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1. Introduction

In the theory of Liapunov's direct method for a system of ordinary differential
equations

(1) x' = H(t, x)

where H: [0, oo)x Rn-*Rn is continuous, in order to prove that all solutions
tend to zero as ί->oo it suffices to find a continuous function V: [0, oo)χJR"->
[0, oo) and continuous functions Wt: [0, oo)->[0, oo), H^(0) = 0, Wt(r) increasing,
such that

) < V(t, x) < W2(\x\\
(π) V f

( l ) ( t , x ) <

and

(iii) Wi(r) -> oo as r -» oo.

Corduneanu [2] showed that if

(iv) V'w(t, x) < - ft(ί, V)

and if the solutions of {r' = /j(ί, r), r(ί0)= V(t0, x0)} tend to zero, then V(t, x(ί))->0
as r-^oo.

Three problems have persisted in fundamental applications : (ii), (iii), and (iv)
fail. The typical example is the scalar system

x' = y

y' = - q(x9 y)y - g(x)

where q(x, y) > 0, x^(x) > 0 if x ̂  0. The function

g(s)ds
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satisfies

F'(x, y) = - 2q(x, y)y2.

Γx
It is clear that (ii) fails since K'(x, 0) = 0. Also, if I g(s)ds is bounded for

J o
x>0 or for x<0, then (iii) fails. And there seems to be no way of writing (iv) so

that r' = h(t, r) has all solutions tending to zero.

In this paper we show that if (ii) and (iii) fail, then this may be used to

construct a V for which (iv) holds. We first formulate an abstract result to

that effect and then provide detailed examples from ordinary and functional

differential equations.

The difficulties displayed in this simple example have been attacked with

vigor by many investigators. A far from complete list would include Krasovskii

[6; p. 67 and 153], Haddock [3], Hatvani [4], Kato [5], LaSalle [8], Murakami

[10], and the author [1]. Those references contain extensive lists of related

investigations.

General theory of ordinary and functional differential equations is found

in Yoshizawa [14], for example.

2. The main result

Suppose that Vl9 P, U: [0, oo) x R"-»[0, oo) and Q: [0, oo) x [0, oo) x

JR"-»[0, oo) are continuous functions with

(2) W, x) = P(ί, x) + U(t, z)

where x = (x!,..., x π _ι, z) and that the derivative of V1 along a solution of (1)

satisfies

(3) K;(f, x) < - <2(P(f, x), ί, x)

with Q(P, f, x)>0if P>0.

THEOREM 1. Let (2) and (3) hold and suppose there is an L>0 such that

ί/ίn"*00 and zπ-+oo then

(4) C/ί^zJ-vL, U(t,z)<L for all (ί, z) with z > 0.

// K(ί, x)=K1(ί, x)-L and if x(t) is a solution of (1) on [f0, oo) with iίΐή,^ z(0

= 00, then

(5) K'(ί, x) < - ρ(K(ί, x)/2, ί, x) for z(t) > 0.

PROOF. Notice that for the solution described, P(t, x(t))>L-U(t, z(t)).
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If this were false, then there would be a f j with P(tί9 x(tί))<L—U(tί, z^)).
(a) It is surely true that P(tί9 x(t1))>0, otherwise

V(ti9 x(t,)) = P(tl9 x(t,)) + U(tί9 2(1,)) - L

= t/(ίl9 zOO) - L = - βl < 0.

Since K'(ί, x(0)<0» we would then have F(ί, x(0)< -εj for ί>^ and this would
combine with (4) to produce a contradiction, since for large z we have

- β, > F(f, x(ί)) = P(f, x(ί)) + l/(ί, z) - L

andP(f,x(ί))>0.
(b) Since P(ίj, x(ί1))>0 it follows that for P(tί9 x(tί))<L- U(tί9 z(ίj))

we have K'(i l9 x(ί!))<0 and there is an ε2>0 with F(ί, x(ί))< —B2 for ί>ίj + 1
this again contradicts P>0 when z(t) becomes large.

Thus, (a) and (b) prove that our opening statement is true and we then have

PO, x(0) > IW, x(ί)) + i— 1/(/, z(r))]/2

> [P(r, x(0)+I/(ί, z(ί))-L]/2

= F(ί, x(ί))/2.

Then by (3) we have (5) and the proof is complete.

NOTE. We point out that (5) requires z(f)>0 because (4) requires U(t, z)<L
for z>0. If U(t, z)<L for all t and z, then (5) is true for any solution with

lim^^ z(ί)= oo and for all t e [ί0, oo).

REMARKS.
I. The theorem has an obvious counterpart for lim,^ z(Q= — oo.

Moreover, (4) need not hold along a coordinate, but could be phrased along
any unbounded curve.

II. The theorem is fully valid for functional differential equations; V, P,
and U can all be functional.

III. Frequently an equation is given an integrable perturbation e(t). The

standard response of the investigator is to change KΓ to

, x) = [P(ί, x)+l + l/(f, z)]exp(- J^

and, frequently, the analysis proceeds just as before. It is easy to verify that if
(2) is replaced by

(2)* Kt(ί, x) = [P(ί, x) + 1 + l/(r, z)] B(t)

where A>B(ί)>C>0, B'(t)<Q, and (3) is replaced by
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(3)* Fi(f, x) < - Q(P(t, x)C, f, x)

then Theorem 1 remains valid and the proof is changed only in letting I/
IV. In the proof we see that if there is an unbounded solution then P+U>L.

For typical problems La Salle [8] points out that the set F,(f, x)<L is contained
in the domain of attraction of the zero solution. Thus, for Kj(f, x)>L we have
K'O, x)<-()(T/2, /, x). And in all of the examples we obtain V'<-Q(V)
where Q is a positive definite function. Under reasonable conditions the set
K=0 is uniformly asymptotically stable.

V . In the examples that follow we speak of boundedness. But the results
can also be used to obtain continuation of solutions. Instead of asking in the

theorem that x(0 be a solution on [f0, oo) with lim^^ z(0= + °°, one may
ask instead that all conditions hold for 0<f<T, where T is fixed but arbitrary.

Then the assumption that lim,^τ- z(ί)= + 00 yields (5) when z(ί)>0and t0<t<T.
As seen in the examples, (5) can be used to show that, in fact, z(ί) is bounded on
[ί0, T) and the solution is continuable to +00.

3. Examples

EXAMPLE A. The scalar equation

(Al) x" + h(t, x, x')|x'Γ*' +/(*) + g(t, x, x') + 'e(t, x, x') = 0

with all functions continuous, α>0,

(A2) /?(', *, >0 > 0, yg(t,x,y)^09 x/(x) > 0 if x Φ 0,

(A3) \e(t, x, y)\ < β(t\ Γ β(t)dt < oo,
J o

has been considered in some form by many authors. A recent discussion is
given by Murakami [10] and one by Yoshizawa [16] when g = e = Q. These
authors are interested in limit sets and both ask that

= I f(s)ds -> oo as |x| -» oo
J o

and that settles the question of boundedness of solutions since the system

(A4)
/ = - Λ(ί, x, y)\y\*y -/(x) - g(t, x, y) - e(t, x, y)

has the Liapunov function
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(where B(t) = e\p ( — \ β(s)ds)) which is then radially unbounded and satisfies
\ J o /

K'<0. In that case, the question of the size of α is of little importance. But
when F(oo) or F(— oo) is finite then the size of α is crucial, as may be seen in
Thurston and Wong [12] when g(t, x, j>) = 0.

As mentioned in the remarks, we may prove the following result for e(t, x, y)
as in (A3), but the illustration when e = 0 makes the desired point.

PROPOSITION A. Let (A2) hold, e(t, x, y) = 0, and 0<α<l. Suppose that
for each M >0 there is a continuous function q: ( — oo, oo)->[0, oo) with

(A5) Λ(ί, x, y) > q(x) when \y\ < M and \x\ > M

such that

(A6) f±β[«(*) + l/(*)l]d* = ±00
J o

and let

(A7) h(t, x, y) + \g(t, x, y)\ > 0 if y * 0.

Then all solutions o/(A4) are bounded.

PROOF. Define

Vι(x, y) = y2 + 2F(x)

and obtain

K;(X, y) = - 2h(t, x, y)\y\*+Λ - 2g(t, x, y)y

which is negative by (A7) for y ̂  0. Note that this means that for each solution

(x(0, XO) ^ere is an M with \y(i)\<M which, from x' = y, yields |x(ί)l^l*(fo)l +
•f Mi; thus, all solutions are defined for all future time.

With reference to Theorem 1 ,

P = y2 and U = 2F(x) .

To be definite, let us suppose that there is an unbounded solution (x(r), >'(0) witn

_ /OO

\y(t)\<M and lim^^ x(0= + oo. This means that F(oo)< oo and that I q(x)dx
J o

= 00. When x(f)>0 we have 2F(x)<2F(oo) = L.
Consider any interval [ί0, ίj with x(ί)> M. Then K(x, y)= Fj(x, y)-

and by Theorem 1

- h(t, x, y)\y\W(x(t), v(0)

where y = (l -hα)/2< 1. Let V= V(t)= V(x(t\ y(t)). When 0<α< 1, then
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|/-yK'< -q(x)\x'\

and so

yl-J(t) - Fl-7(ίo) < _ ( l _ y ) I p(0

I J χ(fo)

which yields x(f) bounded above because γ < I. If α= 1, then

I Γ*(O
K(r)< F(f0)exp 4f(s>fc

1 J *(/o)

with the same conclusion. This completes the proof.

EXAMPLE B. Krasovskii [6] and more recently Yoshizawa [15] have con-
sidered the delay equation

(Bl) x" + g(ί, x, x'X + g(x(t-r(t))) = 0

in which all functions are continuous and

(B2) G(x) = P
J o

Krasovskii asks that q = q(t, x') with q periodic in t and q > c0 > 0, while Yoshizawa

asks that q(t, x, y)>bβ(t)9 b>0, 0<r(ί)<j5(0, β'(t)<β0<\,

(B3) \g*(x)\ < TV, g*(x) = (d/dx)g(x),

and N2<b2(i-βo)', thus, Yoshizawa allows jβ(ί)->0 if r(ί)-»0 and we are unable
to handle that case for we obtain, via Theorem 1, the relation V < —β(t)\x'\V1/2

from which we are unable to obtain x(t) bounded. Thus, our work here is
more in the line of Krasovskii 's for we ask that

(B4) 0 < r(t) < r, q(t, x, y) > b> 0,

and

(B5) r < b/N,

where r, 6, and N are positive constants. Both Krasovskii and Yoshizawa obtain
boundedness of solutions by asking that G(x)-»oo as |x|->oo. Here, we prove
the boundedness from (B4) instead.

PROPOSITION B. Let (B2)-(B5) hold. Then all solutions of (Bl) are
bounded.

PROOF. Write (Bl) as the system
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x' = y

y' = - q(t, x, y)y - g(x) + Γ° g*(x(t + s))y(t + s)ds
J -r(f)

and define

Kt(x,, yt) = 2G(x) + y2 + [ft/r] Γ° Γ )>2{s)dsA<
J -r J t+u

where x,(s) = x(f + s) for — r<s<0. After a calculation we obtain

V\(χt, y,) < - y[y2(t)+J'^2(κ)Λι]

for some y>0. Denote the integrals in Vl and V{ by 7 t and 72, respectively.
Suppose that (x(0» XO) is an unbounded solution with \y(t)\<M and

lim^oo x(0= -f- oo so that G(oo)< oo. In Theorem 1 let

P = y2 + Iι and u = 2G(x).

Then L = 2G(oo) and for x(ί) > 0 we have 2G(x) < L. Define F(xr, 3;,) = V, - 2G(oo)
and notice that there is a J > 0 with

Γ y\u)du > J[6/r] Γ° Γ y2(s)dsdu.
J t-r J -r J 1 + u

By Theorem 1, if x(ί)>0 on an interval [ί0, ίj, then for K=K(0=ί/(xf, .yf)
we have

V < -

for some y > 0. Hence,

and

so that x(i) is bounded. This completes the proof.

EXAMPLE C. Somolinos [11; pp. 196-9] considers the control system

x' = Xί, σ, xf) + bf(σ)
(Cl)

σ' = q(t, xf) - r/(σ)

where p: [0, ao)xR x C-+R", q: [0, oo)xC->Rn, /: R-+R, all functions are
continuous, C is the space of continuous functions φ: [ —Λ, 0]->R", and h is a
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positive constant, ϊt is assumed that

(C2) \p(t, σ,, Ψ)-p(t, σ2, ψ)\ < L(σ,, σ

and the solutions of

(C3) / = p(ί, σ, y,)

satisfy

(C4) |Xf, ί0, *, Ψ)\ < K(σ) || V| | exp {-/»(<τ)(f-ί0)}

with L, /C, and /? being appropriate functions, while

(C5) \q(t, Ψ)\ £ c\\Ψ\\9 c > 0 .

Here, || - 1| is the supremum norm and | | is any convenient norm on Rn.
Using (C2) and (C4), Somolinos applies a converse theorem to conclude that

there exists a functional V(t, σ, Ψ) for (C3) satisfying

\\Ψ\\ < V(t,σ,Ψ)

and the derivative of V along a solution of (C3) satisfies

V'(t, σ, Ψ) < - y(<7)F(f, σ, f)

where 7(σ)>0. He then constructs a Liapunov functional for (Cl) of the form
W(t, σ, Ψ)=V2(t, σ, Ψ) + F(σ) where

= f
J o

and shows that

(C6) W'(t, σ,Ψ)< - βV2 + (X|σ|+c)F|/(σ)| - r/2(σ)
with constants such that if either

(C7) K(σ)=\, β(σ)>β>0 and 4rβ > (|fc| + c)2

or

(C8) L(σ) = 0 and 4rβ > (K|b|-hc)2,

then the right-hand side of (C6) is a negative definite quadratic form in Fand/(σ).
Under the foregoing conditions, Somolinos proves that if

(C9) F(σ) -» oo as |σ| -> oo,

then all solutions of (Cl) are bounded and tend to zero as ί->oo. In the next
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proposition we show that (C9) is not needed for the boundedness.
To put this result in perspective, we remark that (Cl) is a generalization

of the classical problem of Lurie, extensively discussed in Lefschetz [9]. It is
the ordinary differential equation counterpart of (Cl) with p and q linear functions

of x alone. The classical results called for (C9) in order to show boundedness.
LaSalle [7] showed that (C9) was not needed. Thus, our proposition may be

viewed as an extension of LaSalle's result to the functional differential system (Cl).

PROPOSITION C. Let (C2)-(C8) hold. Then every solution of (Cl) is

bounded.

PROOF. Conditions on p and q imply that (Cl) takes bounded sets into

bounded sets; thus, bounded solutions are continuable for all future time.

Because \\Ψ\\< V(t, σ, Ψ) and W < 0, for any solution (x(ί), σ(0) there is an M > 0
with \x(t)\<M. Then using (C5) in the second equation in (Cl) we see that
any solution starting at ί0 can be defined for all future time.

Suppose that (x(t)9 σ(t)) is an unbounded solution with lim,^ σ(i) =00.
Clearly, F(oo)<oo and, with regard to Theorem 1, we let

p = K2(ί, σ, Ψ) and U = F(σ).

Define

W = V2 + F(σ) - F(oo)

and note from the fact that Somolinos has proved that the right-hand side of
(C6) is a negative definite quadratic form in Kand /(σ), there is a /?>0 with

W < -

By Theorem 1 we have

so that

and

Thus, FWeL^ίo, a)). But K(0>||xf|| and \q(t, x,)|<c||x,||, so geL^O, oo).
In σ' — q(i, xt)~rf(σ), define a Liapunov function H(σ)=\σ\ so that H'(σ)<

\q(t, xt)\. Hence, H(σ) is bounded and the proof is complete.

0) < - (β/4) Γ V(s)ds.
J t0
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