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1. Introduction

In this paper all measurable spaces are assumed to be standard. Let

(Ω, &, P) be a probability space and let σ be a P-preserving transformation on Ω.

For measurable spaces (5, £8S) and (M, &M) consider a @s x @M | ^-measurable

m a p / : (s, x)-+fsx and a stationary sequence of S-valued random variables {ξn}^ί

which are denned as ξn = ξoσn~ι ( n ^ l ) for some 5-valued random variable ξ.

A random dynamical system X = ({Xn}™=0,f, ξ) with state space (M, @M) and

parameter space (S, &s) is defined as a sequence of randomly iterated trans-

formations :

J Xn(ω)x = fξn(ω)Xn. i(ω)x (n ̂  1)

1 X0(ώ)x = xeM.

We often write X = {Xn}™=0 instead of X = ({Xn}£=0, /, ξ) T n e ergodic properties

of such a random dynamical systems are studied in [1], [3], [4], [5], [6], [7],

and [9]. In the present paper we assume that the random variables ξn's are

mutually independent and they generate J5*, i.e., &r = &r(ξ1, ξ2> ) We have to

notice that there is no work, except [7], which is concerned with the case when

<̂ M's are not independent as far as we know. Under the above assumption, we

shall show the deterministic version lemmas in Section 3, and we shall give their

applications to the study of asymptotic properties of random dynamical systems.

Precisely, as it is known in [4], [5] and [9], the random orbit Ar

JC = {Xn(ω)x}^=0

becomes a Markov process starting from xeM and it is closely related to the

skew product transformation Tx on MxΩ which is defined by

(1.2) Tx(x, ω) = CXΊ(ω)x, σω) for (x, ω) e M x Ω.

For example, a probability measure μ on M is ^-invariant if and only if the

product measure μ x P is Tx-invariant (see Lemma 3.1). One of the deterministic

version lemmas which we will prove asserts that if a function ΦeLx(μxP)

satisfies ΦoTx = λΦ for some λ e C, then there is a function φeL\μ) such that

φ = φ μxP-a.e. From this lemma we can obtain some interesting phenomena

which reflect the difference between the ergodic behaviors of a random
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dynamical system and those of a single transformation (see Section 4).
In Section 2, we shall give some definitions and facts which will be used

later. In Section 3, we shall prove the deterministic version lemmas and in the
final section, we shall give three applications of them. The first application is
a generalization of the result in [9], the second one is concerned with the asymp-
totic properties of random rotations on a circle, and the third one is concerned
with the characteristic exponents of random products of matrices.

The author would like to express his thanks to Professors H. Totoki and
H. Ishitani for their encouragements.

2. Preliminaries

First of all we will define some concepts. Let (M, &) be a standard measur-
able space and let T be a measurable transformation on M. Let Yx = {Yπ(ω)x}£L0

be a time homogeneous Markov process on a probability space (Ω, J^, P) with
state space M and starting from xe M. We denote by q(y, A) (y e M, A e 3§)
the transition probabilities of Yx. In what follows the terminology Markov
process is used for the family 7= {Yx}xeM. The Markov operator i? associated
with Y is defined by

(2.1) (<2φ)(x)=$φ(y)q(x,dy)

for any bounded ^-measurable function φ. The following definitions are
well-known but we summarize them for convenience.

DEFINITION 2.1 (c.f. [11]). Let The a transformation and Y be a Markov
process as above.

(T.I) A probability measure μ is called T-invariant if μ(A) = μ(T~1A) for
any A e 38.

(T.2) A T-invariant measure μ is called T-ergodic if T-1A = A implies μ(A) =
0 or 1 for A e @.

(T.3) A T-invariant measure μ is called T-weakly mixing if there exists
a subset / of N such that #(/Π {1, 2,..., n})/n->0 (n-»oo) and

(φoT»)(x)φ(x)μ(dx) > §φ(x)μ(dx)§ψ(x)μ(dx) (n-oo), n $ J

for any φ, φ e L2(μ).
(T.4) A T-invariant measure μ is called T-strongly mixing if

{φoT")(x)φ(x)μ(dx) > §φ(x)μ(dx)$ψ(x)μ(dx) (n-+co)

for any φ, φ e L2(μ).
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(T.5) A T-invariant measure μ is called T-exact if Γ\™=0 T~n38 is trivial

with respect to μ.

(Y.I) A probability measure μ is called Y-inυariant if

I q(x, A)μ(dx) = μ(Λ) for any A e 38.

(Y.2) A Y-invariant measure μ is called Y-ergodic if μ(v4)>0 and q(x, A) = 1

μ-a.e. x e i imply μ(yl) = 1, for A e 38.

(Y.3) A Y-invariant measure μ is called Y-weakly mixing if there exists a

subset / o f iVsuch that #(/Π {1, 2,..., n})/n-»0 (n->oo) and

JJ ( n - o o ) , n£J

for any φ, ψ e L2(μ).

(Y.4) A Y-invariant measure μ is called Y-strongly mixing if

§(J2»φ)(x)ψ(x)μ(dx) —+§φ(x)μ(dx)$ψ(x)μ(dx) (n-oo)

for any 0, ψ eL2(μ).

(Y.5) A Y-invariant measure μ is called Y-uniformly mixing if

J |((j2')»φ)(x)- J φ(x)μ(dx)\μ(dx) , 0 (Λ-,oo)

for any φ e L^μ), where 1' denotes the dual operator of i?.

REMARK 2.1. The operator £' is defined as the dual operator of 1 in L2(μ).

But in this case it is uniquely extended to the operator on L°°(μ). This is the

reason why we call £' the dual operator of J without designating its domain.

If μ is a Γ-invariant measure, we often call the triple (M, μ, T) a dynamical

system. Then it is clear that the operator Uτ: φ-+φoTis an isometry on L2(μ).

Next we define:

DEFINITION 2.2 ([6]). Let T be a μ-nonsingular transformation. We define

an operator J? = &Ttfl: L 1 (μ)^L 1 (μ) by

(2.2) ^ φ = _^_Γ φdμ for φeL\μ)9

dμ J τ~H')

and we call it the Perron-Frobenius operator of Twith respect to μ.

REMARK 2.2. In the case when μ is T-invariant, & is just the dual operator

of Uτ.

If a Markov process Yhas an invariant measure μ we can consider a dynamical
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system on Σ = MxMx ••- = {x = (x0, xl9...): xkeM for any /cΞ>0} as follows:
We induce a probability measure Pμ on Σ which is uniquely determined by

(2.3) Pμ(LAoxA1x xAn])= Γ μ{dxo)\ q(xθ9 dxj Γ q(xn-u dxn)
J A0 J Aι J An

for any n^O and AOi Aί9...9 Ane & where [Ao x ^ x x AJ = {*e Σ ; xfcev4k

for O^k^n}. Then it is easy to see that the shift transformationτ: x-^τx. with
(τx)i = (x)/+i preserves Pμ, that is, Pμ is τ-invariant.

DEFINITION 2.3. The shift dynamical system (Σ, Pμ, τ) is called the Markov
transformation induced by a Markov process Yand its invariant measure μ.

The following propositions will be used frequently in this paper. The
proofs are found in [6, Proposition 2.2 and Proposition 3.2]. So we omit them.

PROPOSITION 2.1. Let (Λί, μ, T) be a dynamical system and <£ = ££TtPL be
the Perron-Frobenius operator of Twith respect to μ. Then we have

(2.4) Eμ[φ i τ-n@Ί = υn

τ &nφ = (&nφyτn

for any φ e Lι(μ), where Eμ[φ \ T~n&~\ denotes the conditional expectation of φ
given T~n3S with respect to μ.

PROPOSITION 2.2. We use the same notation as in Proposition 2.1. μ is
T-exact if and only if

$ - ^ O (n->oo)

for any φ eLx{μ).

PROPOSITION 2.3. Assume that μ is T-weakly mixing. Then, μ is T-exact
if and only if {^"φ}ΐ=0 is relatively compact in Lι{μ) for any φeLx(μ).

PROPOSITION 2.4. Assume that μ is T-invariant. Then for φeL\μ) and
λeC, the following are equivalent:

(1) Uτφ = λφ.

(2)

3. Deterministic version lemmas

As we mentioned in Section 1, we consider a random dynamical system
X = ({Xn}™=θ9f, ξ) on a probability space (Ω9 J*", P) with state space (M, ^ M )
and parameter space (5, ^ s ) . Recall that we assume that 5-valued random
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variables ξn

9s are independent and &r = &r(ξ1, ζ2> ) Under the assumption,
the random orbit Xx = {Xn(ω)x}™=0 (xeM) becomes a Markov process starting
from x e M and with transition probability

(3.1) q(x, A) =

Let Tx: Mx Ω-*M x Ω; (x, ω)^(X1(ω)x, σω) be the skew product transformation
induced by the random dynamical system X.

First we prove:

LEMMA 3.1. Let μ be a probability measure on the state space (M, @M) of
X. Then, μ is X-invariant if and only if μxP is Tx-inυariant.

PROOF. Write T for Tx. Assume that μ is X-invariant. Let A e SSM and
. Then we have

(μ x P ) ^ - ^ x D) = §§IΛxΓ(T(x, ω))μ(dx)P(dω)

) ̂ P(dω)IA(X1(ω)x)Ia- ,r(ω)

since σ~1Γ e &(ξ2, %3,---) and IA{X^)x) is ^(ξ^-measurable. Thus we have

(μ x P)(T-i(^t x Π)

= P(Γ) fjμ(dx)q(x, A)

from the assumption. Therefore μ x P is Γ-invariant. Obviously if μ x P is
T-invariant, we have

μ(A) = (μ x P) (A x Ω) = (μ x P) (T~ \A x Ω))

= ^IΛ(X1(ω)x)μ(dx)P(dω)
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Thus μ is Λ^-invariant.

From now on, unless otherwise stated X denotes a random dynamical system,

T denotes the skew product transformation Tx induced by X.

LEMMA 3.2. Assume that Tis nonsingular with respect to a product measure

μxP. ££ denotes the Perron-Frobenius operator of T with respect to μxP.

For a function φ e L J (μ) and for a bounded @sx@sx ••• x&s-measurable func-

tion φ, put

(3.2) Φ(x, ω) = φ(x)φ(ξί(ω),..., ξk(ω)).

Then ££nΦ has a version in Lι(μ) for n^k. In particular, & \ Li(μ) = £' where

&' is the dual operator of the Markov operator Q associated with X.

PROOF. Let Ae@M and Γ e ^ . Then we have

Γ (J?»Φ)(x,ω)(μxP)(d(x,ω))

J A*Γ

= §IAχAT%x, ω))Φ(x, ω)(μxP)(d(x, ω))

= ^μ(dx)P(dω)ίA(Xn(ω)x)Iσ-nΓ(ω)φ(x)φ(ξ1(ω),...,ξk(ω))

= §μ(dx)φ(x)$P(dω)Iσ-nΓ(ω)IA(Xn(ω)x)φ(ξt(ω),..., ξk(ω))

= P(Γ)^μ(dx)φ(x)^P(dω)IA(Xn(ω)x)φ(ξι(ω),..., ξk(ω))

since σ-Te&{ξn + uξn + 2,~ ) and IΛ{Xn(ω)x)φ(ξi(ω)>..., ξk(ω)) is r{ξu ξ2,...,

ξπ)-measurable if n ̂  k. Therefore we have

Γ (JS?"Φ) (x, ω) (μ x P) (d(x, ω)) = μn(A)P(Γ)
J A*Γ

where μn(A)= J μ(dx)φ(x) J P(dω)IA(Xn(ω)x)Ψ(ξi(ωl- , i M ) . It is easy to see

that μn is a μ-absolutely continuous σ-additive set function. Thus there exists

a function φneLί(μ) such that μn(A) = $A φn{x)μ(dx). Therefore we conclude

that (&nΦ)(x, ω) = φn(x) μ x P-a.e. Next for any A e &M we have

x)μ(dx) = felA) (x)φ (x)μ(dx)

IΛXl {ω)x)p ^
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, ω))φ(x)(μxP)(d(x, ω))

Here we have used the first assertion of the lemma. Thus Jfφ — ^'φ μ x P-a.e.

Now we can give one of the main theorems:

THEOREM 3.1 (A deterministic version lemma for eigen-functions of the

Perron-Frobenius operator). Assume that the skew product transformation T

is nonsingular with respect to a product measure μxP. Let 3? be the Perron-

Frobenius operator of T with respect to μxP. If a function Φ eLι(μxP)

satisfies λJ?Φ = Φ for some λeC with |λ| = l, then there exists a function φe

L*(μ) such that Φ(x, ω) = φ(x) μx P-a.e.

PROOF. First we show that

(3.3) l i π w i n f ^ ^ \\J?"Ψ-φ\\LHμXP) = 0

for any Ψ e L\μ x P). Since the linear hull of such elements that have the form

as (3.2) is dense in Lx(μ x P), we can see that for any Ψ e Lι(μ x P) and for any

ε>0, there exists an element ΨεeLι{μxP) such that J£nΨε has a version in

L\μ) for sufficiently large n. Therefore we have

^ \\J?»Ψ-J?»Ψε\\LHμxP) + Mφ

for sufficiently large n, since the operator norm of & on L\μ x P) is 1. Thus we

obtain (3.3).

The theorem is easily proved if we apply (3.3) to Φ.

From Theorem 3.1, we obtain the following:

COROLLARY 3.1. Under the same assumption as in Theorem 3.1 any

μxP-absolutely continuous T-invarίant measure has the form μ t x P , where

μx is a μ-absolutely continuous X-invariant measure.

PROOF. Let Φ be the Radon-Nikodym derivative of a μ x P-absolutely

continuous T-invariant measure Q. Then we have ££Φ — Φ. Therefore Φ has

a deterministic version φeL1(μ) in virtue of Theorem 3.1. Putting μ1 = φμ9
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we conclude that Q = μι xP and μx is X-invariant from Lemma 3.1.

The following theorem is also a corollary of Theorem 3.1.

THEOREM 3.2 (A deterministic version lemma for eigenfunctions of Uτ).
Assume that μ is X-invariant measure. If a function ΦeU(μxP) satisfies
UτΦ = ΦoT=λΦ for some λe C then there exists a function φeV(μ) such that
Φ{x, ω) = φ(x) μxP-a.e. In particular, there is a Γ e ^ with P(Γ) = 1 such
that ωeΓ implies that φ(fξiω)x) = λφ(x) μ-a.e.

PROOF. This is an easy consequence of Proposition 2.4 and Theorem 3.1.

In the rest of this section we give two corollaries of the above theorem.

COROLLARY 3.2 (The random ergodic theorem [4]). Assume that for
each seS, μ is fs-invariant and φeL1(μ). Then, there is a Γ e& with P(Γ) = 1
such that for any sample ωeΓ, (1/n) ΣϋΞo φ(Xk(ω)x) converges μ-a.e. and in
Lx(μ). Moreover the limit function has a version in L*(μ).

PROOF. Put Φ(x,ω) = φ(x). Then (l/n)Σ?=ί Φ(Jfk(ω)x) = (l/n) ΣS=o(*°
Tk)(x, ω) converges μ x P-a.e. and in Lx(μ x P) from the Birkhoίf ergodic theorem
since μxP is T-invariant. The limit function Φ* is T-invariant. Therefore it
has a version in Lλ(μ) in virtue of Theorem 3.2.

COROLLARY 3.3. Assume that for each seS, μ isfs-invariant. Then,
(1) P{ω; μ isfξ(ω)-ergodic}>0 implies that μxP is T-ergodic.
(2) P{ω; μ is f^ωyweakly mixing}>0 implies that μxP is T-weakly

mixing.

PROOF. (1) Assume that Γ e ^ M x J with (μ x P)(Γ) > 0 satisfies T~XΓ = Γ,
i.e., IΓoT=IΓ. Then from Theorem 3.2, there is a measurable set A e @IM such that
IΓ(x, ω)=IA(x) μxP-a.e. and IAoX1(ω) = IA in Lι(μ). From the assumption we
have μ(A) = 1. Therefore (μ x P)(Γ) = 1. Hence μ x P is T-ergodic.

(2) We use the fact that a dynamical system is weakly mixing if and only if
it is ergodic and it has no eigenvalue except 1. For the proof see [11, p. 48] in
the invertible case and consider the natural extension in general case. Let ΦoT=
λΦ for some λe C. In virtue of Theorem 3.2, there exists an element φ in LJ(μ)
such that Φ = φ in L\μxP) and φoX1(ω) = λφ in L*(μ) for a.e. ω. Therefore λ
has to be 1, from the assumption. Hence μ x P is T-weakly mixing.

REMARK 3.1. In [6] we considered a more general situation than Corollary
3.3 to prove the spectral decomposition of the random iteration of one-dimensional
transformations. Corollary 3.3 asserts that we can expect the weakly mixing
property of T if the family {/s}seS consists of transformations having distinct
spectral types one another.
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4. Applications

In this section we give some applications.

4.1. Ergodic properties of Markov transformations. Let X be a random
dynamical system as in the previous section and let μ be an X-invariant measure.
As before we denote by £ and St' the Markov operator and its dual operator
associated with X, respectively. Recall that the Markov transformation ( Σ ,
Pμ9 τ) is, the shift dynamical system on Σ = {x = 0co> xl9...); xkeM, fc = 0, 1,...},
where Pμ is the probability measure satisfying the equation (2.3). The following
theorem is a generalization of the results in [4] and [9].

THEOREM

(1)

(2)

(3)

(4)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

(a)

(b)

(c)

4.1. In the following, (a),'
μ is X-ergodic.
μxP is T-ergodic.
Pμ is τ-ergodic.
μ is X-weakly mixing.
μxP is T-weakly mixing.
Pμ is τ-weakly mixing.
μ is X-strongly mixing.
μxP is T-strongly mixing.
Pμ is τ-strongly mixing.
μ is X-uniformly mixing.
μxP is T-exact.
Pμ is τ-exact.

PROOF. Denote by JS?T and j£?τ the Perron-Frobenius operators of T and τ
with respect to μxP and Pμ respectively. Before proving the theorem, we
claim: First, the assertion (c) follows directly from (b), since the dynamical
system (Σ» Pμ> τ) is a factor of the dynamical system (Mx Ω, μxP, T).
Precisely, if we define a map π: M xί2-»Σ by π(x, ω) = (x, X1(ω)x, X2(co)x9...)
then πoT=τoπ and π*(μxP) = Pμ. Secondly, for φeL\μ) define a function </>
on Σ by Φ(x) = Φ(xo) for x e Σ Then (^τ)φ{x) = (^φ)(x). In fact, putting
J(x, ω) = IAo(x)IAι(X1(ω)xy-IAk(Xk(ω)x) for Aθ9 Al9...9 Ake@M, we have

= J IlAoXAiX-'XAkli

= J VXΛOX^Ix. .xΛk]U)ΦU)Pμ{dx)
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= §IAo(X1(ω)x)IAi(X2(ω)x)-IAk(Xk+ 1(ω)x)φ(x)(μxP)(d(x, ω))

= [j(T{x, ω))φ(x)(μxP)(d(x, ω))

= §J(x, ώ) (J?τφ) (x) (μ x P) (d(x, ω))

= §J(x, ω) (J2'φ) (x) (μ x P) (d(x, ω))

since 3?Ύφ — Q'φ in virtue of Lemma 3.2.

Now we prove the theorem.

(1) Assume (a) and T~1Γ = Γ for some ΓG^MX^ with (μxP)(Γ)>0.

Then by Theorem 3.2, there is a measurable set Ae38M such that IA = IΓ in

Lλ(μxP) and 7^0X^0;) = /^ in L*(μ) for P-a.e. ω. Thus

q(x, A) =ίjiA(X1(ω)x)P(dω) = IA(x) μ-a.e.

Therefore μ(A)= 1 from (a). Hence (μ x P)(Γ) = 1. Next we prove (a) under the

assumption that (c) holds. If J2IA = IA for some Ae@lM with μ(/l)>0, we have

J2ΊA = IA. In fact, from the definition, we have

Since £' is a positive operator and J?Ί = 1, ( i 7 J ( x ) = /Λ(x) μ-a.e. XGV4. Thus

(£ΊA)(x)^IA(x) μ-a.e. On the other hand, £>' preserves the value of the inte-

gration with respect to μ. Therefore (£ΊA)(x) = IA(x) μ-a.e. By the second

claim we have (^7

τ/[^])(x) = /[y4](x) Pμ-a.e. This implies that / [y l ](τx) = / [ A ](x)

Pμ-a.e. in virtue of Proposition 2.4. Hence μ(^4) = P μ ([^]) = l from (c). This

completes the proof of (1).

(2) The proof of (2) is quite similar to that of (3), so we omit the proof

of (2).

(3) Assume (a). For any ΨeL2(μxP) which has the form Ψ(x, ω) =

φ(x)φ(ξ1(ω)9..., ξk(ω)) as in (3.2) and for any ΦeL2(μxP) we have, for any
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<,ω))Ψ(x,ώ)(μxP)(d(x,ω))

(x, ω)(&}Ψ)(x, ω)(μxP)(d(x, ω))

(x, ω)((<2y-*χ)(x)(μxP)(d(x, ω))

[x, ω)((β'y-"χ)(x)μ(dx)

where χ denotes the deterministic version of ££\Ψ in Lemma 3.2. From the

assumption we have

(x, ω)((£>yχ)(x)μ(dx)

x, ω)(μxP)(d(x, ω))§Ψ(x, ω)(μxP)(d(x, ω))

since S£τ preserves the value of the integration. Since the linear hull of such

Ψ's is dense in L2(μx P), we obtain (b). Now we assume (c). For any φ, ψe

L2(μ), in virtue of the second claim as above, we have

§(£>»φ)(x)ψ(x)μ(dx)

(4) Assume (a). In virtue of Proposition 2.2, we have to prove

J | ( i f f Ψ){x, ω) - J f (x, ωXμ x Pχd(x, ω))| (μ x P) (d(x, ω)) • 0 (n-> oo)

for any Ψ e Lι(μ x P). For any Ψ which has the form as in (3.2), we have
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, ω)(μxP)(d(x, ω))\(μxP)(d(x, ω))

— 0 (ii-oo)

by the assumption, where χ is the deterministic version of ££\Ψ. Since the

linear hull of such ^'s is dense in L\μxP), we have (b). Next we assume (c).

For any φ e LJ(μ) we have

J I {{2'yφ){x)-§φ{x)μ{dx) I μ(dx)

f ? φ ) U ) - ^Φ{χ)Pμ(dx)\pμ{dx) >0 (*->oo).

Here we used the second claim.

REMARK 4.1. In the proof of Theorem 4.1 we have shown that £>1Λ = IA

implies ^ΊA—lA. Furthermore, we can prove the following: Assume that an

operator ^ on L°°(μ) satisfies:

(1) &φ^0 μ-a.e. if φ^O μ-a.e.

(2) ^ 1 = 1 μ-a.e.

(3) J &φdμ = J φdμ for any φ e L°°(μ).

Then, it can be uniquely extended to the operator on L*(μ) and its dual operator

&' also satisfies (1), (2) and (3), and @φ = φ if and only if @'φ = φ for φeL\μ).

4.2. The radom ratation on a circle. Here we consider the following case:

S = M = Sί = {xeC;\x\ = l}: the unit circle in the plane, @S = @M = @(S1):

the topological Borel field of S\ f:SxM-+M; (s, x)^fsx = sx. The

probability space (Ω, J*", P) is defined as an infinite product measure space (S1,

^ ( S 1 ) , v)x(5 1 , ^(S1), v)x •••, where v is a probability distribution on SK

In this case, the coordinate functions ξn(ω) = ωn are regarded as the 5-valued

independent random variables, where ω = (ω l 5 ω2,...) and the random dynamical

system X = ({Xn}™=0>f> ίi) i s β i v e n b y ^π(ω)x = ω n ω n _ 1 ω1x. Since the

Haar measure m on S1 is /s-invariant for each s, it is also X-invariant. Denote

by (Σ> Pm> τ) t n e Markov transformation induced by X and m. Then we have:

THEOREM 4.2. (1) Pm is not τ-egrodic if and only if there is an integer

p>0 such that v{l, λ,..., λp~1} = l for some p-th root λ of 1.

(2) Pm is not τ-weakly mixing but τ-ergodic if and only if there is an

integer p>0 such that v{κ, κλ,...9 κλp~1} = l for some κeSι which is not a root

of 1 and λ e S 1 which is a p-th root of 1.
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(3) Pm is τ-exact if and only if it is τ-weakly mixing. In particular, in

the case except (1) and (2), Pm is τ-exact.

PROOF. Before proving the theorem we notice that we may assume that if

φ e L2(m x P) satisfies φ°T=λφ in L2(m x P) for some λ e C then φ e L2(m) and

φofs = Xφ in L2(m) for v-a.e.seS1, in virtue of the deterministic version lemma

(Theorem 3.2).

Proof of (1). Assume that Pm is not τ-ergodic. From Theorem 4.1, mxP

is not Γ-ergodic. Thus there is a non-constant function φ e L2(m) with φ°fs = φ

in L2(m), v-a.e. s. In L2(m), φ is uniquely represented as φ{x)=ΣneZΦnχn>

where φneC and Σ n e z IΦJ2 < °°. Let p^O be the integer which has the smallest

modulus among all n with φnφ0. From the uniqueness of the representation,

we have sp = l v-a.e. 5. Thus we have v{l, λ,...9 λ\p\~1} = l for some |p|-th root

A of 1. The converse direction is obvious.

Proof of (2). Assume that Pm is not τ-weakly mixing but τ-ergodic. From

Theorem 4.1, m x P is not T-weakly mixing but T-ergodic. Therefore, there

exists a non-constant function φ eL2(m) and ye C with yΦ\ such that φ°fs = yφ

in L2(m) for v-a.e. seS1. As before φ is represented as φ(x) = Σ neZ φnx
n. From

the uniqueness of the representation, we have y = sp v-a.e. seS1. Thus there

exist K e S1 which is independent of s and an integer q which may depend on s

such that s = κλq for v-a.e. s, where λ is a |p|-th root of 1. Therefore v{κ, JCA,...,

/Cvl'̂ l"1} = 1. Since m x P is T-ergodic, K is not a root of 1 in virtue of the statement

(1). The converse direction is obvious.

Proof of (3). In virtue of Proposition 2.3 and (4) in Theorem 4.1, it suffices

to show that {{£')nφ}™=o is relatively compact in ̂ (m) for any φ e Lι(m). Recall

that (£'φ)(x) = (£/

τφ)(x) = j(&fsφ)(x)v(ds)=$φ(s-1x)v(ds) in virtue of Lemma
3.2. Since the map fs is an isometry on S 1 for each s, {(£')"φ}™=0 is

relatively compact in C(Sι) for any φ e C(SX) in virtue of the Ascoli-Arzela

theorem. Thus {(^/)MΦ}?=o is relatively compact in ΊJ{m) for any φeC(Sλ).

Noticing that the operator norm of £' on Lι(m) is 1 and C(SX) is dense in Lι(m),

we can see that {(£')nφ}™=0 is relatively compact in Lι{m) for any φ e ^(m).

REMARK 4.2. Theorem 4.2 illustrates the difference between the random

iteration and the iterations of a single transformation. In fact, consider a

rotation//. Sι->Sι; x->sx. Then,

(1) m is/s-ergodic if and only if s is not a root of 1,

(2) m is not fs-weakly mixing for any seS1.

4.3. Random products of matrices. Let X = ({Xn}™=0,f, ξ) be a random

dynamical system and let μ be an Jf-invariant measure. Consider a measurable

map D( , ): Sx M->Mk where Mk stands for the space of all k x k real matrices.

Write
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Dn(x, ω) = D(ξn(ω)9 Xn^ί(ω)x)- 'D(ξ1(ω), x).

Then we have:

THEOREM 4.3 (see [8] and [10]). Assume that

[Ίog+ \\D(s, x)\\v(ds)μ(dx) < oo

where v is the distribution of ξ and log+ c = max (log x, 0). Then, there exist

81 M-measurable functions λ ^ ), Λ.2( •)>•••> λ k ( - ) , ra^ ), w 2 ( ) , . . . , m f c( ), s( )

and a measurable set Γ e ^ x f such that the following hold:

(1) m ^ X w2( ),..., mk(-) and s( ) are integer valued and 0<s(x)^k,

mi(x)>0 (i^s(x)), mt (x) = 0 (i>s(x)) and Σ*=i wii(x) = fc.

v / — ^^ = 1 V ̂ / — * * * — • 7̂Hi(.x)V *v ^ Λ m /^\ _|_ j \ - ^ / — * * * — ^mι(x) + m2(jc)v ) '' *

Ami(Jc) + ... + m s ( j c ) _ l W + 1 ( x ) = = l A ( x ) < o o fl«ίi λ t ( ) G L J (μ).

Wr/ίβ A ( 1 ) (x)< <A ( s ( J C ) ) (x)/or ί/ze distinct values of λ^xys.

(3) (μxP)(Γ)=l,andTxΓczΓ.

(4) //(x, ω ) e Γ , ί/zen ί/ie Zim/ί

lim̂ Q̂Q (Z)"(x, (joiyDn{x, co))1/2" = Λ(x, co)

exists and its eigenvalues are just exp(Λ,(1)(x)),..., exp(A(s( jc))(x)).

(5) Denote the corresponding eigenspaces by (7{^ω),..., U[x[
xJy. Then

dimt/(

(i),ω) = mί(x).

lim^^oo \\n log ||DM(x, ω)t

PROOF. Substituting T, μxP and D(ξ(ω), x) for τ, p and T(x) respectively

in Theorem 1.6 in [10], we can prove the assertions except for that λh mt and s

have deterministic versions. Since they are Tx-invariant, we complete the proof

in virtue of Theorem 3.2.

REMARK 4.3. From Theorem 4.3, we can define the Lyapunov exponents of

differentiable random dynamical systems if we consider the case when M is a

compact smooth manifold, S is the space of all C1-differentiable maps and /sx =

s(x) (see [1], [8], and [10]).
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