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1. Introduction

Consider the differential equation

(1.1) 3>(n) + σ f ( t , y , /,..., ̂ "-1)) = 0,

where n^2, σ= + l or —1, and /: [0, co)xRn-+R is a continuous function
such that

(1.2) y0/(ί,JΌ^ι»-;*Λ-ι)^0 for (f, j\>, )Ί,..., JΊ,-ι)e[0, oo) x R".

Let rf denote the set of all nonoscillatory solutions of (1.1), that is, those
solutions which are defined in some neighborhood of infinity and are eventually
positive or negative. We denote by Λ^, O^fc^n, the set of all yεΛ* satisfying
the inequalities

0, f£TΓ 0 £ i £ f c - l ,
(l 3)fc

I (- i)'-kXOj>(l)(0 ^ o, i ^ rr fc ^ / £ Λ

for Ty>0 sufficiently large. Such an Λ^ is often referred to as a Kiguradze class
for (1.1). Of basic importance is the fact [4, 5] that, under condition (1.2),
every nonoscillatory solution yeΛ~ of (1.1) falls into one and only one Kiguradze
class Λ*k with k such that

(1.4) n φ k (mod 2) if σ = + 1, and n = fe (mod 2) if σ = - 1;

in other words, */Γ has the following decomposition :

U^π_! for σ = + l and n even,

UΛV 1 for σ = + 1 and n odd,

• U^TΠ for σ = - 1 and n even,

for σ = - l and n odd.

Note that (1.4) is equivalent to (-1)""*-^=!.
The study of Kiguradze classes has been one of the central problems in
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the qualitative theory of higher order ordinary differential equations; the reader
is referred to Foster and Grimmer [1], Lovelady [10, 11] and Naito [12] for
results concerning ^Γfc, 0<fc<π, and to Hartman and Wintner [2], Kiguradze
[4, 5, 6], Kiguradze and Kvinikadze [7] and Kvinikadze [9] for results concerning

^Γ0 and rfn.
In what follows k is assumed to be an integer such that 0<fc<n and

( — l)"~k~V=l, and our attention is restricted to the classes Λ*k for such fc's.
If y eΛ^, then, in view of (1.3)k, there exist positive constants c,, c2 and T such

that

(1.5) c,tk-1 ^ IXOI ^ c2f* for ί ̂  T;

more precisely, exactly one of the following three cases holds :

(1.6) lim,^ y(t)/tk = const Φ 0;

(1.7) lim,^ y(t)/tk = 0 and lim,.^ y(t)/tk~{ = + oo or - oo;

(1.8) lim,.^ y(t)ltk~l = const Φ 0.

The conditions (1.6)-(1.8) may be rewritten, respectively, as

(1.6') lim,^ j<*>(0 = const ^ 0;

(1.7') lim,^ /*>(ί) = 0 and lim^ y<k-»(t) = -h oo or - oo;

(1.8') limf.00/*-1>(0 = const ^ 0.

The set of all yeΛ"k satisfying (1.6), (1.7) or (1.8) is denoted, respectively, by
^Tfc[max], ^fc[int] or ̂ [min]; thus

Jfk = Λ/;[max] U ̂ i[int] U ̂ Λ[min] .

The classes ^ΓΛ[max], ^ΓΛ[min], 0</c<w, have been extensively studied in the
literature. However, it seems to us that very little is known about the inter-
mediate classes ^Λ[int]. As far as we are aware, the only references concerning

the existence of members of Λ^Dnt] are Heidel [3], the authors [8] and Naito
[12], in which some special cases of (1.1) are considered.

The objective of this paper is to propose a systematic study of the classes

^Πnt]» 0<fc<w, for sublinear equations of the form (1.1). We first present
sufficient conditions which guarantee the existence of members of */r*[int] for
(1.1). We then show that there is a class of equations of the form (1.1) for which
the situation Λ^[int]^0 can be completely characterized. Our results can be
applied to the equation

(1.9) yM + σXί) \y\? sgn y = 0, 0 < y < 1,
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where p: [0, oo)-»[0, oo) is continuous. In particular, Theorem 2 implies that
(1.9) has a solution y(f) satisfying (1.7) if and only if

I p(i)tn~k~l+kydt < oo and \ = oo.

2. Conditions for JΓk [int] ^ 0

We first give a sufficient condition under which there exists a solution y(i)
of (l.l) satisfying (1.7), i.e., Λ^[int]^0 for (1.1).

THEOREM 1. Lei k be an integer such that 0<k<n and (-l)n~ k~V=l.
In addition to (1.2) suppose that there exist continuous functions /*,/*:
[0, oo)*+1-»[0, oo) and ψ*9 ψ*: [0, oo)"-k->(0, oo) such that

(2.1)

f,j>0,..., Jπ-!)e[0, oo) x Λ».

Suppose moreover thatf+(t, z0,..., z^.J andf*(t, z0,..., z^.J are nondecreasing
in Zj, O ^ i ^ f c — 1, ^^(z^,..., z,,.̂  is nonincreasing in zf, fc^i^n — 1,
^*(zfc,..., z,,^!) is nondecreasing in zi9 k^i^n — 1.

Then, ^Γfc[int] is nonempty for (1.1) i/

Joo
tn~k-lf*(t, af*,..., aί)dί < oo /or some a > 0

o

ana*

(2.3) Γ°° *"-*/*(', frί*'1,..., ί>¥ί = oo /or a// fc> 0.
J o

PROOF. Let c, 0<c<a, be fixed. Choose T>0 large enough so that

-- - - for k^i^n
Γ

Denote by Y the set of all yeCH~l[T9 oo) satisfying the following inequalities

Cfk-i-l ^tk-i-l

(2.4) ( T^17

for ί^Tand define the integro-differential operator & by

(2.5)
t (f_«\k-l Γ<» / «\π-fc-l

r W J, &4^T)T ̂ ' 'W--
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for f ̂  T. & is well defined on Ύ, since y e Y implies |y(ί)(ί)l ^ Φ + 1)*"', Og / g
fc-1, and |/')(0l^c, kg ι£π- l , for ί^T. Noting that

for

= (-1) l a

for k^i^n- 1,

we see that for y e Y and t ̂  T

^ ct*-" , p (/-^)fc-f-1 . f* (r Γ)"-*->
= (fc-ι-1)! ^ J r (Λ-ι-1)! J r (n-*-l)!

/*(r, c(r+l)k,..., c(r+l))rfr ^*(c,..., c)

_ _

= (fc-ι-1)! (Jt-ι)! '

and

- f r (?/Γ-?~7)7 />(s> c(s+1)*'"" Φ+D)Λ ^*(c,..., c)

^ c, k ̂  i g n - 1,

which shows that Ĵ > e K Therefore ^ maps y, a closed convex subset of
C""1[T, oo ), into itself. Furthermore it is easy to verify that & is continuous
and &Ύ is relatively compact in the topology of C"~l[T, oo). Therefore ^ has
a fixed point y e Y by the Schauder-Tychonoff theorem. Differentiating the
integro-differential equation y(t) = #ry(t), ί^T, we see that y = y(t) is a solution

of equation (1.1) on [Γ, oo). That lim^^ ̂ λ)(ί) = 0 is a consequence of the
equality

"

From (2.3) and

y*-i)(0 = c + Γ Γ i^y"n!tJ T J s (n — K — 1)1
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it follows that lim,^ y(Λ~1)(0=oo. Thus y = y(t) is a positive solution of (1.1)
belonging to ^Γfc[int].

Similarly, it can be shown that the mapping & defined by (2.5) with c replaced
by — c has a fixed element in the set consisting of all yeCn~l\T, oo) satisfying
for ί^Γ

rt
Ct

k-i-l rtk~i

= (Jt-ι-1)!' " = * = - *'

I _c ^ (-l)'-*/^) ̂  0, k g i ^ n - 1.

This fixed point gives a negative solution of (1.1) belonging to Λ^[int]. The proof
of Theorem 1 is complete.

In the next theorem a necessary and sufficient condition for ^Γk[int]τέ0 is
given for equation (1.1) with stronger nonlinearity.

THEOREM 2. Let k be an integer such that 0<k<n and (~l)π~ k~ 1σ=l.
Suppose that the function fin (1.1) satisfies (1.2) and (2.1) with monotone functions

/*»/*> *A*» ^* as described in Theorem 1. Suppose moreover that there exist a
constant M>0 and continuous functions ω+: (0, !]-+((), oo) and ω*: [1, oo)->
(0, oo) such that

(2.6) /*(/, z0,..., zk.i)

/or (ί,z0,...,z jk.1)€(0, oo)k+1;

(2.7) /φ(ί, ίz0,..., ίZfc.O ^

/or (ί,

(2.8) r *
J o ω*(

< oo;
.({)

(2.9) /*(ί, ίz0,..., ίzt_,) g ω*(ξ)/*(ί, z0.»., zt-j)

/or (f, z0,..., zt_,, ξ)e(0, oo)*+1 x [1, oo)

.. * / κ\

(2.10)

Then, ^i[int] is nonempty for (1.1) if and only if both (2.2) and (2.3) are
satisfied.

The "if" part follows from Theorem 1. To prove the "only if" part the
following lemma is needed.

LEMMA. // y eΛ^fmt] for (1.1), then
(i) there is a c>0 such that
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(2.H) ^ c - for all large ί, 0 ̂  / ^ fc, and

(ii) IXOI/**"1 ίs nondecr easing for all large t.

PROOF. Without loss of generality we may suppose that y(t) is eventually
positive, so that there is T>0 such that for t ̂  T

(2.12) /*>(0 > 0, 0 ̂  i ^ k - 1, and (-l)'-*/'>(0 ^ 0, k ̂  i ̂  n.

As in [4, the proof of Lemma 2], XO satisfies

J v v = ΐ

and in particular

Thus, if c is a constant with 0<c<l/k!, then

~ - W0<θ ^0, 0 ̂  i ̂  fc,

for large ί, proving the truth of (2.11). To verify (ii), it is enough to show that

(2.13) /(*)* - (k- 1MO ^ 0 for large ί,

since (XOΛ*"1)'assί"*l>'(Oί-(fc-l)XO]. If k = l, then (2.13) is obvious by
(2.12). If k>l, then, since y(k~l\t) is nondecreasing, the mean value theorem
for /*-2>(0 implies

Integrating the above inequality k — 2 times from T to ί, we obtain after some

manipulations

(k-i)χo ^ Σ2 k~lrl y{»(T)(t-T)J + /(O(ί-n t ̂  r,
j=o J !

which yields

for ί^T. The right hand side of the above tends to oo as ί->oo, because
lim ί_>αo/(0/ίk"2 = oo for any eventually positive yeΛ^IΊnt]. Therefore (2.13)

is satisfied, and so the proof of Lemma is complete.
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THE PROOF OF THE "ONLY IF" PART OF THEOREM 2. Let yeΛ^int] for

(1.1). We first show that (2.2) holds. We may assume that (2.12) holds for

ί^Γ. Then, the latter of (2.12) implies that (- ίY'ky(i)(t)^cθ9 f ^Γ, fcgigfi- 1,
for some c0 > 0. Combining this fact with the equation

(2.i4) y<*)(o = J* frJl'l'ΐ^ns* x*)> > y<m-"(*»ds9 t ^ T,

which follows easily from (1.1), we have

(2.15) yW(i) ^ Cl * = ± / φ ( s , Xs),..., v<*-<>(s))ds, f ^ Γ,

where cί = ψ+(c0,..., c0)>0. Therefore, repeated integration of (2.15) over

[T, ί] shows that

Jί (t—*\k-i-l TOO ( \ n - k - ι

r (ί-ll)! J. (,4-l)!^ *'>•-• ̂

Γf ΓΓ ί'/ — Λfc-i- l/Ί — βΛ«-*-l

- c' J r Jr (ί-tDtS-.ϊ-Di^ 'W-- ̂ -

J°° Γf if — Λfc-i-Ur-- Λ"-*-1

, }Λk-ll^n-k-lV.f^ y(r)- y*

O-Γ)*-'-1 Γ (r-T)--*/.(r,Xr),...,/*-')(r)X/r
*/ T

c2(ί-T)*- "(Γ-Γ)"-*-1/*^, Xr),..., /*-

< ^ Γ, 0 ̂  i ^ fc - 1,

where c2 = c1[(π — l)(fc—l)!(n — fe — !)!]"' >0; in particular

(2.16) y«>(f) ^ Cί(t-T)*-' J"(r-Γ)"-*-'/*(r, y(r),..., y^\r})dr,

t^T, 0 ̂  i g fe - 1.

If T2 > T is taken so large that

ξ(t) - J"(r-T) -*-'/.(r, Xr),..., j><*-'>(r))dr g 1 for ί ̂  T2,

then the hypotheses on/* and (2.16) imply
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so that ξ(t) satisfies

(2.17) - ω^(

}

r)) ^ (t-Γ)"-*-'/ (*. c2(f- Γ)*..... c2(t-T)), f £ T 2 .

Integration of (2.17) yields

J£(Γ2) //£ Γf
—%τ-£ (s-T)--*-1/φ(s,c2(s-T)*,...,c2(s-T))ds, f £ Γ2,

ξ(0 <*>*(£) J T2

which, in view of (2.8), implies

Γ°°(s-T) -k-VΦ(s,c2(s-T)t,...,c2(s-T))ds<oo.
J τ2

Because of (2.6) this means that (2.2) holds.

Our final task is to prove (2.3). Suppose to the contrary that (2.3) does

not hold. By (2.6) this may be restated as

(2.18) Γ°° t"-kf*(t> btk~\..., b)dt < oo for some b > 0.
J o

We now integrate (2.14) to get

y(ί) = *y' y ( y )(Γ) ( T)J Γ (t-V-i r (r-S)"-"->
y(t) £o j\ (t ί} + J Γ (k-\)\ L (»-*-!)!

f(r, y(r),..., y*-»

ώ*(r c \ Γ*4. y/ yc0,..., CQ) I

ι:ι;(k-l)\(n-k-l)\

r, t ̂  T.

Using the inequalities

Γ (/- s)*- '(/• -$)"-*- 'ds g (ί-T^-'C -T)"-*, Tg r g ί,
J T

Γ (ί-s^-'C -s)"-*-1^ ̂  (r-DHr-Γ)"-*-', Tg ί g r,
*/ T

in the above, we obtain
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(2.19)

-T)*-» Γ (r-T)--*/*(r,
»/ T"

c3(ί-T)* r, ί ̂  T,

for a positive constant c3. Using the hypotheses on /*, Lemma and the fact

that lim,.,,,, y(t)ltk~l = oo, we see that

(2.20) /*(r,Xr),.. .,>><*-'>(/•))

for sufficiently large r and r, r^ί. From (2.19) and (2.20) it follows that, if T
is chosen large enough,

-f c3

T.

Since f'/XO->Oas ί->oo, O^ ^/c-1, and-J-^ω*( /^/f-i ) is bounded by (2.10),

and

as ooΓ° rn~kf*(r, fcr*-1, br*-2,..., b)ίίr -

by (2.18), we see from (2.21) that there are c4>0 and T;> Tsuch that

r»-*- V*(r, Xr),.. , ̂ (Ac-1}WWr, ί ̂  T'.(2.22)

Put
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(2.23) z(ί) = r"-*-1/*^, Xr),..., y«-»(r))dr9 t ^ T .

Since, as in (2.20),

- K bcr f*(r> ί?r*~1'-> fc)> r = T/

where K = sup^1 ω*(ξ)/£>0, we have from (2.22) and (2.23)

z(t) ^ .ϊjJLΓrn-k-ι. r j ^ ./*(r, brk~\..., b)dr

- ΪZ(

and consequently,

Γ r*-*f*(r, brk-\...9 b)dr, t > T'.
J t

However this is a contradiction, since the right hand side tends to 0 as f-χχ>.
Thus we conclude that (2.3) is satisfied. The proof of Theorem 2 is complete.

EXAMPLE. Let k be such that 0</c<n and (— l)"~ k~ 1σ=l, and consider

the equation

(2.24) /"> + σp(ί)Myo|/|71 |y*~ 1 ) l y i t - | sgn^ = 0,

where σ= -hi or —1, y0 = 0» Vi^O,..., y k _!^0 are constants such that

(2.25) yo + 71 +-+y*-ι < 1,

and p: [0, oo)->[0, oo) is continuous. The function

satisfies all the hypotheses of Theorem 2 with

Conditions (2.2) and (2.3) reduce, respectively, to

(2.26) ΓG°^(ί)ί .-*-ι+yo*+y.(*-i)+ »+7 fc-ιέ/ ί < oo
J o
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and

(2.27) Γ°°^(f)ί' -k+yo(k-iHyι(k-2)+.»+yk.2 Λ = oo ^
J o

and so (2.26) plus (2.27) is necessary and sufficient for (2.24) to have a

(nonoscillatory) solution belonging to ^i[int]. Notice that (2.26) and (2.27)

are compatible by the sublinear condition (2.25). When specialized to the

case V i = ••• =y*-ι =0, our result asserts that ^fk[int] is nonempty for the equation

(2.28) >><"> + σp(t) \y\y sgn y = 0, 0 ^ γ < 1,

if and only if

(2.29)* Γ°°
J o

and

(2.30)k Γ
J o

oo

= oo.

It should be noted that an integer k for which both (2.29)fc and (2.30)k hold, if

one exists, is unique, that is, for equation (2.28) one and only one of the inter-

mediate classes ^[int], 0<fc<w, may have a member. In fact, this follows

from the observation that (2.29)k implies (2.29)k+1, that (2.30)fc implies (2.30)̂

and that (2.29)fc holds if and only if (2.30)fc+1 does not hold.
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