G₂-stableness and LCM-stableness

Hirohumi UDA (Received April 28, 1987)

In his paper [3], R. Gilmer introduced the concept of LCM-stableness, related to GCD properties of a commutative group ring. In [8], we studied basic properties of LCM-stableness, universality of LCM-stableness and LCM-stableness of a simple extension $A \subset A[u]$. Moreover, we introduced in [8] the concept of G_2 -stableness which is of use for the study of LCM-stableness. The main purpose of this paper is to give some properties of G_2 -stableness, and to show universality of LCM-stableness of $A \subset B$, in case A is a Krull domain. In [9], we gave a characterization of Prüfer v-multiplication domains, abbreviated to PVMD's, in terms of polynomial grade; this plays an important role when we examine universality of LCM-stableness.

In Theorem 3, we shall give a characterization of G_2 -stableness. Also, Proposition 6 is a generalization of Exercise 19 d) of §2 in [1]. Moreover, we shall give some conditions for LCM-stableness to imply G_2 -stableness in Proposition 7 (cf. Remark 2). In particular, Proposition 8 is a key proposition to show universality of LCM-stableness of $A \subset B$, in case A is a Krull domain (cf. Theorem 11).

Throughout this paper, $A \subset B$ denotes an extension of integral domains. Moreover, K and L denote the quotient field of A and that of B respectively. Also, we denote by X an indeterminate. For a fractional ideal I of A, we put $I_v = A :_K (A :_K I)$. We say that I is a v-ideal if $I = I_v$, and that a v-ideal I is of finite type if there is a finitely generated fractional ideal I of I such that $I = I_v$. An integral domain I is called a Prüfer V-multiplication domain I if the set of all V-ideals of I of finite type forms a group under the V-multiplication $I \cdot J = (IJ)_v$ (cf. [2]). Let I be an ideal of I. We denote by I and I if the classical grade of I and the polynomial grade of I respectively (cf. [4]). Moreover, we put I is I is I in I is I in I is I in I in

Let I be an ideal of A[X]. We denote by c(I) the ideal of A generated by all coefficients of all polynomials in I and we call it the *content* of I.

For $A \subset B$, we say that $A \subset B$ is LCM-stable if $aB \cap bB = (aA \cap bA)B$ for all $a, b \in A$, and that $A \subset B$ is R_2 -stable if $a :_B b = a$ for any $a, b \in A$ with $a :_A b = a$. Moreover, we say that $A \subset B$ is G_2 -stable if $Gr(IB) \ge 2$ for each non-zero finitely generated ideal I of A with $Gr(I) \ge 2$. It is obvious that if $\dim A = 1$, then $A \subset B$ is G_2 -stable. Also, it is known that for $A \subset B \subset K$, $A \subset B$ is flat if and only if

 $A \subset B$ is LCM-stable (cf. [6], [8]). In general, we have the following implications.

REMARK 1. In the above discussions, the converse of each implication is false. In particular, we gave in [8], an example of $A \subset B$ which is not flat but LCM-stable and an example of $A \subset B$ which is not G_2 -stable but R_2 -stable.

REMARK 2 (cf. [8], Theorem 3.6 and Lemma 4.1). In any of the cases below, R_2 -stableness of $A \subset B$ is equivalent to G_2 -stableness of $A \subset B$.

- (1) A_P is a valuation ring for each $P \in \text{Spec}(A)$ with gr(P) = 1.
- (2) Each proper principal ideal of A has a primary decomposition.

For example, if A is a GCD domain, then A satisfies the condition (1) (cf. [7]) and if A is either a Neotherian ring or a Krull domain, then A satisfies the condition (2).

The following theorem gives a characterization of G₂-stableness.

THEOREM 3. For $A \subset B$, the following statements are equivalent.

- (1) $A \subset B$ is G_2 -stable.
- $(2) \quad B = \bigcap \{B_P \mid P \in \mathfrak{G}(A)\}.$

PROOF. (1)=(2). Assume that $A \subset B$ is G_2 -stable. It is sufficient to prove that $\cap \{B_P \mid P \in \mathfrak{G}(A)\} \subset B$. Let $x \in \cap \{B_P \mid P \in \mathfrak{G}(A)\}$. Then, for each $P \in \mathfrak{G}(A)$, there exists $s_P \in A - P$ such that $s_P x \in B$. Put $I = \sum_{P \in \mathfrak{G}(A)} s_P A$. Then we have $Gr(I) \geq 2$. Therefore, there is a finitely generated ideal J with $J \subset I$ such that $Gr(J) \geq 2$. Since $A \subset B$ is G_2 -stable, we have $Gr(JB) \geq 2$. That is, $B:_L J = B$. On the other hand, $Jx \subset Ix \subset B$. Thus, $x \in B:_L J = B$. This implies that $\cap \{B_P \mid P \in \mathfrak{G}(A)\} \subset B$.

(2) \Rightarrow (1). Assume that $B = \bigcap \{B_P \mid P \in \mathfrak{G}(A)\}$. Let I be a finitely generated ideal of A with $Gr(I) \geq 2$. Take $x \in B :_L I$. Let $P \in \mathfrak{G}(A)$. Since $xI \subset B \subset B_P$, we have $x \in B_P :_L I$. On the other hand, since $I \not\subset P$, $IA_P = A_P$ and therefore, $IB_P = B_P$. That is, $B_P :_L I = B_P$. Thus, $x \in \bigcap \{B_P \mid P \in \mathfrak{G}(A)\} = B$. Since this shows that $B :_L I = B$, $Gr(IB) \geq 2$. Therefore, $A \subset B$ is G_2 -stable.

PROPOSITION 4. For $A \subseteq B$, suppose that A is integrally closed and that L is algebraic over K. Moreover, assume that B is the integral closure of A in L. Then $A \subseteq B$ is G_2 -stable.

PROOF. Since A is integrally closed, $A = \bigcap_i V_i$ where V_i 's are valuation

rings between A and K. Let W_i be the integral closure of V_i in L for each i. Then we have $B = \bigcap_i W_i$. Let I be a finitely generated ideal of A with $Gr(I) \ge 2$. For a non-zero fractional ideal J of B, we put $J^* = \bigcap_i JW_i$. Then the mapping $J \to J^*$ is a *-operation on B (see [2]). Since $Gr(I) \ge 2$, $IV_i = V_i$ for each i. Therefore, $(IB)^* = \bigcap_i IW_i = \bigcap_i W_i = B$. Thus, we have $(IB)_v = B$ by Theorem 34.1 in [2]. That is, $B:_L I = B$. Then $Gr(IB) \ge 2$. This implies that $A \subseteq B$ is G_2 -stable.

REMARK 5. The condition that B is integral over A does not necessarily imply that $A \subset B$ is G_2 -stable. In fact, let $A = k[s, t]_{(s,t)}$, where s, t are indeterminates over a field k, and let Ω be an algebraic closure of K. Then we can take $x, y \in \Omega$ with the properties that $x^2 + sx + s^2 = 0$, $y^2 + ty + t^2 = 0$ and tx = sy. Obviously, A[x, y] is integral over A. On the other hand, $A \subset A[x, y]$ is not LCM-stable by Proposition 5.3 in [8]. Therefore, $A \subset A[x, y]$ is not G_2 -stable by Corollary 3.7 in [8].

Given an extension of integral domains $A \subset B$, we say that an element u in B is super-primitive over A, if u is the root of a polynomial $f(X) \in A[X]$ with $A :_K c(f) = A$. Suppose that A is integrally closed. Then A is a PVMD if and only if u is super-primitive over A for each $u \in F$, where F is a subfield of an algebraic closure of K containing K (cf. [5], Proposition 2.5 and [9], Proposition 7). From this fact, we have the following proposition.

PROPOSITION 6 (cf. [1], Exercise 19 d) in §2). For $A \subset B$, suppose that A is a PVMD and B is integrally closed. Moreover, assume that L is algebraic over K. If $A \subset B$ is G_2 -stable, then B is a PVMD.

PROOF. Let $u \in L$. Since A is a PVMD, u is super-primitive over A. Thus, there exists a polynomial $f(X) \in A[X]$ such that f(u) = 0 and $A :_K c(f) = A$. By G_2 -stableness of $A \subset B$, we have $B :_L c(f) = B$. That is, u is super-primitive over B. This implies that B is a PVMD (cf. [9], Proposition 7).

Here, we shall examine conditions that LCM-stableness implies G_2 -stableness. Recall that an integral domain A is said to be an FC domain, in case $aA \cap bA$ is finitely generated for any $a, b \in A$.

PROPOSITION 7. In any of the cases below, LCM-stableness of $A \subset B$ implies G_2 -stableness of $A \subset B$.

- (1) A is an FC domain and B is integrally closed.
- (2) B is a PVMD.

PROOF. Let I be a finitely generated ideal of A with $Gr(I) \ge 2$. Assume that Gr(IB) = 1. Then there exists $Q \in \mathfrak{G}(B)$ such that $IB \subset Q$ by Theorem 16

of Chapter 5 in [4]. Put $P = Q \cap A$, then $I \subset P$. Thus, $Gr(P) \ge 2$. This implies that A_P is not a valuation ring. Therefore, there exist $a, b \in A - \{0\}$ such that $a:_A b+b:_A a \subset P$. Since $A \subset B$ is LCM-stable, we have

$$(*) a:_B b + b:_B a = (a:_A b + b:_A a)B \subset PB \subset Q.$$

First, suppose that A is an FC domain and B is integrally closed. Then we have $B:_L(a:_Bb+b:_Ba)=B$ by Lemma 10 in [9]. Since A is an FC domain and $A \subset B$ is LCM-stable, $a:_Bb+b:_Ba$ is finitely generated. Thus, $Gr(Q) \ge Gr(a:_Bb+b:_Ba) \ge 2$. This is a contradiction.

Next, suppose that B is a PVMD. Then B_Q is a valuation ring by Theorem 2 and Remark 3 in [9]. On the other hand, (*) shows that B_Q is not a valuation ring. This is a contradiction.

These imply that $A \subset B$ is G_2 -stable.

PROPOSITION 8. Let A be a PVMD. Assume that $A \subset B$ is G_2 -stable. Then we have the following statements.

- (1) For each finitely generated ideal I of A, $B:_L I = ((A:_K I)B)_v$.
- (2) For each $a, b \in A \{0\}, a :_B b = ((a :_A b)B)_v$.

PROOF. (1) Let I be a finitely generated ideal of A. Since $A \subset B$ is G_2 -stable, we have $B = \bigcap \{B_P \mid P \in \mathfrak{G}(A)\}$ by Theorem 3. For $P \in \mathfrak{G}(A)$, since A_P is a valuation ring by Theorem 2 and Remark 3 in [9], we have $(B:_L I)B_P = B_P:_L I = (A_P:_K I)B_P = (A:_K I)B_P$. This shows that $B:_L I \subset \bigcap \{(A:_K I)B_P \mid P \in \mathfrak{G}(A)\}$.

Conversely, take $x \in \cap \{(A:_K I)B_P \mid P \in \mathfrak{G}(A)\}$. Then for each $P \in \mathfrak{G}(A)$, there exists $s_P \in A - P$ such that $s_P x \in (A:_K I)B$. Put $J = \sum_{P \in \mathfrak{G}(A)} s_P A$. Then we have $Gr(J) \ge 2$ and $Ix \subset B:_L J$. Since $A \subset B$ is G_2 -stable, $Gr(JB) \ge 2$. Therefore, $Ix \subset B:_L J = B$. Thus, $x \in B:_L I$. This shows that $\bigcap \{(A:_K I)B_P \mid P \in \mathfrak{G}(A)\}$ $\subset B:_L I$. That is, $B:_L I = \bigcap \{(A:_K I)B_P \mid P \in \mathfrak{G}(A)\}$.

For a non-zero fractional ideal M of B, we put $M^* = \bigcap \{MB_P \mid P \in \mathfrak{G}(A)\}$. Then the mapping $M \to M^*$ is a *-operation on B. The above shows that $B:_L I = ((A:_K I)B)^*$. On the other hand, $((A:_K I)B)^* \subset ((A:_K I)B)_v \subset (B:_L I)_v = B:_L I$. That is, $B:_L I = ((A:_K I)B)_v$.

As (2) can be proved in the same manner as (1), we omit the proof.

To examine universality of LCM-stableness of $A \subset B$, where A is a Krull domain, we prepare a lemma and a proposition.

LEMMA 9. Let A be a Krull domain. Assume that $A \subset B$ is LCM-stable. If I is a v-ideal of A, then IB is a v-ideal of B.

PROOF. Since I is a v-ideal of A, there exist $x, y \in K$ such that $I = xA \cap yA$ by Corollary 44.6 in [2]. Since $A \subset B$ is LCM-stable, $IB = (xA \cap yA)B = xB \cap yB$. This implies that IB is a v-ideal of B.

PROPOSITION 10. Let A be a Krull domain. Assume that $A \subset B$ is LCM-stable. Then we have $B:_L I = (A:_K I)B$ for each finitely generated ideal I of A.

PROOF. Since A is a Krull domain, $A \subset B$ is G_2 -stable by Remark 2. Therefore, we have $B:_L I = ((A:_K I)B)_v$ by Proposition 8. On the other hand, $A:_K I$ is a v-ideal of A. Thus, $(A:_K I)B$ is a v-ideal of B by Lemma 9. Therefore, $B:_L I = ((A:_K I)B)_v = (A:_K I)B$.

With these preparations, we give the following theorem related to universality of LCM-stableness.

THEOREM 11. Let A be a Krull domain. Then the following statements are equivalent.

- (1) $A \subset B$ is LCM-stable.
- (2) $A[X] \subset B[X]$ is LCM-stable.

PROOF. (2) \Rightarrow (1). This implication can be proved easily for any extension of integral domains $A \subset B$, and so the proof is omitted.

(1)⇒(2). Assume that $A \subset B$ is LCM-stable. Since A is a Krull domain, $A \subset B$ is G_2 -stable by Remark 2. Thus, $A[X] \subset B[X]$ is G_2 -stable by Theorem 3.5 in [8]. Let f(X), $g(X) \in A[X]$. We may assume that $f(X) :_{K[X]} g(X) = f(X)$. Put I = c(f) + c(g). Since A is integrally closed, $f(X) :_{A[X]} g(X) = (A :_K I) f(X) \cdot A[X]$ by Lemma 3.9 in [8]. Since A is a Krull domain and $A \subset B[X]$ is LCM-stable, $(A :_K I)B[X]$ is a v-ideal by Lemma 9. On the other hand, A[X] is a Krull domain. Therefore, by virtue of Proposition 8, we have

$$f(X) :_{B[X]} g(X) = ((f(X) :_{A[X]} g(X))B[X])_v = ((A :_K I)f(X)B[X])_v$$
$$= (A :_K I)f(X)B[X] = (f(X) :_{A[X]} g(X))B[X].$$

This implies that $A[X] \subset B[X]$ is LCM-stable.

REMARK 12. In Corollary 3.8 in [8], we showed that if A is locally a GCD domain, then universality of LCM-stableness of $A \subset B$ holds. Moreover, we showed in Theorem 11 that in case A is a Krull domain, universality of LCM-stableness of $A \subset B$ holds. However, we don't know if universality of LCM-stableness of $A \subset B$ holds generally. Both locally GCD domains and Krull domains are special cases of PVMD's. Therefore, one may ask the following question.

(1) If A is a PVMD, then does universality of LCM-stableness of $A \subset B$ hold?

On the other hand, if the above question (1) is affirmative, then LCM-stableness of $A \subset B$ implies G_2 -stableness of $A \subset B$ by Theorem 3.5 in [8]. Thus, the following question which seems weaker than the question (1) (cf. Remark 2)

and Proposition 7) occurs.

(2) If A is a PVMD, then does LCM-stableness of $A \subset B$ imply G_2 -stableness of $A \subset B$?

References

- [1] N. Bourbaki, Algèbre Commutative, Chapitre 7, Hermann Paris, 1965.
- [2] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, INC. New York, 1972.
- [3] R. Gilmer, Finite element factorization in group rings, Lecture Note in Pure and Appl. Math., 7, Dekker, New York, 1974.
- [4] D. G. Northcott, Finite Free Resolutions, Cambridge University Press, 1976.
- [5] I. J. Papick, Super-primitive elements, Pacific J. Math., 105 (1983), 217-226.
- [6] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc., 16 (1965), 794-799.
- [7] P. B. Sheldon, Prime ideals in GCD domains, Can. J. Math., 26 (1974), 98-107.
- [8] H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J., 13 (1983), 357-377.
- [9] H. Uda, A characterization of Prüfer ν-multiplication domains in terms of polynomial grade, Hiroshima Math. J., 16 (1986), 115–120.

Faculty of Education, Miyazaki University