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§1. Introduction

For a prime p, a space X is called a mod p (homotopy associative) H-space
if its localization X ,, at p is a (homotopy associative) H-space.
Consider the product space S of odd spheres:

(*) S =8" x:+x S" x (S3)° x (SY)° (n;: odd integers >5).

Then S is a mod p H-space for any p>3, and so is S for p=2 if and only if each
n; is 7, by Adams [1, 2]. Moreover S is a mod p homotopy associative H-space
for any p>5 by [2], and so is S for p=2 if and only if a=0 by Goncalves [4;
Th. 1]. In case of p=3, the special unitary group SU(3) is 3-equivalent to S5 x S3
by Serre [9; Prop. 7]; hence we have the following typical example:

(1.1) (8% x (83)® x (S')¢ for a < b is a mod 3 loop space.
Now the main result of this paper is stated as follows:

THEOREM 1.2. S in (*) is a mod 3 homotopy associative H-space if and
only if each n; is 5 and a<b, i.e., S is a mod 3 loop space in (1.1).

We sketch here the proof of the theorem, which is based on the methods
of Zabrodsky [14], and is done by continuing to the preceding studies in [5, 6].
We assume that the localization S 3, of S in () is a homotopy associative H-space.
In the mod 3 Steenrod algebra, we have a decomposition

P = §'=09’3j°‘j when n;=2n+1,n=3's,3 fYsands > 2,

where 2™ is the mod 3 reduced power operation. This decomposition associates
an unstable secondary operation ¢ in the diagram

E, % K(Z/3, 6n—2)
/ I"

Sis) = K(Z)3,2n—1) -1, TT1o K(Z/3, 6n—1—4.30).
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Here h=[1'-, a;, r, is the homotopy fiber of h, ¢ is an H-map corresponding to
the factor S, & is a lift of &, and € is shown to be an H-map. Now, by [13;
2.5.1], we have the obstruction 8(p€) for @& to preserve the homotopies of
homotopy associativity (i.e., to be an A;-map); and we can lead a contradiction
by calculating 8(¢&) in two different ways. By this way, we have proved that

(1.3) [5; Th. A] n,=2-3°( — 1 (e(i)=1) for each i.

On the other hand, by considering the projective 3-space of S;, and by
studying the Hubbuck operations S? and Q4 on certain quotient algebra of its
cohomology with coefficient in Z 3;,, we have also proved that

(1.4) [6] a < b holds if each n; is 5.

Therefore we shall prove Theorem 1.2 by showing the following
(1.5) If e = e(i) = max {e(j)} > 2 in (1.3), then we have a contradiction.
In this case, for n=13¢, we have the diagram

E, -2 K(Z/3, 6n—2)

ic

¢/ E, -t K(Z/3,6n—2)xT15z4 K(Z/3, 6n—1—4.3))

|

Sy~ K(Z/3, 2n—1) L, K(Z/3, 2n) x 1528 K(Z/3, 2n— 1 +4.3J),

instead of the above one. Here f=x[]52} 23 with the Bockstein operation
p, and h is the secondary operation due to Shimada-Yamanoshita [10] or
Liulevicius [7], which associates an unstable tertiary operation ¢ (see Proposition
2.4). Moreover ¢ is a suitable lift of ¢ given in Proposition 3.4, which assures
that o is an H-map and 0(¢¢&) is calculated in two ways to show (1.5). Now
we prepare in §4 the ladder Toda bracket due to Zabrodsky [12], and prove
Proposition 3.4 in §5.

The author wishes to thank Professor M. Sugawara for his critical reading
of the manuscript and useful suggestions.

§2. Unstable tertiary operation

In this paper, we assume that spaces have base points * which are non-
degenerate, and that (continuous) maps preserve them, unless otherwise stated.
For any space X, we use the Moore path (or loop) spaces
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PX = {(w, r)|re[0, ) and w: [0, 00)> X with w(t)=w(r) (1=>7)},
LX = {(w, r)e PX|w(0)=%}, AX = {(w, r)e PX |w(0)=w(r)}, and
QX = {(w, r)e PX |w(0)=w(r)=%*}. (win PX is non-based.)

We define the maps ¢: X—PX and ¢,;: PX—-X (0<t<0) by
¢(x) = (the constant map to x, 0) and e(w, r) = w(min {¢, r}),

and take *=c#* as the non-degenerate base point for X (¥ =P, L, A or Q).
Moreover we define

LfLX— LY foramap f: X— Y by (Lfl(w,r)=(fw,r).

In PX, we define the path-multiplication (w, r, +r;)=(w,, r)+(w,, ry) of (w,, r) e
PX with e, w;=eyw, by w(t)=w,(¢) for t<r,, =w,(t—r,) for t>r; and the
inverse path (w', r{)= —(w,, r,) by w'(t)=w,(max {r, —t, 0}).

We define a homotopy to be a map H: X— PY (with H*=x) denoted by

H: X — PY; fo~fo, for fi=eH: X—Y (t=0, ©);

and then we denote also by fo~f,: X—>Y or fox~f,x (xe X). We note that
this is the same as the usual homotopy preserving base points since they are
non-degenerate. In case of

H: X —> P2Y = P(PY) with (Pe)H = c(e2H) (t=0, o0),

we call H a homotopy between homotopies e H and e H fixing the end points.
For any spaces X and Y, we have the natural homotopy equivalence

& X X Y~ LP(XxY) (=P,L, Aor Q)

given by &((w, r), (v, s))=((w x v)4, max {r, s}) (4: the diagonal map).

Now we define H-spaces and the related notions (cf. [13; Ch. I-1I]). An
H-space is a pair (X, u) of a space X and a map u: X x X—>X with u| XvX=F
(the folding map). pu is called an H-structure or a multiplication for X. We
also call X an H-space simply if u is specified, and denote u(x, y) by x-y. If
(X, ;) are H-spaces, then so are (£ X,,(ZLpu,)e) and (X, x X,, (u; x uy)(1 x Tx 1))
(1: the identity map, T: the twisting map).

A homotopy associative H-space, or an HA-space, is a triple (X, u, o) of an
H-space (X, u) and a homotopy a: X x X x X—>PX; p(ux1)~pu(lxyu) with
o(*, x, y)=a(x, *, y)=a(x, y, *)=cu(x, y). o is called an HA-structure for X.
We also call X or (X, u) an HA-space simply if (u, «) or a is specified. In
particular, if u(u x 1)=pu(1 x p) and a=cu(u x 1) hold, then (X, u, a) (or X, (X, w))
is called an associative H-space. If X; are associative H-spaces, then so are
ZX,and X, xX,.



230 Yutaka HEMMI

An H-map between H-spaces (X, ;) (i=1, 2) is a pair (f, F) of a map
f: X;—~X, and a homotopy F: X, X X,>PX,; u,(fxf)~fu, with F| X, vX,=
cfV. F=F,iscalled an H-structure for f. We call fan H-map if F is specified.
For H-maps (f;, F)): (X, )= (Xi4 1, Hivq) (i=1, 2), the composition (f,, F,)-
(fi. F)=af1, F): (Xy, #)~(X3, u3) is an H-map with the composed H-
structure F=F ,(f; xf))+(Pfy)F,: X, x X,->PX;.

An HA-map between HA-spaces (X;, w;, o;) (i=1, 2) is a triple (f, F, A) of
an H-map (f, F): (X, u)—(X,, #,) and a homotopy

A: X, x Xy x X, — P2X,; a(fxfxf) ~ (Pf)a,

with  (Peg)A=(Pu,)(F X cf)+ F(u, x 1), (Pey)A=(Pu,)cfx F)+F(1xpu,) and
A(x, x, y)=A(x, *, y)=A(x, y, *)=(PF)(cx, cy). A is called an HA-structure
for (f, F). In particular, if (X;, u;, o;) are associative H-spaces and u,(fxf)=
Sy, F=cfuy, ao(fxfxf)=(Pf)a, and A=c(Pf)a, hold, then (f, F, 4) (or f,
(f, F)) is called a homomorphism.

Note that the loop space QY of Y is an associative H-space by the path-
multiplication, and Qf: QY,-QY, of a map f: Y,—> Y, is a homomorphism.

Let (X;, 1;) (i=1, 2) be H-spaces. Then for any map f: X,— X,, we have

dif): X, A Xy — X, with  py(d(f) pr x fu)4 ~ p(fxf)

(pr: Xx---x X->XA---A X is the projection). d(f) is called the H-deviation of
f, because fis an H-map if and only if d(f)~ *.

Moreover, let (X;, y;, o) (i=1,2) be HA-spaces and (f, F): (X,, pu;)—
(X,, uy) be an H-map. Then we have the map §: X, x X, x X, —»AX, defined by

0(x, y, z) = ay(fx, fy, f2) + ¢fx - F(y, 2) + F(x, py(y, 2)) — (Pf)ay(x, y, 2)
— F(uy(x, y), z) — F(x, y)-c¢fz (- is induced from u,).

Since 8(x, x, y)=0(x, *, y)=0(x, y, ¥)=F(x, y)— F(x, y)~*, we get a map, which
is unique up to homotopy,

0=0(f, F): X, A X; A X, —> QX, (due to Zabrodsky [13; 2.5])

such that 6~0": X, x X, x X, —»AX, fixing the end points, where 8'(x, y, z)=
0(x, y, z)-((fx-fy)-fz). We call 0=0(f, F) the HA-deviation of an H-map
(f, F), because (f, F) has an HA-structure if and only if 6 ~* by definition. We
denote 6(f, F) by 6(f) when F is specified.

We note that 60(f,, Fo)~0(fy, F,) for two H-maps (f;, F)): (Xy, #y)—
(X,, up), if they are homotopic as H-maps, i.e., if there are homotopies

H: X, — PX,; fo~f, and G: X, x X,— P?X,; Fo~ F,
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with (Peo)G=(Pu,)H x H), (Pe,,)G=Hy,, and G| X, v X,=cHF. Moreover,
we note that 8(Q2g) ~ * for any map g: Y, - Y,.

Now, for a given map h: X—Y, let
QY o E, = {(x, De X xLY|hx=e I} s X -1,y

denote the fiber sequence given by r,(x, )=x and j,(I)=(x, I), i.e., r, is the
homotopy fiber of h and j, is the fiber of r,. Then for the fiber sequence

QY In, E, = {(x', I')e QX x LQY|(Qh)x' =e I} 122, QX 2k, QY

we see that E,, is an associative H-space with the multiplication induced from
the ones of QX and QY, and jg, and rg, are homomorphisms. Also we note
that there is a natural homotopy equivalence ¢: Eg,~ QE, with (Qr,)e~rg,.

Moreover, let ¢, e H'(K(Z/3, t); Z/3) be the fundamental class, and let
o: H(X; Z[3)->H""Y(QX; Z/3) be the cohomology suspension. Then:

PROPOSITION 2.1. For given ae H*"X; Z/3) and maps
Xty _9,K(Z3, 6n) with (gh)*cs, = a?,
there is an H-map ¢: Eq,—Q*K(Z/3, 6n) with @jgo,=R2%g and
0(@)*ten-3 = £b®b®b  for b=r§caeH> Y (Eqy; Z/3),
where 0(¢): Eq, A Eq, A Eq,—K(Z/3, 6n—3) is the HA-deviation of ¢.
Proor. Consider K=K(Z/3, 2n), K'=K(Z/3, 6n) and the maps
X LK K5,K' with f*¢,, = a and k*¢g, = ¢}, = Pney,.

Then (gh)*¢q,=(kf)*t,; hence we can take k and f to satisfy kf=gh. Thus we
have the commutative diagram

Q2y Jos, E,, T, o x 20, oy
(*) 1929 1/‘ l.Qf l.Qg
QK L, E ', Qk 2k, ok’

(E=Eg, r=row j=jow f=Qf x LQg | Eg,) of the fiber sequences, consisting of
the associative H-spaces and the homomorphisms. Moreover we have a
homotopy

n: QK — LQK'; * ~ Qk (QK=K(Z/3, 2n—1), QK' = K(Z/3, 6n—1)),
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since (Qk)*¢g,_1=P"¢,-,=0. This defines w: QK x QK—Q2K’ by w(x, y)=
nx)-(ny)—n(x-y), and w': QKA QK—-Q?K’ with w' pr ~w since w|Kv K~=*,
Now as is shown in the proof of Zabrodsky [14; 1.3], we can take 5 so that
w' ~ x, i.e., there is a homotopy

(nx)-(ny) ~ n(x-y) (x, ye QK) fixing the end points.
Using these f and #, we define
@ = Yf: Eg,— E — Q2K’ = K(Z/3, 6n—2)
by Y(x, )=1—nx for (x, )e EcQK x LQK'. Then
Yyj=1 and @jo, = ‘/’ﬁnh = YjQ2g = Q%g;
and ¥: E-Q?K’ is an H-map by the H-structure F: Ex E—PQ2K’, where
F((x, I), (y, m)) is given by
(I=nx)-(m—=ny) ~I-m — (nx)-(ny) ~ I-m — n(x-y).
Hence ¢ =yf is an H-map, and
(*%) 0(p) ~ QW) (fAFAT) (by [13;2.5.2]).
Therefore the equality 6(¢)*¢g,_ 3=+ bR®b®b follows from
2.2) 0) ~*: EAEAE— QK = K(Z/3, 6n-3).
In fact, by the lower fibration in (*), we see that HS""3EAEAE; Z|3)=Z/3
with a generator c®c®c for c=r*¢,,_,. Thus O(Y)*¢e,-3=Ftc®c®c by (2.2),
which implies the equality by (**) and f*c=r%,(Qf)*¢,,_,=b.
To prove (2.2), suppose contrarily that 8(yy)~*. Then the H-map y: E—

02K’ has an HA-structure, or is an A;-map in the sence of Stasheff [11; II, Def.
4.4]. Thus, by [11; II], we have a map

Ws: P.E — BQ2K' = QBQK' ~ QK' with ¥ ~ §5: E— QOK' < Q?K’

for the projective t-space P,E (t=2) of the associative H-space E=E,,, where
/5 is the adjoint of Y4e,: ZEc P,E—QK’ for the usual loop space @K’ (which is
homotopy equivalent to QK’ by QK' < QK').

Now V5 cna be extended to ,: P,E—~QK’ for all t. In fact, the obstruction
for Y, to be extended to y,,, is in Ho" '=%(X,; Z/3) for X,=EA---AE (t+1
copies) by [11; II, 8], which is O for t> 3 since E is (2n —2)-connected. Therefore
we have a map

W, =By: P,E=BE— QK' with ¢~ ., ~Qy..
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Since yj =1, this shows that Y Bj~1 for the fiber sequence
oK' Bi, B B, pok ~ Kk, k' ~ BOK’

(up to homotopy equivalences) obtained from the lower one in (*). Thus (Br x
V,)4: BE~xK xQK’, and we have a section s: K—BE with (Br)s~1. So k~
k(Br)s ~ %, which contradicts k*¢,=¢3,#0. Hence (2.2) is proved. q.e.d.

In the rest of this section, we construct a particular tertiary operation.
Let e>1 be a fixed integer, and consider the maps in the diagram

E, -t K, = T1ez2, K(Z/3, m;) -2 K' = K(Z/3, 6n)
.3) |

K=K(Z/3,2n) L K, = 1=, K(Z/3, 1,)
for n=3¢,1_,=2n+1, l;=2n+4-3! (i>0) and m;=8n—1,, such that

f*, =20, g*e,=221,20¢, (2D=B, 20=23 (i>0))
and h*¢,, =v; for some classes v;€ H™(E; Z/3) with
ried, = 2y, = 22l 200,

We note that the equalities for f* and the definition of r, imply

a=rf,#0, pa=0 and 2'a=0fort<n,

which assure the existence of such v; by Shimada-Yamanoshita [10; Th. 5.1-2]
or Liulevicius [7; Th. 4.5.1]; hence h exists. Then (gh)*¢s,=a?3, and Proposition
2.1 implies the following

ProposITION 2.4. (i) n(Egq,)=0 for t>6n-2.
(ii) There is an H-map ¢: Eg,—Q2K' with ¢j,,=Q?g and

0(@)*ten-3 = T u@u@u for u=r§(Qrp*c,,— € H*""Y(Eqy; Z[3).

§3. Reduction of (1.5)

Note that if a connected space X is an H A-space, then so is its universal cover-
ing space, which has the homotopy type of ¥ when X =Yx(S")¢ for a simply
connected space Y. Then (1.5) follows from the following

PROPOSITION 3.1.  For the localized sphere S{yy at 3, and integers n;=3
(i>a(=1)and n;=2-3¢D—1 (i<a) with e(1)>e(2)>--->e(a)>1, assume
that S=T1¢28 Sti, is an HA-space. Then e(1)=1.
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Hereafter, we study S under these assumptions.

LEMMA 3.2. (i) HXS; Z;3) = A&+, Eavy) and HX(S; Z[3) = A(&y,--,
E,+5) by primitive elements &; and &; such that dim &, =dim &;=n; and &, is the
mod 3 reduction of &,

(ii) Moreover, &; can be chosen to be a generator of H"(SP,; Z3,) for

any i.

PROOF. (i) is seen in the same way as Borel [3; Th. 4.1-2, Prop. 4.3].
(i) If xe H(S; Z3,) (t: odd) is a monomial of generators {ie H(SP)5
Z ), ie., x=cliq) Lo (1<i()<---<i(l)<a+Db, ce Z3)), then

. r ] i r ni() — c
Vo S PO T, 8B B Al SUE = Sty —5 S,

(c is the map of degree c) satisfies Y¥{=x for a generator (e H!(S;); Z,).
If x=x,+ - +x,€H(S; Z3;) with monomials x; of {;, then

l//x = .um(n';'=l l/lxj)A: S — (S)m I (Sza))"' I S:B)

satisfies Y*{=x, where p,=u(u,_,x1) is the iterated multiplication of u=yu,
of the H-space S{;,. Thus we see (ii) by taking x=¢,. q.e.d.

Let p'(t): S'(t)-TT1¢2? S, be the t-connected fibration (ie., S'(f) is t-
connected and p’(?) is a fibration inducing an isomorphism on =, for n>t), and put

p(t) =1 x p'(: S(t) = 81y, x §'(t) — S = [1e2} Sy, .
LEMMA 3.3. Ift<2n,—1, then S(t) is an HA-space and p(t) is an HA-map.

ProoF. If t<n,, then p(t) is the t-connected fibration by definition. Thus
the HA-structure for S can be lifted to that for S(¢), and the lemma holds.

Suppose inductively that the lemma holds for ¢ with n,—1<t<2n,—1.
Let y': S'(1)- K(m,+ (S'(t)), t+ 1) be the map inducing an isomorphism on 7, ;.
Then by the definition of p’(f)’s, the homotopy fiber of ¥’ is p’: S'(t+1)—>S'(t)
with p'(t)p’=p’(t+1). Thus p(t+1)=p(t)(1xp’), and 1xp’': S(t+1)->S(t) is
the homotopy fiber of

Y=y pry: S() — S'(t) — K = K(m,(S'(1), t+1).

Therefore, if Y is an HA-map, then the lemma holds for t+1 by [13; 2.5.3].
Now d(y)~=*: S(t) A S(t)-»K for the H-deviation d(y) since n;—1<t<
2n,—1 and S(t) A S(t) is (2n, —1)-connected. Hence y is an H-map. Moreover
O(Y)~=*: S(t) A S(t) A S(1)-> QK for the HA-deviation O(y) since S(t) A S(t) A S(2)
is (3n, —1)-connected. Thus  is an HA-map; and the lemma is proved by
induction. q.e.d.
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Now Proposition 3.1 follows from the following
PROPOSITION 3.4. For S in Proposition 3.1, consider
£, eH?"\(S; Z[3) (n=3°, e=e(l), n,=2n—1)

and the HA-map p=p(4n—3): S=S@4n—-3)>S given in Lemmas 3.2-3.
Furthermore, consider u € H2"~Y(Eg,,; Z/3) and the H-map

¢@: Eq,— Q?K' = K(Z/3, 6n—2) with 6(¢@)*¢e,_3= T u®u®u
given in Proposition 2.4 (ii). If e>2, then there are a space X and maps
SAS 4, X %, E,, and s:S— Eg,
such that A,(p A p)~*, @ly~x*, d(s)~2A,A, and s*u=¢,.
COROLLARY 3.5. In Proposition 3.4, the compositions
P =¢s:S— Q2K' and j=sp:5S — Eg,

are H-maps so that the composed H-maps &p, @p: S»Q*K' are mutually
homotopic as H-maps (hence 0($p)~0(pp) as is noted in §2).

PROOF OF PROPOSITION 3.1 FROM PROPOSITION 3.4 AND COROLLARY 3.5.
Suppose e=e(1)>2. Then, by these results, the HA-deviation
0(P): SASAS— QK = K(Z/3, 6n—3)

of the H-map @ is calculated as follows:
0(p)~=* since p is an HA-map; and 6(p)~*: SASAS—-QE,, by Prop-
osition 2.4 (i) since S is (2n—2)-connected. Thus

8(@)(p A pAp) ~0(Gp) ~0(ep) ~ 0(@)(PAPAPD)
by [13; 2.5.2]. Hence it follows from Proposition 3.4 that
0(@)*e = (s*®@s*®@s*)0(p)*¢  mod Ker(p*@p*®p*) (¢=tgn-3)
=+suU@@s*u@s*u= 1 @ ®E;.

Also by Lemma 3.2 (ii) and the definition of p, there is a homology class te
H,,_(S; Z/3) with (¢, £,>=1 and {t, Ker p*>=0; hence

(3.6) (R, UP)*e) = £ <8, &% = + 1.

On the other hand, $*¢q,_, € H®"~%(S; Z/3) is primitive since ¢ is an H-
map; and H*(S; Z/3) has no even dimensional primitive classes by Lemma 3.2 (i).
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Hence ¢*¢4,_,=0 and @ ~*. This implies by Zabrodsky [14; 1.2.1] that
0(@)*c = (1@u—pa®1)z forsome zeH*(SAS; Z/3),
where jo=p*a— 1®a—a®]1 for the multiplication of u of S. Thus
3.7 (1@1@1, 8(¢)*ey = (1@t ®1, (1QA— AR 1)z)
= {Q1®t, (1@u*—p*®)z) = (4@ - 1’1, z).

Here t2=tt is the Pontrjagin product in H,(S; Z/3) given by u, which is com-
mutative by Milnor-Moore [8; 4.20] since H*(S; Z/3) is primitively generated by
Lemma 3.2 (i). Therefore t2=0 since dim ¢ is odd; and the last in (3.7) is O,
which contradicts (3.6). q.e.d.

PROOF OF COROLLARY 3.5 FROM ProPOSITION 3.4. Let
vi:SAS— LX;*~2(pAp), vy: X —> LQ?K'; * ~ ¢, and
w: S AS— PEg,; d(s) ~ 1,4,

be homotopies given by Proposition 3.4. Then @ is an H-map with the H-
structure F4: S x S—PQ2K’ given by

Fg(x, y) = F,(sx, sy) + (Pp)({(sx, sy)+(x, y)-cs(x- y))
— Fo(A244(x, y)-s(x-p)) — vady(x, ¥)-cos(x-y),
and so is § with F,: § x §— PE,, given by
Fy(%, §) = U(pX, pJ) + (0(pX, pJ)— (LA)V\(X, 7))-(Ps)F (X, ),

where F,: Eg, x Eg,—PQ?K’ and F,: Sx8—PS are those of ¢ and p, and
{: SxS—PE,, is a homotopy sx-sy~d(s)(x, y)-s(x-y).
Now the homotopy (Lv,)v,: S A §—L2Q2K’ gives us a homotopy

v,21(p A p) ~ (L(pA,))v, fixing the end points.
Also the one §xS5—P2S, defined by (%, j)=(PF,)(LA)v((%, ), cs(p% - pF)),
gives us a homotopy
—Fy(2,4,(p%, pJ), s(p% - pJ)) — (L @2 ))v1(%, J)-cos(pX - pF)
~ — (Po)((LA)v((X, 7)-cs(pX-py)) fixing the end points.

By these homotopies, we can define the homotopy F 5(p x p)+(P@)F ,~F ,(p x p)+
(Po)F ;5: Sx8-PQ2K’ between the composed H-structures of $p and ¢p,
so that this and the stationary homotopy H=c@p: S—PQ2K'; $p=¢pj show
dp~@p as H-maps. q.e.d.
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Therefore we have proved that Proposition 3.4 implies Proposition 3.1,
which implies (1.5) and Theorem 1.2.

§4. Ladder Toda Bracket

In this section we discuss a simple case of the ladder Toda bracket introduced
by Zabrodsky [12].
Consider the following diagram of spaces and maps:

Y £, ¥, 2o, ¥,

lho 1h.

Qx, Y E ', x, Lo, x, L, x,.
Here f,, f1, 9, 90> ho and h, are given maps with

fifo~* gog ~* higo~fohy and fih; ~ x,

r is the homotopy fiber of f,, i.e., E=E; ={(x, De Xqx LX,|fox=e,l} and
r(x, )=x, and ¥ is the map defined by

V(x, I) = (Lf,)l — vx Dby a fixing homotopy v: Xo — LX,; * ~ f, f,.
Then we prove the following
PROPOSITION 4.1. There are maps h: Y-E and h': Yy—»QX, with
rh=hogg and h'g ~ yh.

PrOOF. By using homotopies #: Y- LY,; *~gog, ®: Yo—PX,; hgo~
fohoand {: Y,=»LX,; x~f,h,, we define h and h’ by

h = {hog x((Lhi)n+wg)}4 and h' =g, + (Pf)w — vh,.

Then rh=hyg. Moreover L(fih,)n~{gog9: Y- LX, fixing the end points by
(LOn: Y=L2X,. Therefore

h'g = {gog + (Pf))wg — vhog ~ L(fih)n + (Pf)wg — vheg = Yh. q.e.d.

§5. Proof of Proposition 3.4

By the consturction given in §2, we have the diagram
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Q2K, Li=in, E,=E,, £, Q2K'=K(Z/3, 6n—2)
1"2=rﬂh

(6.0) QK 1= g = QE, 2k, Kk, =TT:z1, K(Z/3, mi—1) 28, QK
lr,z.Qr,

S S, QK=K(Z/3,2n—-1) 2L, QK =TT}, K(Z/3, I,— 1)

for f, g, h and ¢ in (2.3) and Proposition 2.4 (ii) and s, with s¥¢,,_,=¢, in
Lemma 3.2.
Hereafter assume that n=3¢ and e=e(1)>2. Then:

LEMMA 5.2. sg is an H-map, and there are maps
$;:S—E, and dy:SAS— QK =T1sz!, K(Z/3, 1,-2)
such that rys,~sg, d(s;)~jody, d§¢,=0 for t=1,—2 (i#0), and
d§¢,, . ,€ PH"(S; Z/3) ® PHXS; Z/3) (I,—2=2n+2),
where PH* denotes the primitive module of H*.

PROOF. s, is an H-map since &, is primitive; and we fix an H-structure F:

S x S—PQK for s,.

The mod 3 Steenrod algebra .« acts on H*(S; Z/3) trivially. Hence s¥(Q2f)*,
=0 for all ¢t by the definition of f in (2.3). Thus (Qf)so~*. By choosing a
homotopy v: S—LQK,; *~(Qf)s,, we define

d:SAS—> QK, by d(x,y)~vx-vy+ (PQfYF(x, y) — v(x-y).
Then by [14; 1.2.1] and [13; 2.5.2], we see that
(1Q@i—pa@Dd*e, = 0(2f )so)*¢, = O(so)*(Q2f)*¢, = 0

for any t (& is the one in (3.7)). Thus d*¢, represents some element in
I'=Ext%*(Z/3, Z/3) for H,=H,(S; Z/3). Here I' is isomorphic to @®{Z/3
generated by {;®¢;|1<i<j<a+b}, since H*=H*(S; Z/3) is given in Lemma
3.2 (ii). Therefore, by dimensional reason, d*¢,=0 in I' for t#2n+2, and
d*¢,,., in I is represented by a class in PH?""'®@PH3. Thus there are a, e H!
for t=1,—2 (—1<i<e) such that

d*¢, = ja, if t # 2n + 2, and d*¢, — jia,e PH*""' ® PH3 if t = 2n + 2.
Now we take a map w: S—»Q2K, with w*¢,=a,, and define d,: SA S— Q2K by

do(x, y) ~ (@ +V)x - (@+v)y + (PQf)F(x, y) — (0 +V)(x- ).
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Then dy(x, y)~d(x, y)+wx-wy—aw(x-y) since + is homotopy commutative in
Q2K,. Hence d}c,=d*¢,—jiw*¢,, and so d, satisfies the last conditions in the
lemma by the definition of a, and w. Moreover, by using the natural homotopy
equivalence ¢: Eq,—QE  (see §2), we put

$; = &(soX(w+v)4: S— Eq, —> QE, = E,.
Then r,s, ~s, and we see that d(s,) ~jod, (cf. [13;2.2.1 (b)]). q.e.d.
The above lemma implies that

(5.3) ditansz = Lh=y [ ® &yyy for some (e PH?""\(S; Z)3).
Therefore by the proof of Lemma 3.2 (ii), there are maps
(5.4) Y0 S— X =Sy with yY¥={, for 1<i<b,
where { € H2"~"(X; Z/3) is a generator. Consider the maps
(5.5) 0,: S—> K(Z3), 3) with o}z, =¢&,,; for 1 <i<b, and

1: 2 A K(Z3), 3) — Q2K with t*¢, = 0 (t#2n42), ™¢3,4, = { ® ¢3,

for the fundamental class ¢; and its mod 3 reduction ¢;. Then Lemma 5.2
together with (5.3-5) implies the following

LEMMA 5.6. do~t(Y A0y) - T(Y3A0,) -, AGy).
Now we consider the special maps
K; =K(Z3), 3) -5 K, = K(Z/3, 7) 12 Ky, = K(Z]3, 12)
with n¥e,=2'%; and n¥e¢,=2'Be;. Then (n)*¢ ,=(22B+pPH)i,=0.
Thus we have the maps
F -2, Ky -7, F, P2, K, with p,p=n,,
where p, is the homotopy fiber of 5, and p, is that of . Then:

LeMMA 5.7. 7n(F,)=0 for t>11, p¥*: AX(K,; Z/3)-»H*(F,; Z/3) is 0 for
*#3, and there are maps 6;: S—F with p,6;~a; for o; in (5.5) (1<i<b).

PrOOF. By definition, n(F,)=0 for t>12, and =n(F;)=0 for >11.
Moreover we see the second assertion since p}2'¢;=0.

Fix i with 1<i<b. Then by the proof of Lemma 3.2 (ii), o; is factored
through as S-2 8%, -2 K3, o;,~00'. no~# since F, is 6-connected; hence
o~ p,G for some 6: S}3)—»F,. Thus p,6;~0, for G,=d0". q.e.d.

LEMMA 5.8. For the diagram (5.1), there is a map
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a: X AF,— E, (Z=8%"
with rya,(Y, A 6)~jot(Y;n0): SAS—>E, and pa,~*: ZAF -Q?K'.
PROOF. (Rh)jo=Q(hj;): Q*K,—»QK,=[1¢z1, K(Z/3, m;—1), and so
((Qh)jot)*¢,e PH2"~Y(X; Z]3) ® PH*(K; Z/3) fort =m; — 1
by (5.5). On the other hand, it is well known that
Hx(K;; Z[3) = A(t3, PO PO4[i>0) @ Z[3[fPD---2O¢4]i>0],
(2 =23"). Thus, by dimensional reason, we see that
(Rh)jo1)*¢e, = L ® (PP (ce Z[3, n'=3¢71) fort=m,_, — 1,
and ((Qh)j,t)*¢,=0 otherwise. Define a map 7: 2 A K;—QK, by
T*¢, =c{ ® (Pe;)" fort=m,_, — 1 and %*¢, = 0 otherwise.
Since n¥¢,=2'¢; and p,n=n, by definition, these imply that
(@h)jor ~ F(1 Amy) = (1A p,)(1 AT,
Therefore we have the homotopy commutative diagram

SAF, AP, Ak, AT S AF,
jfor lf‘(l/\pz)

QK L E, ", E, 2, ok, 2, 0k

Here (1 An)(1 A p,)~#* by definition. Moreover, by the definitions of g and h
in (2.3), (gh)*¢e,=r%¢3, and so Q(gh)~*. Also
T*(Qg)*ton-1 = 2" (cL®(Be7)™) = cLR®(P'Bes)" = (1 An)*(c{®¢3);
hence ((2g)T(1 A p,))*¢en—1=0. Thus (Qg)7(1 A p,)~=*. Therefore we can
apply Proposition 4.1 to get two maps
a,: 2 A Fy — E, with rya, = jot(1Ap,) and &,: 2 A K3 — Q2K'

with &,(1 A p;)~¢a,, because Yy in Proposition 4.1 for the above diagram is
equal to ¢ by a suitable homotopy Q(gh)~ * (see the proof of Proposition 2.1).
Now we have the first homotopy for a, using Lemma 5.7; and the second
one because p¥=0 in dimension #3 by Lemma 5.7, Q?K'=K(Z/3, 6n—2) and
6n—2#2n+2. q.e.d.

PROOF OF PROPOSITION 3.4. By Lemma 5.2, we see that
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d((Qh)s,) ~ (2h)d(s,) ~ (Rh)jody = Q(hjf)do ~ ¥,

because 2h and Q(hj,) are given by some mod 3 Steenrod operations of positive
degree which are trivial on H*(SAS; Z/3). Therefore (Qh)s,: S-»QK,=

¢!, K(Z/3, m;—1) is an H-map. Thus for any t=m;—1, ((Qh)s,)*¢, is
primitive, and so it is 0 by dimensional reason. Hence (Q2h)s, ~*, and we have
a lift

5:S— E, = Eq, with rys =s,,i.e., r;r,s ~ sgand s*u = ¢, .
Now we consider the maps
(5.9) SAS O, Y=(ZAF) %2, E,=E,, (Z=SH41)

given by &, =(I1%-, WA G)4 and §,=a,-----a, (b times), where ¥;, &; and «a,
are the maps in (5.4) and Lemmas 5.7-8. Then

20201 = ra(aa(Yy AGy) - -+ - oYy A Gy))
~ Jjo(tWy Aay) -ty Aay)) ~ jodo ~ d(sy) ~ rad(s)
by Lemmas 5.8, 5.6 and 5.2, since r, =Qr, and j, =Qj, are H-maps. Thus
(5.10) j,d + 38,6, ~d(s): SAS—> E, forsome d:S A S— Q2K,.
Here, by dimensional reason, we see that
(5.11) d*¢,_,e DH* ® A* + A* ® DH* forany t=m, — 1,

where H*=H*(S; Z/3), and DH* is the decomposable module of H*. Consider
the maps

S I, S'=T]¢25 Sy, L2 R=T1%2K(Z/3, n;),
where y, is the projection and y¥¢, =¢; (in Lemma 3.2). Then we see that
(5.12) Im[y*: A%RAS; Z/3)-»H*] = DH*
for y= (7, AD4:S— K A S.
Thus by (5.10-12), there are two maps
(513) d:RKASAS— 22K, and d,: SA KA S— Q2K, with
d~d(yrl) +dy(1Ay): S A S—s Q?K,.
Furthermore, by putting e(i)=1 for i>a, define

fi: K(ZJ3, n) —> R, = K(Z/3, n;+1) x [159~1 K(Z/3, n;+4-3/)
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by f¥e,=pe,, for t=n;+1 and f¥¢,=2U¢, for t=n;+4-37; and consider the
homotopy fiber

#:E— KR of [I#!fi: R— [ K.
Then
(5.14)  n(E)y=0fort>n,+4-3"1=10.3"1 (n,=2n—1, n=3¢),
Furthermore ([, f;)y, ~ * since y¥(I']; f)*¢,=0 for any ¢, and so we see that
(5.15) 7, = Fj, for some 7,: S — E.

Moreover the mod 3 Steenrod algebra o7 acts trivially on Im [#*: H*(k;. Z/3)—>
H*(E; Z/3)] by definition, and ¢j, =Q2g. Thus

(5.16) @jd(FATAL)~ % and @jdy(1AFAL) ~ %,
On the other hand, p: §—S is defined by
p=p@4n=3)=1xp'@4n-3:8=2x S(@4n-3)—S=I x §,
and S’(4n—3) is (4n—3)-connected. Therefore,
5291p = 720'(4n=3)pr,: § — S'(4n—-3)— ' — E
is homotopic to * by (5.14) and 4n—3>10-3¢"!. Thus
(517) (Falj=y and Jp~#* for §=@GFp,A)4:S— E A S.
Now using Y, 8,, 4, in (5.9) and the above maps, we define
SAS 2, X=(EASAS)X(SAEAS)XY 22, E,=E,,

by A, =((FA)x(1AF)x8,)4 and A,=j,d(FATAL)pry+j,d,(1AFAT)pr+
0, pr;. Then, noticing that j, and ¢ are H-maps, we see that d(s)~ 1,4, by
(5.10), (5.13) and (5.17), and @A, ~@d, pry ~(@a,---@a,) pry ~* by (5.16) and
Lemma 5.8. Moreover, n(F,)=0fort>11 by Lemma 5.7, and S=rxS'(4n-3)
is (2n—2)-connected. Thus G;p~#*:S—F, because 2n—2=2.3°—-2>11 by
the assumption e>2. Therefore

AlpAp) = ((FoAp)x(pATp)xd,(pAp)A ~ (TTh= (Yip AGip))A ~ *

by (5.17) and (5.9). This completes the proof of Proposition 3.4. q.e.d.
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