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1. Introduction

From a numerical point of view, we study the following nonlinear degenerate
diffusion equation

(1.1) *r = 0>wλc* - CΌ>, (ί, x)e(0, oo) x R1

with an initial condition

(1.2) t<0, x) = ϋ°(x), xeR 1 ,

where m (>1), c (>0) and p (>0) are all constants and t?° is a nonnegative
continuous function with a compact support.

Equations of the form (1.1) are known as models in the fields of fluid dynamics
[13], plasma physics [1] and population dynamics [5]. For instance, (1.1)

describes a one-dimensional nonlinear fluid-transfer process with an absorption,
where υ — υ(t, x) is the density of fluid at time t and place x. The most interesting
phenomenon, which (1.1), (1.2) exhibits, is the occurrence of the finite propagation
of the initial support. As is well known, in the absence of —cvp, the support
of the solution S(t) = supρv(t, ) expands and finally becomes unbounded as
time increases. On the other hand, in the presence of — cvp, which implies
volumetric absorption, it is already shown that the behavior of 5(0 (in other words,
interfaces) is qualitatively classified into the following three cases depending on
m and p (see [2], [6], [7], [8], [9] and [10]):

(1) For jp^m, 5(0 expands as t increases and

5(0 - >R*, as t - > oo.

(2) For lgp<m, 5(0 also expands and there exists a bounded set BcR1

satisfying

5(0 c B, for all t ̂  0.

(3) For 0<p<l, 5(0 is compact in R1 and there exists a positive number
Γ*<oo such that
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5(0 φ 0 on [0, T*) and S(t) = 0 on (T*, oo).

We call T* an extinction time of v and the behavior such as (3) finite
extinction phenomenon. When w + /? = 2, Kersner [3] shows an explicit solution

of (1.1), (1.2) as in Fig. 1. His solution shows that 5(0 is not always monotone,
which is different from the cases (1) and (2). This result motivates us to study
the finite extinction phenomena of (1.1), (1.2). The aim in this paper is to propose
an interface tracking scheme to determine S(t) in the case (3).

From the viewpoint of tracking interfaces, numerical schemes of (1.1),

(1.2) in the cases (1) and (2) have been proposed (for instance, Mimura, Nakaki
and Tomoeda [11]). However, as far as we know, we have not found any
schemes for the case (3) except for Rosenau and Kamin [12] and Tomoeda [14].

It is shown in [12] that pulses are evolved into several sub-pulses within a finite
time, by the effect of absorption. Unfortunately, theoretical results on their
scheme are not discussed. On the other hand, in [14], an interface tracking
scheme is proposed which gives good approximations to not only the solution
but also interfaces. The stability of this scheme is proved but the convergence

is not shown.
In this paper, we propose a modified version of Tomoeda's scheme and

prove the stability as well as convergence when m + p = 2. Moreover, we show
that numerical extinction time converges to the exact one.

The outline of this paper is as follows. In Section 2, the difference scheme

is presented. Stability and convergence of numerical approximations vh(t, x)
are proved in Sections 3 and 4, respectively. Section 4 also contains the proof
of the convergence of the numerical extinction time. The convergence of the
support of vh(t, ) is shown in Section 5. In Section 6, proofs of lemmas used
in Section 3 are shown. Finally, in Section 7, several numerical simulations
are demonstrated.

Our main results are as follows:
Suppose that w + p = 2 and (v°)m~l is concave on 5(0). Let £h(t) (resp.

rΛ(0) be the front of the left (resp. right) hand side of the support of vh(t9 x).
Then vh(t, x) converges uniformly on [0, ooJxR 1 to the solution v(t, x) of (1.1),
(1.2) as /ι-»0 and there exist locally Lipschitz continuous functions ΰ(t) and

r(0 defined on [0, Γ*) satisfying

S(0 = [^(0, KO], for 0 ^ f < T *

and £h(t) and rh(t) converge compact uniformly on [0, T*) to ^(0 and r(t) as Λ->0,
respectively. Moreover,

lim^o Tί = T*

holds, where TJ is the numerical extinction time of vh(t, x).
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2. Difference schemes

2.1. Outline of difference schemes

By putting u = vm~l, (1.1), (1.2) is rewritten as

(2.1) ut = muuxx + a(ux)
2 - c'u", (f, x)e(0, oo) x R1,

(2.2) u(0, x) = w°(x)> x e R 1 ,

where α = m/(m-l), c' = c(m-l), q = (m + p-2)/(m- 1) and u° = (t;0)w~1. It
is clear that the cases (1), (2) and (3) stated in Section 1 correspond to the cases
q^2, i^q<2 and <?<!, respectively. In this paper, for the case q<\, we
construct a finite difference scheme for (2.1), (2.2) instead of (1.1), (1.2).

Let us define the operators P, H and D by

(2.3) Pu = muuxχ9 Hu = a(ux)
2 and Du = - c'u«,

respectively, and rewrite (2.1) as

(2.4) u, =

Let h (>0) be a space mesh width and denote by u{[(x) the difference approximation
to the solution u(tn, x) of (2. 1). Our difference scheme is described in the following
form:

Find the sequence {wϊ}n=o,ι,2, c: VH sucri that

(2.5) uχ+1 = (Ih + (klμ}PhY(Ih + kHh)(lh + kDh)ul.

Here Vh is a set of functions which will be defined later, Ih is the identity operator,
PΛ, Hh and Dh are difference operators approximating P, H and D, respectively,
k ( = *„+! — tn) is a time mesh size and μ is some integer depending on n.

2.2. Admissible functions

We denote Vh by the set of nonnegative continuous functions uh ( ^0) satisfying
the following properties :

(i) uh has a compact support;
(ii) uh is linear on each interval [xί? xί+1] (teZ),
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where Z is the set of integers and x^x^, r) (i e Z) is the nodal point defined by

(2.6) xf(^, r) =

r, i = Λ ( r ) + l .

Here we used the following notations:

£ = ^(HΛ) = suρ{y eR 1 wΛ(x) = 0 on ( — 00, y)},

r = r(uh) = in f ί j eR 1 ; MΛ(x)=0 on (y, oo)},

= min { / e Z ; ih>£}, R(r) = max {/eZ; /

We call ^(MΛ) (resp. KWΛ)) a left (resp. π'0/ιί) interface of W Λ , which means the
front of the left (resp. right) hand side of support of uh. We put X ( £ , r) =

2.3. Difference operator Ph

For uh 6 FA, we define PhwΛ by a usual explicit difference

(2.7) (PΛWA)(xί) = mι/ί<52Mί, for XieX(£,r),

where ti^ii^x,), £ = £(uh), r = r(uΛ),

(2.8) <52

Wί = (ίti^ί^.O/ίίAi + Λ i - i V Z } ,

(2.9) δut = (ιιί+ 1 - tO/Λ, and Λ, = xί+ 1 - x, .

Since the diffusion coefficient mwΛ of Phuh is vanished at the point where w/, = 0,
the support of (/Λ + /c'PΛ)wΛ (k' = k/μ) coincides with that of uh. Therefore, we
use the nodal points of(Ih-\-kfPh)uh as the same ones of uh.
Suppose that k' satisfies the following conditions :

(2.10) mlluJLfc'Cl/Λ^Σ/ί/iίΛ + fi,)}]^!, for i = L- 1, R,

(2.11) ^IKii^lLfcViA + W ^ l , for / = L-1, Λ,

where L = L(^(wΛ)), R = R(r(uh)) and || | | o o = l l UL-(H») τhen we find tnat

(Ih + k'Ph)uh also belongs to KΛ (see Lemma 3.2).

2.4. Difference operator //Λ

Since the definition of Hh is not simple to be stated, we consider the operator

#M Ξ IH + ̂ ^Λ mapping from KΛ into KΛ. This definition is due to Mimura,
Nakaki and Tomoeda [11].
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Let uheVh. We define Hh>kuh as follows. First, define £' and r', which
will become the interfaces of Hh>kuh (see (2.19)), by

(2.12) £' = £ — aδuL-γk and r' = r — aδuRk9

respectively, where £ = ΰ(uh)9 r = r(uh)9 L = L(£)9 R = R(r) and ut = uh(x^ (ieZ).
Next, we define (//Λ,kuΛ)(x;) for x\ e X(£'9 r') by

M, + a(δUi)2k9 if i e S+ U S ,̂

HI -f α^u,.!)2^, if /eS j U S Γ,

ui9 if /eS°,

(R'h-r')δuR9 if / = Λ' = K + 1 ,

10, if ί€Z\{L', ,Λ '} ,

(2.13)

where

5+ = {ie{L,...,R};δuί_ι<δuίandδui-ί>-δui},

S~ = {ϊ'e{L,..., K}; δui_ί<δui and ίw,..!^ — δuj,

L' = L(^') and R ' = R(r').

Assume that /c satisfies the following three conditions:

(2.14)

(2.15)

(2.16)

Then we have

(2.17) L' = L-1 or

(2.18)

(2.19)

R' = R + 1 or

and

Moreover, HhtkuheVh holds (see Lemma 3.1). We note that, from (2.17) and
(2.18), (Hhtkuh)(x\) is defined for all xJeX(4', r').
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2.5. Difference operator Dh

Instead of the definition of DΛ, we consider the operator Dhtk~
mapping from Vh into Vh. To describe the operator Dh fc, we introduce the
solution w(f, x) of the ordinary differential equation

(2.20) ut = Du = - cV, t > 0

which is written as

(2.21) u(t, x) = {[{'-'-CO-*)*]*}"*'-",

where ξ = w(0, x) and [/]+ =max {/, 0}. Using this solution, we define

(2.2) (^^(x;)^^^)1-^^!-^]^1/^-^ for x'teX(£'9r')9

where

(2.23)
r' =

Then it can be easily shown that ΰ' = ΰ(Dh>kuh) and r' = r(Dhku^. Moreover,
/\fcMΛ e FA holds (see Lemma 3.3).

For the cases q ̂  1, if x eR1 satisfies u(0, x)>0 (resp. u(0, x) = 0), it follows
from (2.21) that

u(t, x) > 0 (resp. u(t, x) = 0), for all t > 0.

This means that the interfaces never shrink nor expand. On the other hand,
for the case Q^q< I, there exists /*>0 such that

u(t, x) = 0, for all x e R1 and t > t*.

Taking these properties into considerations, we may expect that the solution
of (1.1), (1.2) is extinct in finite time for 0^<?< 1, but is not extinct in finite time
for g^l.

2.6. Difference schemes

For H = 0, let f0 = 0 and wge Vh be defined by

(2.24) ^«)=^(w°), r(w2) = K"0) and u°h(ih) = u°(ί/ι) (ieZ).

Suppose that ul and tn are given. We construct wj[+1 and tn+i as follows.
First, we determine a time step kn+ί by the following ways: In the case

(2.25) u"L= max{w?; L^i^R} or un

R = max
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where L = L(^(wχ)) and R = R(r(un

h)), we define kn+ί by

(2.26) kΛ+l

which means the extinction of the difference solution in finite time. Therefore,
putting T% = tn+l = tn + fcπ+1 and tιj+1(x) = 0, we stop computing. To simplify
the statements in the following sections, we put tm = T? and wj^x) = 0 for m > n + 1.

When (2.25) does not hold, we determine kn + 1 as the largest possible time step
k satisfying the following

CONDITION A. 1) k satisfies the stability conditions (2.14), (2.15) and (2.16)

2) Every connected components of the set [suppMχ]\[supp(/Λ-f/cDΛ)uJ[]
has at most one point x such that x/h is an integer.

We note that Condition A-2) is imposed by a mathematical reason. For the
time step kn+i determined above, we put tn+ί = tn + kn+ί.

Next, let us determine μ = μn+ι in a way that k' = kn+l/μn + l satisfies the
stability conditions (2.10) and (2.11) with uh = (Ih + kn+lH^(lh-^kn+lDh)un

h. Thus
we can obtain wχ+ 1 by (2.5) with k = kn+ί. In general, we do not know whether
(2.25) holds for some n>0 or not. Unless (2.25) holds for all n>0, we continue
computing w j for 0^n<oo, and we define a numerical extinction time Tjf by

(2.27) Γί-liπv^f..

REMARK 2.1. In general, the time step k is determined implicitly. When
m + p = 2 and u° is concave on its support, k is explicitly represented (see Lemma
3.5).

3. Stability

From this section, we assume m-f p = 2. To state the stability of the scheme
(2.5), we impose Condition B on the initial function u°.

CONDITION B. M°(x) = (t;0(x))w'1 is concave on (^0, r0) and satisfies

ιι°6C°(R1)'n ^(R1), wSeL^R1) n flKίR1),

M°(x)>0 on (έθ9r0) and w°(x) = 0 on R1^, r0),

where BV(Rl) denotes the space of functions of bounded variation on R1.

Then we have

THEOREMS.! (Stability of (2.5)). Assume Condition B and
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For /ί>0, let k = kn+l be the time step determined in Subsection 2.6 and k' =

k'n+ί = kn+ι/μn + ι satisfy the stability conditions (2.10) and (2.11). Then

(3.1) T? £ Hu'lL/c',

and the difference solution un

h belongs to Vh for tn<T% and satisfies

(3.2) WΛ(*) is concave on (#„, rπ),

(3.3) ul(x)>0 on (*„ r,),

(3.4) Hi i ϊ lL^maxί l l i i^L-c^O},

(3.5) Hii ϊ lL - > 0 as n - » oo,

for ίπ<TJ, where ,̂, = ̂ (wχ) 0nd rn = r(uj). Moreover, there exists a constant

C, which is independent of h and n, such that

(3.6) IKi/ZXJL^C,

(3.7) l l ( ι<ϊ)Jι£C,

(3.8) F((ιιί)J ^ C,

(3.9) ||(nϊ+! -«!)/*„+! II i ^ C ,

/or ίπ<TJ, vv/iβre V(f) denotes the total variation of f on R1 0fld || | | j = || | | L »(R»)

REMARK 3.1. When u° is not concave on (^0> >Ό)» (3.1), (3.4)-(3.9) of
Theorem 3.1 follow, and instead of (3.3), uj(x)^0 holds. However, we do not

know whether (3.5) holds or not.

To prove Theorem 3.1, we prepare the following five lemmas:

LEMMA 3.1 (Stability of /Λ + /eHΛ). Let uheVh satisfy MΛ(x)>0 on

Γ(MΛ)) and the time step k be the one stated in Subsection 2.6. Then t^ =

kHk)uheVhand

(3.10) 0<f i i (x)^ | | ι ι j α o on

(3.11) ll(«i),IL^ ll(ι«»)»llαo,

(3.12) ll(tti)Jlι^ll(w*)Jlι,

(3.13)

(3.14)

Furthermore, if uh is concave on its support, so is u'h and
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(3.15) <5w'L'-ι ^ <5wL-ι and δu'R> ^ δuR,

where

Uj = «»(*,), «ί = «;(*;), L =

L' = !</(«;)), R = R(K«Λ)),

and {*,} am/ {x',} are sets of nodal points of uh and u'h, respectively.

LEMMA 3.2 (Stability of Ih+k'Ph). Let uheVh satisfy uh(x)>0 on (β(uh),
r(uA)) and k' satisfy (2.10) and (2.11). Then (3.10M3.13) hold for u'hs(Ih +
k'Ph)uheVhand

(3.16)

Furthermore, ifuh is concave on its support, u'h is also concave and (3.15) holds.

LEMMA 3.3 (Stability of Ih + kDh). Let m + p = 2 and let the time step k
be an arbitrary positive number. For uheVh satisfying uΛ(x)>0 on (^(UΛ),
r(t/A)), put u'h=(Ih + kDh)uh. Then either M^ = 0 or uj,e Vh holds and u'h satisfies

3) and

(3.17) llfiilL

(3.18) ll(Hί-κ*)/fc|lι ^ c'{r(uh)-t(uh)}.

Furthermore, if uh is concave on its support and u'hφQ, uf

h is also concave, and
(3.10) and (3.15) hold.

LEMMA 3.4 (Monotonicity of numerical interfaces). Let the assumptions of
Theorem 3.1 be satisfied. If ^p+ί^-βp (resp. rp+ί<^rp) for some p^O, then
#n+ j ̂  £n (resp. rn+ ί g rn)for alln^p satisfying tn+ ΐ < Tf.

LEMMA 3.5 (Representation of the time step). Let the assumptions of
Theorem 3.1 be satisfied. For the time step kn+l,

(3.19) kn+l = min {/cL>n, kM>n, /cR>J

holds for n^O such that tn+ΐ<T%, where

(3.20) /cM>n = supKA f, kitn = sup(KuVK2i) (i = L,R),

(3.21) XM

(3.22) KIL =

(3.23) JC2L =
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(3.24) KIR =

(3.25) K2R =

(3.26) L= L(£(un

h}) and R = Λ(r(wϊ))

Proofs of Lemmas 3.1-3.5 will be shown in Section 6.

PROOF OF THEOREM 3.1. It follows immediately from Lemmas 3.1-3.3 that
un

h belongs to Vh and (3.2)-(3.4), (3.6)-(3.8) hold. (3.1) also follows from (3.4).
Let us show (3.9). From (3.14), (3.16) and (3.18), we have

\\(uΓl-uΐ)lkn+ι\\ι ^ "NIL^S),) + fl||(HS)J JI(κϊ)Jι + c'{rm-£m}.

Since \\un

h\\^ V((un

h)x\ IKujβJL and IKw^lU are uniformly bounded with respect
to h and n, it suffices to show the uniform boundedness of rn — &n. By the
determination of numerical interfaces (2.12) and (2.23), we find

(3.27) en -

for ίπ +ι<TJ e, where

and {xj is the set of nodal points of wj . By using (3.27) repeatedly and by

(3.6), we have

(3.28) 4 - aCtn <, £n < rn <> r0 + aCtΛ, for tn < T*.

Then, it follows from (3.1) that

(3.29) 0 < r w - ^ ^ M = r 0-^ 0 + 2αC||ι/°||00/c', for tn < TJ.

Hence, rn—£n is uniformly bounded, which completes the proof of (3.9).

Finally, we prove (3.5). Suppose that (3.5) does not hold. Then there
exist constants N and k* ( > 0) such that

(3.30) /cL,n ^ k* and kRttt ^ k*, for n ̂  N,

which will be shown later. Since

fcM.» = Λ/(4fl | |(uϊ)Joo)^Λ/(4flO, for n ^ O

(see (3.20), (3.21) and (3.6)), we have by (3.19)

kn+ i ^ min {/c*, Λ/(4αC)} > 0, for n ̂  N.

Therefore, it follows that
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TJ = lim^ tn = Σ?=o fcn+i = oo,

which contradicts to (3.1). Thus, (3.5) is proved.
Now, let us show the existence of N and fc* such that (3.30) holds. The

assumption that (3.5) does not hold implies existence of a constant ε>0 satisfying

(3.31) H w X l L ^ ε , for n ^ 0.

By the concavity of un

h and (3.29), we have

^β/fo-^j^ij, for n ^ O ,

where η = ε/M. Since {#„} is a bounded by (3.28) and monotone increasing
sequence for large n (see Lemma 3.4), we have

4. - > ^αo as /ι — > oo

for some ̂  eR1. We consider the following two cases:
Case A. L(£n) = L(tJ, for n^ΛΓ;
CaseB. L(O = L(^00)-1, for n£ΛT.

It is clear that one of Cases A and B occurs for sufficiently large N'.
In Case A, we can find an integer N (^Nf) such that

(3.32) Lh - £rt ^ α = (Lh - 4J/2, for M ^ ̂

where L = L(^00). Then it follows from (3.20) and (3.23) that

fcM ^ min {ull(a\\(uΐ)x\\

^)δul_t min

where

fe* = αi; min {l/(αC + c7^), 1/c'} > 0,

which implies the first inequality of (3.30).
In Case B, it follows that

(3.33) Lh - £n - > 0 as n - > oo,

where L — L^&^— 1. Since w£ is concave, we have

ε g HiiglL = un

pn = (Lh-

^ + Mδul,
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for some integer /?Λe{L, , R}, where M is the constant defined in (3.29). By

(3.33), it follows that

δul ^ η' = ε/(2Λί), for n ̂  N"

with some integer N" (^Nf). Then, from (3.20), (3.22) and (3.33), there exists
N (^ΛΓ) satisfying

= ((Lh - en)δul_ , + hδul)l(a H(ιιϊ) J| «&*l + c')

^ Jk*, for /t ^ N,

where

Here we use the fact that

ullc1 = (Lh-£n)δun

L-λlc' - > 0 as n - > oo.

Hence the first inequality of (3.30) follows. Similarly, the second inequality of
(3.30) can be shown, and the proof of Theorem 3.1 is complete.

4. Convergence

In this section, we show the convergence of the difference approximation
to the exact solution. First, we state the definition of a weak solution of (1.1),

(1-2).

DEFINITION 4. 1 (Herrero and Vazquez [6]). A function v(t, x) defined on
tf = [0, ooJxR 1 is said to be a weak solution of (1.1), (1.2) if

( i ) v e CQ(je) n L*(Jf) and t ^Oon 3f',
( ii ) for any x e R1 , t;(0, x) = ι>°(x)
(iii) for any function φ(t9 x)eCl'2(Jf) with compact support in «#",

the following integral relation holds:

(4. 1 ) Γ Γ (vmφxx + vφt - cvPφ)dxdt + Γ u(0, x)φ(0, x)dx = 0.
J J βf J R 1

The existence, uniqueness and regularities of weak solutions have been
studied by Kalashnikov [7], Kersner [8], Knerr [10] and Herrero and Vazquez
[6]. By their results, a unique weak solution of (1.1), (1.2) exists under the
assumptions that m > l , p>0, w + /?^2 and v° is continuous, nonnegative and

bounded.
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Next, we define a weak solution of (2.1), (2.2).

DEFINITION 4.2. A function u(t, x) defined on ̂  is a weak solution of

(2.1), (2.2) if
( i ) w e C\J^) Π L°°(^), ux e L°°( Jf) and u ̂  0 on tf
( ii ) for any x e R1 , w(0, x) = w°(x)
(iii) for any function φ(t9 x)eCl>2(je) satisfying supp φasupp w, the

following integral relation holds :

(4.2) Γ Γ {uφt - muuxφx - (m - d)(ux)
2φ - c'u*φ}dxdt

REMARK 4.1. Let g be the space of all continuous functions with compact
support in «#", and £' be its dual. If a weak solution u of (2.1), (2.2) with l < m < 2

satisfies

(4.3) w^er and w f e<T,

then we find that v = ul/(m~l) is a unique weak solution of (l.l), (1.2) (see
Theorem 7. 1 in Graveleau and Jamet [4]).

To show the convergence of the difference approximation, we extend the

region of definition of un

h computed by (2.5) to ̂  in a way that

(4.4) uΛ(ί, x) = uχ(x), for fep,, *„+,), n ̂  0,

(4.5) uΛ(r, x) = 0, for t ^ T*.

Then we have

THEOREM 4.1. Let Condition B and m + p = 2be satisfied. For an arbitrary
sequence {h} tending to zero, assume that Condition A and the stability
conditions (2.10) and (2.11) hold for each ft, kn+ί and k'n+l=kn+ίlμn+ί (n^O).
Then there exists a weak solution u of (2.1), (2.2) satisfying (4.3), and as Λ->0

(4.6) H«*-«Bι.-(;r)— » 0,

(4.7) «(«*), -«Λ *•.(*-) —*0 (lgp<oo).

By the above theorem and Remark 4.1, we have

THEOREM 4.2. Under the same assumptions as stated in Theorem 4.1, let
n. Then

(4.8) ll»»-»llL"(Λ ) - » 0 as Λ - » 0,
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where v is the unique weak solution o/(l.l), (1.2).

The proof of Theorem 4.1 is stated later in this section, but the proof of
Theorem 4.2 is omitted (see Theorem 7.1 in [4]).

For the convergence of the numerical extinction time Γ£, we obtain

THEOREM 4.3. Under the same assumptions as stated in Theorem 4.1,

(4.9) limA^0 T* = T*,

holds, where T* is the extinction time of the weak solution v o/(l.l), (1.2).

PROOF. For an arbitrary number f<T*, there exists x e R 1 such that
v(t, x)>0. From (4.8), it follows that

ι»Λ(f, x) ^ φ, x)/2 > 0, for h < h\

where /ι'>0 is some constant, which implies TJ >t. Thus

(4.10) lim inf Λ _ 0 ΓJ ^ T*.

On the other hand, from (3.10) in Lemmas 3.1 and 3.2 and (3.17), it follows

that

T * g f + K(f,.)IL/c', for * £0.

For any ε > 0, let t = T* + ε. Since

Kσ* + ε,.)IL — ||ιι(Γ* + e,.)IL-0 as h —-> 0,

we obtain

lim supΛ^0 T? <; T* + ε,

which yields

(4.11) limsup^oTf g T*.

Hence, (4.9) follows from (4.10) and (4.11), and the proof is complete.

PROOF OF THEOREM 4.1. Using Theorem 6.1 in Graveleau and Jamet [4]

and Theorem 3.1, we can find a subsequence {h'} of {h} and a function u satisfying
(i), (ii) in Definition 4.2 and (4.3) such that (4.6) and (4.7) holds. Here, we

used the fact that the support of uh is uniformly bounded in ̂  with respect to h
(see (3.1) and (3.29)).

To complete the proof, it suffices to show that u satisfies the integral relation
(4.2), because (4.6) and (4.7) with the whole sequence {h} follow from the
uniqueness of the weak solution. In the following, to simplify notations, we
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write {h} instead of {h'}.
Let us define ujf by un —uh(tn, ih) for i e Z and n 3:0. Then

(4.12) («7+ '

for i e Z and n 3: 0, where

Let φeC'^pf) satisfy suppψcsuppu. Multiplying both sides of (4.12) by
hkn+ιφϊ, where φ1 = φ(tn, ih), and summing for i e Z and n^O, we have by
summation by parts

(4.13) ΣihuW - Σn,ihka+1urι(Φrι-Φai)/kπ+ί = Ah + Bh + CH,

where

To prove (4.2), we have only to show the following results: As /ι->0,

(4.14) Ah - > - {muuxφx + m(ux)
2φ}dxdt,

(4.15) BΛ

(4.16) CΛ

(4-17) Σ M^+ifr W-Φ?)/fcn+ι - »

(4.18) Σι KΦ? — * JRI «(0, x)Φ(0, x)dx.

Since (4.14), (4.15) and (4.17) are proved in Lemma 4.1 in Mimura, Nakaki and
Tomoeda [11] and (4.18) is obvious, it suffices to prove (4.16).

Let us define φh(ί, x) by
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for te[tn, f n + 1 ), ng O and 0e[0, 1], and let χh be the characteristic function of
supp MΛ defined by

t, x) =
1, if wΛ(f, x)>0,

0, if wΛ0,x) = 0.

Then

1(-cfχh(tn, ιΛ))|

Σa,,hka+lφ^-c'χh(ta, iΛ))-

I ΓΓ ΓΓ\}L(-c'φ^dxdt-)L(-

where

and (w")f = (H? — M •?)/&„+!.

From supp φ <= supp u and the convergence of WΛ, it is easily to verify that
C2h and C3Λ tend to zero as /?->().

Since w? = [w?-c'/cn+1]
+ (see (2.22)), we have

(w?), = ~ c'χh(th, /Λ), if ii? - c'kB+1 ^0 or M? = 0.

In the case ί π +ι<Tf, from Condition A-2), the number of an integer i satisfying

(4.19) w ? - c X + 1 <0 and M? > 0

does not exceed two. When ίπ + 1 = Γf, (4.19) holds for all ίe
R(r(u"h))}. Therefore,

2/7C7, if tn+l < TJ,

where R = R(r(u1H)) and L = L(^(w^)). Here, we used the fact

Kuϊλ-ί-c 'χ^iΛWI^c' .
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Since

(K-L+l)/ι ^rN-£N + h^M + h

(see (3.29)), we have

Thus,

Σn kn+ίC»lh — > 0 as h — >0.

Hence, (4.16) is shown, and the proof of Theorem 4.1 is complete.

5. Convergence of numerical interfaces

For the numerical solutions un

h(x) (n^O) computed by the scheme (2.5),
we define a numerical left (resp. right) interface £h(i) (resp. rΛ(x)) by piecewise-
linearly interpolating (tn, ΰ(un

h}) (resp. (tn9 r(un

h)) (n^O). Let T be an arbitrary
number satisfying 0< T< T*, where T* is the extinction time of the weak solution
of (1.1), (1.2). Then, by Theorem 4.3, #h(t) and rh(t) are defined on [0, T] for
sufficiently small

THEOREM 5.1. Let the assumptions of Theorem 4.1 be satisfied and let T be
an arbitrary number satisfying 0<T<Γ*. Then there exist positive constants
Cτ and C, which are independent of h, satisfying

(5.1) -C ^ (W)-tMW-ί) ^ Cτ,

(5.2) - Cτ ^ (rh(f) - rh(t)W - 1) ^ C

fort, ί'e[0, T}.

PROOF. We prove (5.1). Since ^ft is a piecewise-linearly function, it suffices
to show (5.1) for t = tn and tf = tn+ί belonging to [0, T]. For simplicity, we use
the following notations :

!), L+ = L(£+) and fc = kn+l ,

where {xf} is the set of nodal points of uj. We consider the following two cases:
Case I. L+=L;
Case 2. L+=L-f l .

We note that one of these two cases occurs by Condition A-2).
In Case 1, we have from (2.12) and (2.23)
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(5.3) Λ,(/π+1) - 6M = **«„+,) -

lk + cfk/δuL,l .

Since ||u(f, ) l l o o decreases monotonously with respect to t and uh is concave, it

follows that

/K-O ^ *τ = \\u(T,.)\\JM > 0,

where M is the constant defined in (3.29). Hence

(5.4) - aCk ̂  th(tn+ ,) - eh(tn) ^ c'k/ετ

holds, which implies (5.1). Here C is the constant in (3.6).
In Case 2, the concavity of wj;, (2.23) and (2.12) yield

(5.5) 0 ̂  £+ - ί = (c'k-uL)/δuL + Lh - £

= (ck'-uL)/δuL +

(5.6) 0 > ^(ίΛ+1) - ^+ =

Hence

(5.7) - aδuLk ^ th(tn+l) - (̂

Since (3.15) holds in Lemmas 3.1-3.3, we have

(5.8) δuL = iii!.*.,

where Ln + 1=L(^(t/χ+ 1) Therefore, by (5.7) and (5.8), the same inequality as
(5.4) holds. Thus (5.1) is proved. Similarly, (5.2) can be shown, and the proof

of Theorem 5.1 is complete.

By using the above theorem, we obtain the convergence theorem of numerical

interfaces.

THEOREM 5.2. Under the same assumptions as stated in Theorem 4.1,
there exist locally Lipschitz continuous functions ΰ(t) and r(t) defined on [0, T*)

such that

(5.9) £h - >^ and rh - > r, compact uniformly on [0, T*) as h - > 0,

(5.10) ι<f, x ) > 0 on 0 ^ f < T * and £(t)<x<r(t),

(5.11) v(t, x) = 0 on O g ί < T * and x g £(t)9 x ^ r(ί),

where v is the unique weak solution o/(1.1), (1.2) and T* is iίs extinction time.
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PROOF. Let T be an arbitrary number satisfying 0<Γ<T*. Then, by

Theorem 5.1 and Ascoli-Arzela's Theorem, there exist Lipschitz continuous func-

tions ^(0 and r(0 defined on [0, Γ] and a subsequence {h'} of {h} such that

(5.12) £h. - > t and rh. - > r, uniformly on [0, T] as V - > 0.

Now we show (5.10) and (5.11). (5.11) follows from the convergence of £h> and

*V
For each fixed t (O^fgT), let x* be a point satisfying w(ί, x*)=||u(ί, ) l l o o

Then, by the concavity of wή,, we have

(5.13) uΛ<ί, x) ̂  (uΛ,(ί, x*)

for xe[A(0,x*],

(5.14) uΛ<r, x) ̂  Ov(f, χ*)-

for x e [x*, rΛ,(0]

For each fixed x e(^(r), K0)» it follows that

£ktt)£x£rk,(t) for Λ ' < Λ 1 5

where /ii is some positive constant. Replacing x by x in (5.13) and (5.14), and

letting /ι-»0, we have u(t, x)>0. Thus (5.10) holds.

Since £(t) and r(ί) satisfying (5.10) and (5.11) are uniquely determined,

(5.12) holds for the whole sequence {Λ}, and the proof of Theorem 5.2 is complete.

REMARK 5.1. In general, the interfaces do not satisfy Lipschitz condition on

[0, T*) (see Kersner's explicit solution (Fig. 2)).

6. Proofs of Lemmas in Section 3

6.1. Proof of Lemma 3.1

The facts that u'h belongs to Vh and (3.10)-(3.14) are shown in Lemma 3.1

in Mimura, Nakaki and Tomoeda [11].

To show the remainder of Lemma 3.1, let us consider a Cauchy problem

(6.1) Wt = a(w2)χ9 (f,x)e(0, oo) x R1,

(6.2) w(0, x) = w°(x) = (ii^x), x e R1 ,

which is obtained by differentiating uf = //tι with respect to x. w°(x) becomes a
piecewisely constant function. The problem (6.1), (6.2) is called the Riemann

problem of the Burgers equation. It is already known that, for a time step fc>0
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satisfying (2.14)-(2.16), a solution w(/c, x) of (6.1), (6.2) at f = /c consists of constant
states 0, W°(XL_ !+()), w°(xL + 0), , w°(xΛ + 0), 0, which are separated by shock
waves and connected by rarefaction waves. In particular, the states 0 and
w°(xL^ί + 0) (resp. w°(xΛ + 0) and 0) are separated by a shock wave on the line

(6.3) y£(0 = £ - aw°(xL_ !+())* (resp.

where £ = ^(uh) and r = r(wΛ). (6.3) is well known as the Rankine-Hugoniot
jump condition. Putting

u(x) = Γ
J -o

, η)dη,

we have from the conservation law of the Burgers equation and simple calculations

(6.4) u(ih) = u'ι = u'h(x\), for ιeZ,

(6.5) ^(fi) = 3Ί(fe) = ^s^(ιιi),

(6.6) r(u)

Since MΛ is concave on its support, the states w°(xL_ l 4-0), vv°(xL + 0), , w°(xR + 0)
are connected by rarefaction waves. From this fact, the solution of the Riemann
problem possesses the following properties:

(6.7) w(/c, ξ) ^ w(fc, η)9 for £' < ξ < η < r',

(6.8) w(/c, ^' + 0)^ w(xL+14-0) and w(fc, r'-O) ^ w(xΛ + 0).

Moreover, from (6.4),

5uί = w(k,Λ), for / e {I/ -1, », Λ'}

holds for some number .V eίx , xί+1). Hence, the concavity of M'Λ follows
from (6.7), and (6.8) yields (3.15). Thus, the proof of Lemma 3.1 is complete.

6.2. Proof of Lemma 3.2

It is shown in Lemma 3.2 in Mimura, Nakaki and Tomoeda [11] that u'h
belongs to Vh and satisfies (3.10)-(3.13) and (3.16).

First, we show (3.15). We note that L' = L and R' = R hold, because the
operator Ph does not change the interfaces. From (2.8) and the concavity of MΛ,
we have

U'L = WL + k'muLδ2uL ^ W L ,

which implies δu'L-ί^δuL._ί. Similarly, we can prove δu'R^δuR. Thus, (3.15)
is shown.
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Next, we show

(6.9) <5 2t/;^0 (L^/^K),

which means the concavity of u'h. By (2.7), we have

(6. 10) δ2u'L = { 1 - 2k'mδuL_ llh}δ2uL 4- 2k'muL+ vl

Since (2. 11) yields

the inequality (6.9) with / = L follows from (6.10) and <52uf^0 (/eZ). Similarly,
(6.9) can be shown for i = R. Let us consider the case L + l g Ξ ί ^ Λ — 1. We have
from (2.7)

(6.11) δ2u\ = {l-2λtι,}52fi, 4- yUi^^2!!,^ 4- Afi^jί2!!,.!,

where λ = k'm/h2. Each coefficient of <52t/j (7 = 1 — 1, i, ί-f 1) on the right hand
side of (6.11) is nonnegative by (2.10) and (2.11). Hence, we obtain (6.9), and
the proof of Lemma 3.2 is complete.

6.3. Proof of Lemma 3.3

Since the assumption m + p = 2 implies <? = 0, (2.22) is rewritten as

from which, Lemma 3.3 can be easily shown.

6.4. Proof of Lemma 3.4

We show fn+lέϊ£n (n^.p) by induction on n. It can be similarly shown
that rn+ί^rn(n^ p). Suppose

(6. 12) f j +ι =• 4j, for some j( ̂  p) .

We now prove

(6.13) Vι£ Vi

For simplicity, we use the notations

)) and 1+

where {xj and {jcj} are sets of nodal points of uh and u'h, respectively. We
consider the following four cases:
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Case A: L} = L, + 1 and
Case B: L+ = L + 1 and
Case C :
Case D:

We will prove (6.13) in Case A.
Since u^ (w^O) are concave on its support by Lemmas 3.1-3.3, we have

from (5.5) and (5.6)

L+ = L, and LJ+ , = L, + 1

L+ = Lj and LJ+,=Ly+1 +

(6.14) ίj+i - £j

and we have from (5.3)

(6.15) e^2 - 4j + l = (

where L — Lj and Lf = LJ+l. Moreover, by (3.15) stated in Lemmas 3.1 and 3.2,

(6.16) a(δu'L,_λY-c' <,a(δuLY-c'

holds. Since the right hand side of (6.16) is nonpositive by (6.12) and (6.14),
(6.13) follows from (6.15). Similarly, (6.13) is proved in Cases B, C and D.
Thus, the proof of Lemma 3.4 is complete.

6.5. Proof of Lemma 3.5

It is easy to show that the set of k satisfying (2.14)-(2.16) with £ = £', L = L',
r = r' and R = Rf becomes KM, KIL\JK2L and KίR U K2R, respectively, where
^' = ̂ (ιιi), L' = L(^'), r' = r(u'k)9 R' = R(r') and u ; = (/„ + £>>„. Moreover,
any number keKίL\jKlR satisfies Condition A-2). By using these facts,
Lemma 3.5 can be easily proved.

7. Numerical simulations

In this section, we display some numerical
examples of finite extinction phenomena. First,
to check accuracy of our numerical scheme, we
compare the numerical approximations with the
exact solutions.

Fig. 1 shows Kersner's exact solution with
m=1.5, c=l and p = 0.5. We note that his
initial function satisfies all of our assumptions.

Fig. 2 displays the interfaces of Kersner 's solution and the numerical interfaces
of our scheme with h = 0.005, where the initial function is the exactly same as that
of Kersner's solution. It is observed that our scheme gives good approximations
to his solution.

Fig. 1. Kersner's exact solution
of (1.1) with m=1.5,
c=l and p=0.5.
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Exact
interfaces

- 1 0 1

Fig. 2. Exact interfaces of Kersner's solution and numerical

interfaces of our scheme with h=0.05.

Let us show another example which suggests that there exists a constnat
α>0 satisfying

(7.1) mes(S(ί))>α on 0 ̂  t < T*,

where mes(X) denotes the measure of AcR 1. Figs. 3 and 4 display the
numerical solution and its interfaces, respectively, where m = 1.5, c = 10, /?=0.5 and

0.08Ί

0.1-
r=0

-1 i -i
Fig. 3. Numerical solution with m=1.5, Fig. 4. Numerical interfaces of the solution

c=10, /?=0.5 and Λ=0.02. The

initial function takes (7.2). /=0,

0.004, 0.008, 0.012, 0.016, 0.020,

0.025, 0.028, 0.033, 0.036, 0.041,

0.044, 0.048, 0.053.

0.1,

in Fig. 3.

(7.2)

|χ| ^ 0.8,

0, |x| > 1.

Fig. 3 shows that the flatness of the numerical solution is kept until the numerical
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0.02

-1 0 1

Fig. 5. Numerical solution with m=\.5,
c=0.1,/>=0.5 and Λ=0.05. The
initial function takes (7.3). ί=0,
0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2,
1.4, 1.8, 2.3.

-1 0 1

Fig. 6. Numerical interfaces of the solution
in Fig. 5.

0.02
r=0

-1 0 1

Fig. 7. Numerical solution with m=1.5,

c = 5, p=0.5 and Λ=0.02. The
initial function takes (7.3). /=0,
0.08, 0.014, 0.023, 0.029, 0.035,
0.042, 0.050.

0 1

Fig. 8. Numerical interfaces of the solution
in Fig. 7.

extinction time comes. Therefore, it seems that (7.1) holds (see Fig. 4).
Finally, we try to calculate the case where m=1.5, p = 0.5 and

(7.3)
0.077(l-x2)(x2 + 0.02),

0, |x| > I,

though our result is not valid because (v°)m~l is not concave (see Remark 3.1).
With c = 0.1, a number of peaks of vh(t, -) changes from 2 to 1 and S(t) is connected
on [0, Tf] (see Figs. 5 and 6). On the other hand, with c = 5, Figs. 7 and 8 show
that a number of peaks is invariant and S(t) is splitted.
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Until now, we have not found out numerical solutions such that their support
are monotonously expanding on [0, Tjf). While Kersner's explicit solution

shows that the support is contracting monotonously on some time interval (T, T*).
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