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1. Introduction

1.1 SUMMARY

Let G and g be a Lie group and its Lie algebra. We denote by g, and G,
the complexification of g and the complex adjoint group respectively. In this
paper we assume that G is of class &, that is, G satisfies the following three con-
ditions: (1) g is reductive and Ad(G)<=G,; (2) the center of the analytic subgroup
corresponding to [g, g] is finite; (3) the number of connected components of G
is finite.

As is well known, the Eisenstein integrals on G, that is, the matrix elements of
representations of principal series for G, play an essential role in harmonic analysis
on G. Therefore it is very important to know the asymptotic behaviors of the
Eisenstein integrals. In fact, the leading terms of the expansions of these integrals
give the Harish-Chandra C-functions and are closely related to the Plancherel
measure (cf. [5], [6]). The analysis of the Schwartz space on G needs only the
leading terms as an approximation of the Eisenstein integrals and estimates of
difference between them (cf. [1], [2], [6]). On the other hand, to carry out
closer study of harmonic analysis on G, such as Paley-Wiener type theorems for
various function spaces, one needs to know the asymptotic behavior of higher
order, of the Eisenstein integrals and to estimate the approximations (cf. [2], [7],
[8], [9], [10]). If we use our results to prove the Paley-Wiener type theorem for
the L? Schwartz spaces, as showed in [3], we can get it without the approximation
theorems such as in [2], [8] or [10]. For an application, see Eguchi and
Wakayama [4].

For each ve %, the zonal spherical function is defined by

0.0) = [ eomuebiak (xeG).
K

(The notation will be explained later.) When x=h varies in the positive Weyl
chamber A* of A, ¢,(h) is expanded into an infinite series (cf. Harish-Chandra

[5D) as



458 Masaaki EGucHi, Michihiko HasHIZUME and Shin Korzumr

@, (h) = e7ptlog ) S c(sv)D(sv: h),
seW(4)
d(v: h) = > T(v—p)etv=HUoeh) (he At),
AelL

Here ¢(-) is the Harish-Chandra c-function, I'; (1€ L) are rational functions on
ZFc given by certain explicit recursion formulas and v varies in a certain open
dense subset *#. of #.. In his paper [8], Gangolli gave a remarkable estimate
for the coefficients of the expansion as follows:

There exist absolute constants d, D>0 such that
IT(v—p)| < Dm(2)* (1.1)
forallve Z2={v=¢(+n: e F, —necl(F})} and L€ L.

This result is very fine as compared with the general estimate by Helgason [7].

For general Eisenstein integrals, Harish-Chandra [6] gave the same kind of
series expansions. In the general case, when confined to %, some singularities
of the coefficients I' arise from the double unitary representation of K. In this
paper, using the fact that these singularities vanish away by multiplying a poly-
nomial P, we give an estimate similar to (1.1) for PI" instead of I itself.

1.2 NOTATION AND PRELIMINARIES

We use the standard notation Z, R and C for the ring of integers, the field
of real numbers and the field of the complex numbers respectively. Let R*
denote the set of nonnegative real numbers and Z*=Zn R*. We write (—1)!/2
for a square root of —1. We fix a Lie group G of class s# and a maximal compact
subgroup K in G. We denote by g and { the Lie algebra of G and the subalgebra
of g corresponding to K respectively. Let 6 be the Cartan involution of G fixing
all elements of K. Denote the Killing form on g by {-,->. Then the quadratic
form — (X, 8X) (X eg) defines a norm ||-|| on g. We also denote by the same
symbols {-,-> and |-| the nondegenerate bilinear form and the norm on the
real dual space g* of g defined by those on g in natural way.

Let g=f+s be the Cartan decomposition corresponding to 0, a a maximal
abelian subspace of s and A the corresponding analytic subgroup of G. We
denote by Fy, F. and F the real dual space of a, its complexification and the
subspace (—1)1/2%, of &, respectively.

Let G=KAN and g=f+a+n be the Iwasawa decompositions of G and g
respectively. If x e G, x can be written uniquely as x =x(x) exp H(x)n(x) (k(x)e
K, H(x)ea, n(x)e N). Let M be the centralizer of 4 in K. Then P=MAN
is a minimal parabolic subgroup of G. We denote by W(A4) the Weyl group of
(G, A). As usual, p is the element of F; defined by p(H)=(1/2)tr ad(H)]|,
(H € a).
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Let X be the set of all roots of (P, A) and {a,,..., o,} (here |=prk P—prk G)
the set of all simple roots in X under the ordering on a which is compatible with
the above Iwasawa decomposition. Let a*, #% and A* be the positive Weyl
chambers of a, #x and A with respect to this ordering respectively. We denote
by cl(# %) the closure of #} in #;. Let]) be a Cartan subalgebra of g such that
ach and put h=hnf. Fixthe ordering on the real dual psace h*=h,+(—1)"/2a
of b which is compatible with the one on a. We denote by P, the set of positive
roots a of (g., h,) such that &=a|,#0. Foreach ae P, define the element Q;€a
by a(H)={Q; H) for all Hea. For each ae P,, we choose the root vectors
X, €g8% so that (X, X_,>=1, and write themas X, ,=Y ., +Z,, (Y4, €f,
Zs,€5,). V

Let ® be the universal enveloping algebra of g. and M, U and N the sub-
algebras of ® generated by (1, m,), (1, a,) and (1, ) respectively. Let w and w,
denote the Casimir elements of ® and 9 respectively. Choose an orthonormal
basis H,,..., H. of a. Then w can be written as

.
w=w,+Y H + ¥ (X, X_,+X_.X,). (1.2)
i=1

aeP +

For each De ®, we denote by [ ,(D) the radial component of D. In the
sequel, we use the following expression of { ,(w).

LemMA 1.1. The radial component § ,(w) of the Casimir element w of ®
can be written as follows:

14(@) = 1 (0,) + §'(w)
-2 ¥ (sinh (@) 2(1®I®Y,Y_,+Y,Y_ ®1®1)

aeP +

+4 > (sinh(a))"!coth(x)(Y,®1QY_,).

aeP 4+
Here

J@=3 Hi+ T coth(@Q,

aeP 4+

(cf. [11]).

2. FEisenstein Integrals and the Harish-Chandra Expansions

Let 7=(t,, 7,) be a double unitary representation of K on a finite dimensional
Hilbert space V. We denote by V), the subspace of V comprised of all elements
ve Vsuch that t,(m)v=v1,(m) for all me M. Then the Eisenstein integral on G
is defined for v e V), and v € # by the integral:
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E(v:v: x) = f T (k(xk))ot, (ke -t ixkN e (2.1
K

We define an endomorphism y of s# =Hom, (V,,, V),) by
WT) = [1)(w,), T] (Tex). (2.2)

Then it is known that y is a self-adjoint operator on o# and all its eigenvalues are
real. Let y,,..., 7, be the set of all distinct eigenvalues with multiplicities m,,...,
m, respectively. Let L denote the set of A=n0;+---+no (n,e Z*,i=1,...,1)
and put L'=L~{0}. If A, €L and A—1'e L then we denote A>»>1". For each
A € L, define the functions I'; on #. with values in 5# recursively. [If A=0, set
Iy=1; if A#0, then I', is given by the relation:

(22— (A, A=2p)}F, — (T
2 Y {G—E, A=2nEDIT ;g

aeP+ nz1

+8 X Z(2"“I)Tl(Ya)Tz(Y—a)ra—(zn—1)5

aeP 4+ n=1

-8 X ¥ n{ty (Y, Y_ )+ ,(Y,Y_ ) 2- (2.3)

aePy nzl

Here I';=0 for any A which does not lie in L, so that the sum appearing on the
right hand side are all finite.
For each ie{l,...,t} and 1e L', put

0, ={veFc: 24, vy=C{A AD+y;}

and let Y and Y, be the complement of the set \U,., \U; 0, ; in & and the subset
of #. comprised of all ve %, such that wve Y for all we W(A) respectively.

If ne #i and he A, for simplicity, we write h* for ertleem  The series in
the following is called the Harish-Chandra expansion of the Eisenstein integral.

TueoreM 2.1 (Harish-Chandra). Fix a ve Y and set

d(v: h) = E:L T,(v=p)h*=* (he A*).

Then the function h—®(v: h) is analytic on A+ and satisfies the following differ-
ential equation:

D(v: h; ero ] Jw)oe ) = d(v: h) {Kv, vd—<{p, p>+15(w,)}. (2.5)
Movreover, h?E(v: v: h) is expanded as

h?E(v: v: h) = ; d(wv: h)C (w: vIv (veVy, he A*,veYy,), (2.6)
weW (A4)
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where C(w: v) are the Harish-Chandra C-functions, which are meromorphic
on Yo with values in s (cf. [11]).

We are interested in this series expansion and shall give an estimate for
coefficients I', (A€ L).

3. The Estimate of the Coefficients I,

Recall first that y,..., 7, are the set of all distinct eigenvalues of the endo-
morphism y of s# defined by (2.2) and m,,..., m, denote their multiplicities. We
assume that

Y1 < <P <O pgq <<y

Let L7 denote the finite set of all A e L’ such that — {4, A>>y,. For each 1eL,
we define polynomials p, by

p,(vy=1 if AeL~Lj;

pi(v) = I1 (A vy =<4, A —y)m if LelLq

1<i<s5,<4,A>+7;<0
and set

d'() = > m,.

1<i<s,<4,A>+7,;<0

We also put
Pv) =TI pi(v), d= % d'(});
AelLi AelLi

P = I1  ps0) db= % d@)

el A7« €L’ A<
for Ae L’. Then remark that P is of finite degree and thus d <oo. Recall that
R ={l+neFc: teF, —necl(F})}.
THEOREM 3.1. There exist absolute constants D, d>0 such that
1P,y =p)|| < DL+ |v] +m())*m(A)* (ve ) (3.1
for all Ae L. Here
mA)=n, +--+n if A=na; +--+ nayel.
In order to prove the result, we first introduce & and ¥ defined by

$(v: h) = h~ed(v: h) and ¥(v: h) = A(h)128(v: h) (heAt),
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where 4 is defined by
A(hy = h?2? T] (1—-h=%*) (heA*t).

aePy

From the differential equation (2.5), it follows that & and ¥ satisfy:
B(v: h; 1 (@) = By, v>—<p, p>+12(0,)), (3.2)
A(h)'2o ] ((w)od(h)™112¥ = ¥Y((v, v) —{p, p) +T5(w,)) - (3.3)
On the other hand, by the definition of ¥, we have

Wi h)= [1 (1—h"2)2d(v: h) (heA*),

aeP 4+

which can be written in the following form by the binomial theorem
= (X bh=)(h* X I, (v—p)h™*)
agel nel

=2 ( X bl (v—p)h

AeL o,pueL,ctp=

We remark here that the coefficients b, are absolute constants and thus independent
of v. Puta;(v)=Xs4,=1bs,(v—p). Then we have

Wi h) = b ¥ a0 (hed*). (3.4)

Conversely, if ¥ is written as (3.4), @ can be written as follows:

®(v: h)y= TT (1—h"2*)"12¥(y: h)

aeP +

(X dh X a,Mh™)=h"3( ¥ da,()h™.
nel oel A ot+tpu=4a

eL

Therefore, we have

=)= 3 da,0). (3.5)

LEMMA 3.2. If we write

[T (=h"2)"12=%dh* (heAt).
unel

aeP +

then there exist constants Ry, R,>0 such that, for any A, o, ue€ L satisfying A=
g+u,

|d,| < R,m(M)R, (3.6)

Since the proof is elementary, it will be left to the reader.
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From (3.5) and the last lemma, it follows that, for the proof of Theorem 3.1,
it is sufficient to get the same kind of estimate for a,.

ProposITION 3.3. Let a,(v) be the coefficients in (3.4). Then there exist
constants D', d;>0 such that

I1P()a,() < D'(1+|[v]| +m(A))*4m(2)i.

4. The Proof of Proposition 3.3

We first consider the series expansion of the operator A(h)'/20] ,(w)°
A(h)~'/2, By Lemma 1.1, it can be written as:

A(h)'1201 (w)od(h)~'1? = 1 (w,) + A(h)'/2o5'(w)oA(h)~'/?
-2 Z (sinh ()" (I®I®Y,Y_,+Y,Y_  ®I®1)

aeP 4

+4 Z (sinh («))~! coth (a)(Y,®1®Y_,), 4.1)

aeP

where

0'(w) = Z Hi + % coth()Q;.

aeP +

LEMMA 4.1. Write H for logh (he A*). Then

AR 20 (@)A1 = | (@) +  HE = <p, p>

+ Z <O£ ay Zje-ZJa(H) _ 3 <@, B> 5 e—2(ja+kB)(H)

2eP + x,BeP 4 ,ap Jj=1.k=0

—8 3 T jeivm(1®I®Y,Y_,+Y.Y_,®1®1)

2eP+ j21
+8 Z 2 (2j—1)em @D Y. @1QY_,). 4.2)
aeP+ j21

To prove the lemma, we use the following relation.

LEMMA 4.2. Let H be as in Lemma 4.1. Then we have
v

A(h)!/2e8 (w)od(h)~1/2 = ¥ H?
i=1

GRS WG W S LIS NG D M S el
aeP + Jj=1

a,BePi,a?p Jj=1,k=0
ProoF. For simplicity, we put A=4(h). From
Hped = Y a(H;)cotha(H)A + 4-H;,

aeP+

it follows that
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N I'
d(w) =Y A 'eHpA-H,;, (4.3)
i=1

y
A2 5 ()0 A2 = Y A"V20H o AoH oA 2,
i=1

Computing H;2471/2 and H;=A'/?, we see that the last expression equals

.-‘i Hi -1} ‘l; ATe(H) - | '; (4= (H, )12

As is easily seen, this is equal to

S Hi - {é S Hi(log 4) + "1 z(HilogA)Z}.

From the definition of 4, we have

Hilog4 = 2{p(H)+ ¥ o(H) ¥ e 2/*UD},
j=1

aeP 4+

HXlogd) = —4 Y a(H)? ¥ je 2i*n,
=1

aeP +

Hence we have
(H;log 4)* = 4{p(H)*+2 ¥ p(H)a(H;) 3 e~2ith
aeP Jj=1

+ Y HP Y RN S G(H)RH) Y em2Umkany
Jok:z1 B

aeP+ a,feP s, a7 J. k=1

Using the fact that Y, a(H;)H;=Q; and Y ; p(H;)>*=<{p, p), we have also

.
4'1 S (Hilog )2 ={p,pd+ 3 (&, d)Y je 2i*ut
= =1

i=1 aeP 4+

TP RCE SN L I
B Jj2

2,BePy.a/ 1.k=0
Combining these, we get the desired expression.
ProOF OF LEMMA 4.1.  Applying the series expansion:
(sinh ()2 =4 Y le~2!%,
1=
sinh (@)~ ! coth () = 2 ¥ (2 —1)e~2i-1)a
151

and Lemma 4.2 to the right hand side of (4.1), we obtain

AR 1201 (@)A1 12 = 1 @) + 5 HE = <p, )

+ T KE & Y jerdith — (g, By ¥ etttk
j=1

aeP+ a.feP+,a/-B Jj=1,k=>0
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—8 Y Y pe2r)(1QIQY,Y_ +Y,Y_ ®I®1)

aeP+ p=1

+8 3 221: (29 —1)e~2a-D2HE(Y, 1@ Y_,).

aeP 4+ ¢q

This is the desired relation (4.2).

We differentiate W(v: hy=h"Y a,(v)h™* by A(h)"2:] (w)4(h)~'/2 and
use Lemma 4.1 and the differential equation (3.3). Then, comparing the coeffi-
cients of h¥~* in both side, we obtain the following recursive relation:

[2<4, v> =<4, A>]ay(v) — y(a,(v)

=“Z [<a, a> — 8F,] ZJaA 2ja(v) — ﬂeP atp {4, B> Z aA—Zji—Zkﬂ(v)
+ 8“21) G, j;(zj—l)al—(z,'—l)&("), (4.9

where
Faz = TI(YaY—a) + TZ(YaY—a)’ Ga = Tl(Ya)OTZ(Y—a)'

Conversely, if we define a series {a,},.,. by ayo(v)=1 and (4.4), a, (1€ L) are well
defined for every generic v. Using these a; (1€ L), define ¥ by (3.4). Then
obviously ¥ satisfies the differential equation (3.3). We shall obtain the estimate
of a,(v) by making use of the recursive relation (4.4).

Since y,,..., 5 are the set of all distinct negative eigenvalues of the endomor-
phism y of s#, if we assume that all a;. (A’ « 1) are defined and regard (4.4) as the
defining formula of a,, we find that all singularities of a, in # are concentrated
into P,.

We now put

Q;(v) = P, (1 + vl + [|A])=24H,
9;(v) = p;(V)(L+|vl[+[|2])724D
and consider (4.4) multiplied by Q,(v) instead of (4.4) itself:
[244, v) =<4, 131Q:(v)a;(v) — y(Qx(v)ax(v))
Z [Ka&, @) —8F,]q(v) Z jQi _I(v)Ql 2,a(V)a,1 2_,1(")

—a MZ <&, 3>‘11(V) Z Q}.jk(v)Q}, 2ja—243(V)A ;5 - 2ja- 2k1}(")
+8ueZ G,q:(v) Z(zl_l)Q“(V)Qz @i-ndMNaz-2j-1)av). 4.5)

Here Q} ;, Q; ;. and Q% ; are determined by
QMM = Q,; k@i —2jz-263(V)
= Q).,j(v)QA—(Zj—l)i(v) = Q}.,j(v)Q).—ZjE(v) .
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From the definition, it is clear that there exists a constant C, >0 such that
QLI < Cy, 1040 < €y, 10F,(MI < €4 (4.6)

for all Ae L’ and ve % and j, k. We define b;(v) (1€ L) by

bo(v)y=1 if 1=0;

b,(v) = Q,(v)a,(v) if AelL'.
For simplicity, we also put

YA Y) = (24, vy =<4, D) — v,
where I denotes the identity operator on s#. Then (4.5) is written as
YA v)by(v) = anh [K&, &) —8F,]q,(v) Elei,,-(V)ba-m(V)

- > L4 ﬁ>‘h(")_ 2 Qi WMbi_ 2z 2p(V)
B Jj=1,k20

o,BeP+,a#
+ 8 12}’ Gaql(v)jgl(zj_I)Q%,j(v)b}.—-uj—l)&(v)' 4.7

Note that s# is a Hilbert space of finite dimension, say n, with respect to the
inner product corresponding to the Hilbert-Schmidt norm | - || and fix an ortho-
normal basis #={¢,,..., $,} of #. Let A,,., be the matrix of the endo-
morphism p(A: v) with respect to #. Since the endomorphism 7y is self-adjcint,
there exists a unitary matrix B such that

BA,;.,B~! = diag(a,,..., aj,..., a,..., a,).
Here,
a; =24, v) =LA -y (i=1,..,1).
We then obviously have
ALy = B Y diag(a7?,..., a7l,..., a7, a7 V)B.
Combining this with the fact that |B||=n!/2, we obtain

| PA(V)A;(]A;\;) 13 < n{lp,(n)? > myla;|~2
1<i<t, || A|2+7:>0

IT lajPmmaf2m").
1<i<s, [|A]12+7:<0 j=1,j+i

Since we can choose constants C,>0 and C;>0 so that
|4llm(2)~! < C,
[PAI2 < C3(L+[v][+ 1 A])*4 M,
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we can find a constant C,>0 such that
1P MATG: 2 < Ca( v+ AN Pm(2)72.
Hence we have
l4:(NATG 2 < Csm(A)™2 (AeLl,ve ). 4.8)
Putting
Ce = C,Cs max {|[<& &> —8F,l, 8|G,l, K& B>|: a, e P}
and combining (4.8) with (4.7), we obtain the following estimate for b,:

bW < Cem(A)™2{ X > 2jllb; - 24

aeP+ j
+ 2 2 @-DIbij-yiMI+ X 2 i 2ja- g}
aePy j2>1 a,feP i, ap j=1,k=0
=Cem()72{ X Z j1|bz—ja(V)H+ > . > ”b).—Zji—Zkﬂ(V)"}
aeP+ j21 a,BeP+,adp j=1,k=0

= my2" 8 (5,09 +5:00),

where
Si(r)=Cs X Z . Jlba— iz,
aeP+ m(A—ja)=r,j=1
S3(r) = Cs > > 1622220Vl -
a,BeP +,a+p m(A—2ja—-2kf)=r,j>1,k=0
Put now

Hyv) =1, H()= sup [bMI (r=1).
puel’ ,m(u)=r

By an argument parallel to that in [8], we see that there exists a constant C,>0
such that S,(r) and S,(r) are bounded by C,H,(v)m(1) and thus we can take a
constant Cg>0 so that

m(D—-1

6:(MI < Ce( X H(»))m(H)~.

r=1
Moreover, if we define a seires {D,} (re Z*) by

r—1
Do=1, D,=-1C/S D, (r=1),
s=0

then it is easy (cf. [8]) to see that

H,(v) <D, (forallneZ* and ve %)
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and that there exists a constant Cy>0 such that
D, < Con€s~' (forallne Z*).
This shows that
b, (I < Comi})¢s  (JeL').

Since d(2)<d for all 2€ L', we see from this that we can choose costants D, d, >0
so that

[PiWa; W < DL+ |vil + m(2))*4m(A)*.
This is the desired estimate for P;a,. This completes the proof of Proposition 3.3.

REMARK. When we study harmonic analysis on the Riemannian symmetric
space G/K, only the Eisenstein integrals of special case T=(t,, 1) are related to
the analysis. In these cases, since any singularity of I' does not appear in 2,
we can take P(v)=1.
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