l δ(l:v')

commute with each other. Moreover, we have

CC,IQ(1 : v)* = Cδ|δ(l : v), CδlQ(l : v')* = CQlδ(l : v')

Cβ|Q(s: s-'v)* = s*Cδ|Q(l: v), (se W(A), s^l),

and as meromorphic functions on Fc we have

μ(χ: v)CQ I Q(l: v)CQIQ(l: v)|L ω = C(A)*lχ;

μ(χ: -v)S-^Cm(i: v)CQ|Q(l: v)os|Lω = C(A)2l/9

where seW(A)9 5/1.
(8) det CQ|Q(I : v) = 0 and det CQ\Q({ : v) = 0 for at most finitely many points

(all of which belong to FR) in Re v<0.
(9) Fix ε, 0<ε< 1/4, and Q e P(A), Then there exists a polynomial function

S e S(αc) such that if

A,(v) = S(v)Cβ|fl(l : v)-S A2(v) = S(v)CδlQ(l : v)'1

B,(v) = π(v)CQ|β(l : v), £2(v) = π(v)Cβ|fl(s: v) ,

where seW(A), s^l, then A!, ,42 are holomorphic on <VΛ, αQ><ε. Further,

given any κeS(Fc), M > 0 there exists C = CM > M > ε>0, l = lu>M,ε^® such

, -M<<Re v, αβ

| |β,(v;W)||<C(l + |v|y (veF*C9j=l,2).

(10) There exist constants C>0 and r>0 such that
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We shall next review the Gangolli estimates for the coefficients Γn due to
[4]. Without loss of generality, renumbering the eigenvalues of γ we can assume

that

Let Li denote the finite set of all πeZ, n>0, such that -n2\\cc\\2>yi. For each
n e Z+ , we define polynomials pn by

p β (v)=l if πeL^Lί;

- ι ι 2 |α 2 -)» ' if nεL

and set d'(n) = Σwι ; where the products and the sums are taken for / such
that !</<s and n2||α||2 + yί<0. We also put

PM = Π Λ(v), d=Σ d'(n)
neLΊ neL{

W = Π P. (v), φι) = Σ d'(n')
n' eL' ,n' <n n' eL' ,n' <n

for π e L'. Then remark that P is of finite degree and thus d<co. We put

THEOREM 3.2 (Eguchi-Hashizume-Koizumi [4]). T/?^r^ ^x/sr absolute con-
stants D, Jt >0 such that

\\Pn(v)Γn(v-PQ)\\

/or ύf

Let C7 denote the union of the following sets :
(1) {τM:τ/M.-pQ<0}
(2) {τeFc: τ<0 and either det CQIQ(\ : τ) = 0 or detCδ|ς,(l: τ) = 0}
(3) {0} if either CQlQ(i : v) or CQ|Q(s: v) has a pole at v = 0.
For ζe U let 0^0 denote the maximum order of the pole of the functions

v->Γn(v-pβ)CQIQ(l: v)-1 at v = ζ if Reζ<0 and put 0!(0 = 0 if C = 0. Further,
let 0S(0 (se W(A), s^l) denote the maximum order of the pole of the functions
v^ΓB(v-pc)CQIQ(l: v )- ! .5a tv = C i f Reζ<0. Note that 0f(0<oo ( V t e W ( A ) ) .
Fix Q e P(A) and χeM. For A e F2 = Fx F, say A =(y, δ), let

Z(A: χ) = {JeZ2: if J = (/, m) then !</<n(χ: 7),

Put

π(Q: χ: v: J: J: x) = <πQ^v(x)^(ρ: χ), φδ,

We now fix Q and set
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# = Mβ: χ : tζ; 3*(v): A: J): χeti(F), teW(A), ζeU,

0<k<Ot(ζ)-\,AeF2,JeZ(A:χ)}.

We recall the basis for g which is given in [12(c)]. We first enumerate 17 =
{Cι,...,(m} so that Q>ζι>- >ζm. We choose the least integer /Ί (m x/Ί^l)
so that there exist some χeM(F), teW(A), 0^k<Ot(ζtί)-l9 AeF2, and Je
Z(A: χ) such that π(Q: χ: ίζ f l; 5*(v): J: J)^0. We choose a basis for the set

(v): A: J): χ

0<j<Ot(ζίί)-l,AeF2,JεZ(A:χ)}.

Next let i2 be such that ra>ϊ2>*Ί>l and there exist some χe M(F), te W(A),
0<7<Of(Cί2)-U AεF\ JeZ(A:χ) such that π(Q: χ: tζi2; dJ(v): A: J) is
independent from the already chosen basis elements. We extend the previously
chosen basis elements by adding elements of the set

#2 = W6: χ: tζh; d'(v): A: J): χeβ(F), teW(A),

0<;<0,(Cf2)- 1, A e F\ J eZ(A : χ)} .

By continuing this process we obtain a basis of g. Let / be the subset of

x ( \j tU) x Z x F2 x Z2

which indexes the elements of <f and /' the subset of / which indexes the above
chosen basis. For ίe/, say /=(β, χ, fd k, y, J, J) let us write π(ι") for π(β: χ:
ίζίk; 3

J'(v): A : J). For ί e /, /' 6 /' define constants C(ί : i') e C by the equation

π(/)= Σ C(ί:i>(i').
ί 'e/'

§4. The space ^P(G: F) and its Fourier transform

Let β € P(A), x = /c exp X (k e X, ΛT e s) and put

2(jc) = Γ
J K

where || || denotes the norm given by the Killing form. Let /e C°°(G), # e (S,
re/?, 0<p<2 and put

<r(f) = sup |/(x; ^)|Ξ-2/^(x)

Let

: f') = {/eC°°(G: F): v^r(/)<oo for any αe®, re/?}.
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Then &p(G: F) is a Frechet algebra with convolution product. We denote by

SP(G) the set of all continuous seminorms on tfp(G: F). It is also known that

<#p(G: F)c:Lp(G),C^(G: F)atfp(G: F), and that if 0 </?<//< 2 then tfp(G: F)

d t f p ' ( G : F)dtf2(G: F) = tf(G: F). Moreover, the correspondence /->/ (/(x) =

/(x"1)) is a continuous involutive automorphism of tfp(G: F).

For OeP(/!), χeM, vεFc and αeC?(G:F), let JFw(α)(ρ: χ: v) e End

(^Q,/.F) t>e defined by

: χ: t .t

If rk(G) = rk(/C), Λ e L £ , α as above, let ^B(α)(/l)e End(jfΛtF) be defined by

if rk(G) =

§5. The space ^ / ( : jp)

As usual the symmetric algebra S(FC) can be considered as the algebra of

differential operators on Fc. If F(Q: χ) is a function defined on FC(Q: 2/p—l)

with values in End (3fQ,XtF) and C°° in ίnt(Fc(β: 2/p-l)), we put, for uεS(Fc)

and re /?.

where || || denotes the operator norm and the sup is taken over velnt(Fc(Q:

2/p— 1)) and χe M(F). Let Ip (resp. /p denote the set of / e / (resp. /'), i — (Q, χ,

fζ, Λ A, J) such that ζ e U n FC(Q: 2/p- 1)= [/„. We also let

A2ιl<22(s : ^: v) = π2(£FXQl,Q2(s: χ: vOπ^^),

where 5 e W(A), Ql,Q2£ P(A), χ e M(F), v e F', and πl = πQ l > χ j V, π2 = πQ2,sχ,sv.

DEFINITION 1. Let ^//(G: F) denote the linear space of functions G(Q: χ):

FC(Q: 2lp-\)-+End(jrQtXtF) (QeP(A),χeti) such that G(Q: χ) = 0 ifχ

and
( 1 ) G(Q : χ) is holomorphic on Int (FC(Q : 1\ p - 1))

(2) if Qί9 Q2 E P(A), s e W(A\ χ e M(F), v 6 F' then

AQl\Q2(s: χ: v)G(Ql: χ: v) = G(Q2: s χ : sv)AQl]Q2(s: χ: v);

(3) for all r e /?, u e S(FC), v^,r(G) < oo,

(4) in the notation of the previous section,

G(/)= Σ C(/:/')G(Γ) ( i6/ p ) .
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Here, for A =(y, δ) and J = (/, w),

C(Q: χ: v: A: J) = <G(β: χ: v)φy<l(Q: χ), φδ,m(Q: χ)>.

Then ^P

H(G\ F) is a Frechet space equipped with the topology defined by the
seminorms vp

 r (u e S(FC), r e R). Let S# (G) be the set of all continuous semi-
norms on <£P

H(G: F).

DEFINITION 2. Assume rk(G) = rk(K) and let BaK be the Cartan subgroup
of G given in Section 2. Let ^B(G: F) be the linear space of all functions L:

L^-^Enά(jeΛ^F) such that L(Λ) = 0 unless ΛeL$(F) and μ£(L) = sup(l + Mll) α

\\L(A)\\<oo (for any αej?). Here the sup is taken over A e LJ and ||L(/1)||
denotes the norm introduced before relative to the basis {φyj(Λ)\ yeF, !</<

n(/l:y)}.
We topologize &B(G: F) using the seminorms μp (OLE R). Then ^B(G: F)

is a Frechet space with this topology. Denote by SP(G) the set of the continuous
seminorms on ^B(G: F).

For each / ' e / ' choose αΓeC^(G: F) such that Suppαr is contained in
CG(1); here G(s)={xe G: σ(x)>s} for s>0and the suffix c denotes its complement,

and

--δVΛ» (/"e/')-

DEFINITION 3. Let <gp(G\ F) be the space of functions defined as follows:
(1) If rk(G)>rk(K), let ^(G: F) = <ep

H(G\ F) as topological spaces.
(2) If rk(G) = rk(lC), let <^(G: F) be the linear subspace of VB(G: F)x

F) consisting of functions G = (GB, Gtl) which satisfy the linear relation

GB(Λ: A: J) = Σ ^M(A: A: J}GH(if)
Γ e/p

for all AeLB such that \A(Hβ)\<k(β) for some positive (relative to some fixed

ordering) non compact root β of the pair (cj, b); here &(/?) = (l/2)ΣαeP \oc(Hβ)\, P a
positive system for A(Q, b), β(Hβ) = 2. GB(A: A: J) denotes the matrix of GB(A)

relative to the basis {φyJ(A): ye F, \<l<n(y, /)}.
The space &P(G: F) is a closed subspace of the product space tfB(G: F)x
?: F). Hence tfp (G: F) is also a Frechet space.
The following result is due to Trombi [12(c)].

THEOREM 5.1. ϊF is an injectiυe and continuous map of <^(G: F) into
\ F).
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§ 6. Wave packets

Let αr be as in Section 5. Let us fix F e <£P

H(G : F) and put

= Σ n/'K-W (xeG).;

Then F0 has the properties stated in the following lemma.

LEMMA 6.1 ([12(c), Lemma 9.1]). For all / e / p , F0(/) = 0. In particular,

the function F0(β: χ) has a zero at every ζeUp of order equal to the maximum

of the order of the pole of the functions v-»Fn(v — PQ)^Q\QS(^: v)~λ°s (se WΪΛ))
at v = ζ. If ±(2/p—l)ρQεUp the above statement should be understood that
the appropriate derivatives of F0 when extended to Fc(Q:2/p—\) vanish at
±(2/p-l)pQ.

We now want to compute φFo(Q: χ: x) (χe M(F\ xeG) given by

0F0(β '•*:*)= f ta{Fo(Q:χ:v)π%tXtV(x)}μ(χ:v)dv.
•J F

By (3.1), the last expression is equal to

f E(Q: ιAPo(β;,:v): v: 1 : x: l)μ(χ: v)dv. (6.1)
*/ F

Let εί and ε2 be as in (1) and (6 A) of Section 3 respectively. Let U be the
set given in Section 3 and choose (50>0 so that

0 < 2<50 < Min {\ζ\9 ε1? ε2}ζ.el/MO} .

Next choose ε0eFR so that with the ordering induced on α* by A+(Q) we have

PP = (I ~2/p)pQ < - ε0 < Min {ζ} ,

where the minimum is taken over (e \j n Int(Fc(β: 2/p- 1)). We define
contours as in Fig. 1 .
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Figure. 1

Since the function

v >E(Q: φFo(Q:χ:v): v: 1: x: l)//(χ: v) = tr{F0(β: χ: v)π%,XtV(x)μ(χ: v)}

is analytic in the strip F^° for all Q e P(/4), χ e M(F) and x e G, by (6.1) we have

ΦFo(Q' χ : x) = Γ £(6: ΆFO(Q:,:V): v: 1: x: l)μ(χ: v)dv.
J 71

Hence, applying Theorem 3.1 and the above observation to the last formula we
have for all aeA + (Q),

Φp0(Q' X < * ) = \ Σ ΦOv: a)CQlQ(w: v)φFo(Q:χ:v}(l)μ(χ: v)dv
J yi weW(A)

= Γ Φ(v:α)CQ|β(l: v)φFo(Q;χ:v)(\)μ(χ: v)dv
J y i

+ Φ(v: a)CQ]Q(w: w'ίv)\l/
J 72

Recalling the equalities in Section 3, we have for a εA+(Q),

C(AΓ2ΦFO(Q: χ: a)

= Γ Φ(v:α)Cδ|fi(l:v)-^Fo(Q:;tϊ
J 7ι

+ Γ Φ(v:α)Cδ |e(l: v)-i°wψ
*/ 72
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LEMMA 6.2. For all u e 31 and a e Λ+(Q),

lim Σ Σ Γ Φ(v: a\ M)Cβ l Q w(l: vr'owi/^^-^OMv = 0.
μ-»oθH'eH'(/f) 7 = 3 J y ./(/*, co)

PROOF. Fix α e /4 + (Q) and let μ0 > 0. Since the polynomial Pw(v) in Theorem
3.2 has zeroes only on the real axis, we can find constants D>0 and d>0 such

that

||ΓΛ(v-pQ)|| <D(\+nY

for all v (|Im v| >μ0> ^e v<ε). In a similar manner, we have from (9) in Section 3
that for given veS(Fc) and Λf>0, there exists a constant CvM > £>0 and an
integer />0 such that for all v ( |Imv|>μ 0 , — M<Rev<ε) and w e

On the other hand, by Lemma 3.1 we have

Combining these estimates and the fact that ^06^^(6: F), we have that for

u eSl there exists /' e Z+ such that for μ (μ>μ0)

I f f Φ(v: a; M)C2|Cμi : v)-Όw^ , (
I I y =3 J γj(μ,ε0) '

< const. Σ θf Σ(l + «) ί / + /^~' ί 0 f ( l o g α ) Γ (
7 = 3 \/ι=0 J y j ( A i . e o )

< const. Γ(l+εgί 2 + Γu
2)-2dί < const. (1+μ2)-2.

J o

This proves the assertion.

By Lemma 6.1 and Lemma 6.2 we have the following results.

COROLLARY. For a e A + (Q), we have

ΦF(Q χ <*)

Γ Φ(v: fl)Cc|Qw(l : vΓ^w^ (1)JV, (6.2)
J Fc(ε0)weW(A) Fc(ε0)

where Fc(ε0) = {ve Fc: Re v= — ε0}. Further, all derivatives of φFo(Q: χ) by
elements of 91 can be computed differentiation under the integrals.

THEOREM 6.1. Let notation be as above. If

φFo(x) = D(G/A) Σ d(χ)φFo(Q: χ: 1: x: 1),
XeM(F)
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then φFoetfp(G: F). Moreover, the map F-+φFo is continuous.

PROOF. Since F->F0 is continuous map of ^&(G: F) into itself, it suffices to
show that for every b e (5, reR there exists μ e S^(G) such that

(x; b)\\ < μ(F0).
jceG

We first consider the above sup in the complement CG(1) of G(l) in G. By [9(d),
Lemma 17.1] we see that given QeP(A), 0e($ there exist constants C = Ca and
r = ra such that

\\E(Q: φ: v: x; a)\\v

for x e G, ψ e L(χ) (χ e M(F)), v e F. And also by [9(c), Lemma 9.1] we have

ρ: χ: v)|| (veF).

Since Ξ(x) does not vanish on G and CG(1) is compact, we may choose C>0 so
that

C-1 <Ξ(xΓl <C (xe'G(l)),

combining these facts with (10) in Section 3. We see from this fact and the

defining formula of φFo that for any reR and a e © we can find μ' e SH(O) such
that

sup (l+σ(x)γΞ(xΓ2/p\\φFo(Q: χ: v: x; α)|| < C2/*+Wo)

We next consider the sup on G(l). Using the fact that G = KCl(A + (Q))K and the

radial component formula for any b e © (cf. [14]), we see that it is sufficient to
show that for every u e 2ί and re R there exists μ e 5&(G) such that

the sup being taken over A + (Q)nA(l), where A(s) = AnG(s) for s (s>0). By
the results in Section 3 we may write

Here 0 < /cπ>w < Ow(pp) and Bn>w(v) is holomorphic on (veF c : — εό<Re v< — ε0],
where —^<ρp\ moreover for uεS(Fc) there exist constants C = Ct/>0, df>0

such that

holds on the above domain. Take an element ξeFΛ satisfying pp<ξ<— ε0.
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Then from the above arguments it follows that the interchange of the summation

and the integration in (6.2) is legitimate, and we have, for a e A+(Q) and v e 31,

α)0Fo(β; V) = D(G/A) Σ d(χ) Σ Σ £?<^-"α>< los f l>
χeM(F) n=0 w e w ( Λ )

ζ + V~Πα~P*)β"'"(v^

here Fϋnw(Q: χ : v) = (v-pp)~Λ" ~F0(Q: χ : v) being rapidly decreasing in v (cf.

[12(c), Lemma 9.6]). On the other hand, we see (cf. [12(c), Lemma 9.7]) that if

we put for ξ (ξeFR, pp<ξ<-^\ QeP(A) and χeti(F),

Gξ(Q: χ: v: kl: m: k2) = Φ F θ t n t V V ( Q : X : ξ \ v ) ) ( k ι ' m: kι) ( k ί 9 k2eK, raeM),

then Gξ(Q: χ)e^7(F)(χ)C00(M: VF: τ) and if P is an arbitrary polynomial function

on Fc and u e S(FC} then there exists μ e S&(<5) (possibly depending on P, u, n

and w) such that

s u p \ \ P ( v ) G ξ ( Q : χ : v ; u ) \ \ v < μ ( F 0 )

for all above ξ, where the sup is taken over Q e P(A), χ e M, and v e F. Combining

the usual arguments and these facts, we see that there exists μ" e SP

H(G) such that

for aeA+(Q)[\A(\). Since this holds for all ξ (ζeFR, pp<ζ<-£0) ξ can be

replaced by pp. This proves the theorem.

REMARK. (I) If we restrict ourselves to the special case that τ = (l, 1), then

our proof gives a simple proof of [12(a)].

(2) In [6] Eguchi-Kowata studied the Fourier transform of the Lp Schwartz

space ^P(G/K) on the symmetric space G/K when rk(G/X)=l, in the same

way with ours (cf. also [10(a)]). But since the degree of the dependency of the

constant in the Gangolli estimate for the Eisenstein integrals with respect to the

K-types is higher than any polynomial order of the norm of X-types, we need to

put the /C-finite condition in the statement of the main theorem. For the proof

of the theorem (general case), an argument like in [3(b)] is necessary.
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