
HIROSHIMA MATH. J.

18 (1988), 541-597

Riesz potentials, higher Riesz transforms and Beppo Levi spaces

Takahide KUROKAWA

(Received December 23, 1987)

Table of contents

Section 1. Introduction
Section 2. Notation and preliminaries
Section 3. Integral inequalities and Riesz potentials of order (m, k)
Section 4. Higher Riesz transforms
Section 5. Primitives of higher order
Section 6. Beppo Levi spaces
Section 7. Embedding and interpolation theorems
References

§1. Introduction

Let Rn be the n-dimensional Euclidean space and / be a continuous function on

Rn with compact support. For a positive integer / with 21 <n, a solution of the

equation

(1.1)

is given by

•ί= \\χ-y\2l-nf(y)dy,

where chn = (21 - ri) (21 - 2 - n) -(2 - ή)2\l- l)\πn/2/T(n/2). The function Όf

m is called

the Riesz potential of order m of/ In particular, U{ is the Newton potential of/

Naturally, the following problem arises: Find a representation of a solution of the

equation (1.1) for any positive integer / and any LMunction/ We note here that for

an LMunction/ Us

m does not necessarily exist in case m — (n/p)^0.

Let m be a positive integer and p>\. We denote by S£v

m the space of all

distributions u such that DaueLp for any |α| = m. If m — (n/p)<0, then ue<£v

m can be

represented as follows ([12]):

(1.2) n ^

We are also concerned with the following problem: For any positive integer m and p
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> 1, represent ue££v

m in a form like (1.2).

To answer the above problems, we need to introduce potentials of order m of

Lp-functions for any positive integer m and any p> 1. For a positive integer m, the

Riesz kernel of order m is given by

{ |x|m~", m<n or m ^ n , m — n odd,

(δntΛ-log\x\)\x\m ", m^n, m - n even,
where <5m>M are suitable constants (see §3). Further, for an integer k^m-l we

consider the kernel

I Km(χ-y)-Σm<k(χy/yWκJί-y), ogfcgm-i,

and potentials

=

The kernels κ:2,fc(x, )>) appeared in the context of integral representations of

subharmonic functions ([9], (17]). In §3, we show the existence and integral

estimates of l/£>fc ϊoτfe Lp and k = [m — (n/p)] (the integral part of m — (n/p)) in case m

— (n/p)φθ91, , m— 1. An inequality by G. O. Okikiolu [16] plays a central role in

the study of the integral estimates. We also discuss the case m — (n/p) = 0, l, ,m—1.

In case m — (n/p)<0, the integral estimates are given in S. L. Sobolev [22], E.M.

Stein and G. Weiss [25] and D. R. Adams [1]. E. Sawyer [20; Proposition 3.2] gives

a weighted norm inequality for U{ntk with/eL 2 under several conditions. In §4, we

introduce higher Riesz transforms of feLP, by which we can express partial

derivatives of order m of ί/£ fc. This is a generalization of M. Ohtsuka [15; Theorem

9.6] and Y. Mizuta [14; Theorem 5.1]. In §5, we give a representation of a primitive

of higher order, as an analogue of the integral representation given by Yu. G.

Reshetnyak [18; Lemma 6.2]. We establish reltionship between the primitive of

order m and the potential of order m. By using this relationship we make some

improvements of integral estimates for Uf

m k. In §6, we investigate the Beppo Levi

space $££, and give potential and integral representations of Beppo Levi functions

for arbitrary positive integer m and p>\. Note that M. Ohtsuka [15; Theorem

9.11] and Y. Mizuta [14; Theorem 5.2] give an expression of Beppo Levi functions

by E/£ under some conditions on m and p. We also investigate characterizations of

the closure λJm of 3) in J^£, where 3} is the class of all infinitely differentiable

functions with compact support. These results include a characterization by P. I.

Lizorkin [12; Theorem 4]. As a consequence, we give a representation of a solution

of the equation (1.1) for any positive integer I and any LMunction/ In §7, using
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potential representations of Beppo Levi functions, we establish embedding

theorems and interpolation theorems for the spaces L£. As corollaries we obtain

some extensions of Sobolev's embedding theorem [2; Theorem 5.4].

§2. Notation and preliminaries

We use Rn to denote the π-dimensional Euclidean space (n ̂  2) and for each

p o i n t x = ( x u ", x jwe write | χ | = ( χ 1

2 + •••+x^)1/2. For a positive number r, we

write Br = {x; |x| < r} and Sr = {x; \x\ = r}. We denote by ωn(r) and σn(τ) the volume of

Br and the surface area of Sn respectively. We simply write ωn(l) = ωn and σM(l) = σn.

For a nonnegative integer /c, Ck stands for the space of all k times continuously

differentiable functions on Rn, and C00 denotes the space of all infinitely

differentiable functions on Rn. According to L. Schwartz [20], & denotes the Frechet

space consisting of all C00-functions on Rn, $f stands for the Frechet space consisting

of all C00-functions rapidly decreasing at infinity and 3) denotes the LF-space

consisting of all C00-functions with compact support. The symbols &\ Sff and 3)'

stand for the topological duals of S, <9* and ®, respectively. We use the symbol < w,

φ> for the canonical bilinear form on S" x S or Sf' x 9* or 3)' x 3). The inclusion

relations £' a £f' a 3)' hold. We call an element of 3)' a distribution.

If α = (α1?- , αn) is an n-tuple of nonnegative integers OLP we call α a multi-index

and ednote by xa the monomial x^i xjw, which has degree |α| = γj= ^j. If α and β

are two multi-indices, we write α ^ β provided cc^βj for l g j ^ n . We also write

α! = α1! . απ!, α + j9 = (α 1 +iS l s , *H + βJ

and if α ̂  β

For 1 ̂ 7"^«, e,- stands for the multi-index (0, , 1, , 0). If Dj — d/dXj for 1 ^

then

gives a differential operator of order |α|. The Laplace operator on Rn is

and its iterations are denoted by Δf, /= 1, 2, . The Leibniz formula

(x) = Σ ί

is valid for functions / and g which are |α| time continuously differentiable.
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Throughout this paper let 1 <p<oo and (l//7) + (l/p')= 1. As usual we denote
by Lp the class of all measurable functions for which

Moreover, for a measurable set E c Rn, we put

L P(F\ — ί ίtzΛ P f(γ\ — 0 fnr γάF\

For a function/on Rn and a set EczRn, we write

/(x), XG£,

k yJ, XψΣj.

For measurable functions/and g,f*g stands for the convolution product of/and g,
that is,

f*g(χ)= \f(χ-y)g(y)dy

if the integral exists for almost every x. For distributions u and υ9 we denote their
convolution also by u*v, if it exists.

If/is an integrable function, then the Fourier transform of/is the function
=/defined by

— \o-2πixy= \e-2πixyf{y)dy

for all xeRn where x-y = Yj= \Xjyy Moreover, we define the Fourier transform
' to be the element of &*' whose value at φeSf is

w, φ> = <w,

For ue^' and a multi-index α, the following formula holds:

For a real number r, [r] denotes the integral part of r.
Throughout this paper, we use the symbol C for generic positive constant

whose value may be different at each occurrence, even on the same line.
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§3. Integral inequalities and Riesz potentials of order (m, k)

3.1. Kernels of order (m, k)

We begin with some observations on Taylor's theorem. Let weC00. For a

nonnegative integer k, by Taylor's theorem we have

(3.1) u(x) = Σ.r . **(*7y!)J>M0) + (k + i )Σ, y , =k+1

where x' = x/|x| (x^O). We put

ιo,

We note that

(3.2) D^k(0) = 0 for |]8|̂ /fc,

(3.3) D a φ ) = D α φ ) for | α | ^

For a multi-index δ with |<5| gfe, applying (3.1) to Dδuk and using (3.2) and (3.3), we

obtain

Dδuk(x) = Σ*- . a. +1 <
(3.4)

•J:
Let m be a positive integer, and Xm be a homogeneous function of degree m — n

which is infinitely differentiable in JR" — {0}. For a multi-index α, DaKm(x) is a

homogeneous function of degree m —n —|α|, and hence

(3.5) <ι — n — i α ι .

Furthermore, in case m^n, let ZJx) = Pm(x)log|x| where Pm(x) is a homogeneous

polynomial of degree m — n. For a multi-index α, we see that

D"Lm(x) = HJtx)log\x\ + hJtx)9

where /ία(x) is a homogeneous polynomial of degree m-n-|α| and /iα(x) is a

homogeneous function of degree m - n - |α|, and for |α| ̂  m - n + 1 , Hα(x) = 0. Hence

we have
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(3.6) ID-I^MIgClx

(3.7) ID L^ίxJI^CIxΓ""-1"1, for

For an integer k^m—1, we set

Km,k(x, y) = Km(x - y ) - Σ . y

Takahide KUROKAWA

I), for |α| ^ m - n ,

m ( - y ) ,

where we regard the second term of the right-hand side as zero if /erg — 1. For a

multi-index α with | α | ^ m — 1, it is easily seen that

(3.8)

(-y% for |α| ^ fc,

-yl for

where Dx denotes the differentiation with respect to x. Furthermore, for an integer k

with O ^ f c ^ m - 1 , we set

m>fc(x, y) = LJtx-y)-Σι
,-y).

We put lx = {ίx; 0 g ί ^ 1} and denote by d(y, lx) the distance between j ; and lx.

For ^^/^ and fc^O, it follows from (3.1) that

We shall give estimates of Kmk(x, y) and Lmfk(x, y) for d(j;, Zx)^|x|/2.

LEMMA 3.1. (i) Let kbea nonnegatίve integer with k^m — 1 and on be a multi-

index with |α| ̂  k. Then for d(y, lx) ^ |x|/2

(ii) Let a be a multi-index. Then for d(y, lx) ^ |x|/2

(iii) Let k be an integer with m — n^

Then for d{yJx)Z\x\β

^m—1 andoc be a multi-index with |α| ̂  k.

PROOF, (i) It follows from (3.4) that

m,k(x, y)\ ύΣk-i

J

'(Ixl —rt*

o r
•χ-γj)y+«KJtx-y)dt
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Using (3.5) we see that for yφlx

We note that d(y, /x)^|x|/2 implies \y\/3g>\tx-y\£3\y\ for 0 ^ t ^ | x | . Hence for

J

ι χ ι

o

This concludes the proof of (i).

(ii) This follows from (3.5) and the fact that d(y, lx) ^ |x|/2 implies \y\/3 ^ |x - y\

(iii) We note that \y + α| ̂ k + 1 ̂  m - n +1 for |γ| ^ k - |α| + 1. Therefore, using

(3.7) we can prove (iii) in the same way as in the proof of (i).

We next study integrability properties of Kmk(x, y) and Lmk(x, y) as functions of

y

LEMMA 3.2. Let m- (n/p)>0, \ 1, 2, , m-1 andk= [ m - («//?)]. Then:

(i) For each multi-index oc with |α|^fe,

^\D*xKmΛ(x, yψd^j" ^ QxΓ^- >" .

(ii) For each multi-index α with |α| = fe,

«xXm,t(x, y)-D"xKmM(z,

PROOF, (i) We have

\ΌxKmΛ(x, yW

d ( y , Z J C ) < i x ι / 2

First we estimate /^ It follows from (3.5) and (3.8) that
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\Da

xKm<k(x, y)\ g Qx-y]*-'- '•' + C Σ . , . « * . Λ « M m ~ '"\y\m~"~

Since d(y, /J<|x|/2 implies |x-y|<(3/2) |x| and \y\<(3/2) \x\, we have

|x-#' ( m-"- | α i )ίiy "
- j M <<3/2) i jci

From |α|g/c, |y| ^fc and m-(n/p)>k it follows that p'(m-n —|α|)> — nandp'(m — n

— |y|)> -n. Hence we see that

Next, in order to estimate I2 we apply Lemma 3.1 (i). Then using the fact that d(y, lx)

;> \χ\/2 implies \y\ ̂  \x\/2 we have

I y I > I Λ: i / 2

From /^Jfc-lαl + 1 a n d m-{n/p)<k+l9 it follows that p'(m-n-/-|α| )< -n.
Hence we see that

T < Γ'ST \γ\l\γ\m~(n/p)-l- \<x\ __ /^\Y\m-(n/p)- \a\
l2 = ^Zjk- \a\ +l£l£k+l\X\ \X\ — Ls\X\

Thus we obtain (i)

(ii) For a multi-index α with |α| = fc, it follows from (3.8) that

D"xKm,k(x, y) - DxKmtk(x9 y) = D«KJx-y) - D«Km(z-y).

Hence we have
\1/P'

\D"kKmtk(x9 y) - DxKm,k(z, yψ'dy \

- Π\D"Km(x -z-y)- D*Km( -

Consequently, (i) gives (ii).
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Let m ^ n and fc = (m-(n/p)]. From m-(n/p) = m — n + (n/p') it follows that k

^.m — n. Hence using (3.6), (3.7) and Lemma 3.1 (iii) we can prove the following

lemma in the same way as in the proof of Lemma 3.2 (i).

LEMMA 3.3. Ifm^n, m — (n/p)^ 1, 2, , m — 1 and k = [m — (n/p)\ then

(ϊjfor |α|^Lm — n

\i/p'

c,y)\p'dy) ^(I
(ii) for m-

Next we consider the case m — (n/p)=l, 2, , m— 1.

LEMMA 3.4. Ifk = m — (n/p) coincides with one of the numbers 1, , m—l9then

(i) for each multi-index α with |α| gfe— 1

(ί,
where log+ t = logt for ί ^ l andlog+1 = 0 for t< 1,

(ii) /or eαcA multi-index α w/ίΛ |α| = fc— 1

\y\ < i

PROOF, (i) We have

^ . ^ z , y)\p'dy\ ^ C\x-z\

\ J i y i < 1ι y ι

\D"xKm,k_ι(x,y)\pdy)1"'
\ y\ <l,d(y,lχ)< \x\/2 /

χ \x\/2

= / 1 + / 2 .

For Iί9 by (3.5) and (3.8) we see that

| x - # ' ( m - " - | β l ) d H P

- y ι <(3/2) ιx ι
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a
j \p'(m-n- i

From |α|, \γ\ g k -1 it follows that p'(m - ή - |α|), p'(m - n - \y\) > - n. Hence we have

For /2, by Lemma 3.1 (i) we see thata y
\y\p'im-n-k)dy\

\y i < 1 , \y i ^ ι x ι / 2 /

I ιp'(m-n-/- ι
\y\

\y\ z i χ ι / 2

Since p'(m — n — k)= —n, we have

Since ^^ik- |α| + l implies/7/(w-«-^-|α|)< -Λ, we have

Γ /^V |γ |I|γ-|Ή-(n/P)-J- I α I /^i^ifc-iαi
i 2 1 — ^ L f c - I α I + l ^ / ^ f c l X l l^l — ^ 1 ^ 1

Thus we obtain (i).

(ii) For a multi-index α with |α| = k — 1, as in the proof of Lemma 3.2 (ii), We

have

nt-tfay)-

\ITxKmJC-1{x-z,yydy
\z + y\ < 1

f y i < 1 ,d(y,lχ _ z) < \ x - z \ /2

+ (ί .,
For J 1 ? in a way similar to the estimate for lx in (i) we have

J^C\x-z\.

For J 2 5 it follows from Lemma 3.1 (i) that
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SCU-2|(ί

\

m ^ ιχ-z ι/2

= J21

For |z|^2, we see that

i -HI

For \z\ < 2, we have

\y\-"dy) gC|x-y) g | | ( l + l o g
/ y S ' \ \x A

For 722> noting that p'(m — n — l — k+l)< — n for 2^/gfc, we have

We have completed the proof of (ii).
The proof of the next lemma is similar to that of Lemma 3.4 (i).

LEMMA 3.5. Ifm^.n, m — (n/p)= 1,2, , m— 1 and k = m — (n/p), then

(i) /or | α | ^ m — n

) l/p'

m <l

(ii) form

ΛlP'

I

LEMMA 3.6. (jΓfc = m — (n/p) coincides with one of the numbers!, , m — 1, then

(i) /or eαcλ multi-index OL with |α| g k — 1

(T
(ii) for each multi-index α with |α| = fe—

a \Da

xKmk{x, y)-Da

xKmk{z, y)\p'dy]
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\z\

PROOF. (i) We have

\D*xKn,k(x, y)\<"dy \
: I X I / 2

vl/P'

y i

For / l 5 by (3.5) and (3.8) we see that

\y\
< ( 3 / 2 ) ι * ι

ίi^cί I \x-y\*m-H-

\ J ι χ - y ι < ( 3 / 2 ) | X |

I

G l/P'

\y\*im-"-k)dy)
l g iyi <(3/2)ιαcι

= /ll+/l2 + /l3

Since | α | ^ / c — 1 and |y |^fc—1 imply p(m — n — |α | )> — n and p'(m — n — \y\)>

respectively, we see that

I i i ^ C M k ~ ι α ι and Iί2 ^ C\x\k~ ι α ι .

F o r / 1 3 , it follows from p'(m — n — k)= —n that

Thus we have

By Lemma 3.1 (i) we see that

since p'(m — n — I — |α|)< — n for l^k — |α| + l. Thus we obtain (i).

(ii) For a multi-index α with |α| = fc— 1, it follows from (3.8) that
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DxKm,k(x,y)-DxKm,k(z,y)

= D*Kn{x-y) - D'Km(z-y) - £J- ̂ - z ^ ' KJ.-y).

Hence we have

\VxKmJx, y) - DxKmik(z, yψdy ) S J, + J2,
iy\ ^ i

where

J , = (ί \D«Km{x-z-y)-D*Km(-y)-Σnj=i{Xj-zϊD* + <

i = l , 2

with E^iy; \z+y\>l, d(y, lx_z)<\x-z\/2} and E2 = {y; \z + y\^l, d{y, / x _ 2 ) ^ |x
-z|/2}. For Ju it follows from (3.5) that

x-z-yl"'""-"-**1^) "
\x-z-y\ <(3/2)\x-z\

y | j , (m-.-» + l ) d Λ "
I J> l <(3/2)ιx-zι

yi <(3/2)ιx-zι

= J 1 X + J 1 2 H-1/13.

Since p'(m —n —fe+l)> — n, we have

We have

^C|x-z|ί I

-z\(\

<(3/2)|x-zι ,3 i χ-zι < i z\

C\x(\
\z + y \ ^ l , ι y ι < ( 3 / 2 ) ι x - z ι , 3 ι x - z ι ^ ι z ι

= ^ 1 3 1 + ^ 1 3 2 -

For J 1 3 1 , since |y|<(3/2)|x-z| and 3|x-z|<|z| imply \z + y| ̂  |z|/25 we see that
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5S Qx-z\ (\z\-» [ dy\IP Z C\x-z\.
\ J i yι < ι z ι /2 /

For J 1 3 2 , since \y\<(3/2) \x-z\ and |z |^3|x-z| imply \z + y\£(9/2)\x-z\, we see

that

:gC|x-z|f
J 1

J 1 3 2

J i z + y ι έ(9/2)ι x - z ι

Thus we obtain

Next, we shall estimate J 2. We see that

- Σ"= ι(χj-zj

\D*Km(x-z-y)-D*Km(-y)
2

1/P'

i y i ^ ι χ - z ι / 2

gC|x-z | ,

since /^2 implies p\m—n—I—k + l)< —n. For y22, we have

•̂ 22 = ^221 +-^222'

where

= J 2 1 + «̂ 22

We note that

D*Km(x-z-y)-D*Km(-y)-Σj=i^j-^Pa+ejKm(-y) = D«Xw,fc(x-z, y).

Hence it follows from Lemma 3.1 (i) that

) , i = l , 2

with £ 2 1 = {yeE2; d(y, /_,)< |z|/2} and £ 2 2 = {^6£2; d(y, /_,) ̂  |z|/2}. We note that

D + ' K J - z - y ) - D*+°.Km(-y) = Dί+ ^ B i 4 ( - z , y).
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Therefore it follows from Lemma 3.1 (i) that

J222 ^ C\x-z\ΣnjznΣi*isk\z\ι( ί \y\>'im-H-ι-k)dy)1/P ^ C|x-z|,
\ J i y i > | Z | / 2 /

since /^ 1 implies p\m — n-l — k)< —n. For J 2 2 1 , it follows from (3.5) that

J221 £C\x-

C|x-z|( | P

VJ /2 \y\ g(3/2)ιzι

= C|x-z|

\x-z\

Consequently we have

J ^C\x—z\ I l+log + | x —z| + log+-

where we used the fact that log+α^log + b + log+(α/fe) for α, b>0.

Corresponding to Lemma 3.6 (i), we can prove

LEMMA 3.7. Ifm^.n, m — (n/p)= 1,2, , m— 1 and k = m — (n/p), then

(i) (T(i) (T |D^>? };)^ygC|xr'α '(l+log|x| |) /or

(ii)
i y i ^ 1

for m - n + 1 ̂  |α| ̂  k - 1.

REMARK 3.8. Let m — (n/p) = 0, 1, , m-1 and k = m-(n/p). Then as an
immediate consequence of Lemma 3.1 (i) we see that for each |α|^/c

( ί \D%KmA{x, yψ'dyY
\Jd(y,U)>\x\/2 /J d ( y , l χ ) ^ l α c ι / 2

For a locally integrable function /, Kf

m, Kf

mk and L >̂fc are defined by

= f m,k(x, y)f(y)dy
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and

if they exist.

= \Lm,k(x,y)f(y)dy

PROPOSITION 3.9. Let fe = [m-(n/p)] andfeLp. Then:

(i) In case m — (n/p)>Oi M , 5 m—1, K^x) exists for any x.

(ii) In case m —(n/p)<0, K£,fc(x) =K£(x) exists for almost every x.

(iii) In case m — (n/p)= 1, 2, , m— 1, K ^ - i M and KζfiXx) exist for any x

whereΛ=/|Bl andf2=f-fv

(iv) /« case m — (n/p) = 0, X£}_ χ(x) = K^1 (x) and K^^x) exist for almost every

x.

PROOF, (i) By Lemma 3.2 (i), Kmk(x, y) is an Lp-function as a function of y.

Hence we obtain (i).

(ii) By(3.5),|Xm>k(x,y)| = |Km(x

I \yΓ~"\f(y)\dy ^ ( I l y r — t y Y ll/ll, < <χ>

Therefore K£tk(x) = X£(x) exists for almost every x (cf. N. S. Landkof [11; §3 in Chap.

I]).

(iii) By Lemma 3.4 (i), XWjk_ ι(x9 y) is an Lp-function on Bx as a function of y.

Further by Lemma 3.6 (i), Kmk(x, y) is an Lp -function on B^ (the complement of Bx)

as a function of y. Hence K£k_i(x) and Kζfaix) exist for any x.

(iv) Since K ^ . ^ x , j/) = Km(x — 3;) a n d / x has compact support, X^f.^x)

= X^i(x) exists for almost every x. Moreover, we have

Γ

J m ' ° x >

= ί Km(x-y)f2(y)dy- ί
J d(y,/χ) < i x i /2 J d(y,lχ) < i x i /2

+ ^m,o(^5 y)fi(y)dy
Jd(y,lχ)*\x\/2

Obviously Ix exists for almost every x. For /2, we see that

" ! i s(J. I3M ^ ( 3 / 2 ) | J C |
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For 73, it follows from Remark 3.8 that

Thus K{2Q(X) exists for almost every x.

By Lemmas 3.3, 3.5 and 3.7, we also have

PROPOSITION 3.10. Let m^n,k=[m- (n/p)'] andfeLp. Then:
(i) In case m — (n/p) Φ\, 2, , m — 1, L£>k(x) exists for any x.
(ii) In case m — (n/p) =l,2, ,m—1, Lζfa _ 1 (x) and hζ^x) exist for any x where

fγ andf2 are as in Lemma 3.9.

3.2. Integral inequalities

We shall investigate integral estimates for the operators/-•K^,/->K^Jk, and/
-»L£fc. In case m — (n/p)<0, since

by the Hardy-Littlewood-Sobolev theorem on fractional integration ([8], [22]) we
have

where l/pm = (l/p)—(m/ή). This theorem was generalized by E. M. Stein and G.
Weiss [25] and D. R. Adams [1] in the following form: If m-(n/p)<0, then

( ί\x\-«(3.9) ( ί\x\-«m-W'»-"\KtixψdxY ^ C\\f\\

We shall give similar integral estimates for K£ k and L£>k. The following
inequality is due to G. O. Okikiolu [16; Theorem 2.1], which is useful for estimates
of integral operators.

LEMMMA 3.11 Let (X, mχ) and (Y9 mΎ) be measure spaces, let p, q, μu μ2 be

positive numbers such that

l<p^q, (μjq) + (μjp) = 1

and let K(x, y) be a measurable function onX xY. Suppose that there are measurable
functions φί>0 on X, φ2>0 on Y and constants Mί >0, M 2 > 0 such that
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(3.10) ί φ2(y)p'\K(xi y)\μ2dmγ(y) S MfφW,
JY

(3.11) ί ΦΛ
JxJ x

for all xeX, yeY. If the operator K is defined by

(x)= f K(x,
JY

Kf(x)= I K{x, y)f(y)dmγ(y),

then

) i/p

The following Lemmas 3.12, 3.13 and 3.15 are proved by applications of

Lemma 3.11.

LEMMA3. 12. Let m > 0, m — (n/p) ^ 0 and p^q<oo. Then

I I I v | — q(rr(i) ( | |xH<m-<"/'»-"| | \χ-y\m~"f{y)dy
Hy,lχ)< i . x ι / 2

(ϋ) / I n -i-iir.σivin-«ivi-«(»-WP))-»

\ / 9

dx) £C\\f\\p9

\x-y\m-'\log\x-y\\f{y)dy dx
,lχ)<\x\/2

£C\\f\\p.

PROOF. We take μx and μ2 such that μ1 > 0, μ2 > 0 and (μjq) + (μ2/p') = 1. V

choose μ1 sufficiently small so that

(3.12) (m-n)μ1 +n>0.

We note that m — (n/p)^0 implies

(3.13) (m-n)μ2 + n > 0 .

We choose a number a such that

(3.14) 0<a<n/p'.

(i) We take (X, mx) = (Rn, \x\~q(m~{n/p))~ndx) and (% mγ) = (Rn, dy). For φx(
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\\x-y\m-n, for d(y, lx)<\x\β,
K(x,y)=\

10, for d(y,lx)^\x\/2,

we shall show (3.10) and (3.11). By (3.13) and (3.14) we have

559

J
2(yr'\K(x,y)f2dmy(y)

n I

= ί
Jd(y,lχ)<

\y\-ap'\x-y\im-n)μ2dy
\x\/2

\x\— z

(m-n)μ2

dz

Thus we obtain (3.10). Next, by (3.12) and (3.14) we have

Jd(y,lχ)< i xι

£\y\-

IT
aq-(m-n)μί ~n\χ_

\z\ >2/3
z—-

Thus we obtain (3.11) and so (i) follows from Lemm 3.11.

(ii) We take (X, mx) = (Rn, {l + \\og\x\\yq\x\-q(m-in/p))-ndx) and (7, mγ) = (R\
dy\ For 0 1(x) = |χ|-Λ + ((m-^2/p')+c/p')(l + |log|x||)/i2^', 02(j;) = |3;Γfl and

: — y\\, for d(y, lx) < |x|/2,

0, for d ( y , / J ^ |x|/2,

we verify (3.10) and (3.11). By (3.13) and (3.14) we have

L2(y)p'\K(x, y)f2dmγ(y)

\y\~ap'\x- y\im-n)μ2\\Og\x- y\\μ2dy
JdiJ d(y,lχ)< \x\/2

J i z\ < 3/2

(m-π)μ2

1 + log
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= c\x\~ap'+im-n)μ2+n(\ + |log|x||f 2 = Cφ^xψ

Thus we obtain (3.10). Next, by (3.12) and (3.14) we have

\{xf\K{x,

J I X I >I X I > 2 i y i /3

-aq\ ^x-aq-im-rήμ-^-n

•2/3 R-
(m - n)μ !

1 + log
W'

dz

Thus we obtain (3.11), and the proof of (ii) is completed by Lemma 3.11.

LEMMA 3.13. Ifm>0, m-(n/p)>0 andp^q<co, then

(i)

(ii) (l + |log|x||)-

\y\m-f(y)dy dx

\y\m-n\log\y\\f(y)dydy

PROOF. Let /=n((l/p) -(1/<J)). Then 0 g Z< n. We take μt=μ2 = n/(n - 0 Then
(μi/ί) + α*2/Pθ= 1. Let ( X , m , ) = ( ί mr) = (Λ", dx)and </»1(x) = </.2(x) = | x |
(i) For

"", for |)Ί<|x|,

0, for \y\>\x\,

we shall show (3.10) and (3.11). We put

M ( Z _ m ) / ( π _ 0 Γ
•̂  i yι < i χι

From m —(n/p)>0 it follows that (m — n — (n/q))n/(n —1)> —n. Hence we have
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Thus we obtain (3.10). Since m-(n/p)>0 implies -(n2/p'(n-l)) + n(l-m)/(n-l)<
— n, we see that

U
— \y\(m-n)n/(n-l) \χ\-(n^lp'(n-l)) + n(l-m)l(n-l)^χ

* i x i > i y \

= c\y\(m~n)n/(n~l)\y\~(m~(n/pmn~l) = C\y\~n2/pf(n~l) = Cφ2(y)q.

Hence we have (3.11), and (i) is proved by Lemma 3.11.
(ii) For

ι - m + (n/p) - (n \y\<\xl

o,

we can prove (3.10) and (3.11) in the same way as in (i).

The next lemma is a consequence of Lemma 3.13 (i).

LEMMA 3.14. Ifm>0, m — (n/p)<0 andp^q<co, then

4 \l/q

dx) <

PROOF. Let / = - m + (2n/p). Then I - (n/p) > 0. If we apply Lemma 3.13 (i) to
the function/1(z) = |zΓ2w/p/(z/|z|2), then we obtain

α|

Using the fact that the absolute value of the Jacobian of the transformation z = y/\y\2

is l/|y|2π, we see that the left hand side of the above inequality is equal to that in the
lemma. Moreover, it is easy to see that ||/illp= | |/ | | p . Hence we have Lemma 3.14.

LEMMA 3.15. Ifp^q<co, then

(ί) /or

\y\-nlp'f(y)dy
9 \l/q

dx) g

(ii)

V J i x i < 1

loglxD" I \y\-"lp'Mdy
\y\~z\x\

dx) ύC\\f\\p.
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PROOF. We first note that (i) implies (ii). For / e L " ^ ) , it is clear that/^z)
= |z|-2"/"/(z/|z|2)6Lp(Bc

1) and Wi\\P=\\f\\r ApP^ng (i) to the function f, and
changing variables, we obtain (ii). In order to show (i), we apply Lemma 3.11. Let (X,
mx) = {B\, |x|-"(logMΓ(«"'>- 'ΛcMlίm^ίBΊ, dy), μt >0, μ2 >0 and (μ1/q) + (μ2/p/)
= 1. Taking 0 < a < l , we set 01(x)=(log|x|)(1-<1)/p' and φ2(y)
= \y\ -"!"/<"'«>Qog\y\)-i". For φu φ2 and

K{x,y) = {
(0, l^ |x |g |y | ,

we shall show (3.10) and (3.11). First, from a< 1 we see that

ί,i y\ ^ i

-ί.
•ί.

I xι > I y I ^ 1

i χι > ιy i ^ l

Next, it follows from a>0 that

ί,
' Γ

•̂  i x i >

Hence we obtain (3.10) and (3.11), and have the lemma.

REMARK 3.16. By Lemma 3.15 (i) the following inequality holds: FoτfeLp(B{)

J i y i < i

\y\-nlpX\og\y\)f(y)dy
y i < i x i

^C||/||..

1 \l/«

\\p.

We are now in a position to prove the main theorems in this section.

THEOREM 3.17. Let m-(n/p)=£0, l. , m - l and fe = [m-(n/p)]. Then
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for p<^q<co in case m-(n/p)>0 and for p<^q<^pm in case m-(n/p)<0.

PROOF. If m - (n/p) < 0, then K£>fc = Kf

m, and hence the assertion is nothing but

(3.9). So, let m-(n/p)>0, Φ1, 2, , m-1. From the definition of Kf

m,k and (3.5), it

follows that

\χ\ n P n\Kmtk(χ)\qdx I ^ Cl± + C/2 + / 3 ,

where

Λ = ( [|x|-«<"-<^»-»( ί \χ-y\m-n\f(y)\dy)qdχ)llq,
\J \Jd\y,U)< ιxι/2 /

= ( f W

By Lemma 3.12 (i), I^CWfWp. For 72, since d(y, /J<|x|/2 implies \y\<(3/2)|x|, we
have

h ^ Σ, v, J \\χ\-qim-'y' - ( B / p ) ) -{ ί | y | m " ' y ' -
\ J \J I3M <3|X|/2

by Lemma 3.13 (i). Here, note that m — (n/p) > 0, φ 1,2, , m — 1 imply m — |y| — (n/p)

> 0 for |y|^fc. In order to estimate 73, we apply Lemma 3.1 (i) and obtain

/Γ /Γ
d |x|-β(«-k-i-i»/rt)-»/

Since m - / c - l - ( n / p ) < 0 , it follows from Lemma 3.14 that / 3 ^ C | | / | | P . Thus the

theorem is established.

Using (3.6), (3.7), Lemmas 3.1(iii), 3.12 (ii), 3.13 (ii) and 3.14, we can prove the

following theorem in the same way as Theorem 3.17.

THEOREM 3.18. Let m^n, m — (n/p)Φ\, 2,•••, m - 1 , k = [m-(n/pj] andp^

<oo. Then

THEOREM 3.19. Ifm — (n/p) coincides with one of the numbers 0, !,*••, m— 1, k
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= m—(n/p) and p :g q < oo, then

(i) forfeL'iBJ

μn-iog {ί/\x\)) \x\ |/vm>k_1ikxj| ax | ^ M J U P ,

(ii) forfeLp(B[)

G \l/β

(l+log^xr^^lxΓ^-IK^x^xJ ^C||/||p.

PROOF, (i) Let/eL^ίBj). From the definition of κ£tk and (3.5), it follows that

/ = ( (l-flog + (l/|x|))" ( 9 / p ' )"1 |xΓ^"n |^m,Λ-iW^) ^C/i + C/2 + 73,

where
qk\ I

I x I/2

y , / χ ) < l x i / 2

ι x i / 2

in case k = 0 we set / 2 = 0. It follows from Lemma 3.12 (i) that Ix ^ C | | / | | r Since m

- (n/p) = fc, we have m — \γ\ — (n/p) > 0 for |y| g k — 1 in case k ̂  1. Hence by Lemma

3.13 (i) we see that I2 ^ C| |/ | | p . In case fe^ 1, applying Lemma 3.1 (i) to / 3, we have

,,, si
1 + l o g*w

χ(\
V J i ̂  i xι /2, ιy i
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In case fc = 0, applying Lemma 3.1 (ii) to /3 and noting that m — n= —n/p', we have

\y i ̂  i χι /2, i y ι < 1

Hence by Lemma 3.15 (ii) we have / 3 ^ C | | / | | P , and thus I^C\\f\\p. We have
completed the proof of (i).

(ii) L e t / e L " ^ ) . From the definition of K£tk and (3.5), it follows that

< C Ί A- C 1 A- ϊ

\J /

where

i = ( \\χ\-qk-{ ί
\J \Jd(y,lχ)<χ)< \X\I2

χ ( ί \χ\ιyι\y\m-'y>-n\f(y)\dy)qdx)1'\
\d(y,lχ)<ιxil2 / /

It follows from Lemma 3.12 (i) that J1^C\\f\\p. Since m — k — n= —n/p'.

1 \y\ < 3 | X | / 2

+ r r

i >2/3

M < 3 ι x ι / 2 , ι y ι

= J 2 1 "+" «̂ 22

χ ( [ \y\'"'\fiy¥y)'dχ

Since m-\y\-(n/p)>0 for | y | ^ k - l , it follows from Lemma 3.13 (i) that

J21^CΣnι^-l\\f\\p=C\\f\\p.

By Lemma 3.15 (i) we have J22^Q\f\\r BY Lemma 3.1 (i) and 3.14, we have
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d(y,lχ)Z\x\/2

g c( [\χΓn( f lyΓ-'^'VωWyίdx)11" ^ C\\f\\p.

Thus we obtain the desired result.

REMARK 3.20. Let m-(n/p)=0, 1, , m - 1 , fc = m -(w/p)andp<^q< oo. Since

p <̂ g implies (g/p') + 1 ^g, by Theorem 3.19 we have the following inequalities:

(i)

^

(ii)

\l/9

Using (3.6), (3.7), Lemma 3.1 (iii), 3.12 (i) (ii), 3.14,3.15 and Remark 3.16, we can

prove the following theorem in the same way as Theorem 3.19.

THEOREM 3.21. Let m^n, m—(n/p) = l, 2, , m— 1, k = m—(n/p) and pίΞ

<oo. Then

(i) forfeViBJ

(l + |log|x||)-*|xΓίk-'I|ί4i,k_1(x)|''tixJ gC||/| | p,

(ii) forfeU(B{)

V/^cii/nP.

3.3 Riesz potentials of order (w, A:)

As in the introduction, for a positive integer m, the Riesz kernel of order m is

defined by

κ\m~n, m<n or m^n, m — n odd,

δ m „ — log|x|) |x|m~"J m^.n, m — n even,
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where

( Γ'(m/2) , I 1 , , 1 ^ 1 Λ

<>m,n =

2Γ(m/2) X 2 (m-n)/2

Γ'(m/2) <€ 1

— — — logπ, m — n

m-neven,

{ 2Γ(m/2) 2

and if is Euler's constant. We note that ^m(pmnκ2m) = 5, where

(-l)mΓ((n/2)-m)2~ 2 mπ-M / 2((m-l)!)- 1, 2m<n or 2m^n, n odd,

Pm,n =
" iz^n, n

and 5 is the Dirac measure at the origin (cf. [21; §10 in Chap VII]). For an integer k

gm— 1, we set

κΛχ-y)-Σιvι*k(χy/yWκJί-y), ogk^m-i,

For a locally integrable function/, l/£ and C/£k are defined by

UUx)=(κJx-y)f(y)dy and ϋίfJk(x) = L fc(x,

if they exist. Applying Theorems 3.17 and 3.18 to the Riesz potentials of order (m, fc),

we have

COROLLARY 3.22. Ifm — (n/p) Φ 0,1, , m — 1 and k = [m - (n/p)], then for any

/eL p , l/^>fc exwta and satisfies the following estimates:

(i) WΛe« m < n or m ̂  n, m — n is odd,

• p^q<co in case m — (n/p)>0 and for p^q^pm in case m — (n/p)<0.

(ii) When m^n and m — n is even,

W -q(mlp))-n\τjf (Ύ\\qAχ \ < ΓΊI fll
\um,k\x)\ a x I = Ml./ lip

\J /

for pf*q<co.

By Theorems 3.17, 3.18, 3.19 and 3.21 we also obtain

COROLLARY 3.23. Ifm - (n/p) = 0,1, , m - 1 , k = m - (n/p) andp ^ q < oo, \

for anyfeLp(Bι) and any gεLp(B\), l/£fk_ x and U9

m^k exist, and satisfy the following
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estimates:

(i) When m<n or m^n, m — n is odd,

l/4

SC\\f\\p,

(ii) WAew m ^ n α«J m — n is even,

Concerning smoothness of U^, we have

PROPOSITION 3.24. (i) Ifm-(n/p)>0, # 1 , 2, , m - 1 , fc = [m-(n/p)] and

(ii) // m-(n/p)=l, 2, , m - 1 , k = m-(n/p) and feU, then Ui}k.u

Ό{^keCk~1 and DβU{ik-1(0) = DβUfyc(O) = 0for \β\^k— 1, wherefx andf2 are as in

Proposition 3.9.

PROOF, (i) is a consequence of Lemmas 3.2 (i) and 3.3. (ii) follows from

Lemmas 3.4 (i), 3.5, 3.6 (i) and 3.7.

Finally, we discuss partial derivatives of l/£>Jk in the sense of distribution.

PROPOSITION 3.25. (I) Let m - (n/p) φ 0,1, , m - 1 , k = [m - (n/p)] andfe Lp.

Then for |α| ̂  m — 1

= [wxκ ,k{x, y)f(y)dy in &.

(II) Let m - (n/p)=0, I,---, m-l and k = m- (n/p). Then:

(i) ForfeVtfJ and |α| g w - 1

in

(ii) For fe L'(Bί) am/ |a| ̂  w - 1

in
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PROOF. We shall give only the proof of (I), because the proof of (II) is similar.
Let |α|^m— 1. For/e^, we easily see that

rχKmΛx'(3.15) DxUi k(x) = Dίκm k(x, y)f{y)dy

for all xeRn. For/eLp, we take a sequence {/*}*=1,2,- <= ® such that/N converges
to/as N-* 00 in Lp-norm. From Corollary 3.22 it follows that U{j^ converges to Όf

mtk

in 3f' as N-+00. Hence DΛUfy converges to D"U{nk in 2' as ΛΓ-+00. On the other
hand, by (3.8) and (3.15) we have

Since m-|α|-(n/p)^0, 1, , m-1 and [m-|α|-(n/p)] = /c-|α|, it follows from
Theorems 3.17 and 3.18 that DaUζ^(x) converges to

(x, y)f(y)dy

in Of as N-+00. Hence we obtain the desired result.

§4. Higher Riesz transforms

The Riesz transforms Rj (j= 1, 2, •••, ή) are defined as follows ([24]): F o r / e l /

with cn = Γ((n+ l)/2)π"(π+1)/2. The Riesz transforms are bounded operators on IΛ

For/eLp the Fourier transform of Rjfis given by

(4.1)

Moreover, relationship between partial derivatives of the Riesz potential of order 1
and the Riesz transforms is given as follows ([5; Theorem 2 in Chap. Ill] and [15;
Theorem 9.6]): For/eLp (p<n\

In this section we are concerned with relationship between partial derivatives
of the Riesz potentials of order (m, k) and higher Riesz transforms. Following S. G.
Samko [19; §4], for a multi-index α with |α|=m we set
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We call RΛ (|α| = m) the higher Riesz transforms of degree m (cf. [24; §3 in Chap. III]).
Since the Riesz transforms are bounded operators on Lp, we see that RafeLp for
feU. For /eL2, it follows from (4.1) that

The following lemma is easily seen by taking Fourier transform.

LEMMA 4.1. ForfeL*,

For functions / suoh that DfeL" for any |α| = m, we set

(cf. [19; Corollary in §4]).

LEMMA 4.2. For fe<2>, the following equalities hold:

(i)
(ii) D2/f = (-l)'Δ'f, 1=1, 2, .

(iii) (cf. [19; Theorem 7]) For a multi-index α w/'ίΛ |α| = m,

R«Dmf=(-\)mDy.

PROOF, (i) It follows from (4.2) that

Σ,«, =m{m\l*W{R*D"f) (x)

= Σ,., -M/αJ) ( - i Γ ^

= (2πΓΣ,

(ii) This follows from (i).
(iii) It follows from (4.2) and (i) that

<F(R*IΓf) (x) = (- ir^J2πr\xrf{x) = (- lΓ(2πΐx)f(x) = (- lΓ^(Dα/) (x)
|X|

In order to given an expression of the Fourier transform of κm, we introduce the
pseudo function Pf. |x|~m, which is defined as follows ([21; §3 in Chap. Ill]): If m<n,
Pf. |x|~m = |xΓm; if Ή —n is a positive odd number,
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<Pf.|xΓm, 0 > = l i m , ^ | \xΓmφ(x)dx

- m + tt + 2/c

for φe@; and if m — n is a nonnegative even number,

<Pf. \x\'m9 φ> =lim ε ^ 0 j I \xΓmφ(x)dx
m

9 0 > = l i m ε ^ 0 j I
U i xι

for 0 e ^ , where f/k = π~"/222/c~1fe!Γ((n/2) + fc). We note that for a homogeneous

polynomial P{x) of degree m,

(4.3)

The Fourier transform of the Riesz kernel κm is given by

(4.4) ίcm(x) = ym,ΠPf. |x|-» in ^ ' ,

where

n-m)/2, m < n or m^n,m-n odd,

_ n even

(see [21; §7 in Chap. VII]).

Now we state a relation between the m-th partial derivative of U£tk and Raf.

LEMMA 4.3. Letfe@. For a multi-index oc with |α| = m,

PROOF. It follows from (4.2), (4.3) and (4.4) that

m*f)) = (2πixTκJ= (



572 Takahide KUROKAWA

Hence we obtain the lemma.

THEOREM 4.4. Let k = [m — {n/p)~\ and |α| = m.

(i) Ifm-(n/p)*0, 1, - , m - l , then DaUf

m^(-2n)mymfnR
afforfeU.

(ii) Ifm-(n/p) = 0, 1 , - , m - l ,

PROOF, (i) F o r / e L p , we take a sequence {/#}#=1,2,... e ^ s u c h that | |f
llp-^O as JV->oo. Since

- Σ , y. **(*V?0 fβy^m( k ^ 0,

it follows from Lemma 4.3 that

By Corollary 3.22 we see that l/£$ tends to [/£>Λ in Of' as JV^00. Hence Dαt/£{£ tends

to /)αC/^k in & as ΛΓ^ 00. On the other hand, Kβ/N tends to Rα/as N^> 00 in LΛnorm.

Therefore we obtain the required equality.

(ii) Using Lemma 4.3 and Corollary 3.23 we can prove (ii) in the same way as

above.

By Lemma 4.1 and Theorem 4.4 we obtain

COROLLARY 4.5. Let k = [m — (n/p)].

(i) Ifm-(n/p)Φ0, 1,-, m - l , then DmUifk = (2n)m

ymJforfeU.

(ii) Ifm-(n/p) = 0, 1,-, m - l , then D-ί/^ fc_1=(2πΓ7m,n//or/eL^β1) and

U = {2πTymtng for

§5. Primitives of higher order

In this section we discuss primitives of higher order of LMunctions. We begin

with some observations on primitives of smooth functions. Let m be a positive

integer and {/α}, α, = m c C00 be a family of functions such that Z>;/α = Dkfβ whenever

ej = β + ek and |α| = |j8|=m. Set
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Then φeC™ and for each multi-index α with |α| = ra, Daφ=fa. Next, let {#,};= 1,... ,„

a® be a family of functions such that Djgk = Dkgj{oτaΆj,k=\, -,n.Ί2L\άngξeRn

with |£| = 1, we set

ξjgj(x-tξ)dL

By Stokes' theorem we see that φ(x) is independent of ξ and D-φ=gj ΐoτj= 1, ., n,

which shows that ψe@. From this fact, we see the following: Let {ga}, α, = m cz 2 be

family of functions such that Z)jgβ = Z ) ^ for a + ej = β + ek and |α| = | β\ = m. Defining

we see that χe<£> and Daχ=ga for any multi-index α with |α| = w. We note that χ(x) is

independent of ξ. Using this fact, we see that

χ(x)dS(ξ)
\ξ\ = 1

= Σ.α, =mm/(σnoc\)ί Γξatm-1ga(x-
J 1 <T 1 = 1 J o

Thus we obtain the following result (cf. Yu. G. Reshetnyak [18; Lemma 6.2]).

PROPOSITION 5.1. Let {/α} ι α ι = m < = ^ be a family of functions such that D}fa

= Dkfβfor <χ + ej = β + ek and \(x\ = \β\=m. If we set

then φe$) and Daφ=fafor any |α| =m.

Concerning a primitive of distributions, from L. Schwartz [21; §6 in Chap. II]

we have

PROPOSITION 5.2. Let {wα}iαι =m be a family of distributions such that DjUa

= Dkuβfor oc + ej = β + ek and |α| = |β\ = m. Then there exists a distribution u such that

Dau = uafor any |α|=ra.

The following lemma is due to S. L. Sobolev [23].

LEMMA 5.2. Let ubea distribution such that DaueLpfor all |α| = m. Then there

exists a sequence {φN} cz 3) such that DaφN converges to Dau in λJ-norm as N^cofor
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any \ot\ = m.

COROLLARY 5.4. Let {/α}ιαι =m be a family of V-functions such that Djfa

= Dkfβfor oι + ej = β + ek and \a\ = \β\ = m. Then there exists a family of functions

{0α,iv},α, =m,iV= 1,2- <= ® SUCh that

(5.1) DjΦa,N = £>kΦβ,N for a + ej = β + ek and \a\ = \β\ = m,

(5.2) 0 α J V >fΛ as TV-)'oo /« LP-norm for each |α| = m.

PROOF. By Proposition 5.2 there exists a distribution w such that Dau =/αe Lp

for all |α|=m. By Lemma 5.3 there exists a sequence {φN}N=i,2, ~ C ^ S U C ^ ̂ a t

DaφN converges to Z)αw=/α as N-+co in Lp-norm. If we set φIXtN = D'xφN for each |α|

= m, then the family {φα i V} ι α ι =m,jv = i,2, — satisfies conditions (5.1) and (5.2).

Now we study primitives of Lp -functions. For a multi-index α with |α| =m we

put

The function κa(x) is a homogeneous function of degree m—n. For an integer k ̂

— 1 we set

κa(x-y\ fcg-1.

First, we consider the case m—(n/p)^0, l, , w —1.

THEOREM 5.5. Let m — (n/p)Φ0,1, , m — 1 tf«dk = [m— («//?)]. We assume

that F= {/J, α, = m w a family of l,p-functions such that Djfa = DJβfor oί + ej = β-\reι

and |α| = |β\ =m. If we set

then V¥

mk satisfies the following conditions'.

(5.3) D"VF

m,k=fa for any \cc\=m.

(5.4)

^q< co in case m — (n/p) > 0 and for p^q ^pm in case m — (n/p) < 0.
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PROOF. By Corollary 5.4 there exists a family of functions

{<&*,*}, α,=mjv= 1,2, - c ® which satisfies (5.1) and (5.2). We write ΦN = {φa,N}, α, = m .
We see that

= Σ . « ,

Γ
l«l=mkα( ̂ -

Hence it follows from Proposition 5.1 that for any |α| = ra.

On account of Theorem 3.17 we see that V®$ converges to V£Λ in 3)' as N-+ao9 so

that Da V®J% converges to Da V^k in 9? as N-> oo. On the other hand, 0βtJV converges

to/ α as N-+CO in Lp-norm. Consequently we obtain (5.3). Assertions (5.4) and (5.5)

follow from Theorem 3.17 and Lemma 3.2 (i), respectively.

REMARK 5.6. The function which satisfies (5.3) and (5.4) is unique.

LEMMA 5.7. Let {/α} ιαι=m be a family of If-functions. A necessary and

sufficient condition that DJΛ = Dkfβ for oc + ej = β + ek and |α| = \β\=m is that there

exists an \,p-function f such that fΛ = Raffor any |α| = m. In this case, the function f is

given by

PROOF. First we assume that there exists an Lp-function/such that/α =

for any |α| = m. We take a sequence {fN}N= 1>2, ••• ^ @ such that/N tends to/as Λf-> oo

in Lp-norm. For each multi-index α with |α| = m we put/α J V = RafN. Then we see that

) (x) =

Hence for (x + ej = β + ek and |α| = \β\ = m we have DjfaN — DkfβN. Letting N^>oo, we

get Djfa = Dkfβ. Next we assume that Djfa = Dkfβ for oc + ej = β + ek and |α| = \β\ = m.

By Corollary 5.4 there exists a family of functions {φatN}, α ι =m,N= 1,2, - ^ ® which

satisfies (5.1) and (5.2). It follows from (5.1) and Proposition 5.1 that there is a

function φNe@ such that DaφN=φaN for any |α| =m. If we put
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then / belongs to LΛ Since

it follows from (5.2) that ( - l)mDmφN tends to/as N-> oo in Lp-norm. By Lemma 4.2

(iii), for each multi-index α with |α| =m we have

( - ψR"DmφN = ( - 1 )

Since ( - 1 )mRaDmφN tends to #α/and </>αJV tends to/ α as iV-> oo in LΛnorm, we have

THEOREM 5.8. Let m — (n/p)# 0, 1, , m-1 and k=[m— («//?)].

(i) LetfeU andF={R*f}iaι=m. Then U^k={-2πTy^nVlk.

(ii) Let F= {/α} ion=mbe a family of IS-functions such that Djfa = DJβ for oc

and\a\ = \β\ = m. If we set f^ ( - l Γ Σ . α . =m{rn\l*\)R*L then £/£,,=

PROOF, (i) It follows from Theorems 4.4 (i) and 5.5 that for any multi-index α

with \a\ = m.

Hence £/£,*— ( — 2π)mym>nFj£Jt is a polynomial P of degree m — \. Moreover by

Corollary 3.22 and Theorem 5.5 we see that

: + |log|*||)"p |jc|"mp\P(x)\pdx < oo.
J

This implies P(x) = 0.

(ii) Using Lemma 5.7 we obtain (ii) from (i).

COROLLARY 5.9 (cf. Corollary 3.22). If m-(n/p)Φ0, 1, , m - 1 , k=\m

— (n/p)~\ and \β\^.m— 1, then

( \\x\-q{m-iβi -(n/p))-n\DβU£,k(x)\qdx\ q^

for p ^ q < oo in case m — (n/p) > 0 and for p^q ^pm in case m — (n/p) < 0.

PROOF. If we put F= {Raf} , α, = m, then by Theorems 5.8 and 3.17 we see that

\x\-qim~ iβi -{nlP))-n\DβUf

m*(x)\qdx\

= c( \\
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REMARK 5.10. Let m—n<0 a n d / e ^ . Then, from Theorem 4.4, Proposition

5.1 and Theorem 5.8 it follows that Uf

me9 if and only if RafeS> for all |α| = m.

Next we shall discuss the case m—(n/p) = 0i l. , m — 1.

THEOREM 5.11. Let m — (n/p) = 0, l, ,/w—1 andk=m—(n/p).

(I) LetF={fa}ιai = mczLp(B1) be a family of functions such thatDjfa =

for θi + ej = β + eι and \a\ = \β\ = m. Then V^k-1 satisfies the following conditions:

(i) ITVlt-^h for any |α|=m.

(ϋ) (f( i+iog + (i/MΓ^^

for p^q <oo.

(iii) V^^eC*-1 andlTV^φ^Oforany \β\£k-l iftel.

(II) LetF={fa}iai =mdU{^) be afamily of functions such that Djf^

for (x + ej = β + eι and \oc\ = \β\ = m. Then V^k satisfies the following conditions:

(i) D"V^k=fa for any \a\=m.

(ii) Γfί l+log+WJ-^^-^xΓ^-IK^WI^ for p

(iii) V^eC*-1 and D>K£iJk(0) = 0 for any \β\£k-l

PROOF. We will only give the proof of (I). By Corollary 5.4 there exists a family

of functions {<A*jv}iai =mjv=i,2, ••• c ^ which satisfies (5.1) and (5.2). We put Φ N

= {<Ax,*},a, =m Moreover we denote ΦlN = φatN\Bl and ΦlN = φa,N-φiN We set

where

i= 1, 2, and
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Since φ^NJaeLp{B1) and \\ΦltN—fa\\p->0 as N-+00, by Theorem 3.19 (i) we see that

Ftf tends to VF

mk_x in9)' as JV-> 00. Since ΦlNeLp(Bc

1) and ||ΦlN\\p-+0 as N-+ 00, it

follows from Theorem 3.19 (ii) that F^->0 in ®' as N-*oo. Hence for any |α| = m we

have

rrvfy^-irvb + iyvj,—*D«v¥

m^x in &

as N^KX). On the other hand, /^"K®^-! = φatN tends t o / α as N-+ 00 in Lp-norm.

Hence DΛVζk^1 =/ α , which shows (i). Assertions (ii) and (iii) follow from Theorem

3.19 (i) and Lemma 3.4 (i), respectively.

In case m — («//?) = 0,1, , m — 1, it still remains to discuss primitives of a family

{fa} 1«1 =m °f LMunctions on the whole space Rn such that D5fΛ = Dtfβ for a + e — β

+ et and \oc\ = \β\=m. We need the following lemma.

LEMMA 5.12 ([2; Theorem 4.14]). Let m be a positive integer. Suppose that

DaueLpfor any |α| = m. Then for a multi-index β with \β\ ̂ m— 1 andr>0, we have

y(
THEOREM 5.13. Let m-{n/p) = 0, 1, , m-\ and k = m-(n/p). If F

— {fa} 1 a 1 = m ̂  cιfamily of l,p-functions such that Djfa = Dtfβfor oc + ej = β + eι and |α|

= |/?|=JW, /Λ̂ « /Λere ^xwίί a function v which satisfies the following conditions:

(5.6) D*»=fa for any | α | = m .

(5.7) ([(l + llogMr^-^xΓ*^

(5.8) t e C ^ " 1

 Λ W ί/ /)^(0) = 0 for any \β\^k-l if k^l.

PROOF. We put/= (-1 f £ , β, =Jm\/a\)RΛfaJί=f\Bι2indf2=f-f1ΛϊwQset
u = Um}k-i + Ufa, then it follows from Theorem 4.4 (ii) and Lemma 5.7 that for any

\a\=m

D*u = ( - 2 π r

We take functions 0X and φ2 such that φuφ2eCco, 0 ^ 0 , 0 2 = O> 0i

= 0 for |x| ̂ 2 and 0 2(x) = O for |JC| < 1/2. We put ut = φtu zndfU(l= (2π)"my-,i/)αwi

for each multi-index α with |α| = m and /= 1, 2. It is easily seen that/ i α eL p (i? 2 ),

f2,a^P(Bc

1/2)Ji,a+f2,a=fa ™d DjfltΛ=DJltlh Djf29a=DJ2tβ for α + ̂  = ]8 + e, and

|α| = |β |=w. We shall show

(5.9) WfiJP^CΣnι=m\\fy\\P, 1 = 1 , 2 .
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By Leibniz's formula we have

/ l>β = D«{φiU) = Σs^Da-δΦiDδu, i = 1, 2.

Hence using Lemma 5.12

Since u= Uf

m\.ι + £/£&, it follows from Corollary 3.23 that

a y/p /r \HP /r \I/P

|W(x)|^xJ ^ M l ^ . ^ x r ^ J +M \UJά(x)\>dx)/n ^ C Σ , y,
Thus we obtain (5.9). If we set Λ = {/i,α}ιαi = « Λ = {/2.«},«, «» and ^ V ^ . ,

^ , then by Theorem 5.11 and (5.9), υ satisfies the conditions (5.6), (5.7) and (5.8).

REMARK 5.14. The function which satisfies (5.6) and (5.7) is unique up to a

homogeneous polynomial of degree k. In fact, \ίv1 and v2 satisfy (5.6) and (5.7), then

v1 — v2 is polynomial P satisfying

ί< + |log|x|| )~p\x\ -kp~n\P(x)\pdx < oo.

Hence vt — υ2 must be of the form P(x) = X, y, =kayx
y. Moreover we note that for the

uniqueness of v condition (5.7) can be replaced by

oo.

PROPOSITION 5.15 (cf. Corollary 3.23). If m-(n/p)=0, l. , w - l , k=m

— (n/p) andp^q<co, then

(i) forfeL"(B1)and\β\^m-ί

(ii) forgeLp{Bi)and\β\£m-l

(l + lloglxll)-^"')-1!^-4""- " " -W'»-m\D>WmJt(x)rdx\ *g
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PROOF. We give only the proof of (i), because the proof of (ii) is similar. Let

/ e l / C ^ ) and F={R*f}ιaι = m By Theorem 5.13 there exists a function v which

satisfies

(5.10) Daυ = Raf for any |α| = /w,

(5.11)

On the other hand, by Corollary 3.23 and Theorem 4.4 the function u =

(-2π)~my~,J £/£*_! also satisfies (5.10) and (5.11). Hence by Remark 5.14 we have

u(x) - v(x) = £ , y, =k (aγ/γ\ )xy. Since Dyu - Dyv = ay for any multi-index y with |y| = k,

it follows from Lemma 5.12 and (5.10) that

a/dx

1 /

Therefore in view of the proof of Theorem 5.13 and Theorem 3.19 we have

Thus we obtain (i).

§6. Beppo Levi spaces

For a positive integer m and p> 1, the space S£p

m is defined by

S£p

m- {ue&; DaueLp for any |α| = m}.

We call <£p

m a Beppo Levi space and elements of 5£p

m Beppo Levi functions. Beppo

Levi functions are locally integrable. First, we give potential representations of

Beppo Levi functions.
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THEOREM 6.1. Letm-(n/p)φO, l, , w - l andk=[m—(n/p)']. Thenue^

can be represented as

(6.1)

Moreover,Jcorp^q< <x> in casern —(n/p)>0 andforpSq^Pm in casern— (n/p)<0

(6.2)

and for \y\^m —

(6.3)

Furthermore, ifk^.0, then ueCk and for \γ\£i

^ M I \u(y)\ dy\ + 4

VVJBI / ' \jBι

(6.4)

PROOF. By Lemma 5.3 there is a sequence {φN}N=ι,2, ^ ^ s u c h that DaφN

converges to Dau as N-+oo in Lp-norm for all |α| = m. By Lemma 4.2 (iii) we have

R"DmφN=(-l)mDaφN. Letting #->oo, we get (2π) m y m ) / ι Λ
α /=(-l) m /)V On the

other hand, by Theorem 4.4 (i) we have DaUf

mk= (-2π)mymfnR
af ThereforeDau

= DaUitk for all |α| = m. Hence κ-I/£ fk = Σm5m-i*y* y I f ^ ° > t h e n f r o m

Proposition 3.24 it follows that Uf

mtkeCk and Dγϋ£tk(0) = 0 for any \y\ ̂  A:. Hence we

see that ueCk and aγ = Dγu(0)/y\ for |y|^fc. Assertion (6.2) follows from Corollary

3.22 (i) and Corollary 5.9. We shall show (6.4). We take a function ηe® such that

η(x) = 1 for |x| < 1/2 a n d ^ x ) = 0 for \x\^l. Since Am(ρm,nκ2m) = δ (see §3.3), we have

(6-5) δ = Am((l-η)Pm,nκ2m) + Δ ^ I W V Λ J .

Obviously, ζ = Δm((l-η)ρmnκ2m)eCco and supp ζcz{|jc|^l}. Moreover, taking a

function 0 e ^ such that 0 ^ φ^ 1 and φ(x)= 1 for |x |< 1, we put ι; = 0w. By (6.5) we

see that for \y\^k

Since Dβu(y) =Dβv{y) for \y\ < 1 and any multi-index β,

\u(y)\'dy
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\D1+'{ηpmjc2m) i-yψ \D*u{yψdxX.IP

Since

ί,1

for \y\ ^ k, we obtain (6.4). Finally we show (6.3). By (6.4) it suffices to show (6.3) for k
4- l^ |y |^m-l . First, let fc+l^|y| = m - l . By (6.1) and Proposition 3.25 (I) we
have

= ay
tk(x) = ay + f^κ m , f c (x,

Hence we obtain

1/P

+

It follows from Lemma 5.12 that

, - , ( J \DFu(
3j / \ v D-.

Since |y |^/:+l, Dγ

xκmΛ(x, y)=(Dyκm) (x—y) and Dγκm(x) is homogeneous of
degree m — n-\γ\ = i-n. Since kφm — \ impliesp<n,

dx) g*2 ^

Therefore we obtain (6.3) for \γ\ —m— 1. Repeating the above procedure for |y| = m
- 2 , w - 3 , , fc+1, we obtain (6.3), which completes the proof of Theorem 6.1.

COROLLARY 6.2. Let m- (n/p)=£0, l, , m-1 andk= lm-(n/p)'].
then u can be represented as

where F={D"u}ι

PROOF. This corollary is an immediate consequence of Theorem 5.8 (ii) and
the above theorem.
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THEOREM6.3. Letm— («//?) = 0,1, ,m— 1 andk = m-(n/p).

be represented as

(6.6) " = Σι«, s m-i«y^ y-

withf= (2π)"my~Ji)mM6Lp where/x = / | B l andf2 =/—Λ Moreover, for p^q< oo

(l + lloglxll)-^'*-1!^-"1-"!^-!^)^ ^CΣ,«,.

/

(6.7)

Γf(H-|log|jc||)-wpθ-i | jc|-*--|C/ίr i(JC)|«<i3CY/β^ CΣ,«, _„

and for \y\^m — 1

(6.8) |αr| ̂  C ^ £ \u(y)\"dyJ"

Furthermore, ifk^l, then ueCk~ι and for \y\^k—

(6.9) |β,| =
£> T M(0)

yi

I/P'

PROOF. Assertions (6.6), (6.8) and (6.9) can be proved in a way similar to the

proofs of (6.1), (6.3) and (6.4). Assertion (6.7) follows from Proposition 5.15.

For weifj,, write

l<p = Σ,«,=JI^II, and \\u;

We shall say that wN->0 in j£?£ as N-+oo if uN->0 in @' and \uN\m,p^0 as 7V->oo.

PROPOSITION 6.4. For {«*} <= JSfj;, M^-^0 I/I JίfJ as N-+00 if and only if \\uN;

Sf^W-tO as N-^ao.

PROOF. The "if" part is easily seen by Theorems 6.1 and 6.3. We shall show

the "only if" part. Let 0 < r 1 <r2. We take a function ηe<3 such that η(x) = 1 for |JC|

<rx and η(x) = 0 for \x\^r2. Moreover, taking a function φeS) such that φ(x)= 1

for \x\ < 1 + r2, we put vN = 0wN. As in the proof of Theorem 6.1,

with ς eC 0 0 . Since M^-^O in 3ί as 7V-> 00, we see that ι?N-»0 in ̂ ' as N-+co, and hence

C*%-+0 in £ as #->oo (L. Schwartz [21; §4 in Chap. VI]). In particular, we have
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\ζ*vN(x)\pdx-+O (N-+00).

t

Since D%ηpm^κ2J*Daυv(x)=D\ηPm,nκ2m)*D*uN{x) for | x | < l , by Young's

inequality we have

(#-•00).

Hence we see that

(ί \uN(x)\>ώcYP = (( \vN(x)\pdx\/P^0 (N^cc).

The proof of the proposition is completed.

Henceforth, we consider S£p

m as a normed space equipped with the norm

||.; jSPj il. The space 5£v

m is a Banach space.

The following lemma is an improvement of P. I. Lίzorkin [12; Theorem 3].

LEMMA 6.5. Ifue&Z and

\(6.10) \(log(e + \x\)Γp(l + \x\)-mp\u(x)\pdx< co,

then for max(0, k+\)^\β\^m-\

ί L X / P ^ C\u\m,p

Γ f(
ifm-(n/p)Φ09l,-,m-l9

W-φ + W)-^-'^-'^^^)!^)1/^ ||W;

if m— («//?) = 0, 1, ••, m — 1.

PROOF. Let w - (n/p) ̂  0,1, , w — 1. By Theorem 6.1 and (6.10) we see that

( fαog
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ueCk and

where ay = Dγu(0)/γ\ and f=(2n)~my-}nD
mu. For max(0, k+\)^\β\^rn-\ we

obtain Dβu(x) = DβUitk(x). Hence by Proposition 3.25 (I) and Theorem 3.17 we
have

(\\x\-{m-ίβι)p\Dβu(x)\*dx\ P = (\\x\~im~iβnp\DβUifk(x)\pdx\ *

For 0^\β\<.k we obtain

By Proposition 3.25 (I), Theorem 3.17 and Corollary 5.9 we have

S C\\f\\p£C\u\mtP.

Moreover, we see that

by (6.4). In case m - (n/p) = 0,1, , m — 1, using Theorem 3.17, Proposition 3.25 (II),
Proposition 5.15 and Theorem 6.3 we obtain the required inequalities. The proof of
the lemma is completed.

The following lemma is proved in [10]. See also V. G. Maz'ya [13; Lemma 2.4
in Kapitel 6].

LEMMA 6.6. There exists a sequence {/N}N=2,3, ••• wλ/cλ satisfies the following

conditions:

(i) fNe@,OSfNύlfN(x)=lfor\x\^NandfN(x) = Ofor

(ϋ) //

\ + \x\ymp\u(x)\pdx<oo,

then \\uDafN\\p^0 as N^oofor |α| = m.



586 Takahide KUROKAWA

We denote by LJ, the closure of 9> in <£v

m. The following theorem gives

characterizations of this space.

THEOREM 6.7. Assume that m

(I) Let m — («//?)Φ0, 1, , m — 1 and k=[m— {n/p)~\. Then the following four

conditions are equuivalent:

(i) ueUm.

(ii) There exist an Lp-function f and real numbers aγ(\γ\^k) such that

|

(iii)

(iv)

(II) Let m — (n/p) = 0, 1, , m — 1 and k = m — (n/p). Then the following three

conditions are equivalent.

(i) ueUm.

(ii) There exist an Y,p-function f and real numbers aγ(\y\^k) such that

ί

where fΛ =f\Bχ andf2 =f-fx.

(***) 0°β(^ + W))~ p (n- |x | j "'*Ίu(x)\yax<ao.

PROOF. We only give the proof of (I). First we prove (i)=>(ii). By the

assumption, there exists a sequence {uN}N= l t 2 t . . . c & such that uN converges to u as

N-+CO in ifj,. Let/ i V = ( 2 π ) - m y - j / ) ^ . Then/* converges t o / = {2πymy-}nD
mu as

N-*co in lAnorm. Since

by Corollary 5.9, we see from the proof of Lemma 6.5 that.
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By Theorem 6.1, we see that ueCk and DyuN(0)-+ Dγuφ) and £/£$-• ί/£,k in .£?£ as W

->oo. Consequently by Proposition 6.4, MN->W in J£?£ and

u(x) = Σ.y,s* (DMO)/J\ )xy + £/£.*(*).

The implication (ii)=>(iii) is clear by Corollary 3.22 (i) and Corollary 5.9. The

implication (iii)=>(iv) is trivial. Finaly we shall show (iv)=>(i). It is enough to show

that u can be approximated by a sequence of functions in <£v

m which have compact

support. Taking a sequence {/#}#=1,2, ••• which satisfies the conditions in Lemma

6.6, we put uN =fNu. It is clear that

Γ \uN(x)-u(x)\>dx =

I

For \oc\=m9 by Leibniz's formula we have

IN = n\D*(u(x)-uN(x))\'dxYP

By the assumption and Lemma 6.5 we have

( ( m " ' β ' ) p \D β u{x)\ p dx < 00.

Hence it follows from Lemma 6.6 (ii) that IN-+0 as N^oo. Therefore uN converges to

u as 7V-> 00 in ££v

m. Thus we obtain (I).

REMARK 6.8. P. I. Lizorkin [12] proved the equivalence of (i) and (iii) in

Theorem 6.7 (I).

REMARK 6.9. (i) Let m-(n/p)<0. By Theorem 6.7 (I) we have L& = {t/£;

feU). If u= Uf

meUm, t h e n / = {2π)-my-}nD
mu. Hence by Corollary 3.22 (i) we have

V

Consequently for weLJ, we see that
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Also we see that for weLJJ,

(ii) Let m — (n/p)> 0, φ\, ,m — 1 and fc = [m — («//»)]. From Theorems 6.1

and 6.7 (I) it follows that for ueLζ,

Moreover, for WELJ, we shall show

(6.11) C^llw ^ I I ^ Σ . v . ^ J ^ M O ^ + lwU^CII

By the proof of Theorem 6.7 (I), ue\Jm can be represented as

« = Σ,, l S*W0)/7!^+ ί/ U / = (2π)-" y-,ίi)m«.

Hence by Corollary 3.22 (i) and Corollary 5.9 we have

ZCΣιyι ik\D?u(0)\

Hence, together with (6.4) we obtain (6.11).

(iii) Let m — (n/p)=0, l. , m— 1. Then it follows from Theorems 6.3 and 6.7

(II) that for uehζ,

REMARK 6.10. Let «eL£ and \β\=j with O^j^m. By Lemma 6.5 and

Theorem 6.7 we have DβueLζι-j and

V &p

m-j\\ ύ c\\u; se*m\
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where J*?g and Lg mean LΛ Namely, the differential operator Dβ is a bounded

operator from λJm to L£_7 .

Now, as a consequence of Theorem 6.7 (I), we obtain a potential representation

of a solution of the equation (1.1) for arbitrary positive integer /.

THEOREM 6.11 (i) Ifll- («//?)/0,l,. , 21- l,k = [ 2 / - («//?)] andfeU, then

we have AιU{Uk={-\)\2π)2ly2lJ.
(ii) If 2l-(n/p) = 0, 1, , 2/-1, k = 2l-(n/p) and feV, then we have

Δ'ίt/ίί*-! + Uίi9k)=(-l)i(2π)2lγ2lJ'whereft =f\Bl andf2 =f-fv

PROOF. We only give the proof of (i). Since E/{itfceLf z by Theorem 6.7 (I), from

Lemma 4.2 (ii) it is easily seen that D2lU{lfk= (—l)ιAιU{lk. Hence the conclusion

follows from Corollary 4.5 (i).

§7. Embedding and interpolation theorems

In this section we are concerned with embedding and interpolation theorems

for the spaces L£. First we establish an embedding theorem for L£.

THEOREM 7.1. Let k= [m- («//?)]. Ifmax(k+1, 0)g/^ra , then L^

and whenever weL£,

\\u; <e\rn-ι\\^c\\u

PROOF. The case / = m is trivial. Let max (k-\-1,0)^1 ^m — 1. First we assume

that m -(n/p) # 0 , 1 , •••, m-1. Let weL£. Then by the proof of Theorem 6.7 (I) u can

be represented as

where f=(2π)~my~f

1

nD
mu. For \β\ = l, it follows from Proposition 3.25 (I) that

DPu(x) = DΊ/^x) = ^κm(x-y)f(y)dy.

Since \β\ ̂ max(fc+1, 0), Dβκm(x) is homogeneous of degree m — l—n. Since m —/

)^m — k—l — (n/p)<0, it follows from Theorem 3.17 that

Therefore we have ue&fm-i and

Moreover, we have
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Since

r
+ \x\γ>yι-i)Pm-ιdx<(X)

for O^M^fc, it follows from (6.3) that I^C\\u; &p

m\\. Since -lpm-ι = -pm-x(rn
- (n/p))-n and/?m_j^/?, by Theorem 3.17 and Corollary 5.9, we obtain I2 g C| |/ | | p

^C\u\mtP. Noting that /-(«//?m_z) = m-(«//?)#0, 1, , m - 1 , by Theorem 6.7 (I)
and Remark 6.9 (i), (ii) we have weLf^-i and

Next let m-(n/p) = 0, l, , w - l and weL£. By Theorem 6.7 (II) we have

where /=(2πΓmy-,iZ>m

M, / 1 = / | B l and f2=f-fv For |jS| = /, it follows from
Proposition 3.25 (II) that

Since m~l—(n/p)<0, by Theorem 3.17 we have

We note that l-(n/pm.l) = 0, 1, , m - 1 . In order to show ueLfm-ι9 in view of
Theorem 6.7 (II) it is enough to prove

a y
(log(e + \x\))-pm-ι(l + \x\ylp™-ι\u{x)\p'n-ιdx\ <oo.

We have
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Since (\y\-l)pm-1 ύ -n for \y\^k and/?m_,> 1, it follows from (6.8) that Jx ^C\\u;

<£p

m\. Moreover, since lpm.l=pm.l{m — (n/p)) + n3,ndpm-l^p, by Proposition 5.15

we see that J2^C\\f1\\p^Qu\m9P. Similarly, we have J3^C\u\mtP. Thus we obtain

(7.1). Hence ueLf™-ι and Remark 6.9 gives

We have completed the proof of Theorem 7.1.

Next we establish an interpolation theorem for L£. We cite here two known

results as lemmas.

LEMMA7.2 ([7; Theorem9.3]). If 0 < / < m , pl9 p2>\ and l/p=(l/Pl)

(l-(//m)) +(l/p2) (I/ml then for φe@ and\oc\ = l

For a nonnegative measurable function w on JRM, we put

\f(x)\>w{x)dx\ <oo}.

/

LEMMA 7.3 ([4;Theorem 5.5.1]). Assume thatpup2>l,O^θ^l andl/p= (1

— Θ)/Pi+Θ/P2- If for nonnegative measurable functions wu w2 we set w(x)

= wΐ(x)pil~θ)/piw2(x)pθ/p29 then we have

THEOREM 7.4. (i) Lei mί9m2 andm be nonnegative integers such that m1^

2, mxφm2, and let pu p2>l. If we set θ=(m — mί)/(m2 — m1) and 1//?=(1

θ)/Pl + θ/p2 then we have LQfiLfycLZ and whenever

|| + ||i

(ii) Let mbea nonnegative integer and 1 <p1 <p2. Then for px ^p ^p2 we have
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L£ and whenever

\\u;

PROOF. First let mγ = 0 < m ^ m2. For WGLPI fjL^, as in the proof of Theorem

6.7 we can find a sequence {φN}N= l f 2 ••• <= ® such that φN tends to w as 7V-> oo in Lpi
and DβφN tends to Z^M as N-+ oo in Lp2 for \β\ = m2. Hence by Lemma 7.2 we see that
weLJ, and for |α |=w

Since

(cf. Lemma 7.3), we have ||u; &*m\ S C(\\u\\Pl + \\u; &p

m\\\). Next, let \^m1^m^m2,
mί φm2 and MGL^ipjL^. For |j8| = /»! and m3 = m2—mu we easily see (cf. Remark
6.10) that DβueL*ζ and

Consequently I^ueL^oLf^. Let w4 = m—wx. Then by the argument in the first
case we see that ViftL^ciL^ since l/p= (1/pJ (1 - (m4/m3))+ (l/p2) (m4/m3),

d hand whenever ι^eLiπLJ,2,

|tr, XζtJ£C{\\υ\\Pi + \\v\ <?521

Thus DβueUmA and

so that w e j ^ and

Let w1 = (log(e + W))-pi(l + |x|)-mipi, w2 = (log(e + |jc|))-p2(l + |jc|)-m2^2 and w
= (log(e +1x1)^(1+ MΓ m p . Then, since wp

1

a~θ)/p^wp

2

θ/p2 = w, Lemma 7.3 implies
that weL^ίwJnL^Wz^L^w) and

C\\u\\p,w + \u\mtP^C(\\u; S£p

m\\ + ||ιι;

on account of Remark 6.9. Hence by Theorem 6.7 we see that
(ii) This follows from Lemma 7.3, Theorem 6.7 and Remark 6.9.

REMARK 7.5. Let ml9 m2, m be nonnegative integers such that mx ^m^m2,
m^m2, andlet/?1,/72>l, Θ=(m — m1)/(m2 — m1\ l/p=(l — θ)/p1 + θ/p2. Assume
that mγ — (n/p1) < 0 and m2 — {n/p2) < 0. Then m — (n/p) < 0. Hence by Remark 6.9
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(i) and Theorem 7.4 (i) we see that for p|L£

REMARK 7.6. Let mί9 m2, m be nonnegative integers such that m1^m^m2,

miz£m2>
 a n ( i Iet/?1,/?2

>1» Θ=(m — m1)/(m2 — m1\ 1//?=(1 — θ)/pί + θ/p2 Assume

that m2 — (n/p2)<m. If we put l/q=l/p2—(m2—m)/n, then for p^r^q we have

LJifiLJil czL^. Indeed, by Theorem 7.4 (i) we have L£inL£j| c L £ . Moreover, it

follows from Theorem 7.1 that LJ^cLjj,. Hence by Theorem 7.4 (ii) we see that

For any nonnegative integer m and any p > 1, the Sobolev space W£ is defined

by

The following corollary is an improvement of Sobolev's embedding theorem [2;

Theorem 5.4].

COROLLARY 7.7. Let k= \_m-{njp)\ 7fmax(/r+1, 0 ) ^ / ^ w ,

Wf»-' <zm/ whenever

PROOF. By Theorem 7.4 (i) we have

Since max (k + 1 , 0 ) ^ l ^ m , the condition m — l^j^m implies that max ([/'— («//?)]

+ 1, 0)^j—(m — l)^j. Hence by Theorem 7.1 we see that

Consequently we have L^πLS,-^ Wf^-i. Furthermore, it follows from Theorems

7.1 and 7.4 (i) that

Since /^max(A:+1, 0) implies m — l— (n/p) <0, by Remark 6.9 (i) we have

\\u; jSful + | |W; ^ _ z | | g C(|W |m,p + | M | m - ί ί P ) .

The proof of Corollary 7.7 is completed.

Finally, we establish smooth function space embeddings. Let m be a

nonnegtive integer. We define spaces Bm and Em by
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Bm = {weC1; Mm>00 =Σι«, -•supMΛ»|Z)*ιι(jc)|<oo},

Em = {κeCV ||M|L.0O = Σ I « . S « S » P * . J I " I Z ) ^ W I < Q O }

and write

ll«. B m | |=Σ 1 v l S m-i l^Mθ)l + Nm,0c.

Moreover, for a positive and nonintegral number r, we define spaces Br and Er by

and write

THEOREM 7.8. Let m-(n/p)>0, / L , m-l. Then LP

nczBm~in/p) and

whenever weLJL

PROOF. Let k=[m — (n/p)~\ and weLJ,. By Theorem 6.1, weC* and by

Theorem 6.7 (I) we see that

where/= (2π)~m(ym n)~ 1Dmu. Hence it follows from Lemma 3.2 (ii) and Theorem 5.8

that for |/?| = A:

Therefore we obtain

\D^u(x)-Dl>u(y)\
I«U-WΛoo = Σ , β , =t*UPx*, \χ_y]m-(nlP)-k ^ CWfh ^ C\UL,p-\χ_y]

Furthermore, by Theorem 6.1 we see that

Thus we obtain the theorem.

The proof of the following lemma is found in [6; Proposition 5.23].

LEMMA 7.9. LetO<h<l. Then BhC\LpaB° and whenever ue&hf)Lp,
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The following corollary is an improvement of the smooth function space

embedding theorem for the Sobolev spaces ([2; Theorem 5.4]).

COROLLARY 7.10. Let m-(n/p)>0 7* 1, , ra - 1 and k=[m-(n/p)']. Then
('I/*) and whenever u

PROOF. First we show that if weLJ_^LJ and m-k^j^m, then ueBj~(n/p)

and

(7.2) |/>'κ|O i 0 O + \D*u\m-in/p)_kt00 S C(\\u; J2PJ.J + \\u; <?p\

for \β\ = [/- (/ι/p)]. We see from Theorem 7.8 that

Dtue&-Wp)-v-w = Bm~{n/p)-k and

On the other hand, Theorem 7.1 implies that

L ^ i C z L ^ i ^ - W r t i c z I ^ ^ - r f and \\u;

Hence, by Lemma 7.9 we see that Z^weBm~ ( M / p )~*πLP m- f c- l c :B0 and

which yields (7.2).

By (7.2) and Theorem 7.4 we see that

and

, oo =L,j=θ\U\j,co + \U\m-(n/p),oo

The proof of the corollary is completed.

To consider the case m — (n/p) = 1,2, , m — 1, we introduce the space Bm>r for a

nonnegative integer m and r>0, which is defined by

Mm,.*, = Σ w -
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with the norm \\u; Bm r | | = £,„, s »l^«(0) l + M-.r.«

THEOREM 7.11. Let m-(n/p)=l, 2, , m-ί and k=m-(n/p). Then Um

< - B * - I , I / P and whenever ueLp

m, \\u; B*-1-1**!! gC | | « ;

PROOF. Let MELJ,. By Theorem 6.7 (II) we have

where/= (2π)-m(ym,n)-1Dmu,f1 =f\Bχ and/ 2 =f-fv For any multi-index β with |^|

=k— 1, we see

| ̂  Σ.,. -*l

Hence in view of Lemmas 3.4, 3.6, Proposition 3.25 (II) and Remark 5.14 we have

1/p'

Therefore using (6.9), we have

\Dβu(x)-Dβu{y)\

^ C||«/

Consequently we have

M*-i.i/i. ̂  C\\u; ^ H s u p ^ e ( ^ | ^ y = C\\u;

Since Σ.yi s k - i l ^ M 0 ) | ^ C | | u ; JS?£||, we obtain the theorem.
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