$\mathbf{G}_{\mathbf{2}}$-stableness and LCM-stableness

Hirohumi Uda

(Received April 28, 1987)

In his paper [3], R. Gilmer introduced the concept of LCM-stableness, related to GCD properties of a commutative group ring. In [8], we studied basic properties of LCM-stableness, universality of LCM-stableness and LCMstableness of a simple extension $A \subset A[u]$. Moreover, we introduced in [8] the concept of G_{2}-stableness which is of use for the study of LCM-stableness. The main purpose of this paper is to give some properties of G_{2}-stableness, and to show universality of LCM-stableness of $A \subset B$, in case A is a Krull domain. In [9], we gave a characterization of Prüfer v-multiplication domains, abbreviated to PVMD's, in terms of polynomial grade; this plays an important role when we examine universality of LCM-stableness.

In Theorem 3, we shall give a characterization of G_{2}-stableness. Also, Proposition 6 is a generalization of Exercise 19 d) of $\S 2$ in [1]. Moreover, we shall give some conditions for LCM-stableness to imply G_{2}-stableness in Proposition 7 (cf. Remark 2). In particular, Proposition 8 is a key proposition to show universality of LCM-stableness of $A \subset B$, in case A is a Krull domain (cf. Theorem 11).

Throughout this paper, $A \subset B$ denotes an extension of integral domains. Moreover, K and L denote the quotient field of A and that of B respectively. Also, we denote by X an indeterminate. For a fractional ideal I of A, we put $I_{v}=A:_{K}\left(A:_{K} I\right)$. We say that I is a v-ideal if $I=I_{v}$, and that a v-ideal I is of finite type if there is a finitely generated fractional ideal J of A such that $I=J_{v}$. An integral domain A is called a Prüfer v-multiplication domain (PVMD), if the set of all v-ideals of A of finite type forms a group under the v-multiplication $I \cdot J=(I J)_{v}$ (cf. [2]). Let I be an ideal of A. We denote by $\operatorname{gr}(I)$ and $\operatorname{Gr}(I)$ the classical grade of I and the polynomial grade of I respectively (cf. [4]). Moreover, we put $\mathfrak{G}(A)=\{P \in \operatorname{Spec}(A) \mid \operatorname{Gr}(P) \leqq 1\}$.

Let I be an ideal of $A[X]$. We denote by $c(I)$ the ideal of A generated by all coefficients of all polynomials in I and we call it the content of I.

For $A \subset B$, we say that $A \subset B$ is $L C M$-stable if $a B \cap b B=(a A \cap b A) B$ for all $a, b \in A$, and that $A \subset B$ is R_{2}-stable if $a:_{B} b=a$ for any $a, b \in A$ with $a:_{A} b=a$. Moreover, we say that $A \subset B$ is G_{2}-stable if $\operatorname{Gr}(I B) \geqq 2$ for each non-zero finitely generated ideal I of A with $\operatorname{Gr}(I) \geqq 2$. It is obvious that if $\operatorname{dim} A=1$, then $A \subset B$ is G_{2}-stable. Also, it is known that for $A \subset B \subset K, A \subset B$ is flat if and only if
$A \subset B$ is LCM-stable (cf. [6], [8]). In general, we have the following implications.

Remark 1. In the above discussions, the converse of each implication is false. In particular, we gave in [8], an example of $A \subset B$ which is not flat but LCM-stable and an example of $A \subset B$ which is not G_{2}-stable but R_{2}-stable.

Remark 2 (cf. [8], Theorem 3.6 and Lemma 4.1). In any of the cases below, R_{2}-stableness of $A \subset B$ is equivalent to G_{2}-stableness of $A \subset B$.
(1) A_{P} is a valuation ring for each $P \in \operatorname{Spec}(A)$ with $\operatorname{gr}(P)=1$.
(2) Each proper principal ideal of A has a primary decomposition.

For example, if A is a GCD domain, then A satisfies the condition (1) (cf. [7]) and if A is either a Neotherian ring or a Krull domain, then A satisfies the condition (2).

The following theorem gives a characterization of G_{2}-stableness.
Theorem 3. For $A \subset B$, the following statements are equivalent.
(1) $A \subset B$ is G_{2}-stable.
(2) $B=\cap\left\{B_{P} \mid P \in(\mathfrak{5}(A)\}\right.$.

Proof. (1) $\Rightarrow(2)$. Assume that $A \subset B$ is G_{2}-stable. It is sufficient to prove that $\cap\left\{B_{P} \mid P \in \mathfrak{G}(A)\right\} \subset B$. Let $x \in \cap\left\{B_{P} \mid P \in \mathfrak{G}(A)\right\}$. Then, for each $P \in \mathfrak{G}(A)$, there exists $s_{P} \in A-P$ such that $s_{P} x \in B$. Put $I=\sum_{P \in \mathscr{G}(A)} s_{P} A$. Then we have $\operatorname{Gr}(I) \geqq 2$. Therefore, there is a finitely generated ideal J with $J \subset I$ such that $\operatorname{Gr}(J) \geqq 2$. Since $A \subset B$ is G_{2}-stable, we have $\operatorname{Gr}(J B) \geqq 2$. That is, $B:_{L} J=B$. On the other hand, $J x \subset I x \subset B$. Thus, $x \in B:_{L} J=B$. This implies that $\cap\left\{B_{P} \mid P \in(\mathfrak{G}(A)\} \subset B\right.$.
(2) \Rightarrow (1). Assume that $B=\cap\left\{B_{P} \mid P \in \mathfrak{G}(A)\right\}$. Let I be a finitely generated ideal of A with $\operatorname{Gr}(I) \geqq 2$. Take $x \in B:_{L} I$. Let $P \in \mathbb{G}(A)$. Since $x I \subset B \subset B_{P}$, we have $x \in B_{P}:_{L} I$. On the other hand, since $I \not \subset P, I A_{P}=A_{P}$ and therefore, $I B_{P}=B_{P}$. That is, $B_{P}:_{L} I=B_{P}$. Thus, $x \in \cap\left\{B_{P} \mid P \in(\mathfrak{G}(A)\}=B\right.$. Since this shows that $B:_{L} I=B, \operatorname{Gr}(I B) \geqq 2$. Therefore, $A \subset B$ is G_{2}-stable.

Proposition 4. For $A \subset B$, suppose that A is integrally closed and that L is algebraic over K. Moreover, assume that B is the integral closure of A in L. Then $A \subset B$ is G_{2}-stable.

Proof. Since A is integrally closed, $A=\cap_{i} V_{i}$ where V_{i} 's are valuation
rings between A and K. Let W_{i} be the integral closure of V_{i} in L for each i. Then we have $B=\cap_{i} W_{i}$. Let I be a finitely generated ideal of A with $\operatorname{Gr}(I) \geqq 2$. For a non-zero fractional ideal J of B, we put $J^{*}=\cap_{i} J W_{i}$. Then the mapping $J \rightarrow J^{*}$ is a *-operation on B (see [2]). Since $\operatorname{Gr}(I) \geqq 2, I V_{i}=V_{i}$ for each i. Therefore, $(I B)^{*}=\cap_{i} I W_{i}=\cap_{i} W_{i}=B$. Thus, we have $(I B)_{v}=B$ by Theorem 34.1 in [2]. That is, $B:_{L} I=B$. Then $\operatorname{Gr}(I B) \geqq 2$. This implies that $A \subset B$ is $\mathbf{G}_{2^{-}}$ stable.

Remark 5. The condition that B is integral over A does not necessarily imply that $A \subset B$ is G_{2}-stable. In fact, let $A=k[s, t]_{(s, t)}$, where s, t are indeterminates over a field k, and let Ω be an algebraic closure of K. Then we can take $x, y \in \Omega$ with the properties that $x^{2}+s x+s^{2}=0, y^{2}+t y+t^{2}=0$ and $t x=s y$. Obviously, $A[x, y]$ is integral over A. On the other hand, $A \subset A[x, y]$ is not LCM-stable by Proposition 5.3 in [8]. Therefore, $A \subset A[x, y]$ is not G_{2}-stable by Corollary 3.7 in [8].

Given an extension of integral domains $A \subset B$, we say that an element u in B is super-primitive over A, if u is the root of a polynomial $f(X) \in A[X]$ with $A:_{K} c(f)=A$. Suppose that A is integrally closed. Then A is a PVMD if and only if u is super-primitive over A for each $u \in F$, where F is a subfield of an algebraic closure of K containing K (cf. [5], Proposition 2.5 and [9], Proposition 7). From this fact, we have the following proposition.

Proposition 6 (cf. [1], Exercise 19 d) in §2). For $A \subset B$, suppose that A is a $P V M D$ and B is integrally closed. Moreover, assume that L is algebraic over K. If $A \subset B$ is G_{2}-stable, then B is a PVMD.

Proof. Let $u \in L$. Since A is a PVMD, u is super-primitive over A. Thus, there exists a polynomial $f(X) \in A[X]$ such that $f(u)=0$ and $A:_{K} c(f)=A$. By G_{2}-stableness of $A \subset B$, we have $B:_{L} c(f)=B$. That is, u is super-primitive over B. This implies that B is a PVMD (cf. [9], Proposition 7).

Here, we shall examine conditions that LCM -stableness implies G_{2}-stableness. Recall that an integral domain A is said to be an FC domain, in case $a A \cap b A$ is finitely generated for any $a, b \in A$.

Proposition 7. In any of the cases below, LCM-stableness of $A \subset B$ implies G_{2}-stableness of $A \subset B$.
(1) A is an $F C$ domain and B is integrally closed.
(2) B is a PVMD.

Proof. Let I be a finitely generated ideal of A with $\operatorname{Gr}(I) \geqq 2$. Assume that $\operatorname{Gr}(I B)=1$. Then there exists $Q \in(\overline{5}(B)$ such that $I B \subset Q$ by Theorem 16
of Chapter 5 in [4]. Put $P=Q \cap A$, then $I \subset P$. Thus, $\operatorname{Gr}(P) \geqq 2$. This implies that A_{P} is not a valuation ring. Therefore, there exist $a, b \in A-\{0\}$ such that $a:_{A} b+b:_{A} a \subset P$. Since $A \subset B$ is LCM-stable, we have

$$
\begin{equation*}
a:_{B} b+b:_{B} a=\left(a:_{A} b+b:_{A} a\right) B \subset P B \subset Q . \tag{*}
\end{equation*}
$$

First, suppose that A is an FC domain and B is integrally closed. Then we have $B:_{L}\left(a:_{B} b+b:_{B} a\right)=B$ by Lemma 10 in [9]. Since A is an FC domain and $A \subset B$ is LCM-stable, $a:_{B} b+b:_{B} a$ is finitely generated. Thus, $\operatorname{Gr}(Q) \geqq$ $\operatorname{Gr}\left(a:_{B} b+b:_{B} a\right) \geqq 2$. This is a contradiction.

Next, suppose that B is a PVMD. Then B_{Q} is a valuation ring by Theorem 2 and Remark 3 in [9]. On the other hand, (*) shows that B_{Q} is not a valuation ring. This is a contradiction.

These imply that $A \subset B$ is G_{2}-stable.
Proposition 8. Let A be a $P V M D$. Assume that $A \subset B$ is G_{2}-stable. Then we have the following statements.
(1) For each finitely generated ideal I of $A, B:_{L} I=\left(\left(A:_{K} I\right) B\right)_{V}$.
(2) For each $a, b \in A-\{0\}, a:_{B} b=\left(\left(a:_{A} b\right) B\right)_{v}$.

Proof. (1) Let I be a finitely generated ideal of A. Since $A \subset B$ is G_{2-} stable, we have $B=\cap\left\{B_{P} \mid P \in \mathfrak{G}(A)\right\}$ by Theorem 3. For $P \in \mathfrak{G}(A)$, since A_{P} is a valuation ring by Theorem 2 and Remark 3 in [9], we have $\left(B:_{L} I\right) B_{P}=B_{P}:_{L} I=$ $\left(A_{P}:_{K} I\right) B_{P}=\left(A:_{K} I\right) B_{P}$. This shows that $B:_{L} I \subset \cap\left\{\left(A:_{K} I\right) B_{P} \mid P \in \mathfrak{G}(A)\right\}$.

Conversely, take $x \in \cap\left\{\left(A:_{K} I\right) B_{P} \mid P \in(\mathfrak{G}(A)\}\right.$. Then for each $P \in \mathfrak{G}(A)$, there exists $s_{P} \in A-P$ such that $s_{P} x \in\left(A:_{K} I\right) B$. Put $J=\sum_{P \in \mathbb{G}(A)} s_{P} A$. Then we have $\operatorname{Gr}(J) \geqq 2$ and $I x \subset B:_{L} J$. Since $A \subset B$ is G_{2}-stable, $\operatorname{Gr}(J B) \geqq 2$. Therefore, $I x \subset B:_{L} J=B$. Thus, $x \in B:_{L} I$. This shows that $\cap\left\{\left(A:_{K} I\right) B_{P} \mid P \in \mathfrak{G}(A)\right\}$ $\subset B:_{L} I$. That is, $B:_{L} I=\cap\left\{\left(A:_{K} I\right) B_{P} \mid P \in \mathbb{G}(A)\right\}$.

For a non-zero fractional ideal M of B, we put $M^{*}=\cap\left\{M B_{P} \mid P \in(\mathscr{G}(A)\}\right.$. Then the mapping $M \rightarrow M^{*}$ is a ${ }^{*}$-operation on B. The above shows that $B:_{L} I=$ $\left(\left(A:_{K} I\right) B\right)^{*}$. On the other hand, $\left(\left(A:_{K} I\right) B\right)^{*} \subset\left(\left(A:_{K} I\right) B\right)_{v} \subset\left(B:_{L} I\right)_{v}=B:_{L} I$. That is, $B:_{L} I=\left(\left(A:_{K} I\right) B\right)_{v}$.

As (2) can be proved in the same manner as (1), we omit the proof.
To examine universality of LCM-stableness of $A \subset B$, where A is a Krull domain, we prepare a lemma and a proposition.

Lemma 9. Let A be a Krull domain. Assume that $A \subset B$ is LCM-stable. If I is a v-ideal of A, then IB is a v-ideal of B.

Proof. Since I is a v-ideal of A, there exist $x, y \in K$ such that $I=x A \cap y A$ by Corollary 44.6 in [2]. Since $A \subset B$ is LCM-stable, $I B=(x A \cap y A) B=x B \cap y B$. This implies that $I B$ is a v-ideal of B.

Proposition 10. Let A be a Krull domain. Assume that $A \subset B$ is LCMstable. Then we have $B:_{L} I=\left(A:_{K} I\right) B$ for each finitely generated ideal I of A.

Proof. Since A is a Krull domain, $A \subset B$ is G_{2}-stable by Remark 2. Therefore, we have $B:_{L} I=\left(\left(A:_{K} I\right) B\right)_{v}$ by Proposition 8 . On the other hand, $A:_{K} I$ is a v-ideal of A. Thus, $\left(A:_{K} I\right) B$ is a v-ideal of B by Lemma 9. Therefore, $B:_{L} I=\left(\left(A:_{K} I\right) B\right)_{v}=\left(A:_{K} I\right) B$.

With these preparations, we give the following theorem related to universality of LCM-stableness.

Theorem 11. Let A be a Krull domain. Then the following statements are equivalent.
(1) $A \subset B$ is LCM-stable.
(2) $A[X] \subset B[X]$ is LCM-stable.

Proof. (2) $\Rightarrow(1)$. This implication can be proved easily for any extension of integral domains $A \subset B$, and so the proof is omitted.
(1) $\Rightarrow(2)$. Assume that $A \subset B$ is LCM-stable. Since A is a Krull domain, $A \subset B$ is G_{2}-stable by Remark 2. Thus, $A[X] \subset B[X]$ is G_{2}-stable by Theorem 3.5 in [8]. Let $f(X), g(X) \in A[X]$. We may assume that $f(X):_{K[X]} g(X)=f(X)$. Put $I=c(f)+c(g)$. Since A is integrally closed, $f(X):_{A[X]} g(X)=\left(A:_{K} I\right) f(X)$. $A[X]$ by Lemma 3.9 in [8]. Since A is a Krull domain and $A \subset B[X]$ is LCMstable, $\left(A:_{K} I\right) B[X]$ is a v-ideal by Lemma 9 . On the other hand, $A[X]$ is a Krull domain. Therefore, by virtue of Proposition 8, we have

$$
\begin{aligned}
f(X):_{B[X]} g(X) & =\left(\left(f(X):_{A[X]} g(X)\right) B[X]\right)_{v}=\left(\left(A:_{K} I\right) f(X) B[X]\right)_{v} \\
& =\left(A:_{K} I\right) f(X) B[X]=\left(f(X):_{A[X]} g(X)\right) B[X] .
\end{aligned}
$$

This implies that $A[X] \subset B[X]$ is LCM-stable.
Remark 12. In Corollary 3.8 in [8], we showed that if A is locally a GCD domain, then universality of LCM-stableness of $A \subset B$ holds. Moreover, we showed in Theorem 11 that in case A is a Krull domain, universality of LCM-stableness of $A \subset B$ holds. However, we don't know if universality of LCM-stableness of $A \subset B$ holds generally. Both locally GCD domains and Krull domains are special cases of PVMD's. Therefore, one may ask the following question.
(1) If A is a PVMD, then does universality of LCM-stableness of $A \subset B$ hold?
On the other hand, if the above question (1) is affirmative, then LCMstableness of $A \subset B$ implies G_{2}-stableness of $A \subset B$ by Theorem 3.5 in [8]. Thus, the following question which seems weaker than the question (1) (cf. Remark 2
and Proposition 7) occurs.
(2) If A is a PVMD, then does LCM-stableness of $A \subset B$ imply G_{2}-stableness of $A \subset B$?

References

[1] N. Bourbaki, Algèbre Commutative, Chapitre 7, Hermann Paris, 1965.
[2] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, INC. New York, 1972.
[3] R. Gilmer, Finite element factorization in group rings, Lecture Note in Pure and Appl. Math., 7, Dekker, New York, 1974.
[4] D. G. Northcott, Finite Free Resolutions, Cambridge University Press, 1976.
[5] I. J. Papick, Super-primitive elements, Pacific J. Math., 105 (1983), 217-226.
[6] F. Richman, Generalized quotient rings, Proc. Amer. Math. Soc., 16 (1965), 794-799.
[7] P. B. Sheldon, Prime ideals in GCD domains, Can. J. Math., 26 (1974), 98-107.
[8] H. Uda, LCM-stableness in ring extensions, Hiroshima Math. J., 13 (1983), 357-377.
[9] H. Uda, A characterization of Prüfer v-multiplication domains in terms of polynomial grade, Hiroshima Math. J., 16 (1986), 115-120.

Faculty of Education, Miyazaki University

