Valuations of a quasi-pythagorean field

Tatsuo Iwakami

(Received January 7, 1988)

In [3], B. Jacob constructed valuations of a formally real pythagorean field and used them to clarify the structure of such a field. We show in this paper that his method is applicable to a quasi-pythagorean field.

All fields are assumed to be formally real.

§1. Valuations

Let F be a (formally real) field and T be a fan of F with $[\dot{F}: \dot{T}] \geqq 4$. We denote by T^{2} the set $\left\{x^{2} ; x \in T\right\}$ and by $[\alpha]$ the class of $\alpha \in \dot{F}$ in \dot{F} / \dot{T}.

Let $R(T)$ be the subgroup $\left\{[\beta] \in \dot{F} / \dot{T} ; T^{2}-\beta^{2} T^{2}\right.$ represents non trivial elements of $\dot{R} / \pm \dot{T}\}$. Then as shown in [3], $R(T)=\{ \pm 1\}$ or $R(T)=\{ \pm 1, \pm[\alpha]\}$ for some $\alpha \in \dot{F}$, where we denote [1] by 1 and $[-\alpha]$ by $-[\alpha]$. For a subgroup \hat{R} of \dot{F} / \dot{T} containing $R(T)$, we define:

$$
\begin{aligned}
& O_{1}(T, \hat{R})=\{x \in \dot{F} ;[x] \notin \hat{R} \text { and }[1+x]=1\} \cup\{0\}, \\
& O_{2}(T, \hat{R})=\left\{x \in \dot{F} ;[x] \in \hat{R} \text { and } x O_{1}(T, \hat{R}) \subseteq O_{1}(T, \hat{R})\right\}, \text { and } \\
& O(T, \hat{R})=O_{1}(T, \hat{R}) \cup O_{2}(T, \hat{R}) .
\end{aligned}
$$

Then we have
Theorem 1.1. $O(T, \hat{R})$ is a valuation ring of F which is fully compatible with T, that is, $1+M \subseteq T$ for the maximal ideal M of $O(T, \hat{R})$. If \hat{R} equals $R(T)$, then for the image \bar{T} of $T \cap O(T, \hat{R})$ in the residue field \bar{F}, we have $[\bar{F}: \bar{T} \cdot] \leqq 4$.

This theorem was proved in [3] with the assumption that F is pythagorean. But the assumption may be removed (compare [6], Theorem 3.3).

Now we generalize Theorem 1 of [3] as follows.
Theorem 1.2. $O(T, \hat{R})$ is fully compatible with a preordering S of F if and only if $[1-t] \in \hat{R}$ for all $t \in \dot{T} \backslash \dot{S}$.

Proof. Suppose that $O(T, \hat{R})$ is fully compatible with S, but $[1-t] \notin \hat{R}$ for some $t \in \dot{T} \backslash \dot{S}$. Then $1-t$ is not a unit, for every unit is an element of \hat{R}. If we have $t \in O(T, \hat{R})$, then $t=1-(1-t) \in 1+M \subseteq S$ which is a contradiction. So we have $l \notin O(T, \widehat{R})$ and $\operatorname{ord}(t)=\operatorname{ord}(1-t)<0$. Hence $t^{-1}-1=t^{-1}(1-t)$ is a unit. But we
have $\left[t^{-1}-1\right]=\left[t^{-1}\right][1-t] \notin \hat{R}$ which is a contradiction.
Conversely suppose that $[1-\mathrm{t}] \in \hat{R}$ for all $t \in \dot{T} \backslash \dot{S}$. Then we have $\left[t_{1}-t_{2}\right] \in \hat{R}$ for all $t_{1}, t_{2} \in \dot{T}$ with $t_{1} \dot{S} \neq t_{2} \dot{S}$. Suppose that $x=1+m \notin \dot{S}$ for some $m \in M$. It follows from $x \dot{S} \neq \dot{S}$ that $[m]=[x-1] \in \hat{R}$. For any $y \in O_{1}(T, \hat{R})$ we have $[x+y / 2]=[x]$ $=1$, because x is a unit contained in T. Thus we have $(x+y / 2) \dot{S}=x \dot{S}$ and similarly $(1-y / 2) \dot{S}=\dot{S}$. So we have $[x+y / 2-(1-y / 2)] \in \hat{R}$, that is, $[m+y] \in \hat{R}$. Since $y \notin \hat{R}$, it follows that $[m+y]=[m]$. This means $\left[1+m^{-1} y\right]=1$ whence $m^{-1} \in O_{2}(T$, $\hat{R}) \subseteq O(T, \hat{R})$, a contradiction.
Q.E.D.

§2. The case of a quasi-pythagorean field

From now on we always assume that F is a quasi-pythagorean field. In other words we assume that Kaplansky's radical $R(F):=\left\{a \in \dot{F} ; D_{F}<1,-a>=\dot{F}\right\}$ coincides with $D_{F}(2)$. Then we know $R(F) \cup\{0\}$ is the weak preordering $\sum F^{2}$ which we denote by S in the rest of this paper. We denote by $\left(X_{F}, \dot{F} / \dot{S}\right)$ the space of orderings of F. We refer to [5] for spaces of orderings, especially for the group extension of a space and the direct sum of spaces.

Theorem 2.1. Let F be a quasi-pythagorean field and $\left(X_{F}, \dot{F} / \dot{S}\right)=\left(X^{\prime}, G^{\prime}\right) \times H$ be a proper (i.e., $H \neq 1$) group extension of a space $\left(X^{\prime}, G^{\prime}\right)$, which itself is not a proper group extension. Suppose that S is not a trivial fan. Then there is a valuation v on F which satisfies the following conditions:
(i) v is fully compatible with S,
(ii) $\left(X_{\bar{F}}, \bar{F} / \bar{S}^{\cdot}\right) \sim\left(X^{\prime}, G^{\prime}\right)$ and $\Gamma / \Gamma^{2} \cong H$,
where \bar{F} and Γ are the residue field and the value group of v respectively and \sim denotes an equivalence of spaces.

Proof. If we replace $\alpha \dot{F}^{2}$ for $\alpha \in \dot{F}$ by $\alpha \dot{S}$, then all the arguments in [3] are valid. So we see that for a minimal fan T of $\left(X^{\prime}, G^{\prime}\right)$ which is (regarded as a fan of F) different from \dot{S}, we may set $G^{\prime}=\hat{R}$ in Theorem 1.1. Thus we have the valuation ring $O\left(T, G^{\prime}\right)$. We show that the valuation v which corresponds to $O\left(T, G^{\prime}\right)$ satisfies the conditions stated in the theorem. For $t \in \dot{T} \backslash \dot{S}$ we see that $(1-\alpha) \dot{S} \in G^{\prime}$, for otherwise there would be an ordering of F in which $\alpha<0$ and $1-\alpha<0$. So $O\left(T, G^{\prime}\right)$ is fully compatible with S by Theorem 1.2. It is easily seen that \bar{F} / \bar{S}. is isomorphic to a subgroup of G^{\prime}. Since we suppose (X^{\prime}, G^{\prime}) is not a proper group extension and (X_{F}, $\dot{F} / \dot{S}) \sim\left(X_{\bar{F}}, \bar{F} / \bar{S}\right) \times \Gamma / \Gamma^{2}$ by Corollary 3.11 of [4], we have $\left(X^{\prime}, G^{\prime}\right) \sim\left(X_{\bar{F}}, \bar{F} / \bar{S} \cdot\right)$ and $H \cong \Gamma / \Gamma^{2}$.
Q.E.D.

Corollary 2.2. In the situation of Theorem 2.1, a-henselization \tilde{F} of F with respect to v is a pythagorean field and we have $\left(X_{F}, \dot{F} / \dot{S}\right) \sim\left(X_{\tilde{F}}, \tilde{F} \cdot / \widetilde{F}^{2}\right)$.

Proof. By Theorem 2.1, $\left(X_{F}, \dot{F} / \dot{S}\right) \sim\left(X_{\dot{F}}, \bar{F}^{\cdot} / \bar{F}^{2}\right) \times \Gamma / \Gamma^{2}$. Since $\Gamma / \Gamma^{2} \cong H \neq 1$,
\bar{F} is pythagorean by [2], Proposition 1.3. So \widetilde{F} is also pythagorean by [4], Theorem 3.16. As \widetilde{F} is an immediate extension of F, we have $\left(X_{F}, \dot{F} / \dot{S}\right) \sim\left(X_{\tilde{F}}, \widetilde{F} \cdot \widetilde{F}^{\cdot 2}\right)$.
Q.E.D.

Now we consider the case where $\left(X_{F}, \dot{F} / \dot{S}\right)$ has a finite chain length so that it is a direct sum of elementary indecomposable spaces. Thus $\left(X_{F}, \dot{F} / \dot{S}\right)=\left(X_{1}\right.$, $\left.G_{1}\right) \oplus \cdots \oplus\left(X_{m}, G_{m}\right)$, where $\left(X_{i}, G_{i}\right)$ is one element space or a proper group extension of some space ($X_{i}^{\prime}, G_{i}^{\prime}$).

Theorem 2.3. In the above situation, we have $\left(X_{i}, G_{i}\right) \sim\left(X_{F_{i}}, \dot{F}_{i} / \dot{F}_{i}^{2}\right)$ for some pythagorean field F_{i} contained in the maximal 2-extension F (2) of F.

Proof. Fix i for which $G_{i} \neq 1$, so that $\left(X_{i}, G_{i}\right)$ is a group extension of $\left(X_{i}, G_{i}\right)$. Then (X_{i}, G_{i}) contains a fan which we denote by T_{i}. If we replace $\alpha \dot{F}^{2}$ by $\alpha \dot{S}$ in the proof of Theorem 4 of [3], we see that $\hat{T}=T_{i} \oplus\left(\oplus_{j \neq i} G_{j}\right)$ may be regarded as a fan of F and that $R\left(\widehat{T}_{i}\right) \subseteq G_{i}^{\prime} \oplus\left(\oplus_{j \neq i} G_{j}\right)$. Thus for $\hat{R}=G_{i} \oplus\left(\oplus_{j \neq i} G_{j}\right)$ we obtain a valuation ring $O\left(\widehat{T}_{i}, \hat{R}_{i}\right)$ by Theorem 1.1. Let F_{i} be a 2-henselization of F with respect to the valuation v_{i} corresponding to $O\left(\hat{T}_{i}, \hat{R}_{i}\right)$. We show that $\dot{F}_{i} / \dot{S}_{i} \cong G_{i}$ where S_{i} denotes the weak preordering of F_{i}. Let φ be the homomorphism which makes the following diagram commutative (where the maps other than φ are obvious ones):

Then we see, by following the proof of Theorem 3 of [3], that $\oplus_{j \neq i} G_{j} \subseteq \operatorname{Ker} \varphi$ and that the restriction of φ to G_{i} is injective. Thus $\dot{F}_{i} / \dot{S}_{i} \cong G_{i}$. From this it follows that $\left(X_{\bar{F} i}, \bar{F}_{i} / \bar{S}_{i}\right) \sim\left(X_{i}, G_{i}\right)$ and that F_{i} is pythagorean as in the proof of Corollary 2.2. So we have $\dot{S}_{i}=\dot{F}_{i}^{2}$ and $\left(X_{F_{i}}, \dot{F}_{i} / \dot{F}_{i}^{2}\right) \sim\left(X_{i}, G_{i}\right)$. If $G_{i}=1$, then we may take an euclidean closure of F for F_{i}.
Q.E.D.

Now we apply above theorem to the problem treated in [1].
Theorem 2.4 Let F be a quasi-pythagorean field for which the chain length of X_{F} is finite. Then the canonical homomorphisms $h_{n}: k_{n} F \rightarrow H^{n}(F, 2)$ are injective for all n.

Proof. We may assume that $\left(X_{F}, \dot{F} / \dot{S}\right)=\left(X_{1}, G_{1}\right) \oplus \cdots \oplus\left(X_{m}, G_{m}\right)$ in the notation before Theorem 2.3 (cf. [5]). Now consider the following commutative diagram:

where F_{i} are pythagorean fields obtained in Theorem 2.3, and φ, ψ are natural homomorphisms. We showed in [1], Theorem 1.5 that $k_{n} F \cong I^{m} F / l^{+1} F$ for $n \geqq 2$, and $I^{n} F / I^{n+1} F \cong \oplus_{i} I^{m} F_{i} / l^{n+1} F_{i}$ by the structure of X_{F}. Thus φ is an isomorphism. Since $h_{n}\left(F_{i}\right)$ is an isomorphism by [3], Theorem 6, we see that $h_{n}(F)$ is injective (and ψ is surjective) for $n \geqq 2 . h_{1}(F)$ is an isomorphism for any field F. Q.E.D.

References

[1] T. Iwakami, The graded Witt ring of a quasi-pythagorean field, Hiroshima Math. J. 17 (1987) 651-657.
[2] T. Iwakami and D. Kijima, Spaces of orderings and quadratic extensions of fields, Hiroshima Math. J. 16 (1986) 21-31.
[3] B. Jacob, On the structure of Pythagorean fields, J. Algebra 68 (1981) 247-267.
[4] T. Y. Lam, Orderings, valuations and quadratic forms, Regional conference series in math., number 52, Amer. Math. Soc. 1983.
[5] M. Marshall, Spaces of orderings IV, Can. J. Math. 32 (1980) 603-627.
[6] R. Ware, Valuation rings and rigid elements in fields, Can. J. Math. 23 (1981) 1338-1355.

Faculty of Integrated Arts and Sciences, Hiroshima University

