Boundary behavior of p-precise functions on a half space of \boldsymbol{R}^{n}

Yoshihiro Mizuta
(Received May 14, 1987)

1. Introduction

Let u be a function which is locally p-precise in $D=\left\{x=\left(x_{1}, \ldots, x_{n}\right) ; x_{n}>0\right\}$, $n \geqq 2$, and satisfies

$$
\begin{equation*}
\int_{D}|\operatorname{grad} u(x)|^{p} x_{n}^{\alpha} d x<\infty, \quad 1<p<\infty, \quad-1<\alpha<p-1 \tag{1}
\end{equation*}
$$

(see Ohtsuka [12] for (locally) p-precise functions). Many authors have tried to find a set $F \subset D$ such that $u(x)$ has a finite limit as x tends to the boundary ∂D along F (see Aikawa [1], Carleson [2], Mizuta [5], [7], [8], [9], Wallin [13]). They were mainly concerned with the nontangential case, that is, the case where $F=\ell_{\xi} \equiv\{\xi+(0, t) ; t>0\}$ or $F=\Gamma(\xi, a) \equiv\left\{x=\left(x^{\prime}, x_{n}\right) \in R^{n-1} \times R^{1} ;\left|x^{\prime}-\xi^{\prime}\right|<a x_{n}\right\} ;$ if $u(x)$ has a finite limit as $x_{n} \downarrow 0$ along ℓ_{ξ}, then u is said to have a perpendicular limit at ξ, and if $u(x)$ has a finite limit as $x \rightarrow \xi$ along $\Gamma(\xi, a)$ for any $a>0$, then u is said to have a nontangential limit at ξ. The existence of tangential limits of u at ξ was discussed by Aikawa [1] and Mizuta [9]. The proof of the existence of these limits can be carried out by local arguments; in fact it requires to find conditions near ξ which assure the existence of limits.

In this paper we investigate a global behavior of u near the boundary ∂D. More precisely, we aim to find a function $A(x)$ such that $A(x) u(x)$ tends to zero as x tends to ∂D along a set $F \subset D$. In order to evaluate the size of F, we use the capacity:

$$
C_{p}(E ; G)=\inf \|f\|_{p}^{p}
$$

where the infimum is taken over all nonnegative measurable functions f on R^{n} such that $f=0$ outside G and $\int_{G}|x-y|^{1-n} f(y) d y \geqq 1$ for every $x \in E ;\|\cdot\|_{p}$ denotes the L^{p}-norm in R^{n}. As in Aikawa [1], we introduce a notion of thinness of a set in D, near the boundary ∂D; we say that a set E is C_{p}-thin near ∂D if there exists a positive integer j_{0} such that

$$
\begin{array}{ll}
\text { in case } p<n, & \sum_{j=j_{0}}^{\infty} 2^{j(n-p)} C_{p}\left(E_{j} ; D\right)<\infty, \\
\text { in case } p=n, \quad \sum_{j=j_{0}}^{\infty} C_{p}\left(E_{j} \cap G_{1} ; G_{2}\right)<\infty
\end{array}
$$

for any bounded open sets G_{1}, G_{2} such that \bar{G}_{1} (the closure of G_{1}) is included in G_{2}, and
in case $p>n, \quad \cup_{j=j_{0}}^{\infty} E_{j}$ is empty,
where $E_{j}=\left\{x=\left(x^{\prime}, x_{n}\right) \in E ; 2^{-j} \leqq x_{n}<2^{-j+1}\right\}$.
First we shall establish the following result.
Theorem 1. Let $-1<\alpha<p-1$. If u is a function which is locally p-precise in D and satisfies (1), then there exists a set $E \subset D$ such that E is C_{p}-thin near ∂D and

$$
\begin{array}{ll}
\lim _{x_{n} \rightarrow 0, x \in D-E} x_{n}^{(n-p+\alpha) / p} u(x)=0, & \text { in case } n-p+\alpha>0, \\
\lim _{x_{n} \rightarrow 0, x \in D-E}\left[\log \left(x_{n}^{-1}(|x|+1)\right)\right]^{1 / p-1} u(x)=0, & \text { in case } n-p+\alpha=0, \\
\lim \sup _{x_{n} \rightarrow 0, x \in D-E}(|x|+1)^{(n-p+\alpha) / p}|u(x)|<\infty, & \text { in case } n-p+\alpha<0 .
\end{array}
$$

Next we study the boundary behavior of functions u satisfying the additional condition that $\lim _{x_{n} \downarrow 0} u\left(x^{\prime}, x_{n}\right)=0$ for almost every $x^{\prime} \in R^{n-1}$; for such a function u we can prove later the existence of a sequence $\left\{\varphi_{j}\right\}$ of functions in $C_{0}^{\infty}(D)$ such that $\int_{D}\left|\operatorname{grad}\left(u-\varphi_{j}\right)\right|^{p} x_{n}^{\alpha} d x \rightarrow 0$ as $j \rightarrow \infty$ (see Proposition 3). It will be expected naturally that such functions behave better than those in Theorem 1, near the boundary ∂D. In fact, we can prove the following result.

Theorem 2. Let α and p be as in Theorem 1. Let u be a function which is locally p-precise in D and satisfies (1). If $\lim _{t \downarrow 0} u\left(x^{\prime}, t\right)=0$ for almost every $x^{\prime} \in R^{n-1}$, then there exists a set E which is C_{p}-thin near ∂D and satisfies

$$
\lim _{x_{n} \rightarrow 0, x \in D-E} x_{n}^{(n-p+\alpha) / p} u(x)=0 .
$$

As applications of Theorems 1 and 2, we shall discuss the existence of radial and perpendicular limits of u multiplied by a suitable weight function. If in addition u is assumed to be harmonic in D, then it will be shown that u multiplied by a weight has a limit as the variable tends to the boundary of D. Naturally, if we apply the same methods, then we can prove the existence of nontangential and parabolic limits in the usual sense; for related results, see Cruzeiro [3], Mizuta [10], Nagel, Rudin and Shapiro [11] and Wallin [13].

2. Lemmas

In order to prove Theorem 1, we prepare several lemmas. First we establish an integral representation of functions satisfying (1), which is a main
tool in our discussions. For this purpose, we consider the functions $k_{j}(x, y)=$ $\left(x_{j}-y_{j}\right)|x-y|^{-n}-\left(-y_{j}\right)|y|^{-n}$ if $|y|>1$ and $k_{j}(x, y)=\left(x_{j}-y_{j}\right)|x-y|^{-n}$ if $|y| \leqq 1$, for $j=1, \ldots, n$. Then it is easy to see that

$$
\begin{equation*}
\left|k_{j}(x, y)\right| \leqq M|x||y|^{-n} \quad \text { whenever } \quad|y| \geqq 2|x|>2 \tag{2}
\end{equation*}
$$

with a positive constant M.
Lemma 1 (cf. [5; Lemma 6]). Let $-1<\alpha<p-1$ and f be a nonnegative function in $L^{p}\left(R^{n}\right)$, and define

$$
u(x)=\int k_{j}(x, y) f(y)\left|y_{n}\right|^{-\alpha / p} d y
$$

Then u is locally p-precise in D and locally q-precise in R^{n} for q such that $1<q<\min \{p, p /(\alpha+1)\}$. Further, u satisfies

$$
\int|\operatorname{grad} u(x)|^{p}\left|x_{n}\right|^{\alpha} d x \leqq M\|f\|_{p}^{p}
$$

with a positive constant M independent of f.
Proof. With the aid of (2), it follows from Hölder's inequality that $\int(1+$ $|y|)^{-n}|f(y)|\left|y_{n}\right|^{-\alpha / p} d y<\infty$ for $f \in L^{p}\left(R^{n}\right)$. For $R>1$, letting $B(0, R)$ denote the open ball with center at the origin and radius R, we write

$$
\begin{aligned}
u(x) & =\int_{B(0, R)} k_{j}(x, y) f(y)\left|y_{n}\right|^{-\alpha / p} d y+\int_{R^{n-B(0, R)}} k_{j}(x, y) f(y)\left|y_{n}\right|^{-\alpha / p} d y \\
& =u^{\prime}(x)+u^{\prime \prime}(x)
\end{aligned}
$$

Then u^{\prime} is locally p-precise in $D \cap B(0, R)$ in view of Lemma 3.3 in [4] and $u^{\prime \prime}$ is continuously differentiable in $B(0, R)$. Hence it is seen that u is locally p-precise in D. If $1<q<\min \{p, p /(\alpha+1)\}$, then we have by Hölder's inequality

$$
\int_{G}\left(f(y)\left|y_{n}\right|^{-\alpha / p}\right)^{q} d y \leqq\left(\int_{G} f(y)^{p} d y\right)^{q / p}\left(\int_{G}\left|y_{n}\right|^{-(\alpha q / p) /(1-q / p)} d y\right)^{1-q / p}<\infty
$$

for any bounded open set $G \subset R^{n}$. Consequently we see as above that u is locally q-precise in R^{n}.

Let $c_{n}=(2-n)^{-1}$ if $n \geqq 3$ and $c_{n}=2^{-1}$ if $n=2$. Define $k_{\varepsilon}(x)=c_{n}\left(|x|^{2}+\varepsilon^{2}\right)^{(2-n) / 2}$ in case $n \geqq 3$ and $k_{\varepsilon}(x)=c_{2} \log \left(|x-y|^{2}+\varepsilon^{2}\right)$ in case $n=2$, and set $k_{\varepsilon, j}(x, y)=$ $\left(\left(\partial / \partial x_{j}\right) k_{\varepsilon}\right)(x-y)$ if $|y| \leqq 1$ and $k_{\varepsilon, j}(x, y)=\left(\left(\partial / \partial x_{j}\right) k_{\varepsilon}\right)(x-y)-\left(\left(\partial / \partial x_{j}\right) k_{\varepsilon}\right)(-y)$ if $|y|>1$. We further define

$$
u_{\varepsilon}(x)=\int k_{\varepsilon, j}(x, y) f(y)\left|y_{n}\right|^{-\alpha / p} d y
$$

In view of Lemma 3.3 in [4], we see that $\left(\partial / \partial x_{i}\right) u_{\varepsilon}(x)$ tends to $\left(\partial / \partial x_{i}\right) u(x)$ in $L_{\text {loc }}^{p}\left(R^{n}-\partial D\right)$ as $\varepsilon \rightarrow 0$. Thus we have only to prove

$$
\begin{equation*}
\int\left|\operatorname{grad} u_{\varepsilon}(x)\right|^{p}\left|x_{n}\right|^{\alpha} d x \leqq M_{2}\|f\|_{p}^{p} \tag{3}
\end{equation*}
$$

with a positive constant M_{2} independent of ε and f. For this, we first note that $\left(\partial / \partial x_{i}\right) u_{\varepsilon}(x)=\int\left(\partial / \partial x_{i}\right)\left(\partial / \partial x_{j}\right) k_{\varepsilon}(x-y) f(y)\left|y_{n}\right|^{-\alpha / p} d y . \quad$ Setting $v_{\varepsilon}(x)=\int\left(\partial / \partial x_{j}\right)$ $k_{\varepsilon}(x-y) f(y) d y$, we have

$$
\begin{equation*}
\int\left|\operatorname{grad} v_{\varepsilon}(x)\right|^{p} d x \leqq M_{3}\|f\|_{p}^{p} \tag{4}
\end{equation*}
$$

by the proof of Lemma 3.2 in [4], and further

$$
\left|\left|x_{n}\right|^{\alpha / p}\left(\partial / \partial x_{i}\right) u_{\varepsilon}(x)-\left(\partial / \partial x_{i}\right) v_{\varepsilon}(x)\right| \leqq M_{4} \int \frac{\left|1-\left(\left|x_{n}\right| /\left|y_{n}\right|\right)^{\alpha / p}\right|}{|x-y|^{n}} f(y) d y
$$

where M_{3} and M_{4} are positive constants independent of ε and f. By the proof of Lemma 6 in [5], the L^{p}-norm in R^{n} of the right hand side is dominated by $M_{5}\|f\|_{p}$ as long as $\int_{0}^{\infty}\left|1-y_{n}^{-\alpha / p} \| 1-y_{n}\right|^{-1} y_{n}^{-1 / p} d y_{n}<\infty$, or $-1<\alpha<p-1$, with a positive constant M_{5}. Thus, with the aid of (4), we can establish (3), and the proof of Lemma 1 is completed.

Lemma 2 (cf. Ohtsuka [12; Lemma 9.16]). If h is a function which is harmonic in R^{n} and satisfies (1) with D replaced by R^{n} and with α such that $-1<\alpha<p-1$, then h is constant.

Proof. By the mean value property of harmonic functions and Hölder's inequality, we have

$$
\begin{aligned}
& \left|\left(\partial / \partial x_{i}\right) h(x)\right|=\left|M_{1} r^{-n} \int_{B(x, r)}\left(\partial / \partial y_{i}\right) h(y) d y\right| \\
& \quad \leqq M_{1} r^{-n}\left(\int_{B(x, r)}\left|y_{n}\right|^{-\alpha p^{\prime} / p} d y\right)^{1 / p^{\prime}}\left(\int_{B(x, r)}|\operatorname{grad} h(y)|^{p}\left|y_{n}\right|^{\alpha} d y\right)^{1 / p} \\
& \quad \leqq M_{2}\left(\frac{r+\left|x_{n}\right|}{r}\right)^{n}\left(r+\left|x_{n}\right|\right)^{-(n+\alpha) / p}\left(\int_{B(x, r)}|\operatorname{grad} h(y)|^{p}\left|y_{n}\right|^{\alpha} d y\right)^{1 / p}
\end{aligned}
$$

where M_{1}, M_{2} are positive constants independent of x, r and $1 / p+1 / p^{\prime}=1$. Letting $r \rightarrow \infty$, we establish

$$
\left(\partial / \partial x_{i}\right) h(x)=0
$$

from which it follows that h is constant.
By Lemmas 1 and 2, we establish an integral representation of functions satisfying (1).

Lemma 3. Let $-1<\alpha<p-1$. For functions u, v which are locally p-precise in D and satisfy (1), set $w\left(x^{\prime}, x_{n}\right)=u\left(x^{\prime}, x_{n}\right)$ when $x_{n}>0$ and $w\left(x^{\prime}, x_{n}\right)=v\left(x^{\prime},-x_{n}\right)$ when $x_{n}<0$. If $\lim _{t \downarrow 0} u\left(x^{\prime}, t\right)=\lim _{t \downarrow 0} v\left(x^{\prime}, t\right)$ for almost every x^{\prime}, then w
is extended to a function w^{*} which is locally q-precise in R^{n} for any q such that $1<q<\min \{p, p /(\alpha+1)\}$. Further there exist a number A and a set E such that $C_{p}(E \cap G ; G)=0$ for any bounded open set $G \subset R^{n}$ and

$$
w(x)=c \sum_{j=1}^{n} \int k_{j}(x, y)\left(\partial / \partial y_{j}\right) w^{*}(y) d y+A
$$

for every $x \in D-E$, where c is a constant depending only on the dimension n.
Remark. If $p>n$, then any locally p-precise function on D is continuous there, and the above integrals converge absolutely at any $x \in D$ and are continuous on D. Moreover, if $p>n$ and $C_{p}(E \cap G ; G)=0$ for any bounded open set $G \subset R^{n}$, then E is empty.

Proof of Lemma 3. If $1<q<\min \{p, p /(\alpha+1)\}$, then, as in the proof of Lemma 1, Hölder's inequality yields $\int_{G}|\operatorname{grad} u|^{a} d x<\infty$ for any bounded open set $G \subset D$. In view of Ohtsuka [12; Theorem 5.6], w is extended to a function w^{*} which is locally q-precise in R^{n}; here we remark that w^{*} is an ACL function on R^{n} if we define $w^{*}\left(x^{\prime}, 0\right)=\lim \inf _{t \downarrow 0} u\left(x^{\prime}, t\right)$, and hence grad w^{*} is well-defined almost everywhere and measurable on R^{n}.

Set $W(x)=\sum_{j=1}^{n} \int k_{j}(x, y)\left(\partial / \partial y_{j}\right) w^{*}(y) d y$. Then, in view of Lemma 1 , W is locally q-precise in R^{n} and satisfies (1) with D replaced by the whole space R^{n}. We shall prove that $\Delta\left(w^{*}-c W\right)=0$ for some constant c. For this purpose, let $\varphi \in C_{0}^{\infty}\left(R^{n}\right)$ and note by Fubini's theorem that

$$
\begin{aligned}
\int W(x) \Delta \varphi(x) d x & =\sum_{j=1}^{n} \int\left(\int k_{j}(x, y) \Delta \varphi(x) d x\right)\left(\partial / \partial y_{j}\right) w^{*}(y) d y \\
& =-c^{\prime} \sum_{j=1}^{n} \int\left(\partial / \partial y_{j}\right) \varphi(y)\left(\partial / \partial y_{j}\right) w^{*}(y) d y \\
& =c^{\prime} \int w^{*}(y) \Delta \varphi(y) d y
\end{aligned}
$$

with a positive constant c^{\prime} depending only on n. By Lemma 2, by letting $c=c^{\prime-1}$, we see that $w^{*}-c W$ is equal to a constant A a.e. on R^{n}. Since w and W are locally p-precise in $D, E=\{x \in D ; w(x) \neq c W(x)+A\}$ satisfies the required conditions.

Corollary. Let $-1<\alpha<p-1, n-p+\alpha>0$ and u be a function which is locally p-precise in D and satisfies (1). Then the function $u\left(x^{\prime},\left|x_{n}\right|\right)$ on $R^{n}-\partial D$ is extended to a function \bar{u} which is locally q-precise in R^{n} for q such that $1<q<$ $\min \{p, p /(\alpha+1)\}$. Moreover, there exist a number A and a set E such that $C_{p}(E \cap G ; G)=0$ for any bounded open set $G \subset R^{n}$ and

$$
u(x)=c \sum_{j=1}^{n} \int\left(x_{j}-y_{j}\right)|x-y|^{-n}\left(\partial / \partial y_{j}\right) \bar{u}(y) d y+A
$$

for every $x \in D-E$, where c is the same constant as above.
This is an easy consequence of Lemma 3, since, in case $n-p+\alpha>0, \int(1+$ $|y|)^{1-n}|f(y)| d y<\infty$ for any measurable function f on R^{n} such that $\int|f(y)|^{p}$. $\left|y_{n}\right|^{\alpha} d y<\infty$.

We here give a technical lemma for later use.
Lemma 4. Let $\beta<n, \gamma>-1$ and $r_{1}>2 r_{2}>0$. If $x=\left(x^{\prime}, x_{n}\right) \in D$ and $x_{n} \leqq 2 r_{2}$, then

$$
\int_{B\left(0, r_{1}\right)-B\left(x, r_{2}\right)}|x-y|^{\beta-n}\left|y_{n}\right|^{\gamma} d y \leqq M \begin{cases}\left(r_{1}^{\beta+\gamma}+r_{2}^{\beta+\gamma}\right) & \text { in case } \beta+\gamma \neq 0 \\ \log \left(r_{1} / r_{2}\right) & \text { in case } \beta+\gamma=0\end{cases}
$$

where M is a positive constant independent of x, r_{1} and r_{2}.
Proof. Let $x=\left(x^{\prime}, x_{n}\right)$ satisfy $0<x_{n} \leqq 2 r_{2}$. First we note that

$$
\begin{aligned}
& \int_{B\left(0, r_{1}\right)-B\left(x, r_{2}\right)}|x-y|^{\beta-n}\left|y_{n}\right|^{\gamma} d y \\
& \quad \leqq \int_{B\left(0, r_{1}\right)-B\left(x, r_{1}\right)}|x-y|^{\beta-n}\left|y_{n}\right|^{\gamma} d y+\int_{B\left(x, r_{1}\right)-B\left(x, r_{2}\right)}|x-y|^{\beta-n}\left|y_{n}\right|^{\gamma} d y \\
& \quad \leqq r_{1}^{\beta-n} \int_{B\left(0, r_{1}\right)}\left|y_{n}\right|^{\gamma} d y+\int_{\left\{y \in B\left(x, r_{1}\right)-B\left(x, r_{2}\right) ; y_{n} \geqq x_{n} / 2\right\}}|x-y|^{\beta-n}\left|y_{n}\right|^{\gamma} d y \\
& \quad+\int_{\left\{y \in B\left(x, r_{1}\right)-B\left(x, r_{2}\right) ; y_{n}<x_{n} / 2\right\}}|x-y|^{\beta-n}\left|y_{n}\right|^{\gamma} d y=I_{1}+I_{2}+I_{3} .
\end{aligned}
$$

Since $\gamma>-1, I_{1}=M_{1} 1_{1}^{\beta+\gamma}$ with a positive constant M_{1}. Letting $z=\left(x^{\prime}, 0\right)$, since $|x-y|>|z-y|$ if $y_{n}<x_{n} / 2$, we see that $\left\{y \in B\left(x, r_{1}\right) ; y_{n}<x_{n} / 2\right\} \subset B\left(z, r_{1}\right)$, so that we obtain

$$
\begin{aligned}
I_{3} & \leqq \int_{B\left(z, r_{1}\right)-B\left(z, r_{2}\right)}|z-y|^{\beta-n}\left|y_{n}\right|^{\gamma} d y+\int_{B\left(z, r_{2}\right)-B\left(x, r_{2}\right)}|x-y|^{\beta-n}\left|y_{n}\right|^{\gamma} d y \\
& \leqq \int_{B\left(0, r_{1}\right)-B\left(0, r_{2}\right)}|y|^{\beta-n}\left|y_{n}\right|^{\gamma} d y+M_{1} r_{2}^{\beta+\gamma} .
\end{aligned}
$$

If $\gamma<0$, then

$$
\begin{aligned}
I_{2} & \leqq \int_{B\left(x, r_{1}\right)-B\left(x, r_{2}\right)}|x-y|^{\beta-n}\left|x_{n}-y_{n}\right|^{\gamma} d y \\
& =\int_{B\left(0, r_{1}\right)-B\left(0, r_{2}\right)}|y|^{\beta-n}\left|y_{n}\right|^{\gamma} d y
\end{aligned}
$$

If $\gamma \geqq 0$, then $\left|y_{n}\right||x-y|\left|\leqq 1+x_{n} /|x-y| \leqq 3\right.$ if $| x-y \mid>x_{n} / 2$, so that

$$
I_{2} \leqq 3^{\gamma} \int_{B\left(x, r_{1}\right)-B\left(x, r_{2}\right)}|x-y|^{\beta+\gamma-n} d y=3^{\gamma} \int_{B\left(0, r_{1}\right)-B\left(0, r_{2}\right)}|y|^{\beta+\gamma-n} d y .
$$

Thus the lemma is proved.

Lemma 5. Let p and α be as in Theorem 1. Let f be a nonnegative function in $L^{p}\left(R^{n}\right)$ and set $u(x)=\int_{R^{n-B(0,2|x|)}} k_{j}(x, y) f(y)\left|y_{n}\right|^{-\alpha / p} d y$. Then there exists a positive constant $M>0$ independent of f such that

$$
|u(x)| \leqq M|x|^{-(n-p+\alpha) / p}\|f\|_{p}
$$

for any $x \in D-B(0,1 / 2)$.
Proof. Since there exists $M_{1}>0$ such that $\left|k_{j}(x, y)\right| \leqq M_{1}|x||y|^{-n}$ whenever $|y|>1$ and $|y| \geqq 2|x|$, we have by Hölder's inequality

$$
\begin{aligned}
& \left.\left|\int_{R^{n-B(0,2|x|)}} k_{j}(x, y) f(y)\right| y_{n}\right|^{-\alpha / p} d y \mid \\
& \quad \leqq M_{1}|x|\left(\int_{R^{n-B(0,2|x|)}}|y|^{\left.-n p^{\prime}\left|y_{n}\right|^{-\alpha p^{\prime} / p} d y\right)^{1 / p^{\prime}}\|f\|_{p}}\right. \\
& \quad=M_{2}|x|^{-(n-p+\alpha) / p}\|f\|_{p}
\end{aligned}
$$

for any $x \in R^{n}-B(0,1 / 2)$.

3. Proof of Theorem 1

Let u be a function which is locally p-precise in D and satisfies condition (1). Then, in view of the corollary to Lemma 3, there exist a number A and a set $F \subset D$ such that $C_{p}(F \cap G ; G)=0$ for any bounded open set $G \subset R^{n}$ and

$$
u(x)=c \sum_{j=1}^{n} \int k_{j}(x, y)\left(\partial / \partial y_{j}\right) \bar{u}(y) d y+A
$$

holds for any $x \in D-F$, where \bar{u} is defined as in the corollary to Lemma 3. It is easy to see that F is C_{p}-thin near ∂D. Therefore, letting f be a nonnegative function in $L^{p}\left(R^{n}\right)$, we have only to prove Theorem 1 for the function

$$
U(x)=\int k_{j}(x, y) f(y)\left|y_{n}\right|^{-\alpha / p} d y
$$

Let

$$
\begin{aligned}
U_{1}(x) & =\int_{R^{n-B(0,2|x|)}} k_{j}(x, y) f(y)\left|y_{n}\right|^{-\alpha / p} d y \\
U_{2}(x) & =\int_{B(0,2|x|)-B\left(x, x_{n} / 2\right)} k_{j}(x, y) f(y)\left|y_{n}\right|^{-\alpha / p} d y
\end{aligned}
$$

and

$$
U_{3}(x)=\int_{B\left(x, x_{n} / 2\right)} k_{j}(x, y) f(y)\left|y_{n}\right|^{-\alpha / p} d y
$$

Then we see that $U_{1}(x)$ and $U_{2}(x)$ are finite for $x \in D$ but $U_{3}(x)$ is finite for $x \in D$
except those in a set F^{\prime} satisfying $C_{p}\left(F^{\prime} \cap G ; G\right)=0$ for any bounded open set $G \subset R^{n}$.

First we treat the function U_{1}.
Lemma 6. If $n-p+\alpha>0$, then $\lim _{x_{n} \downarrow 0} x_{n}^{(n-p+\alpha) / p} U_{1}(x)=0$.
Proof. If $x \in D-B(0,1 / 2)$, then Lemma 5 implies

$$
x_{n}^{(n-p+\alpha) / p}\left|U_{1}(x)\right| \leqq M_{1}\left(2 x_{n}\right)^{(n-p+\alpha) / p}\|f\|_{p}
$$

for some positive constant M_{1} independent of x. Hence we have

$$
\lim _{x_{n} \downarrow 0, x \in D-B(0,1 / 2)} x_{n}^{(n-p+\alpha) / p} U_{1}(x)=0 .
$$

We next assume that $x \in B(0,1 / 2)$. If $0<2 x_{n}<\varepsilon$, then it follows from Hölder's inequality that

$$
\begin{aligned}
\left|U_{1}(x)\right| \leqq & M_{2}\left(|x| \int_{R^{n-B(0,1)}}|y|^{-n} f(y)\left|y_{n}\right|^{-\alpha / p} d y\right. \\
& +\int_{\left\{y \in B(0,1)-B(0,2|x|) ;\left|y_{n}\right| \leqq \varepsilon\right\}}|x-y|^{1-n} f(y)\left|y_{n}\right|^{-\alpha / p} d y \\
& \left.+\int_{\left\{y \in B(0,1)-B(0,2|x|) ;\left|y_{n}\right|<\varepsilon\right\}}|x-y|^{1-n} f(y)\left|y_{n}\right|^{-\alpha / p} d y\right) \\
\leqq & M_{3}\left\{\|f\|_{p}+\varepsilon^{1-n} \int_{B(0,1)} f(y)\left|y_{n}\right|^{-\alpha / p} d y\right. \\
& \left.+|x|^{-(n-p+\alpha) / p}\left(\int_{\left\{y ;\left|y_{n}\right|<\varepsilon\right\}} f(y)^{p} d y\right)^{1 / p}\right\}
\end{aligned}
$$

with positive constants M_{2} and M_{3} independent of x and ε. Consequently, we obtain

$$
\lim \sup _{x_{n} \downarrow 0, x \in B(0,1 / 2)} x_{n}^{(n-p+\alpha) / p}\left|U_{1}(x)\right| \leqq M_{3}\left(\int_{\left\{y ;\left|y_{n}\right|<\varepsilon\right\}} f(y)^{p} d y\right)^{1 / p},
$$

which implies by arbitrariness of ε that the left hand side in equal to zero. Thus the required statement is established.

In the same manner as Lemma 6 we can derive the following two results.
Lemma 7. If $n-p+\alpha<0$, then $(|x|+1)^{(n-p+\alpha) / p} U_{1}(x)$ is bounded on D.
Lemma 8. If $n-p+\alpha=0$, then $\lim _{x_{n} \downarrow 0}\left[\log \left(1 / x_{n}\right)\right]^{-1 / p^{\prime}} U_{1}(x)=0$.
Next we treat the function U_{2} in the case $n-p+\alpha=0$, that would be the most difficult case.

Lemma 9. If $n-p+\alpha=0$, then $\lim _{x_{n} \downarrow 0}\left[\log \left((|x|+1) / x_{n}\right)\right]^{-1 / p^{\prime}} U_{2}(x)=0$.

Proof. For $x \in D-B(0,1 / 2)$, we have

$$
\begin{aligned}
\left|U_{2}(x)\right| \leqq & M_{1}\left(\int_{B(0,2|x|)-B\left(x, x_{n} / 2\right)}|x-y|^{1-n} f(y)\left|y_{n}\right|^{-\alpha / p} d y\right. \\
& \left.+\int_{B(0,2|x|)-B(0,1)}|y|^{1-n} f(y)\left|y_{n}\right|^{-\alpha / p} d y\right)
\end{aligned}
$$

with a positive constant M_{1} independent of x. If $0<4 x_{n}<2 \delta_{2}<2<\delta_{1}$, then we have by Lemma 4

$$
\int_{B\left(0, \delta_{1}\right)-B\left(x, \delta_{2}\right)}|x-y|^{p^{\prime}(1-n)}\left|y_{n}\right|^{-\alpha p^{\prime} / p} d y \leqq M_{2} \log \left(\delta_{1} / \delta_{2}\right)
$$

with a positive constant M_{2} independent of δ_{1}, δ_{2} and x. Hence it follows that

$$
\begin{aligned}
& \int_{B(0,2|x|)-B\left(0, \delta_{1}\right)-B\left(x, x_{n} / 2\right)}|x-y|^{1-n} f(y)\left|y_{n}\right|^{-\alpha / p} d y \\
& \quad \leqq M_{3}\left[\log \left((|x|+1) / x_{n}\right)\right]^{1 / p^{\prime}}\left(\int_{R^{n-B}\left(0, \delta_{1}\right)} f(y)^{p} d y\right)^{1 / p}, \\
& \int_{B\left(0, \delta_{1}\right)-B\left(x, \delta_{2}\right)}|x-y|^{1-n} f(y)\left|y_{n}\right|^{-\alpha / p} d y \leqq M_{3}\left[\log \left(\delta_{1} / \delta_{2}\right)\right]^{1 / p^{\prime}}\|f\|_{p}
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{B\left(x, \delta_{2}\right)-B\left(x, x_{n} / 2\right)}|x-y|^{1-n} f(y)\left|y_{n}\right|^{-\alpha / p} d y \\
& \quad \leqq M_{3}\left[\log \left(\delta_{2} / x_{n}\right)\right]^{1 / p^{\prime}}\left(\int_{\left\{y ;\left|y_{n}\right| \leqq \delta_{2}+x_{n}\right\}} f(y)^{p} d y\right)^{1 / p}
\end{aligned}
$$

with a positive constant M_{3}. In the same manner we have

$$
\begin{aligned}
& \int_{B(0,2|x|)-B(0,1)}|y|^{1-n} f(y)\left|y_{n}\right|^{-\alpha / p} d y \\
& \quad \leqq M_{4}\left\{[\log (4|x|)]^{1 / p^{\prime}}\left(\int_{R^{n-B\left(0, \delta_{1}\right)}} f(x)^{p} d y\right)^{1 / p}+\left(\log \delta_{1}\right)^{1 / p^{\prime}}\|f\|_{p}\right\}
\end{aligned}
$$

where $\delta_{1}>2$ and M_{4} is a positive constant independent of δ_{1} and x. From these facts we obtain

$$
\begin{aligned}
& \lim \sup _{x_{n} \rightarrow 0, x \in D-B(0,1 / 2)}\left[\log \left((|x|+1) / x_{n}\right)\right]^{-1 / p^{\prime}} U_{2}(x) \\
& \quad \leqq\left(M_{3}+M_{4}\right)\left(\int_{R^{n}-B\left(0, \delta_{1}\right)} f(y)^{p} d y\right)^{1 / p}+M_{3}\left(\int_{\left\{y ;\left|y_{n}\right| \leqq \delta_{2}\right\}} f(y)^{p} d y\right)^{1 / p},
\end{aligned}
$$

which implies that the left hand side is equal to zero. If $x \in D \cap B(0,1 / 2)$, then

$$
\left|U_{2}(x)\right| \leqq M_{5} \int_{B(0,2|x|)-B\left(x, x_{n} / 2\right)}|x-y|^{1-n} f(y)\left|y_{n}\right|^{-\alpha / p} d y
$$

with a positive constant M_{5}. Hence, by the same considerations as above, we deduce

$$
\lim _{x_{n} \downarrow 0, x \in D \cap B(0,1 / 2)}\left[\log \left(1 / x_{n}\right)\right]^{-1 / p^{\prime}} U_{2}(x)=0,
$$

and Lemma 9 is established.
In the same manner we can prove the following results.
Lemma 10. If $n-p+\alpha>0$, then $\lim _{x_{n} \downarrow 0} x_{n}^{(n-p+\alpha) / p} U_{2}(x)=0$.
Lemma 11. If $n-p+\alpha<0$, then $|x|^{(n-p+\alpha) / p} U_{2}(x)$ is bounded on D.
Remark. If $n-p+\alpha<0$ and $\xi \in \partial D$, then we can show that $\int\left|k_{j}(\xi, y)\right| f(y)$. $\left|y_{n}\right|^{-\alpha / p} d y<\infty \quad$ and $\quad \lim _{x \rightarrow \xi, x \in \Gamma(\xi, a)}\left(U_{1}(x)+U_{2}(x)\right)=\int k_{j}(\xi, y) f(y)\left|y_{n}\right|^{-\alpha / p} d y=$ $U(\xi)$ for any $a>0$.

Lemma 12. If $p \leqq n$, then there exists a set $E \subset D$ which is C_{p}-thin near ∂D such that

$$
\lim _{x_{n} \rightarrow 0, x \in D-E} x_{n}^{(n-p+\alpha) / p} U_{3}(x)=0
$$

Proof. First we note that $\sum_{j=1}^{\infty} \int_{D_{j}} f(y)^{p} d y<\infty$, where $D_{j}=\left\{y=\left(y^{\prime}, y_{n}\right)\right.$; $\left.2^{-j-1}<y_{n}<2^{-j+2}\right\}$. Hence we find a sequence $\left\{a_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} a_{j}=\infty$ and $\sum_{j=1}^{\infty} a_{j} \int_{D_{j}} f(y)^{p} d y<\infty$. Consider the sets

$$
E_{j}=\left\{x=\left(x^{\prime}, x_{n}\right) \in D ; 2^{-j} \leqq x_{n}<2^{-j+1},\left|U_{3}(x)\right|>2^{j(n-p+\alpha) / p} a_{j}^{-1 / p}\right\}
$$

and $E=\cup_{j=1}^{\infty} E_{j}$. Since $B\left(x, x_{n} / 2\right) \subset D_{j}$ if $2^{-j} \leqq x_{n}<2^{-j+1}$, we can find a positive constant M_{1} independent of j, x such that

$$
\begin{equation*}
\left|U_{3}(x)\right| \leqq M_{1} 2^{j \alpha / p} \int_{B\left(x, x_{n} / 2\right)}|x-y|^{1-n} f(y) d y \tag{5}
\end{equation*}
$$

whenever $2^{-j} \leqq x_{n}<2^{-j+1}$. Let G_{1} and G_{2} be open sets for which there exists a number c such that $0<c<1 / 2$ and $B\left(x, c x_{n}\right) \subset G_{2}$ for any $x \in G_{1}$. Then easy calculation gives

$$
\begin{aligned}
\int_{B\left(x, x_{n} / 2\right)-B\left(x, c x_{n}\right)}|x-y|^{1-n} f(y) d y & \leqq M_{2^{2}} 2^{j(n-p) / p}\left(\int_{D_{j}} f(y)^{p} d y\right)^{1 / p} \\
& =M_{2}\left[2^{j(n-p) / p} a_{j}^{-1 / p}\right]\left(a_{j} \int_{D_{j}} f(y)^{p} d y\right)^{1 / p}
\end{aligned}
$$

for x such that $2^{-j} \leqq x_{n}<2^{-j+1}$, where M_{2} is a positive constant independent of x and j. Consequently, if j is large enough, say $j \geqq j_{0}$, then we see from (5) that

$$
\int_{B\left(x, c x_{n}\right)}|x-y|^{1-n} f(y) d y \geqq\left(2 M_{1}\right)^{-1} 2^{j(n-p) / p} a_{j}^{-1 / p},
$$

whenever $x \in E_{j}$. Hence we have by the definition of C_{p}

$$
C_{p}\left(E_{j} \cap G_{1} ; D_{j} \cap G_{2}\right) \leqq\left(2 M_{1}\right)^{p 2^{-j(n-p)}} a_{j} \int_{D_{j}} f(y)^{p} d y
$$

for $j \geqq j_{0}$, from which it follows that

$$
\begin{equation*}
\sum_{j=j_{0}}^{\infty} 2^{j(n-p)} C_{p}\left(E_{j} \cap G_{1} ; D_{j} \cap G_{2}\right)<\infty . \tag{6}
\end{equation*}
$$

If $p<n$, then (6) with $G_{1}=G_{2}=D$ means the C_{p}-thinness of E near ∂D. If $p=n$, then (6) implies the C_{p}-thinness of E near ∂D. Clearly,

$$
\lim \sup _{x_{n} \rightarrow 0, x \in D-E} x_{n}^{(n-p+\alpha) / p}\left|U_{3}(x)\right| \leqq 2^{|n-p+\alpha| / p} \lim \sup _{j \rightarrow \infty} a_{j}^{-1 / p}=0
$$

Hence E satisfies all the conditions in Lemma 12, and the proof of Lemma 12 is completed.

Lemma 13. If $p>n$, then $\lim _{x_{n} \downarrow 0} x_{n}^{(n-p+\alpha) / p} U_{3}(x)=0$.
Proof. By Hölder's inequality we have

$$
\begin{aligned}
\left|U_{3}(x)\right| & \leqq M_{1} x_{n}^{-\alpha / p} \int_{B\left(x, x_{n} / 2\right)}|x-y|^{1-n} f(y) d y \\
& \leqq M_{2} x_{n}^{-\alpha / p} x_{n}^{(p-n) / p}\left(\int_{B\left(x, x_{n} / 2\right)} f(y)^{p} d y\right)^{1 / p}
\end{aligned}
$$

with positive constants M_{1} and M_{2}. Hence the required equality follows readily.
Proof of Theorem 1. By Lemmas $6 \sim 13$, the proof of Theorem 1 is completed.

For simplicity, we define $A(x)=x_{n}^{(n-p+\alpha) / p}$ if $n-p+\alpha>0, A(x)=[\log ((|x|+$ 1) $\left.\left./ x_{n}\right)\right]^{-1 / p^{\prime}}$ if $n-p+\alpha=0$ and $A(x)=(|x|+1)^{(n-p+\alpha) / p}$ if $n-p+\alpha<0$. Further we set $a_{j}=2^{j(n-p)}$ if $n-p+\alpha>0, a_{j}=j^{p-1} 2^{j(n-p)}$ if $n-p+\alpha=0$ and $a_{j}=2^{-\alpha j}$ if $n-p+\alpha<0$ for each positive integer j. In view of the proof of Theorem 1 we can establish the following result.

Proposition 1. Let $-1<\alpha<p-1, p \leqq n$ and u be a function which is locally p-precise in D and satisfies $\int_{D}|\operatorname{grad} u|^{p} x_{n}^{\alpha} d x<\infty$. Then there exists a set $E \subset D$ satisfying

$$
\begin{equation*}
\sum_{j=1}^{\infty} a_{j} C_{p}\left(E_{j} \cap G_{1} ; D_{j} \cap G_{2}\right)<\infty \tag{7}
\end{equation*}
$$

for any open sets G_{1} and G_{2} for which there exists a number $c>0$ such that $B\left(x, c x_{n}\right) \subset G_{2}$ whenever $x \in G_{1}$, and

$$
\lim _{x_{n} \downarrow 0, x \in D-E} A(x) u(x)=0 \quad \text { in case } \quad n-p+\alpha \geqq 0
$$

$$
\lim \sup _{x_{n} \downarrow 0, x \in D-E} A(x) u(x)<\infty \quad \text { in case } n-p+\alpha<0 .
$$

Remark. If $n-p+\alpha>0$, then (7) is equivalent to the C_{p}-thinness of E near ∂D.

We shall show below that Proposition 1 is best possible as to the size of the exceptional sets.

Proposition 2. Let $-1<\alpha<p-1, p \leqq n$ and E be a bounded subset of D satisfying $\sum_{j=1}^{\infty} a_{j} C_{p}\left(E_{j} ; G \cap D_{j}\right)<\infty$, where G is a bounded open set including the closure of E. Then there exists a nonnegative function $f \in L^{p}\left(R^{n}\right)$ such that $u(x)=\int|x-y|^{1-n} f(y)\left|y_{n}\right|^{-\alpha / p} d y \not \equiv \infty$ and $\lim _{x_{n} \downarrow 0, x \in E} A(x) u(x)=\infty$.

Proof. By the definition of C_{p}, for each j we can find a nonnegative measurable function f_{j} such that $f_{j}=0$ outside $G \cap D_{j}$, $\left\|f_{j}\right\|_{p}^{p}<C_{p}\left(E_{j} ; G \cap D_{j}\right)+\varepsilon_{j}$ and $\int_{G \cap D_{j}}|x-y|^{1-n} f_{j}(y) d y \geqq 1$ for every $x \in E_{j}$, where $\left\{\varepsilon_{j}\right\}$ is a sequence of positive numbers such that $\sum_{j=1}^{\infty} a_{j} \varepsilon_{j}<\infty$. Further we can find a sequence $\left\{b_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} b_{j}=\infty$ and $\sum_{j=1}^{\infty} b_{j} a_{j}\left\{C_{p}\left(E_{j} ; G \cap D_{j}\right)+\varepsilon_{j}\right\}<\infty$. We now consider the function $f=\sum_{j=1}^{\infty} b_{j}^{1 / p} a_{j}^{1 / p} f_{j}$. Then

$$
\int f(y)^{p} d y \leqq 3 \sum_{j=1}^{\infty} b_{j} a_{j} \int f_{j}(y)^{p} d y \leqq 3 \sum_{j=1}^{\infty} b_{j} a_{j}\left\{C_{p}\left(E_{j} ; G \cap D_{j}\right)+\varepsilon_{j}\right\}<\infty .
$$

Moreover, if $x \in E_{j}$, then we have

$$
u(x) \geqq b_{j}^{1 / p} a_{j}^{1 / p} \int|x-y|^{1-n} f_{j}(y)\left|y_{n}\right|^{-\alpha / p} d y \geqq M b_{j}^{1 / p} A(x)^{-1}
$$

where M is a positive constant. Since f vanishes outside $G, u(x) \not \equiv \infty$. Hence f has the required properties in the proposition.

Remark. In view of the proof of Lemma 1, the above function u satisfies $\int|\operatorname{grad} u|^{p}\left|x_{n}\right|^{\alpha} d x<\infty$.

4. Proof of Theorem 2

We begin with the following result.
Lemma 14. Let $-1<\alpha<p-1$ and let u be a locally p-precise function on D satisfying (1). If $\lim _{t \downarrow 0} u\left(x^{\prime}, t\right)=0$ for almost every $x^{\prime} \in R^{n-1}$, then there exists a set $E \subset D$ such that $C_{p}(E \cap G ; G)=0$ for any bounded open set $G \subset D$ and

$$
\begin{aligned}
u(x)= & c \sum_{j=1}^{n} \int_{D}\left(x_{j}-y_{j}\right)\left(|x-y|^{-n}-|\bar{x}-y|^{-n}\right)\left(\partial u / \partial y_{j}\right)(y) d y \\
& +2 c x_{n} \int_{D}|\bar{x}-y|^{-n}\left(\partial u / \partial y_{n}\right)(y) d y
\end{aligned}
$$

for any $x \in D-E$, where $\bar{x}=\left(x^{\prime},-x_{n}\right)$ for $x=\left(x^{\prime}, x_{n}\right)$ and c is the absolute constant given in Lemma 3.

Proof. Setting $u^{*}\left(x^{\prime}, x_{n}\right)=u\left(x^{\prime}, x_{n}\right)$ if $x_{n}>0$ and $u^{*}(x)=0$ otherwise, we note that u^{*} is locally q-precise in R^{n} for $q, 1<q<\min \{p, p /(\alpha+1)\}$. Hence we can apply Lemma 3 and obtain

$$
u^{*}(x)=c \sum_{j=1}^{n} \int k_{j}(x, y)\left(\partial u^{*} / \partial y_{j}\right) d y+A
$$

for $x \in R^{n}-E$, where A is a constant depending on u and $C_{p}(E \cap G ; G)=0$ for any bounded open set $G \subset R^{n}$. If $x \in D-E$ and $\bar{x} \notin E$, then

$$
u(x)=u^{*}(x)-u^{*}(\bar{x})=c \sum_{j=1}^{n} \int\left(k_{j}(x, y)-k_{j}(\bar{x}, y)\right)\left(\partial u^{*} / \partial y_{j}\right) d y
$$

which implies that u satisfies the required equality.
By this lemma we can establish the following result.
Proposition 3. If u is as in Lemma 14, then there exists a sequence $\left\{\varphi_{j}\right\} \subset$ $C_{0}^{\infty}(D)$ such that $\int_{D}\left|\operatorname{grad}\left(\varphi_{j}-u\right)\right|^{p} x_{n}^{\alpha} d x$ tends to zero as $j \rightarrow \infty$.

Proof. For $N>0$, set

$$
u_{N}(x)=c \sum_{j=1}^{n} \int_{D \cap B(0, N)}\left(k_{j}(x, y)-k_{j}(\bar{x}, y)\right)\left(\partial u / \partial y_{j}\right) d y
$$

with the constant c given above. In view of Lemma 1, we find a positive number M_{1} (independent of N) such that

$$
\int_{D}\left|\operatorname{grad}\left(u_{N}-u\right)\right|^{p} X_{n}^{\alpha} d x \leqq M_{1} \int_{D-B(0, N)}|\operatorname{grad} u|^{p} X_{n}^{\alpha} d x,
$$

from which the left hand side tends to zero as $N \rightarrow \infty$. For $\varepsilon>0$, define

$$
u_{N, \varepsilon}(x)=c \sum_{j=1}^{n} \int_{\left\{y=\left(y^{\prime}, y_{n}\right) ; y_{n}>\varepsilon\right\} \cap B(0, N)}\left\{k_{j}(x, y)-k_{j}(\bar{x}, y)\right\}\left(\partial u / \partial y_{j}\right) d y .
$$

Then $u_{N, \varepsilon}$ is continuous on ∂D and vanishes there. Moreover, $u_{N, \varepsilon}(x)$ tends to zero as $|x| \rightarrow \infty$, and, again by Lemma 1 ,

$$
\int_{D}\left|\operatorname{grad}\left(u_{N, \varepsilon}-u_{N}\right)\right|^{p} x_{n}^{\alpha} d x \leqq M_{1} \int_{\left\{y \in B(0, N) ; 0<y_{n}<\varepsilon\right\}}|\operatorname{grad} u|^{p} y_{n}^{\alpha} d y .
$$

Finally, we set $u_{N, \varepsilon, \delta}(x)=\max \left\{u_{N, \varepsilon}(x)-\delta, 0\right\}+\min \left\{u_{N, \varepsilon}(x)+\delta, 0\right\}$ for $\delta>0$. Then $u_{N, \varepsilon, \delta}$ vanishes outside some compact set in D and

$$
\int_{D}\left|\operatorname{grad}\left(u_{N, \varepsilon, \delta}-u_{N, \varepsilon}\right)\right|^{p} x_{n}^{\alpha} d x \longrightarrow 0 \quad \text { as } \quad \delta \downarrow 0
$$

Thus we can find a sequence $\left\{v_{j}\right\}$ such that each v_{j} is a p-precise function on D with compact support in D and

$$
\int_{D}\left|\operatorname{grad}\left(v_{j}-u\right)\right|^{p} x_{n}^{\alpha} d x \longrightarrow 0 \text { as } j \longrightarrow \infty .
$$

By a routine method of regularization of functions v_{j}, we obtain a sequence $\left\{\varphi_{j}\right\}$ with the required properties.

Proof of Theorem 2. Let u be as in Theorem 2. In view of Lemma 14, the equality

$$
u(x)=c \sum_{j=1}^{n} \int_{D}\left(k_{j}(x, y)-k_{j}(\bar{x}, y)\right)\left(\partial u / \partial y_{j}\right) d y
$$

holds for $x \in D-E$, where $C_{p}(E \cap G ; G)=0$ for any bounded open set G. We note here that E is C_{p}-thin near ∂D.

We see from elementary calculation that $\left|k_{j}(x, y)-k_{j}(\bar{x}, y)\right| \leqq M_{1} x_{n}\left(y_{n} \mid x-\right.$ $\left.\left.y\right|^{1-n}|\bar{x}-y|^{-2}+|\bar{x}-y|^{-n}\right)$ for any x and y in D, with a positive constant M_{1}. Hence we can find a positive constant M_{2} such that

$$
\begin{aligned}
|u(x)| \leqq & M_{2}\left(x_{n} \int_{D-B\left(x, x_{n} / 2\right)}|x-y|^{-n}|\operatorname{grad} u| d y\right. \\
& \left.+\int_{B\left(x, x_{n} / 2\right)}|x-y|^{1-n}|\operatorname{grad} u| d y\right)=M_{2}\left(U_{1}(x)+U_{2}(x)\right)
\end{aligned}
$$

for $x \in D-E$. For $\delta>x_{n} / 2$ we have by Hölder's inequality and Lemma 4

$$
\begin{gathered}
U_{1}(x) \leqq M_{3} x_{n}^{1-(n+\alpha) / p}\left(\int_{D \cap B(x, \delta)-B\left(x, x_{n} / 2\right)}|\operatorname{grad} u|^{p} y_{n}^{\alpha} d y\right)^{1 / p} \\
+M_{3} \delta^{-(n+\alpha) / p} x_{n}\left(\int_{D-B(x, \delta)}|\operatorname{grad} u|^{p} y_{n}^{\alpha} d y\right)^{1 / p}
\end{gathered}
$$

with a positive constant M_{3}. Therefore it follows that

$$
\lim \sup _{x_{n} \downarrow 0} x_{n}^{(n-p+\alpha) / p} U_{1}(x) \leqq M_{3}\left(\int_{\left\{y \in D ; y_{n}<\delta\right\}}|\operatorname{grad} u|^{p} x_{n}^{\alpha} d x\right)^{1 / p}
$$

which implies that the left hand side is equal to zero. As in the proofs of Lemmas 12 and 13 , we can find a set $E^{\prime} \subset D$ which is C_{p}-thin near ∂D and satisfies

$$
\lim _{x_{n} \rightarrow 0, x \in D-E^{\prime}} x_{n}^{(n-p+\alpha) / p} U_{2}(x)=0
$$

Now the proof of Theorem 2 is completed.
Set $G_{1}(x, y)=|x-y|^{1-n}-|\bar{x}-y|^{1-n}$. Then by elementary calculation we find $M>0$ such that

$$
M^{-1} x_{n} y_{n}|x-y|^{1-n}|\bar{x}-y|^{-2}<G_{1}(x, y)<M x_{n} y_{n}|x-y|^{1-n}|\bar{x}-y|^{-2}
$$

whenever x any y are in D. Hence we can find a positive number M^{\prime} such that $|x-y|^{1-n} \leqq M^{\prime} G_{1}(x, y)$ whenever $y \in B\left(x, x_{n} / 2\right)$. Thus we obtain the following result.

Theorem 2'. If u is as in Theorem 2, then there exists a set $E \subset D$ such that

$$
\lim _{x_{n} \downarrow 0, x \in D-E} x_{n}^{(n-p+\alpha) / p} u(x)=0
$$

and

$$
\begin{equation*}
\sum_{j=1}^{\infty} 2^{j(n-p)} C_{G_{1}}\left(E_{j} ; D_{j}\right)<\infty, \tag{8}
\end{equation*}
$$

where $C_{G_{1}}(F ; G)=\inf \|g\|_{p}^{p}$, the infimum being taken over all nonnegative measurable functions g on R^{n} such that $g=0$ outside an open set G and $\int_{G} G_{1}(x$, $y) g(y) d y \geqq 1$ for any x in a set F.

Remark. If E satisfies (8), then E is C_{p}-thin near ∂D; in case $p<n$, (8) is equivalent to the C_{p}-thinness near ∂D.

We shall show below that Theorem 2^{\prime} is best possible as to the size of the exceptional sets.

Proposition 4. Let $-1<\alpha<p-1$ and $p \leqq n$. If $E \subset D$ satisfies (8), then there exists a function u such that $\int|\operatorname{grad} u|^{p} x_{n}^{\alpha} d x<\infty, \lim _{t \downarrow 0} u\left(x^{\prime}, t\right)=0$ for almost every $x^{\prime} \in R^{n-1}$ and $\lim _{x_{n} \downarrow 0, x \in E} x_{n}^{(n-p+\alpha) / p} u(x)=\infty$.

Proof. By the definition of $C_{G_{1}}$, we can find a nonnegative measurable function f_{j} such that $f_{j}=0$ outside $D_{j}, \int_{D_{j}} G_{1}(x, y) f_{j}(y) d y \geqq 1$ and $\left\|f_{j}\right\|_{p}^{p}<$ $C_{G_{1}}\left(E_{j} ; D_{j}\right)+\varepsilon_{j}$, where $\left\{\varepsilon_{j}\right\}$ is a sequence of positive numbers such that $\sum_{j=1}^{\infty} 2^{j(n-p)} \varepsilon_{j}<\infty$. Letting $\left\{b_{j}\right\}$ be a sequence of positive numbers such that $\lim _{j \rightarrow \infty} b_{j}=\infty$ and $\sum_{j=1}^{\infty} b_{j} 2^{j(n-p)}\left\{C_{G_{1}}\left(E_{j} ; D_{j}\right)+\varepsilon_{j}\right\}<\infty$, we consider the function $u(x)=\int_{D} G_{1}(x, y) f(y) d y$, where $f=\sum_{j=1}^{\infty} b_{j}^{1 / p} 2^{j(n-p+\alpha) / p} f_{j}$. Then f vanishes outside D and

$$
\begin{aligned}
\int_{D} f(y)^{p} y_{n}^{\alpha} d y & \leqq M_{1} \sum_{j=1}^{\infty} b_{j} 2^{j(n-p+\alpha)} \int_{D} f_{j}(y)^{p} y_{n}^{\alpha} d y \\
& \leqq M_{1} \sum_{j=1}^{\infty} b_{2^{2}}{ }^{2(n-p)}\left\{C_{G_{1}}\left(E_{j} ; D_{j}\right)+\varepsilon_{j}\right\}<\infty
\end{aligned}
$$

with a positive constant M_{1}. Thus, in the same way as in the proof of Lemma 1, we can prove that $\int_{D}|\operatorname{grad} u|^{p} x_{n}^{\alpha} d x<\infty$. On the other hand, we have for $x \in E_{j}$

$$
x_{n}^{(n-p+\alpha) / p} u(x) \geqq M_{2} b_{j}^{1 / p} \int_{D} G_{1}(x, y) f_{j}(y) d y \geqq M_{2} b_{j}^{1 / p},
$$

where M_{2} is a positive constant. This implies that $\lim _{x_{n} \downarrow 0, x \in E} x_{n}^{(n-p+\alpha) / p} u(x)=\infty$.

What remains is to show that $\lim _{t \downarrow 0} u\left(x^{\prime}, t\right)=0$ for almost every $x^{\prime} \in R^{n-1}$. For this, it suffices to note that if $N>0$, then $\int_{B(0, N)}|x-y|^{1-n} f(y) d y$ is q-precise in R^{n} for q with $1<q<\min \{p, p /(\alpha+1)\}$, and hence it is absolutely continuous on the line $\ell_{x^{\prime}}=\left\{\left(x^{\prime}, t\right) ; t \in R^{1}\right\}$ for almost every $x^{\prime} \in R^{n-1}$.

5. Boundary behavior near the origin

We say that a set E is C_{p}-thin at the origin 0 if

$$
\sum_{j=1}^{\infty} 2^{j(n-p)} C_{p}\left(E \cap B\left(0,2^{-j+1}\right)-B\left(0,2^{-j}\right) ; B\left(0,2^{-j+2}\right)\right)<\infty .
$$

For $a>0$, we set $\Gamma(a)=\left\{x=\left(x^{\prime}, x_{n}\right) ;\left|x^{\prime}\right|<a x_{n}\right\}$.
Lemma 15. For any $a>0, \Gamma(a)$ is not C_{p}-thin at 0 .
Proof. For each nonnegative integer j, set

$$
\Gamma_{j}(a)=\Gamma(a) \cap B\left(0,2^{-j+1}\right)-B\left(0,2^{-j}\right) .
$$

Then $C_{p}\left(\Gamma_{j}(a) ; B\left(0,2^{-j+2}\right)\right)=2^{-j(n-p)} C_{p}\left(\Gamma_{0}(a) ; B(0,4)\right)$ and $C_{p}\left(\Gamma_{0}(a) ; B(0,4)\right)>$ 0 , so that $\Gamma(a)$ is not C_{p}-thin at 0 .

Lemma 16. Let $E \subset \Gamma(a), a>0$. If $p \leqq n$ and $\sum_{j=1}^{\infty} a_{j} C_{p}\left(E \cap \Gamma_{j}(a) ; B(0,2)\right)$ $<\infty$, then E is C_{p}-thin at 0 , where $a_{j}=2^{j(n-p)}$ if $p<n$ and $a_{j}=j^{n-1}$ if $p=n$.

Proof. We shall give a proof only in the case $p=n$. For simplicity, set $E_{j}=E \cap \Gamma_{j}(a)$. Assume that $\sum_{j=1}^{\infty} j^{n-1} C_{n}\left(E_{j} ; B(0,2)\right)<\infty$. Let f_{j} be a nonnegative measurable function on R^{n} such that $\int_{B(0,2)}|x-y|^{1-n} f_{j}(y) d y \geqq 1$ for any $x \in E_{j}, f_{j}=0$ outside $B(0,2)$ and $\left\|f_{j}\right\|_{n}^{n}<C_{n}\left(E_{j} ; B(0,2)\right)+j^{-n}$. Then, by Lemma 4, we have for $x \in E_{j}$

$$
\begin{aligned}
\int_{B(0,2)-B\left(x, x_{n} / 2\right)}|x-y|^{1-n} f_{j}(y) d y & \leqq M_{1}\left(\log \left(4 / x_{n}\right)\right)^{1-1 / n}\left\|f_{j}\right\|_{n} \\
& \leqq M_{2}\left(j^{n-1} C_{n}\left(E_{j} ; B(0,2)\right)+j^{-1}\right)^{1 / n}
\end{aligned}
$$

with positive constants M_{1} and M_{2}. Since $\sum_{j=1}^{\infty} j^{n-1} C_{n}\left(E_{j} ; B(0,2)\right)<\infty$ by our assumption, if j is large enough, then

$$
\int_{B\left(x, x_{n} / 2\right)}|x-y|^{1-n} f_{j}(y) d y>2^{-1}
$$

for any $x \in E_{j}$. If $x \in E_{j}$, then $B\left(x, x_{n} / 2\right) \subset B\left(0,2^{-j+2}\right)$, so that

$$
C_{n}\left(E_{j} ; B\left(0,2^{-j+2}\right)\right) \leqq 2^{n}\left\|f_{j}\right\|_{n}^{n}<2^{n}\left[C_{n}\left(E_{j} ; B(0,2)\right)+j^{-n}\right]
$$

for large j, which implies easily that E is C_{n}-thin at 0 .

The above proof shows that if $p<n$ and $E \subset B(0,1) \cap D$, then the C_{p}-thinness of E near ∂D is equivalent to $\sum_{j=1}^{\infty} 2^{j(n-p)} C_{p}\left(E_{j} ; B(0,2) \cap D_{j}\right)<\infty$. For $a>0$, if we take k_{0} such that $2^{k_{0}}>\left(a^{2}+1\right)^{1 / 2}$, then $E \cap \Gamma_{j}(a) \subset \cup_{k=0}^{k_{0}} E_{j+k}$, so that $a_{j} C_{p}\left(E \cap \Gamma_{j}(a) ; B\left(0,2^{-j+2}\right)\right) \leqq \sum_{k=0}^{k_{0}} a_{j+k} C_{p}\left(E_{j+k} \cap \Gamma(a) ; B(0,2)\right)$. Hence we obtain

Corollary. If $p<n$ and $E \cap \Gamma(a), a>0$, is C_{p}-thin near ∂D, then $E \cap \Gamma(a)$ is C_{p}-thin at 0 .

Proposition 5. If u is as in Theorem 1, then there exists a set $E \subset D$ such that $E \cap \Gamma(a)$ is C_{p}-thin at 0 for any $a>0$ and

$$
\begin{array}{ll}
\lim _{x \rightarrow 0, x \in D-E} x_{n}^{(n-p+\alpha) / p} u(x)=0, & \text { in case } n-p+\alpha>0, \\
\lim _{x \rightarrow 0, x \in D-E}\left[\log \left(1 / x_{n}\right)\right]^{-1 / p^{\prime}} u(x)=0, & \text { in case } n-p+\alpha=0, \\
\lim _{x \rightarrow 0, x \in D-E} u(x) \text { exists and is finite, } & \text { in case } n-p+\alpha<0 .
\end{array}
$$

Proof. The case where $p \leqq n$ and $n-p+\alpha \geqq 0$ is proved by Proposition 1 together with Lemma 16. The case $p>n$ and $n-p+\alpha \geqq 0$ is a consequence of Theorem 1. In case $n-p+\alpha<0$, with the notation in the proof of Theorem 1, we see that

$$
\begin{aligned}
& \lim _{x \rightarrow 0, x \in D} \int_{R^{n}-B(x,|x| / 2)} k_{j}(x, y)\left(\partial / \partial y_{j}\right) \bar{u}(y) d y \\
& \quad=\int k_{j}(0, y)\left(\partial / \partial y_{j}\right) \bar{u}(y) d y
\end{aligned}
$$

for $j=1, \ldots, n$, where the integrals converge absolutely. Moreover, as in the proof of Lemma 12, we see that $\int_{B(x,|x| / 2)} k_{j}(x, y)\left(\partial / \partial y_{j}\right) \bar{u}(y) d y$ tends to zero as $x \rightarrow 0$ outside an exceptional set E such that $E \cap \Gamma(a)$ is C_{p}-thin at 0 for any $a>0$.

In the same manner we can establish the following result.
Proposition 6. If u is as in Theorem 2, then there exists a set $E \subset D$ such that $E \cap \Gamma(a)$ is C_{p}-thin at 0 for any $a>0$ and

$$
\lim _{x \rightarrow 0, x \in D-E} x_{n}^{(n-p+\alpha) / p} u(x)=0 .
$$

The next two propositions show the best possibility of Propositions 5 and 6 as to the order of convergence.

Proposition 7. Let $-1<\alpha<p-1$ and $n-p+\alpha \geqq 0$. If h is a nonincreasing positive function on $(0, \infty)$ such that $\lim _{t \downarrow 0} h(t)=\infty$, then there exists a function $u \in C^{\infty}(D)$ satisfying (1) such that $\lim _{t \downarrow 0} u\left(x^{\prime}, t\right)=0$ for $x^{\prime} \in R^{n-1}-\{0\}$ and $\lim _{x \rightarrow 0, x \in A} h\left(x_{n}\right) x_{n}^{(n-p+\alpha) / p} u(x)=\infty$ for some A which is not C_{p}-thin at 0 .

Proof. Take a sequence $\left\{i_{j}\right\}$ of positive integers such that $i_{j}+2<i_{j+1}$ and $\sum_{j=1}^{\infty} a_{j}^{-p}<\infty$, where $a_{j}=h\left(2^{-i_{j}+1}\right)$. Further take a sequence $\left\{b_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} a_{j} b_{j}=\infty$ and $\sum_{j=1}^{\infty} b_{j}^{p}<\infty$. Let φ be a function in $C_{o}^{\infty}\left(R^{n}\right)$ such that $\varphi=1$ on $B(0,1 / 4)$ and $\varphi=0$ outside $B(0,1 / 2)$. Setting $e^{(j)}=$ $\left(0,2^{-j}\right) \in D$, we define

$$
u(x)=\sum_{j=1}^{\infty} b_{j} 2^{i_{j}(n-p+\alpha) / p} \varphi\left(2^{i_{j}}\left(x-e^{\left(i_{j}\right)}\right)\right) .
$$

Then it is easy to see that $\lim _{t \downarrow 0} u\left(x^{\prime}, t\right)=0$ for $x^{\prime} \neq 0$ and

$$
\begin{aligned}
\int|\operatorname{grad} u|^{p}\left|x_{n}\right|^{\alpha} d x & \leqq \sum_{j=1}^{\infty} b_{j}^{p} 2^{i_{j}(n-p+\alpha)} \int\left|\operatorname{grad} \varphi\left(2^{i{ }_{j}}\left(x-e^{\left(i_{j}\right)}\right)\right)\right|^{p}\left|x_{n}\right|^{\alpha} d x \\
& \leqq \text { const. } \sum_{j=1}^{\infty} b_{j}^{p}<\infty .
\end{aligned}
$$

If we set $A=\cup_{j=1}^{\infty} B\left(e^{\left(i_{j}\right)}, 2^{-i_{j}-2}\right)$, then $A \subset \Gamma(1 / 2)$. Since $C_{p}\left(B\left(e^{\left(i_{j}\right)}, 2^{-i_{j}-2}\right)\right.$; $\left.B\left(0,2^{-i_{j}+2}\right)\right)=2^{-i_{j}(n-p)} C_{p}\left(B\left(e^{(0)}, 1 / 4\right) ; B(0,4)\right), A$ is not C_{p}-thin at 0 . Further, if $x \in B\left(e^{\left(i_{j}\right)}, 2^{-i_{j}-2}\right)$, then $h\left(x_{n}\right) x_{n}^{(n-p+\alpha) / p} u(x) \geqq 2^{-(n-p+\alpha) / p} a_{j} b_{j}$, so that $\lim _{x \rightarrow 0, x \in A}$ $h\left(x_{n}\right) x_{n}^{(n-p+\alpha) p} u(x)=\infty$.

Proposition 8. Let $\alpha=p-n>-1$. If h is as above, then there exists a nonnegative measurable function f such that $f=0$ outside $D \cap B(0,1), \int_{D} f(y)^{p}$ $y_{n}^{\alpha} d y<\infty$ and

$$
\lim _{x \rightarrow 0, x \in A} h\left(x_{n}\right)\left(\log \left(1 / x_{n}\right)\right)^{-1 / p^{\prime}} u(x)=\infty
$$

for some A which is not C_{p}-thin at 0 , where $u(x)=\int|x-y|^{1-n} f(y) d y$.
Remark. Since f has compact support, u satisfies (1).
Proof of Proposition 8. As in the proof of Proposition 7 take a sequence $\left\{b_{j}\right\}$ of positive numbers such that $\lim _{j \rightarrow \infty} b_{j} h\left(2^{-2 i_{j}+1}\right)=\infty$ and $\sum_{j=1}^{\infty} b_{j}^{p}<\infty$; here we assume that $2 i_{j}<i_{j+1}$. Define $f_{j}(y)=b_{j}|y|^{-1}\left(\log |y|^{-1}\right)^{-1 / p}$ if $y \in \Gamma(1) \cap$ $B\left(0,2^{-i_{j}}\right)-B\left(0,2^{-2 i_{j}}\right)$ and $f_{j}=0$ otherwise. Set $f=\sum_{j=1}^{\infty} f_{j}(y)$. Then

$$
\int_{D} f(y)^{p} y_{n}^{\alpha} d y=\sum_{j=1}^{\infty} \int_{D} f_{j}(y)^{p} y_{n}^{\alpha} d y \leqq M_{1} \sum_{j=1}^{\infty} b_{j}^{p}<\infty,
$$

where M_{1} is a positive constant. Consider the sets $A_{j}=\left\{x \in \Gamma(1) ; 2^{-2 i_{j}}<|x|<\right.$ $\left.2^{-2 i_{j}+1}\right\}$ and $A=\cup_{j=1}^{\infty} A_{j}$. Then, as in the proof of Lemma 15, we see that A is not C_{p}-thin at 0 . Further, if $x \in A_{j}$, then

$$
u(x)=\int|x-y|^{1-n} f(y) d y \geqq 3^{1-n} \int|y|^{1-n} f_{j}(y) d y \geqq M_{2} b_{j}\left(\log \left(1 / x_{n}\right)\right)^{1 / p^{\prime}}
$$

with a positive constant M_{2}, so that

$$
\lim _{x \rightarrow 0, x \in A} h\left(x_{n}\right)\left(\log \left(1 / x_{n}\right)\right)^{-1 / p^{\prime}} u(x)=\infty .
$$

6. Radial and perpendicular limits

In this section, as applications of Theorems 1 and 2, we study the existence of radial and perpendicular limits of functions satisfying (1).

Theorem 3. Let u be a function which is locally p-precise in D and satisfies (1) with α such that $-1<\alpha<p-1$. Then there exists a set $E^{\prime} \subset \partial D$ such that $C_{p}\left(E^{\prime} \cap G ; G\right)=0$ for any bounded open set $G \subset R^{n}$ and

$$
\begin{array}{ll}
\lim _{t \downarrow 0} t^{(n-p+\alpha) / p} u\left(x^{\prime}, t\right)=0, & \text { in case } n-p+\alpha>0, \\
\lim _{t \downarrow 0}(\log (1 / t))^{-1 / p^{\prime}} u\left(x^{\prime}, t\right)=0, & \text { in case } n-p+\alpha=0, \\
u\left(x^{\prime}, t\right) \text { has a finite limit as } t \downarrow 0, & \text { in case } n-p+\alpha<0,
\end{array}
$$

for any x^{\prime} such that $\left(x^{\prime}, 0\right) \notin E^{\prime}$.
Remark. In case $\alpha \geqq 0$, we can find a set $E^{\prime \prime} \subset \partial D$ such that $B_{1-\alpha / p, p}\left(E^{\prime \prime}\right)=0$ and $u\left(x^{\prime}, t\right)$ has a finite limit as $t \downarrow 0$ for any x^{\prime} with $\left(x^{\prime}, 0\right) \in \partial D-E^{\prime \prime}$, where $B_{\beta, p}$ denotes the Bessel capacity of index (β, p) (see [8; Theorem 3] for details). In case $\alpha<0$, from this fact we can find $E^{\prime \prime} \subset \partial D$ such that $B_{1, p}\left(E^{\prime \prime}\right)=0$ and $u\left(x^{\prime}, t\right)$ has a finite limit as $t \downarrow 0$ for any x^{\prime} with $\left(x^{\prime}, 0\right) \in \partial D-E^{\prime \prime}$. We note here that $B_{1, p}(F)=0$ if and only if $C_{p}(F \cap G ; G)=0$ for any bounded open set $G \subset R^{n}$. Hence we see that in case $\alpha \leqq 0$, Theorem 3 follows readily from [8; Theorem 3].

For a proof of Theorem 3, we need the following fact.

Lemma 17. Let $E \subset D$ satisfy

$$
\begin{equation*}
\sum_{j=1}^{\infty} C_{p}\left(E_{j} \cap B(0, r) ; B(0,2 r)\right)<\infty \quad \text { for any } \quad r>0 . \tag{9}
\end{equation*}
$$

Then there exists a set $E^{\prime} \subset \partial D$ having the following properties:
(i) $C_{p}\left(E^{\prime} \cap G ; G\right)=0$ for any bounded open set $G \subset R^{n}$.
(ii) For each $\xi \in \partial D-E^{\prime}$ there exists $\delta>0$ such that $\xi+(0, t) \notin E$ whenever $0<t<\delta$.

Proof. In view of Lemma 1 and its proof in [6], we first note that $C_{p}\left(E_{j} \cap\right.$ $B(0, r) ; B(0,2 r)) \geqq C_{p}\left(E_{j}^{*} \cap B(0, r) ; B(0,2 r)\right)$, where E_{j}^{*} denotes the projection of E_{j} to the hyperplane ∂D. Set $E^{\prime}=\cap_{k=1}^{\infty}\left(\cup_{j=1}^{\infty} E_{j}^{*}\right)$. Then $C_{p}\left(E^{\prime} \cap B(0, r)\right.$; $B(0,2 r)) \leqq \sum_{j=k}^{\infty} C_{p}\left(E_{j}^{*} \cap B(0, r) ; B(0,2 r)\right)$ for any k. Hence it follows that $C_{p}\left(E^{\prime} \cap B(0, r) ; B(0,2 r)\right)=0$. On the other hand, if $\xi \in \partial D \cap B(0, r)-E^{\prime}$, then there exists k such that $\xi \notin \cup_{j=k}^{\infty} E_{j}^{*}$. This implies that $\xi+(0, t) \notin E$ whenever $0<t<2^{-k+1}$. Thus the lemma is proved.

If E is C_{p}-thin near ∂D, then it satisfies (9). Hence, by the aid of Theorem 1,
we obtain Theorem 3; in case $n-p+\alpha<0$, we need to notice the Remark after Lemma 11.

Theorem 2 together with Lemma 17 gives the following result.
Theorem 4. If u is as in Theorem 2, then there exists $E^{\prime} \subset \partial D$ such that $C_{p}\left(E^{\prime} \cap G ; G\right)=0$ for any bounded open set $G \subset D$ and

$$
\lim _{t \downarrow 0} t^{(n-p+\alpha) / p} u\left(x^{\prime}, t\right)=0 \quad \text { whenever } \quad\left(x^{\prime}, 0\right) \in \partial D-E^{\prime} .
$$

Next we give radial limit theorems for functions satisfying (1).
Theorem 5. Let u be as in Theorem 1. Then, for each $\xi \in \partial D$, there exist a set $E_{\xi} \subset \partial B(\xi, 1) \cap D$ and a number c_{ξ} such that $C_{p}\left(E_{\xi} ; B(\xi, 2)\right)=0$ and

$$
\lim _{r \downarrow 0} A(r) u(\xi+r(\eta-\xi))=c_{\xi} \quad \text { if } \quad \eta \in D \cap \partial B(\xi, 1)-E_{\xi},
$$

where $A(r)=r^{(n-p+\alpha) / p}$ if $n-p+\alpha>0, A(r)=(\log (1 / r))^{-1 / p^{\prime}}$ if $n-p+\alpha=0$ and $A(r)=1$ if $n-p+\alpha<0$.

Theorem 5 is a consequence of Proposition 5; instead of Lemma 17, we have only to note the following

Lemma 18. Let $E \subset D$. If E is C_{p}-thin at 0 , then there exists a set $E^{\sim} \subset D \cap$ $\partial B(0,1)$ satisfying the following conditions:
(i) $C_{p}\left(E^{\sim} ; B(0,2)\right)=0$.
(ii) For each $\eta \in D \cap \partial B(0,1)-E^{\sim}$, there exists $\delta>0$ such that $r \eta \notin E$ whenever $0<r<\delta$.

By Proposition 6 and Lemma 18 we can establish the following theorem.
Theorem 6. If u is as in Theorem 2, then, for each $\xi \in \partial D$ there exists a set $E_{\xi} \subset \partial B(\xi, 1) \cap D$ such that $C_{p}\left(E_{\xi} ; B(\xi, 2)\right)=0$ and
$\lim _{r \downarrow 0} r^{(n-p+\alpha) / p} u(\xi+r(\eta-\xi))=0 \quad$ for every $\quad \eta \in D \cap \partial B(\xi, 1)-E_{\xi}$.

7. Boundary behavior of harmonic functions

If u is harmonic in D, then, by Green's formula,

$$
\sum_{j=1}^{n} \int_{B\left(x, x_{n} / 2\right)}\left(x_{j}-y_{j}\right)|x-y|^{-n}\left(\partial u / \partial y_{j}\right) d y=0
$$

for $x \in D$. Consequently, the proof of Theorem 1 gives the following result.
Theorem 7. Let u be a function which is harmonic in D and satisfies (1) with α such that $-1<\alpha<p-1$. Then

$$
\begin{array}{ll}
\lim _{x_{n} \downarrow 0} x_{n}^{(n-p+\alpha) / p} u(x)=0, & \text { in case } n-p+\alpha>0, \\
\lim _{x_{n} \nmid 0}\left[\log \left(x_{n}^{-1}(|x|+1)\right)\right]^{-1 / p^{\prime}} u(x)=0, & \text { in case } n-p+\alpha=0, \\
\lim \sup _{x_{n} \downarrow 0}(|x|+1)^{(n-p+\alpha) / p} u(x)<\infty, & \text { in case } n-p+\alpha<0 .
\end{array}
$$

We can also prove the existence of tangential boundary limits of harmonic functions in D.

Theorem 8. Let u be a function which is harmonic in D and satisfies (1) with α such that $n-p+\alpha \geqq 0$ and $\alpha>-1$. Letting h be a positive nondecreasing function on the interval $(0, \infty)$ such that $h(2 r)<M h(r)$ for $r>0$ with a positive constant M, we set

$$
\begin{aligned}
& E_{1}=\left\{\xi \in \partial D ; \int_{B(\xi, 1) \cap D}|\xi-y|^{1-n}|\operatorname{grad} u(y)| d y<\infty\right\}, \\
& E_{2}=\left\{\xi \in \partial D ; \lim _{r \rightarrow 0} h(r)^{-1} \int_{B(\xi, r)}|\operatorname{grad} u(y)|^{p}\left|y_{n}\right|^{\alpha} d y=0\right\} .
\end{aligned}
$$

If $\xi \in \partial D-E_{1} \cup E_{2}$, then $u(x)$ has a finite limit as $x \rightarrow \xi, x \in T_{h}(\xi, a) \equiv\{x \in D$; $h(|x-\xi|) \leqq a \tilde{A}(x-\xi)\}$, for any $a>0$, where $\tilde{A}(x)=x_{n}^{n-p+\alpha}$ if $n-p+\alpha>0$ and $\widetilde{A}(x)=\left[\log \left(2|x| / x_{n}\right)\right]^{1-p}$ if $n-p+\alpha=0$.

Remark 1. In view of [8; Lemma 4], $B_{1-\alpha / p, p}\left(E_{1}\right)=0$. On the other hand we can prove that $H_{h}\left(E_{2}\right)=0$ in the same way as Lemma 2 in [9], where H_{h} denotes the Hausdorff measure with the measure function h. If $h(r)=r^{\gamma(n-p+\alpha)}$ in case $n-p+\alpha>0$ and $h(r)=\left[\log \left(2+r^{-1}\right)\right]^{1-p}$ in case $n-p+\alpha=0$, then $T_{\gamma}(\xi, a)$ is included in some $T_{h}(\xi, b)$, where $T_{\gamma}(\xi, a)=\left\{x=\left(x^{\prime}, x_{n}\right) ;\left|\left(x^{\prime}, 0\right)-\xi\right|^{\gamma}<a x_{n}\right\}$. Hence Theorem 8 implies the existence of limits of u along the sets $T_{\gamma}(\xi, a)$ (cf. Cruzeiro [3], Mizuta [10], Nagel, Rudin and Shapiro [11]).

Remark 2. If u is a function on D which is harmonic in D and satisfies (1) with α such that $-1<\alpha<p-n$, then u has a finite limit at any boundary point.

In fact, the sets E_{1} and E_{2} with $h \equiv 1$ in the theorem are shown to be empty, and, moreover, the proof below will show that u has a finite limit at any $\xi \in \partial D-$ $E_{1} \cup E_{2}$; see also [10; Theorem (iii)].

Proof of Theorem 8. To prove Theorem 8, we use the integral representation of u given in Lemma 3 and write u as

$$
\begin{aligned}
u(x) & =c \sum_{j=1}^{n} \int k_{j}(x, y)\left(\partial \bar{u} / \partial y_{j}\right) d y+C \\
& =c \sum_{j=1}^{n} \int_{R^{n-B}(\xi, 2|x-\xi|)} k_{j}(x, y)\left(\partial \bar{u} / \partial y_{j}\right) d y
\end{aligned}
$$

$$
\begin{aligned}
& +c \sum_{j=1}^{n} \int_{B(\xi, 2|x-\xi|)} k_{j}(x, y)\left(\partial \bar{u} / \partial y_{j}\right) d y+C \\
= & u_{1}(x)+u_{2}(x)+C .
\end{aligned}
$$

We remark here that since $\partial \bar{u} / \partial y_{j}$ are continuous on D, the integrals are continuous on D and the equalities hold everywhere on D. If $\xi \in \partial D-E_{1}$, then $\int\left|k_{j}(\xi, y)\right|$. $|\operatorname{grad} u(y)| d y<\infty$ for each j and u_{1} has a finite limit as $x \rightarrow \xi, x \in D$. Since, as in the proof of Lemma $9,\left|u_{2}(x)\right| \leqq M^{\prime}\left(\tilde{A}(x-\xi)^{-1} \int_{B(\xi, 2|x-\xi|)}|\operatorname{grad} u(y)|^{p}\left|y_{n}\right|^{\alpha} d y\right)^{1 / p}$ with a positive constant $M^{\prime}, u_{2}(x)$ tends to zero as $x \rightarrow \xi, x \in T_{h}(\xi, a)$, if $\xi \in \partial D-E_{2}$. Thus the theorem is obtained.

References

[1] H. Aikawa, Tangential behavior of Green potentials and contractive properties of L^{p}-potentials, Tokyo J. Math. 9 (1986), 221-245.
[2] L. Carleson, Selected problems on exceptional sets, Van Nostrand, Princeton, 1967.
[3] A. B. Cruzeiro, Convergence au bord pour les fonctions harmoniques dans R^{d} de la classe de Sobolev W_{1}^{d}, C. R. Acad. Sci. Paris 294 (1982), 71-74.
[4] Y. Mizuta, Integral representations of Beppo Levi functions of higher order, Hiroshima Math. J. 4 (1974), 375-396.
[5] Y. Mizuta, On the existence of boundary values of Beppo Levi functions defined in the upper half space of R^{n}, Hiroshima Math. J. 6 (1976), 61-72.
[6] Y. Mizuta, On the limits of p-precise functions along lines parallel to the coordinate axes of R^{n}, Hiroshima Math. J. 6 (1976), 353-357.
[7] Y. Mizuta, On the radial limits of potentials and angular limits of harmonic functions, Hiroshima Math. J. 8 (1978), 415-437.
[8] Y. Mizuta, Existence of various boundary limits of Beppo Levi functions of higher order, Hiroshima Math. J. 9 (1979), 717-745.
[9] Y. Mizuta, On the behavior of potentials near a hyperplane, Hiroshima Math. J. 13 (1983), 529-542.
[10] Y. Mizuta, On the boundary limits of harmonic functions with gradient in L^{p}, Ann. Inst. Fourier 34 (1984), 99-109.
[11] A. Nagel, W. Rudin and J. H. Shapiro, Tangential boundary behavior of functions in Dirichlet-type spaces, Ann. of Math. 116 (1982), 331-360.
[12] M. Ohtsuka, Extremal length and precise functions in 3-space, Lecture Notes, Hiroshima University, 1973.
[13] H. Wallin, On the existence of boundary values of a class of Beppo Levi functions, Trans. Amer. Math. Soc. 120 (1965), 510-525.

> Department of Mathematics, Faculty of Integrated Arts and Sciences, Hiroshima University

